WorldWideScience

Sample records for high strength stainless

  1. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  2. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  3. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  4. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  5. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  6. High-temperature strength of TiC-coated SUS316 stainless steel

    International Nuclear Information System (INIS)

    Kaneko, K.; Furuya, Y.; Kikuchi, M.

    1992-01-01

    Some ceramics-coated metals are nominated as first-wall material. TiC-coated type 316 stainless steel is expected to be superior to other materials in high-temperature strength and in its endurance properties at heavy irradiation. Delamination between ceramics layer and base-metal is considered to be one of the most important problems when such ceramics-coated metals are used in a temperature field with a gradient such as that of the first wall. In this report, the high-temperature strength of TiC-coated type 316 stainless steel, which should be that of the first wall of the fusion reactor, is investigated experimentally and computationally. A simple and precise thermal-stress testing system is developed. The effects of surface roughness as well as of the thermal stress and the residual stress on the bonding strength are investigated. The experimental and numerical results on the residual-stress distribution are compared with each other to confirm the reliability of the inelastic analysis using the finite-element method (FEM). It is expected that a suitable surface roughness makes the residual stress in the coated film small. The optimum range for the TiC-coating temperature is found using inelastic FEM analysis at the heating conditions used in the experiments. (orig.)

  7. Welding of high-strength stainless steel 03Kh12N10MT for cryogenic engineering

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1989-01-01

    Consideration is being given to weld resistance to cold and hot cracking at 93 and 77K and to mechanical properties of welded joints of high-strength stainless steel 03Kh12N10MT, produced under the fluxes AN-17M, AN-18, AN-26, AN-45, ANF-5, 48-OF-6, ANK-45 and ANK-49 in combination with various welding wires. It is shown that welds on 03Kh12N10MT steel meet the requirements only when using 48-OF-6 or ANK-49 flux. It is noted that impact strength of welds at 77K is sufficiently affected by the volume fraction of non-metallic inclusions in weld metal

  8. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    International Nuclear Information System (INIS)

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  9. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  10. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

    Science.gov (United States)

    Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.

    2018-04-01

    Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the crystallographic directions. However, texture analysis revealed that the main texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

  11. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Lee, Soo–Wohn; Pyun, Young–Sik

    2017-01-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  12. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: aamanov@outlook.com [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Lee, Soo–Wohn [Department of Metals and Materials Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Pyun, Young–Sik [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of)

    2017-02-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  13. submitter Physical Properties of a High-Strength Austenitic Stainless Steel for the Precompression Structure of the ITER Central Solenoid

    CERN Document Server

    Sgobba, Stefano; Arauzo, Ana; Roussel, Pascal; Libeyre, Paul

    2016-01-01

    The ITER central solenoid (CS) consists of six independent coils kept together by a precompression support structure that must react vertical tensile loads and provide sufficient preload to maintain coil-to-coil contact when the solenoid is energized. The CS precompression system includes tie plates, lower and upper key blocks, load distribution and isolation plates and other attachment, support and insulating hardware. The tie plates operating at 4 K are manufactured starting from forgings in a high-strength austenitic stainless steel (FXM-19) with a stringent specification. Moreover, forged components for the lower and upper key blocks have to be provided in the same FXM-19 grade with comparably strict requirements. FXM-19 is a high-nitrogen austenitic stainless steel, featuring high strength and toughness, ready weldability, and forgeability. It features as well higher integral thermal contraction down to 4 K compared with the very high Mn steel grade selected for the CS coil jackets, hence providing an ad...

  14. Assessment of high-strength stainless steel weldments for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    Primary design considerations for the Compact Ignition Tokomak fusion reactor magnet cases are yield strength and toughness in the temperature range from liquid nitrogen to room temperature (77 to 300K). Type 21-6-9 stainless steel, also known as Nitronic 40, is the proposed alloy for this application. This study documented the mechanical properties, including tensile yield strength and Charpy V-notch impact toughness, at 77K and room temperature, of weldments made using seven different filler metals. Six welds were made with filler metal added as cold filler wire using the argon-shielded gas tungsten arc welding process. Filler metals included Nitronic 35W and 40W, 21-6-9, ERNiCr-3 (Inconel 82), ERNiCrMo-3 (Inconel 625), and Inconel 625 PLUS. All welds were prepared with a double-groove butt-weld geometry. At room temperature, all of the filler metals had yield strengths which exceeded the base metal. However, at 77K only the Nitronics and the 21-6-9 filler metals exceeded the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77K, impact toughness was greatly reduced for all of the filler metals with the exception of Inconel 82. This alloy had excellent toughness at both temperatures. The severe drop in the impact toughness of the Nitronic and 21-6-9 filler metals was attributed to the amount of ferrite present in these welds. At 77K, fracture occurred by a cleavage mechanism in the ferrite regions which allowed the crack to grow readily. The fully austenitic Inconel 82 material fractured by a microvoid coalescence mode at either test temperature. These results indicate that the Inconel 82 filler metal is the preferred material for welding 21-6-o stainless steel for this application

  15. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  16. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Wang, W.; Yang, K.; Bliznuk, V.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles, and coupled with a genetic optimization scheme, is presented. The method is applied to the design of new ultra-high-strength maraging stainless steels strengthened by Ni 3 Ti intermetallics. In the first design round, the alloy composition is optimized on the basis of precipitate formation at a fixed ageing temperature without considering other steps in the heat treatment. In the second round, the alloy is redesigned, applying an integrated model which allows for the simultaneous optimization of alloy composition and the ageing temperature as well as the prior austenitization temperature. The experimental characterizations of prototype alloys clearly demonstrate that alloys designed by the proposed approach achieve the desired microstructures.

  17. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  18. The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels

    International Nuclear Information System (INIS)

    Moon, Joonoh; Jang, Min-Ho; Kang, Jun-Yun; Lee, Tae-Ho

    2014-01-01

    The effect of a Zr addition on the precipitation behavior and mechanical properties in Nb-containing alumina-forming austenitic (AFA) stainless steels was investigated using tensile tests, scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analysis. The TEM observation showed that a Zr addition led to the formation of a (Nb,Zr)(C,N) complex particle, which coarsened the Nb-rich carbonitride. Tensile tests were performed at an elevated temperature (700 °C), and both the tensile and yield strengths decreased with a Zr addition. This unexpected result of a Zr addition was due to the reduction of the precipitation strengthening by particle coarsening. - Highlights: • The effect of Zr on high temperature strength in AFA steel containing Nb was studied. • Both the tensile and yield strengths of an AFA steel decreased with Zr-addition. • This is due to the reduction of precipitation strengthening by particle coarsening. • Nb(C,N) and (Nb,Zr)(C,N) particles were precipitated in an AFA and Zr-added AFA steel. • The size of (Nb,Zr)(C,N) particle is much bigger than that of Nb(C,N) particle

  19. Austenitic stainless steels and high strength copper alloys for fusion components

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Zinkle, S.J.; Alexander, D.J.; Stubbins, J.F.

    1998-01-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop A125), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop A125 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface. (orig.)

  20. New tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Ceron, Ermanno

    that the performance of the workpiece materials have to improve in order to satisfy higher strength and lower weight requirements. This however leads to challenges in the forming operation, especially when high surface expansion and elevated strain are involved. The challenge is to achieve long production run...... Tribotester was developed. A production process was selected at Grundfos, which is currently running with chlorinated paraffin oil. The process includes a deep drawing and two subsequent re-drawings in a progressive tool. The process was numerically analyzed to investigate the tribological conditions....... A suitable laboratory test (BUT test) was selected to simulate the production process. The BUT test was numerically analyzed to verify that the tribological conditions are close to the production process ones. A few interesting new tribo-systems were selected to be investigated in the BUT test. Some of them...

  1. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  2. Alloying element effect on the mechanical properties of high-strength stainless steels and welds

    International Nuclear Information System (INIS)

    Pustovit, A.I.; Yushchenko, K.A.; Fortunatova, N.N.

    1977-01-01

    Experimental steels containing 11-17% Cr, 3-13% Ni, 0-2% Mo, 0-1% Ti, 1-2% Cu, 0-4% Co, 0-1% He, < 0.03% C and their welded joints have been studied. The ''MRA-1'' program was used to obtain mathematical description (in the form of regression equations) of the effect of alloying elements on strength and plasticity of the steels and the welded joints at 20...-196 deg C. The dependences obtained make it possible to predict the properties of the steels and the joints in a satisfactory agreement with their actual behaviour at 20...-196 deg C

  3. The Composition and Temperature Effects on the Ultra High Strength Stainless Steel Design

    Science.gov (United States)

    Xu, W.; Del Castillo, P. E. J. Rivera Díaz; van der Zwaag, S.

    Alloy composition and heat treatment are of paramount importance to determining alloy properties. Their control is of great importance for new alloy design and industrial fabrication control. A base alloy utilizing MX carbide is designed through a theory guided computational approach coupling a genetic algorithm with optimization criteria based on thermodynamic, kinetic and mechanical principles. The combined effects of 11 alloying elements (Al, C, Co, Cr, Cu, Mo, Nb, Ni, Si, Ti and V) are investigated in terms of the composition optimization criteria: the martensite start (Ms) temperature, the suppression of undesirable phases, the Cr concentration in the matrix and the potency of the precipitation strengthening contribution. The results show the concentration sensitivities of each component and also point out new potential composition domains for further strength increase. The aging temperature effect is studied and the aging temperature industrially followed is recovered.

  4. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  5. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@student.lut.fi; Kah, P., E-mail: paul.kah@lut.fi; Martikainen, J., E-mail: jukka.martikainen@lut.fi

    2017-01-15

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite in the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.

  6. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  7. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel

    International Nuclear Information System (INIS)

    Sadeghian, M.; Shamanian, M.; Shafyei, A.

    2014-01-01

    Highlights: • The microstructure of weld metal consists of austenite and ferrite. • The HAZ of the API X-65 shows different transformation. • Impact strength of sample with low heat input was lower than base metals. • The heat input at 0.506 kJ/mm is not the suitable for dissimilar joining between UNS S32750/API X-65. - Abstract: In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals

  8. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  9. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  10. A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy.

    Science.gov (United States)

    Tian, Jialong; Wang, Wei; Babar Shahzad, M; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke

    2017-11-10

    A new maraging stainless steel with superior strength-toughness-corrosion synergy has been developed based on an innovative concept of alloy design. The high strength-toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni₃Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.

  11. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  12. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  13. High nitrogen stainless steels for nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  14. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  15. Correlation of yield strength with irradiation-induced microstructure in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Simons, R.L.; Hulbert, L.A.

    1985-10-01

    Improvements in the correlation of radiation-induced change in yield strength in AISI 316 stainless steel with microstructure were made by re-examining the role of short-range obstacles. Effects due to the size of the obstacles relative to their spacing and shape of the obstacles were applied. The concept of shearing the precipitates instead of bowing around them was used to explain the effects of precipitate hardening. It is concluded that large changes in yield strength may be produced in high swelling materials. Voids will dominate the hardening at high dpa. The increase in hardening will depend on the diameter of the voids even though the swelling in the material is the same. Precipitate hardening at high fluence (>15 dpa) make a significant contribution for irradiation temperatures above 500 0 C

  16. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  17. Effect of fluoride mouthwash on tensile strength of stainless steel orthodontic archwires

    Science.gov (United States)

    Fatimah, D. I.; Anggani, H. S.; Ismah, N.

    2017-08-01

    Patients with orthodontic treatment are commonly recommended to use a fluoride mouthwash for maintaining their oral hygiene and preventing dental caries. However, fluoride may affect the characteristics of stainless steel orthodontic archwires used during treatment. The effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires is still unknown. The purpose of this study is to know the effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires. Examine the tensile strength of 0.016 inch stainless steel orthodontic archwires after immersion in 0.05%, 100 ml fluoride mouthwash for 30, 60, and 90 min. There is no statistically significant difference in the tensile strength of stainless steel orthodontic archwires after immersed in fluoride mouthwash. The p-values on immersion fluoride mouthwash for 30, 60, and 90 min consecutively are 0.790; 0.742; and 0.085 (p > 0.05). The use of fluoride mouthwash did not have an effect on the tensile strength of stainless Steel orthodontic archwires.

  18. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    OpenAIRE

    Bahnasi, Faisal I.; Abd-Rahman, Aida NA.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in...

  19. The Effect of Hot Working on Structure and Strength of a Precipitation Strengthened Austenitic Stainless Steel

    Science.gov (United States)

    Mataya, M. C.; Carr, M. J.; Krauss, G.

    1984-02-01

    The development of microstructure and strength during forging in a γ' strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ' precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms

  20. The effect of hot working on structure and strength of a precipitation strengthened austenitic stainless steel

    International Nuclear Information System (INIS)

    Mataya, M.C.; Carr, M.J.; Krauss, G.

    1984-01-01

    The development of microstructure and strength during forging a γ' strengthened austenitic stainless steel, JBK-75, was investigated. The specimens were deformed in a strain range of 0.16 to 1.0, from 800 0 C to 1080 0 C at approximate strain rates of 2 (press forging) and 2 X 10 3 S -1 (high energy rate forging). Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited a wide variety of structures and properties within the range of forging parameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that γ' precipitation is not affected by substructure and that the strengthening contributions were independent and additive. Applications for these findings are discussed in terms of process design criteria

  1. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

    Science.gov (United States)

    Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai

    2018-04-01

    Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered textured microstructure compared to the common textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.

  2. Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel

    Science.gov (United States)

    Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun

    2017-08-01

    We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.

  3. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  4. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1995-01-01

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses (on which the stainless steel S m values are based) from the test data are about 15 to 20% greater than the ASME Code yield stress values. The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in the probabilistic risk assessments of nuclear piping

  5. Ductility of high chromium stainless steels

    International Nuclear Information System (INIS)

    Peretyat'ko, V.N.; Kazantsev, A.A.

    1997-01-01

    Aimed to optimize the hot working conditions for high chromium stainless steels the experiments were carried in the temperature range of 800-1300 deg C using hot torsion tests and cylindrical specimens of ferritic and ferritic-martensitic steels 08Kh13, 12Kh13, 20Kh13, 30Kh13 and 40Kh13. Testing results showed that steel plasticity varies in a wide range depending on carbon content. Steels of lesser carbon concentration (08Kh13 and 12Kh13) exhibit a sharp increase in plasticity with a temperature rise, especially in the interval of 1200-1250 deg C. Steels 20Kh13 and 30Kh13 display insignificant plasticity increasing, whereas plastic properties of steel 40Kh13 increase noticeably in the range of 1000-1300 deg C. It is shown that optimal hot working conditions for specific steel must be selected with account of steel phase composition at high temperatures

  6. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  7. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  8. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  9. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  10. Composition design of superhigh strength maraging stainless steels using a cluster model

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2014-02-01

    Full Text Available The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3, where NiFe12 is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni with surplus Ni was then determined to ensure the second phase (Ni3M precipitation, based on which new multi-component alloys [(Ni,Cu16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V16 were designed. These alloys were prepared by copper mould suction casting method, then solid-solution treated at 1273 K for 1 h followed by water-quenching, and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite, which enhances the strengths of alloys sharply after ageing treatment. Among them, the aged [(Cu4Ni12Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1 alloy (Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78 wt% has higher tensile strengths with YS=1456 MPa and UTS=1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.

  11. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  12. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  13. Effect on spot welding variables on nugget size and bond strength of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Charde, Nachimani

    2012-01-01

    Resistance spot welding (RSW) has revolutionized mechanical assembly in the automotive industry since its introduction in the early 1970s. Currently, one mechanical assembly in five is welded using spot welding technology, with welding of stainless steel sheet becoming increasingly common. Consequently, this research paper examines the spot welding of 2 mm thick 304 austenitic stainless steel sheet. The size of a spot weld nugget is primarily determined by the welding parameters: welding current, welding time, electrode force and electrode tip diameter However, other factors such as electrode deformation, corrosion, dissimilar materials and material properties also affect the nugget size and shape. This paper analyzes only the effects of current, weld time and force variations with unchanged electrode tip diameter. A pneumatically driven 75kVA spot welder was used to accomplish the welding process and the welded samples were subjected to tensile, hardness and metallurgical testing to characterize the size and shape of the weld nugget and the bond strength.

  14. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower {delta}-ferrite content, alignment of columnar grain with {delta}-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  15. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    International Nuclear Information System (INIS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K.

    2011-01-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  16. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Science.gov (United States)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  17. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets.

    Science.gov (United States)

    Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I

    2013-10-01

    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.

  18. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    Science.gov (United States)

    Bahnasi, Faisal I.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081

  19. Strengthening of stainless steel weldment by high temperature precipitation

    OpenAIRE

    Sergio Neves Monteiro; Lucio Fabio Cassiano Nascimento; Édio Pereira Lima, Jr.; Fernanda Santos da Luz; Eduardo Sousa Lima; Fábio de Oliveira Braga

    2017-01-01

    The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C) and long periods (up to 2000 h) under constant load, and both mechanical properties and microstructural changes in ...

  20. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W., E-mail: w.xu@m2i.nl [Materials Innovation Institute M2i, Kluyverweg 1, 2629 HS, Delft (Netherlands)] [Novel Aerospace Materials (NovAM) Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Rivera-Diaz-del-Castillo, P.E.J. [Novel Aerospace Materials (NovAM) Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Yan, W.; Yang, K. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); San Martin, D. [Materalia Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Kestens, L.A.I. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Gent (Belgium); Zwaag, S. van der [Novel Aerospace Materials (NovAM) Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2010-06-15

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles and coupled with a genetic optimization scheme is presented. The model is applied to develop a new ultrahigh-strength maraging stainless steel. The alloy composition and heat treatment parameters are integrally optimized so as to achieve microstructures of fully lath martensite matrix strengthened by multiple precipitates of MC carbides, Cu particles and Ni{sub 3}Ti intermetallics. The combined mechanical properties, corrosion resistance and identification of actual strengthening precipitates in the experimental prototype produced on the basic of the model predictions provide a strong justification for the alloy design approach.

  1. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Yan, W.; Yang, K.; San Martin, D.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles and coupled with a genetic optimization scheme is presented. The model is applied to develop a new ultrahigh-strength maraging stainless steel. The alloy composition and heat treatment parameters are integrally optimized so as to achieve microstructures of fully lath martensite matrix strengthened by multiple precipitates of MC carbides, Cu particles and Ni 3 Ti intermetallics. The combined mechanical properties, corrosion resistance and identification of actual strengthening precipitates in the experimental prototype produced on the basic of the model predictions provide a strong justification for the alloy design approach.

  2. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  3. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  4. The strength evaluation and σ-phase aging behavior of cast stainless steel

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul; Lee, Woo Ho; Jang, Sun Sik

    1999-01-01

    σ-phase of cast stainless steel(CF8M) was artificially precipitated by means of thermal aging at 700 deg C with various holding time (0.33, 5, 15, 50 and 150 hrs) to evaluate the behavior of thermal aging status of strength change. The structure observation, hardness test, tensile test, impact test and fatigue crack growth rates test for as-received and degraded material were also performed to evaluate static strength, toughness and fatigue crack growth behavior corresponding to the aging condition of CF8M. The results showed that the area fraction of σ-phase and hardness value increased with thermal aging time. But, for the impact values, upper shelf energy decreased and fatigue crack growth rates increased with σ-phase aging progressed than that of virgin material

  5. Strengthening of stainless steel weldment by high temperature precipitation

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2017-10-01

    Full Text Available The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C and long periods (up to 2000 h under constant load, and both mechanical properties and microstructural changes in the material were monitored. It was found that the exposure of the material at 600 °C under load contributes to a strengthening effect on the weld. The phenomenon might be correlated with an accelerated process of second phase precipitation hardening. Keywords: Stainless steel, Weld, AISI 304, Precipitation hardening

  6. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  7. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  8. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    Science.gov (United States)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  9. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  10. Bond strength of stainless steel orthodontic brackets bonded to prefabricated acrylic teeth.

    Science.gov (United States)

    Wan Abdul Razak, Wan Salbiah; Sherriff, Martyn; Bister, Dirk; Seehra, Jadbinder

    2017-06-01

    The purpose of this in-vitro study was to evaluate the force to debond stainless steel orthodontic brackets bonded to acrylic teeth using different combinations of adhesive and surface treatments. One hundred prefabricated upper lateral incisor acrylic teeth were divided into 4 equal groups: Transbond XT® adhesive only (Group 1, control), Transbond XT® adhesive with sandblasting (Group 2), Transbond XT® adhesive with abrasion / + methyl methacrylate (MMA) (Group 3) and Triad® Gel only (Group 4). The force in Newtons (N) to debond the brackets was measured. One-way analysis of variance (ANOVA) and pairwise multi-comparison of means (Šidak's adjustment) were undertaken. The highest force to debond was recorded for Group 2 (275.7 N; SD 89.0) followed by Group 3 (241.9 N; SD 76.0), Group 1 (142.7 N; SD 36.7) and Group 4 (67.9 N; SD 21.1). Significant differences in bond strength measurements between the experimental groups were detected. Mean force values for the groups revealed no significant differences between Group 2 and Group 3 (p>0.05). Both sandblasting and surface abrasion/+ application of methyl methacrylate (MMA) in combination with Transbond XT® adhesive are recommended for bonding stainless orthodontic brackets to acrylic teeth.

  11. Effects of hydrogen on the tensile strength characteristics of stainless steels

    International Nuclear Information System (INIS)

    Blanchard, R.; Pelissier, J.; Pluchery, M.; Commissariat a l'Energie Atomique, Saclay

    1961-01-01

    This paper deals with the effects of hydrogen on stainless steel, that might possibly be used as a canning material in hydrogen-cooled reactors. Apparent ultimate-tensile strength is only 80 per cent of initial value for hydrogen content about 50 cc NTP/ 100 g, and reduction in area decreases from 80 to 55 per cent. A special two-stage replica technique has been developed which allows fracture surface of small tensile specimens (about 0.1 mm diam.) to be examined in an electron microscope. All the specimens showed evidence of ductile character throughout the range of hydrogen contents investigated, but the aspect of the fracture surfaces gradually changes with increasing amounts. (author) [fr

  12. Statistical properties of material strength for reliability evaluation of components of fast reactors. Austenitic stainless steels

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato

    2015-03-01

    Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)

  13. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    stress corrosion cracking of austenitic stainless steels (SS) and to quantify the effect on the crack propagation rate, an experimental research program was performed using cold and warm worked 304, 316L and 347 SS. Stress corrosion crack growth rate tests, under BWR and PWR environments have been carried out. The results obtained have permitted to determine the yield strength effect in the crack propagation of austenitic stainless steels in PWR and BWR conditions. In addition, similarities on cold work and radiation hardening in enhancing the yield strength and the stress corrosion cracking propagation at high temperature water have been evaluated. (authors)

  14. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    Science.gov (United States)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  15. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    International Nuclear Information System (INIS)

    Bonora, R; Cioffi, M O H; Voorwald, H J C

    2017-01-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment. (paper)

  16. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  17. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  18. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  19. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  20. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  1. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  2. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    Science.gov (United States)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  4. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  5. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  6. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  7. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  8. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  9. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  10. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  11. High Ni austenite stainless steel resistant to neutron irradiation degradation

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Kanasaki, Hiroshi; Fujimoto, Koji; Nakata, Shizuo; Ajiki, Kazuhide; Nakamura, Mitsuhiro.

    1997-01-01

    The composition of the stainless steel of the present invention comprises from 0.005 to 0.08% of C, up to 3% of Mn, up to 0.2% of Si+P+S, from 25 to 40% of Ni, from 25 to 40% of Cr, up to 3% of Mo, up to 0.3% of Nb+Ta, up to 0.3% of Ti, up to 0.001% of B and the balance of Fe. A solid solubilization treatment at a temperature of from 1,000 to 1,150degC is applied to the stainless steel having the composition. The stainless steel is excellent in stress corrosion cracking-resistance at a working circumstance of a LWR type reactor (high temperature and high pressure water at from 270 to 350degC/from 70 to 160 atm even after undergoing neutron irradiation of about 1 x 10 22 n/cm 2 (E>1 MeV) which is a maximum neutron irradiation amount undergone till the final stage of the working life of the LWR-type reactor. In addition, the average thermal expansion coefficient at from room temperature to 400degC ranges from 15x10 -6 - 19x10 -6 /K. (I.N.)

  12. Localized corrosion of high alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Morach, R.; Schmuki, P.; Boehni, H.

    1992-01-01

    The susceptibility of several high alloyed stainless steels against localized corrosion was investigated by traditional potentiostatic and -kinetic methods and the current transient technique. Different test cells, proposed in literature, were evaluated for use in testing of plate materials. The AVESTA-cell showed to be not useful for potentiokinetic current density potential curves, but useable for pitting experiments. After pickling and prepassivation epoxy embedded materials proved to be resistant to crevice corrosion at the metal-resin interface. The electrode in form of a wire was the most reliable crevice free cell design. The grinding of the samples in the pretreatment procedure was found to have a large effect on the pitting corrosion behaviour. Using different paper types with varying grit, a drop in pitting potential for rougher surfaces and an increase in metastable pitting activity was found. Increasing surface roughness led also to changes in the electronic structure of the passive film reflected by a lower bandgap energy. High alloyed stainless steels showed no breakdown potential within the examined potential range. Compared to 18/8 type stainless steels significantly less transients were found. The number of transients decreases with increasing molybdenum and chromium content

  13. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  14. Study on high-cycle fatigue behavior of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Xiong Ru; Zhao Yuxiang; Zhang Qiang; Wang Hao; Tang Rui; Qiao Yingjie

    2013-01-01

    The fatigue experiments of commerce stainless steels including 347, 316Ti and 310 were conducted under bending and rotating loadings. The environments were at room temperature (RT) as well as at 550℃ in air. The fracture morphology was observed by SEM, and the S-N curves were processed according to the experimental data. The results indicate the fatigue limited stresses for the 3 stainless steels were in the order of 347 < 316Ti < 310, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation and therefore the fatigue life would decrease, among them 347 was more sensitive to temperature with the maximum decreasing tendency. All the 3 stainless steels have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the width of fatigue ripples is about 1 μm, the fracture area has much dimples, and 347 presents much cavities of different sizes in dimples. (authors)

  15. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  16. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  17. High cycle fatigue of Type 422 stainless steel

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.; Sabatini, R.L.

    1978-01-01

    High cycle fatigue testing has been carried out on Type 422 stainless steel to determine the performance of cyclically stressed disks and blades in the main and auxiliary HTGR helium circulators. Tests were performed at 316, 482, and 538 0 C (600, 900, and 1000 0 F) in air for the fully reversible and mean load conditions. Goodman's analysis is shown to be valid in predicting failure at 316 0 C (600 0 F), marginally valid at 482 0 C (900 0 F), and probably invalid at 538 0 C (1000 0 F). Metallographic analyses were conducted to characterize the nature of failure for the temperatures and loading conditions investigated

  18. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  19. High-pressure stainless steel active membrane microvalves

    International Nuclear Information System (INIS)

    Sharma, G; Svensson, S; Ogden, S; Klintberg, L; Hjort, K

    2011-01-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid–liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics

  20. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  1. Effect of Sandblasting and Type of Cement on the Bond Strength of Molar Bands on Stainless Steel Crowns.

    Science.gov (United States)

    Bawazir, Omar A; Elaraby, Alaa; Alshamrani, Hamed; Salama, Fouad S

    2015-01-01

    The purposes of this study were to: (1) compare the bond strength of molar bands cemented to stainless steel crowns (SSCs) using glass ionomer cement (GIC), resin-modified glass ionomer cement (RMGIC), or polycarboxylate cement (PXC); and (2) assess the influence of sandblasting molar bands on the mean bond strength between the band and the SSC. Sixty SSCs and 60 molar bands were used. The inner surfaces of 30 molar bands were roughened by sandblasting prior to cementation. The bond strength was measured after dislodging the SSC using a push-out test. In the nonsandblasted group, a significant difference was observed between PXC and RMGIC (P >.04). In the sandblasted group, a significant difference was observed between PXC and RMGIC (P >.02), while there was only a marginal difference between GIC and RMGIC (P >.05). The sandblasted group exhibited superior bond strength overall. However, the only significant improvement was observed for GIC (P >.03). PXC showed the highest bond strength of molar bands to SSCs, while RMGIC showed the lowest. Sandblasting the inner surface of bands enhanced the bond strength of different cements.

  2. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  3. Effects of high energy nitrogen implantation on stainless steel microstructure

    Science.gov (United States)

    Pelletier, H.; Mille, P.; Cornet, A.; Grob, J. J.; Stoquert, J. P.; Muller, D.

    1999-01-01

    Low energy ion implantation is known to improve chemical and mechanical surface properties of metals. This treatment is often used to enhance wear and corrosion resistance or mechanical life-time of fatigue test of stainless steel or titanium alloys. The aim of this work is to investigate these effects at higher energy, for which deeper (and still not well understood) modifications occur. High fluence (10 18 cm -2) 15N and 14N implantations at 1 MeV have been performed in the 316LL stainless steel and some specimen have been annealed in the 200-500°C temperature range. Nitrogen concentration distribution, structure, morphology and microhardness have been examined with Nuclear Resonance Analysis, Grazing Incidence X-Ray Diffraction and Nanoindentation, respectively. Precipitates of steel and chromium nitride phases and a superficial martensitic transformation can be observed, leading to a significant increase of hardness. The best result is obtained after one hour annealing at 425°C, due to a larger and more homogeneous repartition of nitride species. In this case, a near surface accumulation is observed and explained in terms of diffusion and precipitation mechanisms.

  4. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  5. The Characteristics of Welding Joint on Stainless Steel as a Candidate of High Level Waste Canister

    International Nuclear Information System (INIS)

    Aisyah; Herlan-Martono

    2000-01-01

    High level waste is the waste generated from reprocessing of the spent fuels. This type of waste is vitrified with borosilicate glass to become waste-glass. This waste glass is contained in a canister made of austenitic stainless steel. The canister material is subjected to be welded during fabrication and utilization. The character of the welding joint that is the function of the electrical current used in the welding process have been studied. The strength of the joint is tested mechanically i.e.: the tensile strength and hardness test. The result shows that the higher the current used in welding process, the better the strength of the joint and as well the tensile strength. The optimum current is 110 A. From the hardness test, it was figured that the length of the HAZ area is 14 mm. The material in HAZ area is the hardest compared to the others, it is due to the appearance of the chrome-carbide. The welding of the canister with such a condition, during fabrication as well as during the utilization of the canister for the container of the high level waste with the PWHT process gives better result. (author)

  6. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6)

    Science.gov (United States)

    Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan

    2017-09-01

    Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.

  8. Influence of brazing conditions on the strength of brazed joints of alumina dispersion-strengthened copper to 316 stainless steel

    International Nuclear Information System (INIS)

    Nishi, H.; Kikuchi, K.

    1998-01-01

    Brazing of alumina dispersion-strengthened copper (DS Cu) to 316 stainless steel were conducted in order to investigate the influence of filler metals and brazing conditions on the joint strength. The brazing were performed with a silver-base (BAg-8) and three kinds of gold-base (BAu-2.4.11) filler metals with varying brazing joint clearance and brazing time. The filler metal had a greater effect on the joint strength than the brazing joint clearance and brazing time. The joint with BAu-2 was superior to the joint with other filler metals. The tensile strength of the joint with BAu-2 was as large as that of DS Cu, however, the Charpy and low cycle fatigue strength were lower than those of DS Cu. The DS Cu melted near the brazed zone, consequently recrystallization and agglomeration of alumina occurred in the diffusion layer for all filler metals. The grain size after the recrystallization was small in order of BAu-2. BAu-4 and BAu-11, that was in accordance with the order of the brazing temperature. The excellent fracture strength for the joint with BAu-2 was attributed to the smallest grain size. (orig.)

  9. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  10. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  11. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  12. The high temperature oxidation behaviour of austenitic stainless steels

    International Nuclear Information System (INIS)

    Hales, R.

    1977-04-01

    High temperature annealing in a dynamic vacuum has been utilised to induce the growth of duplex oxide over the whole surface of stainless steel specimens. It is found that duplex oxide grows at a rate which does not obey a simple power law. The oxidation kinetics and oxide morphology have also been studied for a series of ternary austenitic alloys which cover a range of composition between 5 and 20% chromium. A model has been developed to describe the formation of duplex oxide and the subsequent formation of a 'healing layer' which virtually causes the oxidation process to stop. This phase tends to form at grain boundaries and a relationship has been derived for the reaction kinetics which relates the reaction rate with grain size of the substrate. (author)

  13. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  14. The effects of various surface treatments on the shear bond strengths of stainless steel brackets to artificially-aged composite restorations.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2011-05-01

    To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.

  15. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  16. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin

    2014-10-24

    In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of minor alloying additions on the strength and swelling behavior of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gessel, G.R.

    1978-06-01

    A set of 32 alloys consisting of various additions of the elements Mo, W, Al, Ti, Nb, C and Si to an Fe-7.5 Cr-20 Ni alloy were made in order to investigate the effects of these solute additions on alloy swelling and strength. Both single and multiple additions were examined. The influence of various solute elements on the swelling behavior in the range 500 to 730 0 C was investigated using 4 MeV Ni ion bombardment to a dose 170 dpa. It was found that on an atomic percent basis, the elements may be arranged in order of decreasing effectiveness in reducing peak temperature swelling as follows: Ti, C, Nb, Si, and Mo. Small amounts of aluminum enhance swelling. Additions of Si, Ti, or Nb truncate the high temperature swelling regime of the ternary alloy. Mo, W, and C do not have a strong effect on the temperature dependence of swelling. The results may be interpreted in terms of the effect of point defect trapping on void growth rates, and it is suggested that the changes in peak temperature are the result of small changes in the free vacancy formation energy. A method for treating certain multiple additions is proposed. The effect of these alloying additions on short time high temperature strength properties was estimated using hot hardness measurements over the temperature range 22 to 850 0 C. On an atom percent basis Nb and Ti were most effective in conferring solid solution strengthening and Si the least effective. In the regime 22 to approximately 650 0 C, the hardness data was found to fit an equation of the form: H = H 0 + b/T; where H is the hardness, T is the temperature, and H 0 and b are constants for a given alloy. An empirical method was devised to estimate the hot hardness of alloys containing more than one solute addition

  18. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Shuro, I., E-mail: innoshuro@martens.me.tut.ac.jp [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Kuo, H.H. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Sasaki, T.; Hono, K. [National Institute for Materials Sciences, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Todaka, Y.; Umemoto, M. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. Black-Right-Pointing-Pointer G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. Black-Right-Pointing-Pointer G-phase composition is a function of aging time. Black-Right-Pointing-Pointer Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe-18Cr-8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite ({alpha} Prime ). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% {alpha} Prime at room temperature. After annealing at 400 Degree-Sign C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn-Ni-Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography

  19. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    International Nuclear Information System (INIS)

    Shuro, I.; Kuo, H.H.; Sasaki, T.; Hono, K.; Todaka, Y.; Umemoto, M.

    2012-01-01

    Highlights: ► Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. ► G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. ► G-phase composition is a function of aging time. ► Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe–18Cr–8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite (α′). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% α′ at room temperature. After annealing at 400 °C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn–Ni–Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography (APT) showed G-phase of composition Mn 21 Ni 50 Si 24 Fe 4 Cr. Tensile tests showed that G-phase precipitation leads to

  20. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  1. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Futakawa, Masatoshi; Nanjyo, Yoshiyasu; Kiuchi, Kiyoshi; Anegawa, Takefumi

    2003-01-01

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε 0 + ε) n , A: strength coefficient, ε 0 : equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  2. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  3. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study.

    Science.gov (United States)

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C-55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal-Wallis test was used for retentive strength comparison at the level of significance of P cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate ( P cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns.

  4. Experimental assessments of notch ductility and tensile strength of stainless steel weldments after 1200C neutron irradiation

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Awadalla, N.G.; O'Kula, K.R.

    1986-01-01

    The Charpy-V (C/sub v/) properties of AISI 300 series stainless steel plate, weld, and weld heat-affected zone (HAZ) materials from commercial production weldments in 406-mm-diameter pipe (12.7-mm wall) were investigated in unirradiated and irradiated conditions. Weld and HAZ tensile properties were also assessed in the two conditions. The plates and weld filler wires represent different steel melts; the welds were produced using the multipass MIG process. Weldment properties in two test orientations were evaluated. Specimens were irradiated in the UBR reactor to 1 x 10 20 n/cm 2 , E >0.1 MeV in a controlled temperature assembly. Specimen tests were performed at 25 0 C and 125 0 C. The radiation-induced reductions in C/sub v/ energy absorption at 25 0 C were about 42 percent for the weld and HAZ materials evaluated. A trend of energy increase with temperature was observed. The concomitant elevation in yield strength was about 53%. In contrast, the increase in tensile strength was only 16%. The postirradiation yield strength of the axial test orientation in the pipe was less than that of the circumferential test orientation. Results for the HAZ indicate that this component may be the weakest link in the weldment from a fracture resistant viewpoint

  5. Experimental assessments of notch ductility and tensile strength of stainless steel weldments after 1200C neutron irradiation

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Awadalla, N.G.; O'Kula, K.R.

    1987-01-01

    The Charpy-V (C/sub V/) properties of American Iron and Steel Institute (AISI) 300 series stainless steel plate, weld, and weld heat-affected zone (HAZ) materials from commercial production weldments in 406-mm-diameter pipe (12.7-mm wall) were investigated in unirradiated and irradiated conditions. Weld and HAZ tensile properties were also assessed in the two conditions. The plates and weld filler wires represent different steel melts; the welds were produced using the multipass metal inert gas (MIG) process. Weldment properties in two test orientations were evaluated. Specimens were irradiated in a light water cooled and moderated reactor to 1 x 10/sup 20/ n/cm/sup 2/, E > 0.1 MeV, using a controlled temperature assembly. Specimen tests were performed at 25 and 125 0 C. The radiation-induced reductions in C/sub V/ energy absorption at 25 0 C were about 42% for the weld and the HAZ materials evaluated. A trend of energy increase with temperature was observed. The concomitant elevation in yield strength was about 53%. The increase in tensile strength in contrast was only 16%. The postirradiation yield strength of the axial test orientation in the pipe was less than that of the circumferential test orientation. Results for the HAZ indicate that this component may be the weakest link in the weldment from a fracture resistance viewpoint

  6. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.

    Science.gov (United States)

    Veerabadhran, M M; Reddy, V; Nayak, U A; Rao, A P; Sundaram, M A

    2012-01-01

    This in vitro study was conducted to find out the effect of retentive groove, sand blasting and cement type on the retentive strength of stainless steel crowns in primary second molars. Thirty-two extracted intact human maxillary and mandibular primary second molars were embedded in aluminum blocks utilizing autopolymerising acrylic resin. After tooth preparation, the 3M stainless steel crown was adjusted to the prepared tooth. Then weldable buccal tubes were welded on the buccal and lingual surfaces of each crown as an attachment for the testing machine. A full factorial design matrix for four factors (retentive groove placement on the tooth, cement type, sandblasting and primary second molar) at two levels each was developed and the study was conducted as dictated by the matrix. The lower and upper limits for each factor were without and with retentive groove placement on the tooth, GIC and RMGIC, without and with sandblasting of crown, maxillary and mandibular second primary molar. For those teeth for which the design matrix dictated groove placement, the retentive groove was placed on the middle third of the buccal surface of the tooth horizontally and for those crowns for which sandblasting of the crowns are to be done, sandblasting was done with aluminium oxide with a particle size of 250 mm. The crowns were luted with either GIC or RMGIC, as dictated by the design matrix. Then the retentive strength of each sample was evaluated by means of an universal testing machine. The obtained data was analyzed using ANOVA for statistical analysis of the data and 't'- tests for pairwise comparison. The mean retentive strength in kg/cm 2 stainless steel crowns luted with RMGIC was 19.361 and the mean retentive strength of stainless steel crowns luted with GIC was 15.964 kg/cm 2 with a mean difference of 3.397 kg/cm 2 and was statistically significant. The mean retentive strength in kg/cm 2 of stainless steel crowns, which was not sandblasted, was 18.880 and which was

  7. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  8. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  9. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  10. The effect of molybdenum addition on SCC susceptibility of stainless steels in oxygenated high temperature water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kawamoto, Teruaki

    1978-01-01

    The effect of molybdenum addition on the SCC susceptibility of sensitized stainless steel in oxygenated high temperature water has been studied through the creviced bent beam SCC test (CBB test) and A262E intergranular corrosion test. The molybdenum addition improved the SCC susceptibility of sensitized stainless steels in oxygenated high temperature water not only by delaying the sensitization at lower temperatures but also by increasing the material resistance to the SCC under a given degree of sensitization. These laboratory test results reveal that the molybdenum addition is quite beneficial for improving the SCC susceptibility of stainless steel pipe weld joints in boiling water reactor environment. (auth.)

  11. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  12. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  13. Low cycle fatigue strength of austenitic stainless steel under large strain regime

    International Nuclear Information System (INIS)

    Sakai, Michiya; Saito, Kiyoshi; Matsuura, Shinichi

    1998-01-01

    In order to establish realistic seismic safety of nuclear power plants, it is necessary to clarify the failure mode of each components and prepare a damage evaluation method. The authors have proposed the damage evaluation method based on the fully numerical approach to evaluate the low cycle fatigue (LCF) failure under seismic loadings. This method has been validated by comparison with the dynamic failure tests of thin elbows which should be the one of the important components of the FBR primary piping system. However, since there exists limited LCF data, fatigue lives under large strain regime have been extrapolated by available fatigue data. In this study, LCF tests have been conducted over a large strain range from 2% to 10% on austenitic stainless steel SUS304. From the results, the regressive LCF curve has been proposed to modify the Wada's best-fit LCF curve under large strain regime. The usage factors calculated by author's numerical approach using proposed LCF curve have been improved to correct the underestimation of the fatigue damage. (author)

  14. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  15. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  16. Elevated temperature tensile properties of borated 304 stainless steel: Effect of boride dispersion on strength and ductility

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1992-01-01

    Conventional cast and wrought (open-quotes Ingot Metallurgyclose quotes) borated 304 stainless steel has been used for a number of years in spent fuel storage applications where a combination of structural integrity and neutron criticality control are required. Similar requirements apply for materials used in transport cask baskets. However, in the high boron contents (>1.0 wt. %) which are most useful for criticality control, the conventional cast and wrought material suffers from low ductility as well as low impact toughness. The microstructural reason for these poor properties is the relatively coarse size of the boride particles in these alloys, which act as sites for crack initiation. Recently, a open-quotes premiumclose quotes grade of borated 304 stainless steel has been introduced (Strober and Smith, 1988) which is made by a Powder Metallurgy (PM) process. This material has greatly improved ductility and impact properties relative to the conventional cast and wrought product. In addition, an ASTM specification (ATSM A887) has been developed for borated stainless steel, containing 8 different material Types with respect to boron content - with the highest level (Type B7) having permissible range from 1.75 to 2.25 wt. % boron - and each Type contains two different Grades of material based on tensile and impact properties. While the ASTM specification is properties-based and does not require a specific production process for a particular grade of material, the PM material qualifies as open-quotes Grade Aclose quotes material while the conventional Ingot Metallurgy (IM) material generally qualifies as open-quotes Grade Bclose quotes material. This paper presents a comparison of the tensile properties of PM open-quotes Grade Aclose quotes material with that of the conventional IM open-quotes Grade Bclose quotes material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7

  17. Influence of TiC precipitation in austenitic stainless steel on strength, ductility and helium embrittlement

    International Nuclear Information System (INIS)

    Kesternich, W.; Matta, M.K.; Rothaut, J.

    1984-01-01

    Creep experiments were performed on 1.4970 (German DIN standard) and 316 (AISI standard) type austenitic steels after various thermomechanical pretreatments and after α-implantation. The microstructure introduced by the pretreatments was characterized by transmission electron microscopy and the behaviour of strength and ductility is correlated to the dislocation and precipitate distributions. He embrittlement can be suppressed in these simulation experiments when dispersive TiC precipitate distributions are produced by the proper pretreatments or are allowed to form during creep testing. It is shown that adequate pretreatment results in a significantly superior behaviour of the 1.4970 steel as compared to the 316 type steel in all three investigated properties, i.e. strength, ductility and resistance to He embrittlement. (orig.)

  18. Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel

    Science.gov (United States)

    Mabruri, Efendi; Pasaribu, Rahmat Ramadhan; Sugandi, Moh. Tri; Sunardi

    2018-05-01

    This paper reports the influence of high tempering temperature and holding time on the mechanical properties and microstructure of the recently modified 410 martensitic stainless steel. The modified steel was prepared by induction melting followed by hot forging, quenching and tempering. The hardness and tensile strength of the steels decreased with increasing tempering temperature from 600 to 700 °C and with increasing holding time from 1 to 6 h. Based on microstructural images, it was observed the coarsening of lath martensite and of the metal carbides as well. However, a relatively high hardness and strength were still exibited by this steel after tempering at a such high temperature of 600-700 °C. The partition of Mo into the carbides identified by EDS analysis may correlate with this situation.

  19. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  20. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  1. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  2. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  3. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2017-01-01

    High nitrogen stainless steel (HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poo...

  4. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  5. High purity ferritic Cr-Mo stainless steel

    International Nuclear Information System (INIS)

    Knoth, J.

    1977-01-01

    In five years, E-BRITE 26-1 ferritic stainless steel has won an important place in the spectrum of materials suitable for use in chemical process equipment. It provides, in stainless steel, performance-capability characteristics comparable to more expensive alloys. It has demonstrated cost-effectiveness in equipment used for caustic, nitric-urea, organic chemicals, pulping liquors, refinery streams, and elsewhere. User confidence in the reliability and integrity of Grade XM 27 has increased to the point where large critical systems are now routinely specified in the alloy. The market acceptance of this material has attracted attempts to produce substitute versions of the alloy. Imitation, should be viewed with caution. Stabilized 26-IS must be examined over a lengthy period of time to determine if its own corrosion resistance, ductility, fabricability and reproducibility properties could ever be likened to those of E-BRITE 26-1. (orig.) [de

  6. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  7. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  8. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  9. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  10. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  11. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  12. Comparison of the mechanical strength properties of several high-chromium ferritic steels

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.; Booker, B.L.P.

    1981-01-01

    A modified 9 Cr-1 Mo ferritic steel has been selected as an alternative material for breeder reactors. Different 9 Cr-1 Mo steels are already being used commercially in UK and USA and a 9 Cr-2 Mo steel (EM12) is being used commercially in France. The 12% Cr steel alloy HT9 is also often recommended for high-temperature service. Creep-rupture data for all six seels were analyzed to yield rupture life as a function of stress, temperature, and lot-to-lot variations. Yield and tensile strength data for the three 9 Cr-1 Mo materials were also examined. All results were compared with Type 304 stainless steel, and the tensile and creep properties of the modified and British 9 Cr-1 Mo materials were used to calculate allowable stress values S 0 per Section VIII, Division 1 and S/sub m/ per code Case N-47 to section III of the ASME Boiler and Pressure Vessel Code. these values were compared with code listings for American commercial 9 Cr-1 Mo steel, 2 1/4 Cr-1 Mo steel, and Type 304 stainless steel. The conclusion is made that the modified 9 Cr-1 Mo steel displays tensile and creep strengths superior to those of the other ferritic materials examined and is at least comparable to Type 304 stainless steel from room temperature to about 625 0 C. 31 figures

  13. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  14. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  15. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  16. Oxidation of 304 stainless steel in high-temperature steam

    Science.gov (United States)

    Ishida, Toshihisa; Harayama, Yasuo; Yaguchi, Sinnosuke

    1986-08-01

    An experiment on oxidation of 304 stainless steel was performed in steam between 900°C and 1350°C, using the spare cladding of the reactor of the nuclear-powered ship Mutsu. The temperature range was appropriate for a postulated loss of coolant accident (LOCA) analysis of a LWR. The oxidation kinetics were found to obey the parabolic law during the first period of 8 min. After the first period, the parabolic reaction rate constant decreased in the case of heating temperatures between 1100°C and 1250°C. At 1250°C, especially, a marked decrease was observed in the oxide scale-forming kinetics when the surface treated initially by mechanical polishing and given a residual stress. This enhanced oxidation resistance was attributed to the presence of a chromium-enriched layer which was detected by use of an X-ray microanalyzer. The oxidation kinetics equation obtained for the first 8 min is applicable to the model calculation of a hypothetical LOCA in a LWR, employing 304 stainless steel cladding.

  17. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  18. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    International Nuclear Information System (INIS)

    Smith, H.D.; Mackey, D.B.; Pool, K.H.; Schwenk, E.B.

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction

  19. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  20. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  1. Optimization of Laser Transmission Joining Process Parameters on Joint Strength of PET and 316 L Stainless Steel Joint Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Shashi Prakash Dwivedi

    2014-01-01

    Full Text Available The objective of the present work is to study the effects of laser power, joining speed, and stand-off distance on the joint strength of PET and 316 L stainless steel joint. The process parameters were optimized using response methodology for achieving good joint strength. The central composite design (CCD has been utilized to plan the experiments and response surface methodology (RSM is employed to develop mathematical model between laser transmission joining parameters and desired response (joint strength. From the ANOVA (analysis of variance, it was concluded that laser power is contributing more and it is followed by joining speed and stand-off distance. In the range of process parameters, the result shows that laser power increases and joint strength increases. Whereas joining speed increases, joint strength increases. The joint strength increases with the increase of the stand-off distance until it reaches the center value; the joint strength then starts to decrease with the increase of stand-off distance beyond the center limit. Optimum values of laser power, joining speed, and stand-off distance were found to be 18 watt, 100 mm/min, and 2 mm to get the maximum joint strength (predicted: 88.48 MPa. There was approximately 3.37% error in the experimental and modeled results of joint strength.

  2. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  3. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    Science.gov (United States)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  4. Study on optimum length of raw material in stainless steel high-lock nuts forging

    Science.gov (United States)

    Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong

    2018-04-01

    Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.

  5. Numerical simulation of Cr2N age-precipitation in high nitrogen stainless steels

    International Nuclear Information System (INIS)

    Dai, Q.X.; Yuan, Z.Z.; Luo, X.M.; Cheng, X.N.

    2004-01-01

    At the temperature raging from 700 to 950 deg. C, the Cr 2 N age-precipitation in high nitrogen austenitic stainless steels Fe24Mn18Cr3Ni0.62N was investigated in this paper. A qualitative mathematical model of Cr 2 N age-precipitation, ln t S = f (Me,1/T), was established based on the thermodynamics and kinetics and phase transformation theories. Satisfactory results were obtained by means of the test of artificial neural network. This mathematical model can be applied to the calculation design and predication of Cr 2 N age-precipitation in high nitrogen stainless steels

  6. Effect of overload on SCC growth in stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Xue, He; Peng, Qunjia; Shoji, Tetsuo

    2009-01-01

    By incorporating the film slip-dissolution/oxidation model and the elastic-plastic finite element method (EPFEM), the effect of the overload on stress corrosion cracking (SCC) growth rate of stainless steel in high temperature water is discussed in this paper. Results show that SCC growth rate of a 20% cold worked 316L stainless steel in high temperature water decrease in the overload affected zone ahead of the growing crack tip. Therefore, a reasonable overload could availably reduce the SCC growth rate during a certain in-service period. (author)

  7. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  8. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  9. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  10. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  11. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  12. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  13. Corrosion resistance of high performance stainless steels in cooling water and other refinery environments

    International Nuclear Information System (INIS)

    Kovach, C.W.; Redmerski, L.S.

    1984-01-01

    The recent successful introduction of high performance stainless steels as tubing for seawater cooled electric utility condensers suggests that these alloys can also provide useful service in refinery heat exchanger applications. Since many of these applications involve higher temperature exposure than steam condensers, a study was conducted to evaluate crevice corrsion resistance over a range of cooling water temperature and chloride concentrations, and also to evaluate general corrosion resistance in some strong chemical and refinery environments. These stainless steels display excellent crevice corrosion resistance as well as good resistance to a variety of chemical environments that may be encountered in refinery, petrochemical and chemical plant service

  14. Corrosion behaviour of high manganese austenitic stainless steels: positive and negative aspects

    International Nuclear Information System (INIS)

    Raja, V.S.

    1999-01-01

    Stainless steel 304 has found use as a most versatile engineering material in many industrial applications. Recently, the Indian industries have developed high Mn stainless steels with low C and Ni contents and simultaneously introduced N and Cu in the system. Composition of some of the alloys which are prevalent in the market are given. Individually, the effect of Ni, C, Mn, N and Cu on various forms of corrosion is reasonably understood. However, it will be worthwhile to review the response of these alloys, containing all these elements, towards various forms of corrosion. The objective of this paper is preciously to do this

  15. Experimental study under uniaxial cyclic behavior at room and high temperature of 316L stainless steel

    International Nuclear Information System (INIS)

    Kang Guozheng; Gao Qing; Yang Xianjie; Sun Yafang

    2001-01-01

    An experimental study was carried out of the cyclic properties of 316L stainless steel subjected to uniaxial strain and stress at room and high temperature. The effects of cyclic strain amplitude, temperature and their histories on the cyclic deformation behavior of 316L stainless steel are investigated. And, the influences of stress amplitude, mean stress, temperature and their histories on ratcheting are also analyzed. It is shown that either uniaxial cyclic property under cyclic strain or ratcheting under asymmetric uniaxial cyclic stress depends not only on the current temperature and loading state, but also on the previous temperature and loading history. Some significant results are obtained

  16. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  17. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  18. High cycle fatigue of austenitic stainless steels under random loading

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Petrequin, P.

    1987-08-01

    To investigate reactor components, load control random fatigue tests were performed at 300 0 C and 550 0 C, on specimens from austenitic stainless steels plates in the transverse orientation. Random solicitations are produced on closed loop servo-hydraulic machines by a mini computer which generates random load sequence by the use of reduced Markovian matrix. The method has the advantage of taking into account the mean load for each cycle. The solicitations generated are those of a stationary gaussian process. Fatigue tests have been mainly performed in the endurance region of fatigue curve, with scattering determination using stair case method. Experimental results have been analysed aiming at determining design curves for components calculations, depending on irregularity factor and temperature. Analysis in term of mean square root fatigue limit calculation, shows that random loading gives more damage than constant amplitude loading. Damage calculations following Miner rule have been made using the probability density function for the case where the irregularity factor is nearest to 100 %. The Miner rule is too conservative for our results. A method using design curves including random loading effects with irregularity factor as an indexing parameter is proposed

  19. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  20. Additive Manufacturing of High-Performance 316L Stainless Steel Nanocomposites via Selective Laser Melting

    Science.gov (United States)

    AlMangour, Bandar Abdulaziz

    Austenitic 316L stainless steel alloy is an attractive industrial material combining outstanding corrosion resistance, ductility, and biocompatibility, with promising structural applications and biomedical uses. However, 316L has low strength and wear resistance, limiting its high-performance applicability. Adding secondary hard nanoscale reinforcements to steel matrices, thereby forming steel-matrix nanocomposites (SMCs), can overcome these problems, improving the performance and thereby the applicability of 316L. However, SMC parts with complex-geometry cannot be easily achieved limiting its application. This can be avoided through additive manufacturing (AM) by generating layer-by-layer deposition using computer-aided design data. Expanding the range of AM-applicable materials is necessary to fulfill industrial demand. This dissertation presents the characteristics of new AM-processed high-performance 316L-matrix nanocomposites with nanoscale TiC or TiB2 reinforcements, addressing specific aspects of material design, process control and optimization, and physical metallurgy theory. The nanocomposites were prepared by high-energy ball-milling and consolidated by AM selective laser melting (SLM). Continuous and refined ring-like network structures were obtained with homogenously distributed reinforcements. Additional grain refinement occurred with reinforcement addition, attributed to nanoparticles acting as nuclei for heterogeneous nucleation. The influence of reinforcement content was first investigated; mechanical and tribological behaviors improved with increased reinforcement contents. The compressive yield strengths of composites with TiB2 or TiC reinforcements were approximately five or two times those of 316L respectively. Hot isostatic pressing post-treatment effectively eliminated major cracks and pores in SLM-fabricated components. The effects of the SLM processing parameters on the microstructure and mechanical performance were also investigated. Laser

  1. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  2. Effect of oxyanions on the IGSCC inhibition of sensitized 304 stainless steel in high temperature water

    International Nuclear Information System (INIS)

    Tsuge, Hiroyuki; Murayama, Junichiro; Nagano, Hiroo.

    1983-01-01

    Effect of oxyanions such as MoO 4 2- , WO 4 2- , and CrO 4 2- on the intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel in high temperature water was studied. The results obtained are as follows: 1) Addition of such oxyanion as MoO 4 2- , WO 4 2- , and CrO 4 2- suppresses IGSCC of sensitized Type 304 stainless steel in high temperature nondeaerated water. The effectiveness of the inhibitive action by the oxyanion is ranked in the order of MoO 4 2- >WO 4 2- >CrO 4 2- . 2) The mechanism of IGSCC inhibition by MoO 4 2- ion for sentized Type 304 stainless steel in high temperature water is considered as follows, i.e., the presence MoO 4 2- ion decreases the dissolution rate of Cr depleted zone at grain boundaries to the level of matrix by helping the formation of the Cr rich film containing MoO 3 or adsorbed MoO 4 2- ion on the surface of Type 304 stainless steel. (author)

  3. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns--an in vitro study.

    Science.gov (United States)

    Reddy, R; Basappa, N; Reddy, V V

    1998-03-01

    This study was conducted on 30 extracted human primary molars to assess the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements. The teeth were embedded in resin blocks and were randomly divided into 3 groups of 10 each. The occlusal surfaces of all teeth were reduced uniformly by 1.0 to 1.5 mm. All mesial, distal undercuts were removed and sharp angles rounded. This was followed by cementing pretrimmed and precontoured stainless steel crowns on each tooth with hand pressure and storing in artificial saliva at 37 degrees C for 24 hours. Retentive strength was tested using Instron Universal Testing Machine. The load was applied starting from a zero reading and gradually increased until the cemented stainless steel crowns showed signs of movement and then the readings were recorded. It was found that retentive strengths of zinc phosphate and glass ionomer cements were statistically better (P cement. Negligible difference (0. 59 kg/cm2) was however observed between zinc phosphate and glass ionomer cements.

  4. Crack growth in an austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Polvora, J.P.

    1998-01-01

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C* s . Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)

  5. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  6. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  7. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - an in vitro study.

    Science.gov (United States)

    Raghunath Reddy, M H; Subba Reddy, V V; Basappa, N

    2010-01-01

    An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 ) and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 ) were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 ). Negligible difference (0.59 kg/cm 2 ) of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 ) and glass ionomer cements (20.69 kg/cm 2 ). Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  8. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - An in vitro study

    Directory of Open Access Journals (Sweden)

    Raghunath Reddy M

    2010-01-01

    Full Text Available An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 . Negligible difference (0.59 kg/cm 2 of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 and glass ionomer cements (20.69 kg/cm 2 . Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  9. High temperature crack initiation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien

    1994-01-01

    The study deals with crack initiation at 600 deg. C and 650 deg. C, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were updated in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the help of microstructural observations and finite element results. An identification of a 'Paris' law' for continuous cyclic loading and of a unique correlation between the initiation time and C h * for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris' law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris' law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C h * parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates decrease when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue

  10. Crack initiation at high temperature on an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, L.

    1994-01-01

    The study deals with crack initiation at 600 degrees Celsius and 650 degrees Celsius, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were update in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the helps of microstructural observations and finite elements results. An identification of a 'Paris'law' for continuous cyclic loading and of a unique correlation between the initiation time and C * k for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris'law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris'law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C * k parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue Paris law predicted ones

  11. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  12. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  13. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  14. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  15. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  16. A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance

    Directory of Open Access Journals (Sweden)

    Ronald Lesley Plaut

    2007-12-01

    Full Text Available Wrought austenitic stainless steels are widely used in high temperature applications. This short review discusses initially the processing of this class of steels, with emphasis on solidification and hot working behavior. Following, a brief summary is made on the precipitation behavior and the numerous phases that may appear in their microstructures. Creep and oxidation resistance are, then, briefly discussed, and finalizing their performance is compared with other high temperature metallic materials.

  17. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  18. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  19. Assessment of ECISS draft standard for derivation of high temperature proof strength values

    Energy Technology Data Exchange (ETDEWEB)

    Linde, L.; Sandstroem, R.

    1996-03-01

    New European material standards are under development and modern data evaluation techniques must be able to supply these standards with accurate design values. A draft standard for the derivation of high temperature proof strength values has been proposed. This standard (EDS) has been used to calculate strength values for six steels; one unalloyed steel, one 12 % Cr steel and four austenitic stainless steels. Although large data sets were available, it was not possible to satisfy the requirement in the EDS of 80 % temperature coverage in the proof strength data for several steels. It suggests that temperature coverage specified in the EDS is unrealistically high. Due to the limited number of heats satisfying the temperature coverage requirements for each steel, the statistical error in the derived values exceeds 10-20 % which must be considered as unacceptably high. Instead it is recommended that the full data sets are used irrespective of temperature coverage. The variation of proof strength values represented by the analysed heats did not cover the corresponding variation in the larger data set available. This was the case even for the steel where 16 heats satisfied the temperature coverage requirement. Thus a limited number of heats can not be expected to be a good representation of more complete data sets. This has the consequence that absolute strength values can not be derived without access to a standardised proof strength at room temperature. Two derivation methods investigated in this report are both based on the ISO 2605/III procedure for proof strength assessments at elevated temperature. Method I and II use an essentially temperature independent and temperature dependent reduction term respectively. The methods have been assessed by the same data sets for the six steels. One or both methods gave satisfactory results for most of the investigated steels. Presented results are based on work carried out in ECISS TC22 WG1. 17 refs, 20 figs, 7 tabs.

  20. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Thiruvengatam, G.; Sudharsan, S.P.; Mishra, Debidutta; Arivazhagan, N.; Sridhar, R.

    2014-01-01

    Highlights: • Effect of filler metals on the weldability of super-duplex stainless steel plates. • Contemplative explanations on the metallurgical and mechanical properties of the weldments. • Enhanced mechanical properties of the welds at ambient room temperature. - Abstract: This paper investigates the weldability, metallurgical and mechanical properties of the UNS 32750 super-duplex stainless steels joints by Gas Tungsten Arc Welding (GTAW) employing ER2553 and ERNiCrMo-4 filler metals. Impact and tensile studies envisaged that the weldments employing ER2553 exhibited superior mechanical properties compared to ERNiCrMo-4 weldments. Microstructure studies performed using optical and SEM analysis clearly exhibited the different forms of austenite including widmanstatten austenite on the weld zone employing ER2553 filler. Also the presented results clearly reported the effect of filler metals on strength and toughness during the multi-pass welding. This research article addressed the improvement of tensile and impact strength using appropriate filler wire without obtaining any deleterious phases

  1. Evaluation of the effect of three innovative recyling methods on the shear bond strength of stainless steel brackets-an in vitro study.

    Science.gov (United States)

    Gupta, Neeraj; Kumar, Dilip; Palla, Aparna

    2017-04-01

    Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming

  2. Preplastic strain effect on chromium carbides precipitation of type 316 stainless steel during high-temperature ageing

    International Nuclear Information System (INIS)

    Mao, X.; Zhao, W.

    1992-01-01

    Long exposure of Type 316 stainless steel to elevated temperature (400-900 o C) is known to cause high-temperature embrittlement due to chromium carbides and σ-phase precipitating in grain boundaries. Numerous investigations have been published on the mechanical properties and microstructure changes occurring during such exposure. However, no investigations exist on the preplastic deformation effect on chromium carbide precipitation in the grain matrix and grain boundary during high-temperature ageing of Type 316 stainless steel and then its effects on the room-temperature tensile properties. Since the stainless steel sometimes is deformed before use at high temperatures, it is necessary to study the preplastic strain effect of the stainless steel on the microstructure change and mechanical property change during high-temperature exposure. The purpose of the present investigation was to carry out such a study. The conclusions reached are as follows. First, chromium carbides are precipitated in deformation lines (slip lines) and then the amount of chromium carbides precipitation in the grain boundary is relatively reduced in predeformed stainless steel after ageing. Secondly, plastic strain pretreatments of and subsequent ageing treatments of Type 316 stainless steel can improve its tensile ductility. Finally, secondary cracking of aged stainless steel occurs in a normal tensile test. The secondary cracking can be reduced by adding preplastic strain into the material. (Author)

  3. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  4. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  5. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  6. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  7. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  8. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  9. Stress corrosion cracking of austenitic stainless steel in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Uragami, Ken

    1977-01-01

    Austenitic stainless steels used in for equipment in chemical plants have failed owing to stress corrosion cracking (SCC). These failures brought about great problems in some cases. The failures were caused by chloride, sulfide and alkali solution environment, in particular, by chloride solution environment. It was known that SCC was caused not only by high content chloride solution such as 42% MgCl 2 solution but also by high temperature water containing Cl - ions as NaCl. In order to estimate quantitatively the effects of some factors on SCC in high temperature water environment, the effects of Cl - ion contents, oxygen partial pressure (increasing in proportion to dissolved oxygen), pH and temperature were investigated. Moreover SCC sensitivity owing to the difference of materials and heat treatments was also investigated. The experimental results obtained are summarized as follows: (1) Regarding the effect of contaminant Cl - ions in proportion as Cl - ion contents increased, the material life extremely decreased owing to SCC. The tendency of decreasing was affected by the level of oxygen partial pressure. (2) Three regions of SCC sensitivity existed and they depended upon oxygen partial pressure. These were a region that did not show SCC sensitivity, a region of the highest SCC sensitivity and a region of somewhat lower SCC sensitivity. (3) In the case of SUS304 steel and 500 ppm Cl - ion contents SCC did not occur at 150 0 C, but it occurred and caused failures at 200 0 C and 250 0 C. (auth.)

  10. Frictional characteristics of stainless steel 440C lubricated with water at pressurized high temperature

    International Nuclear Information System (INIS)

    Kim, E. H.; Lee, J. S.; Kim, J. H.; Kim, J. I.

    2001-01-01

    The fatigue life of stainless steel bearings is one of the most critical factors to determine the performance of the driving system. Because the bearings which are installed on the driving mechanism in the nuclear reactor are operated at high temperature and high pressure and especially lubricated with water with low viscosity, the friction and wear characteristics of the bearing material should be investigated thoroughly. In many control element drive mechanisms in the nuclear reactor the support bearings are made of the stainless steel and the sliding bearing ceramic material mainly. This study is focused on the characteristics of support bearing which may be used in the SMART. The ball bearings are made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. The friction and wear characteristics of this material operating under severe lubrication condition are not well known yet, however it will be changed with respect to temperature and boundary pressure. In this paper the friction characteristics are investigated experimentally using the reciprocating tribometer which can simulate the SMART operating conditions. Highly purified water is used as lubricant, and the water is warmed up and pressurized. Friction forces on the reciprocating specimens are measured insitu strain gages

  11. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  12. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  13. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  14. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  15. Quantitative influence of minor and impurity elements on hot cracking susceptibility of extra high-purity type 310 stainless steel

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Matsushita, Hideki; Nishimoto, Kazutoshi; Kiuchi, Kiyoshi; Nakayama, Junpei

    2013-01-01

    To evaluate the influence of minor and impurity elements such as C, Mn, P and S on the solidification and ductility-dip cracking susceptibilities of extra high-purity type 310 stainless steels, the transverse-Varestraint test was conducted by using several type 310 stainless steels with different amounts of C, Mn, P and S. Two types of hot cracks occurred in these steels by Varestraint test; solidification and ductility-dip cracks. The solidification cracking susceptibility was significantly reduced as the amounts of C, P and S decreased. The ductility-dip cracking susceptibility also reduced with a decrease in P and S contents. It adversely, however, increased as the C content of the steels was reduced. Mn didn't greatly affect the hot cracking susceptibility of the extra high-purity steels. The characteristic influence on solidification cracking was the ratio of P:S:C=1:1.3:0.56, while Mn negligibly ameliorated solidification cracking in the extra low S (and P) steels. The numerical analysis on the solidification brittle temperature range (BTR) revealed that the reduced solidification cracking susceptibility with decreasing the amounts of C, P and S in steel could be attributed to the reduced BTR due to the suppression of solidification segregation of minor and impurity elements in the finally solidified liquid film between dendrites. On the other hand, a molecular orbital analysis to estimate the binding strength of the grain boundary suggested that the increased ductility-dip cracking susceptibility in extra high-purity steels was caused by grain boundary embrittlement due to the refining of beneficial elements for grain boundary strengthening such as C. (author)

  16. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu, Yifeng [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Zixi; Li, Yanmei [Yanming Alloy Roll Co. Ltd, Qinhuangdao 066004 (China); Yang, Shunkai; Zhao, Hongchang; Li, Hangbo [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-02-15

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2, respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.

  17. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  18. Martensitic transformation of type 304 stainless steel by high-energy ion implantation

    International Nuclear Information System (INIS)

    Chayahara, A.; Satou, M.; Nakashima, S.; Hashimoto, M.; Sasaki, T.; Kurokawa, M.; Kiyama, S.

    1991-01-01

    The effect of high-energy ion implantation on the structural changes of type 304 stainless steel were investigated. Gold, copper and silicon ions with an energy of 1.5 MeV was implanted into stainless steel. The fluences were in the range from 5x10 15 to 10 17 ions/cm 2 . It was found that the structure of stainless steel was transformed form the austenitic to the martensitic structure by these ion implantations. This structural change was investigated by means of X-ray diffraction and transmission electron microscopy (TEM). The depth profile of the irradiated ions was also analyzed by secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS). The degree of martensitic transformation was found to be strongly dependent on the surface pretreatment, either mechanical or electrolytic polishing. When the surface damages or strains by mechanical polishing were present, the martensitic transformation was greatly accelerated presumably due to the combined action of ion irradiation and strain-enhanced transformation. Heavier ions exhibit a high efficiency for the transformation. (orig.)

  19. Evaluation of high temperature mechanical properties and constitutive equation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Blanchard, P.; Tortel, J.

    1986-07-01

    A large amount of experimental data on 17-12 Mo SPH (316 L SPH) stainless steel have been obtained during the last years. The aim of this paper is to illustrate by a few examples the work done in the constitutive equations area using this powerful data base. Numerous semiempirical equations have been developed to represent tensile, cyclic, creep or relaxation tests on 17-12 Mo SPH (316 L SPH) stainless steel used for building the primary loop of the SUPER PHENIX 1 reactor. These equations are necessary tools for building elastic analysis's rules. Some examples are given with specific applications. The qualitative and semiquantitative comparisons of the stress-strain behaviour (both uniaxial and biaxial) predicted by the most common constitutive equations with the actual behaviour of 17-12 Mo SPH (316 L SPH) steel, shed some light on the strengths and weaknesses of these equations. This comparison is presented and discussed. The way to more realistic equations is shown. A detailed and quantitative comparison of the capabilities of two models, the CHABOCHE model and the multilayer unified model, is presented

  20. Evaluation of high temperature mechanical properties and constitutive equation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Blanchard, P.; Tortel, J.

    1985-08-01

    A large amount of experimental data (tensile tests, creep tests, cyclic strain tests, relaxation experiments and biaxial experiments) on 17-12 Mo SPH (316 L SPH) stainless steel used for building the primary loop of Super Phenix Reactor have been obtained during the last years. The aim of this paper is to illustrate by a few examples the work done in the constitutive equations area using this powerful data base. Numerous semiempirical equations have been developed to represent tensile, cyclic, creep or relaxation tests on 17-12 Mo SPH (316 L SPH) stainless steel. These equations, althrough not being able to be properly called ''constitutive equations'' in the full sense of the word, are nevertheless very useful for design studies. Actually these semiempirical equations are necessary tools for building elastic analysis's rules. Some examples of these equations are given along with specific applications (creep-fatigue rules). The qualitative and semiquantitative comparisons of the stress-strain behaviour (both uniaxial and biaxial) predicted by the most common constitutive equations (PRAGER, MEIJERS, HART, CHABOCHE, KRIEB, MILLER, ROBINSON) with the actual behaviour of 17-12 Mo SPH (316 L SPH) steel, allows us to shed some light on the strengths and weaknesses of these equations. This comparison is presented and discussed. The way to more realistic equations is shown. A detailed and quantitative comparison of the capabilities of two models, the CHABOCHE model and the multilayer unified model which has been developed is presented

  1. Evaluation of Joint Performance on High Nitrogen Stainless Steel Which is Expected to Have Higher Allergy Resistance

    Science.gov (United States)

    Nakano, Kouichi

    Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.

  2. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    Science.gov (United States)

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  3. Application and analysis of palladium vapor deposited on stainless steel for high temperature electrical contacts

    International Nuclear Information System (INIS)

    Jodeh, S.

    2008-01-01

    Using electron beam evaporation. Pd thin films of 300 nm thickness have been deposited on 301 stainless steel for high temperature electrical contact studies. The structure and compost ion of the helms were studied in detail x-ray diffraction (XRD), scanning electron microscopy (Sem), electron probe microanalysis (EPMA), and x-ray photoelectron spectroscopy (XP S) with sputter depth profiling. The contact properties such as contact resistance, fretting wear resistance, and thermal stability have been measured.The contact resistance rem ins low after heat-aging in air for 168 h at 150 and 200 deg., but increases significantly after heat-aging at 340 deg.. This increase in contact resistance is caused by the formation of about a 27 nm (1 μin.) thick Pdo. In contrast, the thickness of the Pdo is too thin to cause measurable contact resistance increases after heat-aging at 150 and 200 deg.. The fretting wear resistance of Pd coated 301 stainless steel is better than that of electroplated Sn of ser veal thousand nm thickness. Thus, vapor deposited Pd coating on 301 stainless steel may replace electroplated Sn for electrical contact application at elevated temperatures.

  4. The stress corrosion cracking of type 316 stainless steel in oxygenated and chlorinated high temperature water

    International Nuclear Information System (INIS)

    Congleton, J.; Shih, H.C.; Shoji, T.; Parkins, R.N.

    1985-01-01

    Slow strain rate stress corrosion tests have been performed on Type 316 stainless steel in 265 C water containing from 0 to 45 ppm oxygen and from < 0.1 to 1000 ppm chloride. The main difference between the present data and previously published results, the latter mainly for Type 304 stainless steel, is that as well as cracking occurring in water containing high oxygen and chloride, it is shown that a cracking regime exists at very low oxygen contents for a wide range of chloride contents. The type of cracking varies with the oxygen and chloride content of the water and the most severe cracking was of comparable extent in both the gauge length and the necked region of the specimen. The least severe cracking only caused cracks to occur in the necked region of the specimen and there was a range of oxygen and chloride contents in which no cracking occurred. The rest potential for annealed Type 316 stainless steel has been mapped for a wide range of oxygen and chloride content waters and it is shown that at 265 C the 'no-cracking' regime of the oxygen-chloride diagram corresponds to potentials in the range -200 to +150 mV(SHE). (author)

  5. Comparison of Solid and Hollow Torque Transducer Shaft Response in a High Alloy Stainless Steel

    Science.gov (United States)

    Milby, Christopher L.; Hecox, Bryan G.; Wiewel, Joseph L.; Boley, Mark S.

    2007-03-01

    Recent investigations of the torque transducer response function (ambient field signal versus applied torque or shear stress) have been conducted in a 13% chromium and 8% nickel stainless steel alloy in both the hollow shaft and solid shaft configuration. An understanding of both is needed for applications with differing yield strength and hardness requirements. Axial hysteresis measurements conducted before and after heat treatment exhibited little difference in coercivity and retentivity between the two sample types. However, the field mapping and transducer sensitivity studies showed the hollow shaft configuration to have a far superior degree of polarization in the sensory region and to exhibit an enhanced sensitivity, especially after heat treatment. This is most likely due to its more efficient provision of closed circumferential geometry for the field lines and improved grain alignment during heat treatment.

  6. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  7. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  8. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  9. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  10. Nickel-based materials and high-alloy, special stainless steels. 2. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heubner, U.; Brill, U.; Hoffmann, T.; Jasner, M.; Kirchheiner, R.; Koecher, R.; Richter, H.; Rockel, M.; White, F.

    1993-01-01

    The book is intended as a source of information on nickel-based materials and special stainless steels and apart from the up-to-date materials data presents information on recent developments and knowledge gained, so that it may be a valuable aid to materials engineers looking for cost-effective resolutions of their materials problems in the chemical process industry, power plant operation, and high-temperature applications. The book presents eight individual contributions entitled as follows: (1) Nickel-base alloys and high-alloy, special stainless steels. - Materials survey and data sheets (Ulrich Heubner). (2) Corrosion of nickel-base alloys and special stainless steels (Manfred Rockel). (3) Welding of nickel-base alloys and high-alloy, special stainless steels (Theo Hoffmann). (4) High-temperature resistant materials (Ulrich Brill). (5) Application and processing of nickel-base materials in the chemical process industry and in pollution abatement equipment (Reiner Koecher). (6) Selected examples of applications of nickel-base materials in chemical plant (Manfred Jasner, Frederick White). (7) Applications of nickel-base alloys and special stainless steels in power plant. (8) The use of nickel-base alloys and stainless steels in pollution abatement processes (R. Kirchheiner). (orig./MM). 151 figs., 226 refs [de

  11. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  12. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  13. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  14. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  15. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  16. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.

  17. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    mal stress and crack width for the tensional behaviour of concrete and has been proposed by ... stresses. To calculate concrete stress in a cross section of high strength concrete beams, failure strain is ..... American Concrete. Institute, Detroit.

  18. Compatibility of different stainless steels in molten Pb-Bi eutectic at high temperatures

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Laik, A.; Sharma, B.P.; Bhattacharya, S.; Debnath, A.K.

    2005-10-01

    Advanced nuclear reactors and the accelerator driven subcritical (ADS) system require the structural materials to be in contact with the molten metals/lead-bismuth eutectic at 400 degC and higher temperatures. One of the primary concerns in using the molten lead-bismuth eutectic (LBE) as a coolant in the primary circuit of these systems is the degradation of structural materials in contact with LBE. An experimental setup has been fabricated to expose the materials in the molten LBE at high temperatures in stagnant condition under inert atmosphere. Samples from five different stainless steels (types 304L, 316L, 403, duplex SS SAF 2205 and super austenitic SS 2RK65) were exposed in this setup at 450 degC for 200h and at 500 degC for 600 and 2100 h under argon atmosphere. A different setup was prepared in which type 316L SS tube in the as-welded condition was exposed in molten LBE at 500 degC for 1200 h in rotating condition. All the samples showed formation of oxide on their surfaces. The thickness and compositional profiles of these oxides analyzed by EPMA confirmed formation of a double layer oxide on type 316L SS. The oxide thickness was highest on SS 403, while it was lowest on 304L and 316L SS. SEM results showed dissolution of materials at the surface in Sandvik 2RK65 and preferential dissolution of austenite phase in duplex SS. None of the stainless steels, except the duplex and the super austenitic stainless steels, showed any localized or selective corrosion. The composition of LBE before and after the exposure tests was analyzed by XRF technique. The result showed presence of Fe, Cr and Ni in the used LBE but these elements were not present in the virgin Pb-Ei alloy. This showed that the corrosion of stainless steels in LBE at temperatures upto 500 degC is due to oxidation and dissolution of alloying elements through the oxide on stainless steels. (author)

  19. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  20. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  1. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  2. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  3. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    International Nuclear Information System (INIS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-01-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO 2 . The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe 2 O 3 . Minor element such as Cr 2 O 3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO 2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate

  4. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia)

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  5. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  6. Estimation of embrittlement during aging of AISI 316 stainless steel ...

    Indian Academy of Sciences (India)

    Unknown

    rical relation connecting the aging temperature, aging time and nitrogen ... strength, high tensile strength, are easy to fabricate and ... However, the ferrite is a metastable phase which ... 2. Experimental. 2.1 Materials. Nuclear grade AISI 316 stainless steel plates ( .... fore, it is desirable to develop empirical relations con-.

  7. Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.

    Science.gov (United States)

    Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan

    2018-03-29

    Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.

  8. Time dependent design curves for a high nitrogen grade of 316LN stainless steel for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.; Mathew, M.D., E-mail: mathew@igcar.gov.in

    2013-12-15

    Highlights: • 316LN SS is an important high temperature structural material for sodium cooled fast reactors. • Creep strength of 316LN SS has been increased substantially by increasing the nitrogen content. • Creep design curves based on RCC-MR code procedures have been generated for this new material. • 100,000 h allowable stress at 600 °C increased by more than 40% as a result of doubling the nitrogen content in the steel. - Abstract: Type 316L(N) stainless steel (SS) containing 0.06–0.08 wt.% nitrogen is the major material for reactor assembly components of sodium cooled fast reactors (SFRs). With a view to increase the design life of SFRs to 60 years from the current life of 40 years, studies are being carried out to improve the high temperature creep and low cycle fatigue properties of 316LN SS by increasing the nitrogen content above 0.08 wt.%. In this investigation, the creep properties of a high nitrogen grade of 316LN SS containing 0.14 wt.% nitrogen have been studied. Creep tests were carried out at 550 °C, 600 °C and 650 °C at various stress levels in the range of 140–350 MPa. Creep strength was found to be significantly improved by doubling the nitrogen content in this steel. The maximum rupture life in these tests was 33,000 h. The creep data has been analyzed according to RCC-MR nuclear code procedures in order to generate the creep design curves for the high nitrogen grade of 316LN SS. Allowable stress for 100,000 h at 600 °C increased by more than 38% as a result of doubling the nitrogen content in the steel.

  9. High dose stainless steel swelling data on interior and peripheral oxide fuel pins

    International Nuclear Information System (INIS)

    Boltax, A.; Foster, J.P.; Nayak, U.P.

    1983-01-01

    High dose (2 x 10 23 n/cm 2 , E > 0.1 Mev) swelling data obtained on 20% cold-worked AISI 316 stainless steel (N-lot) cladding from mixed-oxide fuel pins show large differences in swelling incubation dose due to pre-incubation dose temperature changes. Circumferential swelling variations of 1.5 to 4 times were found in peripheral fuel pin cladding which experienced 30 to 60 deg C temperature changes due to movement in a temperature gradient. Consideration is given to the implications of these results to low swelling materials development and core design. (author)

  10. Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

    Science.gov (United States)

    Garkushin, G. V.; Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.

    2017-07-01

    Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105-106 s-1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.

  11. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  12. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  13. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  14. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  15. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  16. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  17. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  18. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  19. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lijin [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China); Peng, Qunjia, E-mail: qunjiapeng@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Shoji, Tetsuo [Frontier Research Initiative, New Industry Creation Hatchery Center, Tohoku University, 6-6-10, Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Han, En-Hou; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Wang, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China)

    2015-12-15

    Highlights: • Dissolved hydrogen (DH) effect on corrosion of stainless steel in high temperature water. • Increasing DH caused decrease of Cr- but increase of Fe-concentrations in the inner oxide layer. • Concentration gradient of Cr and Fe in the inner oxide layer. • DH effect was attributed to the accelerated diffusion of Fe ion in the inner oxide layer. - Abstract: Characterizations of oxide films formed on 316 stainless steel in high temperature, hydrogenated water were conducted. The results show the oxide film consists of an outer layer with oxide particles of Fe–Ni spinel and hematite, and an inner continuous layer of Fe–Cr–Ni spinel. Increasing dissolved hydrogen (DH) concentrations causes decrease of Cr- and increase of Fe-concentrations in the inner layer. A continuous decrease of Cr- and increase of Fe-concentrations was observed from the surface of the inner layer to the oxide/substrate interface. The DH effect is attributed to the enhanced diffusion of Fe ions in the oxide film by hydrogen.

  20. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  1. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  2. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  3. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  4. Effect of nanotechnology in self-etch bonding systems on the shear bond strength of stainless steel orthodontic brackets

    OpenAIRE

    Hammad, Shaza M.; El-Wassefy, Noha; Maher, Ahmed; Fawakerji, Shafik M.

    2017-01-01

    ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2) nanofillers in different bonding systems on shear bond strength (SBS) and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A) Conventional acid-etch and primer Transbond XT; B) Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C) Futurabond DC at 1%; D...

  5. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  6. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  7. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Wim Devesse

    2017-01-01

    Full Text Available A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields.

  8. Stress corrosion of very high purity stainless steels in alkaline media

    International Nuclear Information System (INIS)

    Hechmat-Dehcordi, Ebrahim

    1981-01-01

    This research thesis reports the study of stress corrosion resistance of stainless steels in caustic environments. It notably concerns the electronuclear industrial sector, the production of soda by electrolysis, and the preparation of hydrogen as energy vector. After a presentation of the experimental conditions, the author highlights the influence of purity on stress corrosion cracking of 20Cr-25Ni-type austenitic alloys. The specific action of a high number of addition metallic and non-metallic elements has been studied. Stress corrosion tests have been also performed in autoclave on austeno-ferritic (21 to 25 pc Cr - 6 to 10 pc Ni) as well as ferritic (26 pc Cr) grades. The author reports the study of electrochemical properties of stainless steel in soda by means of potentiostatic techniques with an application of Pourbaix thermodynamic equilibrium diagrams, and the study of the chemical composition of passivation thin layers by Auger spectroscopy. He more particularly studies the influence of electrode potential and of some addition elements on the chemical characteristics of oxides developed at the surface of austenite. Then, the author tries to establish correlations between strain hardening microstructure of the various steels and their sensitivity to stress corrosion [fr

  9. Stress corrosion cracking susceptibilities of various stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, Saburo; Ohnaka, Noriyuki; Kikuchi, Eiji; Minato, Akira; Tanno, Kazuo.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) behaviors of several austenitic stainless steels in high temperature water were evaluated using three types of SCC tests, i.e., single U-bend test in chloride containing water, uniaxial constant load and constant extension rate tests (CERT) in pure water. The steels used were SUS 304, 304L, 316, 316L, 321 and 347 and several heats of them to examine heat to heat variations. The three test methods gave the same relative ranking of the steels. The CERT is the most sensitive method to detect the relative IGSCC susceptibilities. The CERT result for relative ranking from poor to good is: SUS 304 - 0.07% C, 304 - 0.06% C, 304L - 0.028% C, 316 - 0.07% C. The IGSCC susceptibilities of SUS 304L - 0.020% C, 316L - 0.023% C, 321 and 347 were not detected. These test results suggest that the use of the low carbon, molybdenum bearing, or stabilized austenitic stainless steel is beneficial for eliminating the IGSCC problem in boiling water reactor environment. (author)

  10. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  11. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  12. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  13. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  14. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  15. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  16. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  17. Effect of ageing on phase evolution and mechanical properties of a high tungsten super-duplex stainless steel

    International Nuclear Information System (INIS)

    Akisanya, Alfred R.; Obi, Udoka; Renton, Neill C.

    2012-01-01

    Highlights: ► Secondary phases precipitate in a high tungsten SDSS aged between 700 and 900 °C. ► The volume fraction of the sigma phase increases as the holding time increases. ► The evolution of the sigma phase agrees with Johnson–Mehl–Avrami kinetic model. ► The secondary phases enhance the Young's modulus, hardness and strength. ► The ductility decreased significantly with increasing amount of sigma phase. - Abstract: The effect of ageing temperature and holding time on the precipitation of secondary phases and the mechanical properties of a 25Cr–6.7Ni–0.32N–3.0Mo–2.5W super duplex stainless steel is examined. The ageing temperature was varied from 600 to 900 °C and the holding time was varied from 1 to 240 min. Two types of Cr and Mo enriched intermetallic phases, sigma (σ) and chi (χ), were found to precipitate preferentially at the ferrite/austenite interface and within the ferrite grain. The precipitation of the χ-phase occurred preferentially before the σ-phase. The concentration of these secondary phases, which was quantified by a combination of microscopy and image analysis, increases with increasing ageing temperature and holding time, leading to significant reduction in the uniform strain and enhancement of the modulus, hardness and yield and tensile strengths. The measured concentration of the precipitated sigma phase is in agreement with the prediction by the Johnson–Mehl–Avrami kinetic model.

  18. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  19. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  20. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  1. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  2. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  3. The influence of He on the high temperature fracture of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Saguees, A.A.

    1976-01-01

    The Ti-stabilised DIN 1.4970 austenitic stainless steel is an important candidate for high temperature - high neutron fluence applications which will create appreciable amounts of He within the matrix. In order to determine the mechanical effects associated with the presence of He alone a set of tensile specimens was cyclotron implanted to uniform He concentrations in the 10 -6 to 10 -4 at. range and later creep tested at 700 0 C and 800 0 C. The elongation to fracture values of the implanted specimens were reduced with respect to those of unimplanted controls. Scanning Electron Microscope (SEM) examination revealed that fracture starts as intergranular and subsequently propagates in a transgranular fashion, the intergranular part being much more extended in the implanted material. Transmission Electron Microscope (TEM) examination revealed He segregation at the grain boundary precipitates. A mechanism of He embrittlement is discussed in terms of the present results

  4. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  5. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  6. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  7. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  8. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  9. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  10. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  11. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  12. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  13. Performance assessment on high strength steel endplate connections after fire

    NARCIS (Netherlands)

    Qiang, X.; Wu, N.; Jiang, X.; Bijlaard, F.S.K.; Kolstein, M.H.

    2017-01-01

    Purpose – This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire. Design/methodology/approach – An experimental and numerical study on seven endplate connections after

  14. Influence of curing regimes on compressive strength of ultra high

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  15. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  16. Oxidation Phenomena in Advanced High Strength Steels : Modelling and Experiment

    NARCIS (Netherlands)

    Mao, W.

    2018-01-01

    Galvanized advanced high strength steels (AHSS) will be the most competitive structural material for automotive applications in the next decade. Oxidation of AHSS during the recrystalization annealing process in a continuous galvanizing line to a large extent influences the quality of zinc coating

  17. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  18. Characterisation of microstructure and its effect on the strength and toughness of 17-4PH stainless steel

    DEFF Research Database (Denmark)

    Das, C. R.; Bhaduri, A. K.; Albert, S. K.

    2009-01-01

    the formation of a copper-rich phase after ageing for 0.25 h, with the amount of the copper-rich precipitates increasing with the duration of ageing. The coarsening of the copper-rich precipitates on ageing for 2 h led to a sharp decrease in hardness, which was attributable to the transformation of the coherent...... copper-rich body centred cubic (b.c.c.) phase to the incoherent copper rich face centred cubic (f.c.c.) phase. Further ageing for 4 h led to a dip in hardness and strength and an increase in toughness. The dip in hardness upon long-term ageing could be attributed to the formation of coarse copper...

  19. Effect of nanotechnology in self-etch bonding systems on the shear bond strength of stainless steel orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Shaza M. Hammad

    Full Text Available ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2 nanofillers in different bonding systems on shear bond strength (SBS and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A Conventional acid-etch and primer Transbond XT; B Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C Futurabond DC at 1%; D Optibond All-in-One at 7%. Each group was allocated into two subgroups (n = 12 according to experimental time (12 and 24 hours. SBS test was performed using a universal testing machine. ARI scores were determined under a stereomicroscope. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to determine the size and distribution of nanofillers. One-way ANOVA was used to compare SBS followed by the post-hoc Tukey test. The chi-square test was used to evaluate ARI scores. Results: Mean SBS of Futurabond DC and Optibond All-in-One were significantly lower than conventional system, and there were no significant differences between means SBS obtained with all self-etch bonding systems used in the study. Lower ARI scores were found for Futurabond DC and Optibond All-in-One. There was no significant difference of SBS and ARI obtained at either time points for all bonding systems. Relative homogeneous distribution of the fillers was observed with the bonding systems. Conclusion: Two nanofilled systems revealed the lowest bond strengths, but still clinically acceptable and less adhesive was left on enamel. It is advisable not to load the brackets immediately to the maximum.

  20. Effect of nanotechnology in self-etch bonding systems on the shear bond strength of stainless steel orthodontic brackets

    Science.gov (United States)

    Hammad, Shaza M.; El-Wassefy, Noha; Maher, Ahmed; Fawakerji, Shafik M.

    2017-01-01

    ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2) nanofillers in different bonding systems on shear bond strength (SBS) and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A) Conventional acid-etch and primer Transbond XT; B) Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C) Futurabond DC at 1%; D) Optibond All-in-One at 7%. Each group was allocated into two subgroups (n = 12) according to experimental time (12 and 24 hours). SBS test was performed using a universal testing machine. ARI scores were determined under a stereomicroscope. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to determine the size and distribution of nanofillers. One-way ANOVA was used to compare SBS followed by the post-hoc Tukey test. The chi-square test was used to evaluate ARI scores. Results: Mean SBS of Futurabond DC and Optibond All-in-One were significantly lower than conventional system, and there were no significant differences between means SBS obtained with all self-etch bonding systems used in the study. Lower ARI scores were found for Futurabond DC and Optibond All-in-One. There was no significant difference of SBS and ARI obtained at either time points for all bonding systems. Relative homogeneous distribution of the fillers was observed with the bonding systems. Conclusion: Two nanofilled systems revealed the lowest bond strengths, but still clinically acceptable and less adhesive was left on enamel. It is advisable not to load the brackets immediately to the maximum. PMID:28444018

  1. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  2. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  3. Effects of hydrogen on the tensile strength characteristics of stainless steels; Effets de l'hydrogene sur les caracteristiques de rupture par traction d'aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, R; Pelissier, J; Pluchery, M [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    This paper deals with the effects of hydrogen on stainless steel, that might possibly be used as a canning material in hydrogen-cooled reactors. Apparent ultimate-tensile strength is only 80 per cent of initial value for hydrogen content about 50 cc NTP/ 100 g, and reduction in area decreases from 80 to 55 per cent. A special two-stage replica technique has been developed which allows fracture surface of small tensile specimens (about 0.1 mm diam.) to be examined in an electron microscope. All the specimens showed evidence of ductile character throughout the range of hydrogen contents investigated, but the aspect of the fracture surfaces gradually changes with increasing amounts. (author) [French] On etudie les effets de l'hydrogene sur des aciers inoxydables, qui sont des materiaux de gainage possibles pour des reacteurs utilisant l'hydrogene comme gaz de refroidissement. On montre que la charge apparente de rupture a la traction n'est plus que 80 pour cent de sa valeur initiale lorsque la teneur en hydrogene atteint 50 cc TPN/ 100 g, et que la striction passe dans ces conditions de 80 a 55 pour cent. L'examen microfractographique qui a ete effectue avec succes par une technique de double replique malgre la petitesse des echantillons (0,3 mm de diametre environ), revele que tout en gardant un caractere ductile, l'aspect des surfaces de rupture evolue notablement avec la teneur en hydrogene. (auteur)

  4. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  5. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  6. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  7. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  8. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  9. Electrochemical behavior of TIO{sub 2} deposited stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Yamamoto, S. [Toshiba Corp., Kawasaki-city, Kanagawa (Japan); Urata, H.; Takagi, J. [Toshiba Corp., Yokohama-city, Kanagawa (Japan)

    2010-07-01

    It has previously been confirmed that the electrochemical corrosion potential (ECP) of stainless steel (SS) shifts in the negative direction by deposition of TiO{sub 2}. Recently we showed that TiO{sub 2} could decrease the ECP of SS in the absence of UV irradiation. In this study we measured the anodic polarization curve in high temperature water under UV irradiation and none irradiation condition and considered the mechanism of the ECP shift by TiO{sub 2} deposition. The anodic current density of the specimen increased with increasing the UV irradiation intensity and with increasing the amount of TiO{sub 2} deposition under none UV irradiation. Furthermore the oxide film of the specimen affects on the anodic current density was clarified. It was verified the ECP shift is caused by the anodic current density increasing with TiO{sub 2} deposition under both conditions of UV and none UV irradiation. (author)

  10. Effect of the oxygen partial pressure on ferritic stainless steel AISI 441 at high temperatures

    International Nuclear Information System (INIS)

    Salgado, M.F.; Carvalho, I.S.; Santos, R.S.; Correa, O.V.; Ramanathan, L.V.

    2014-01-01

    Stainless steels can be exposed to aggressive gases at high temperatures. To understand the behavior of oxidation of the steel AISI 441 was made oxidation at temperatures between 850 ° C and 950 ° C, at two different atmospheres: synthetic air, using tubular furnace and Argon, containing 1ppm O_2, in thermobalance. The kinetics of oxidation of the films was established by measuring the mass gain per unit of area as a function of the oxidation time. The microstructure and chemical composition of the oxides were analyzed by SEM, EDS and XRD. Chemical analysis showed that films formed on steel AISI 441 had mostly chromium oxide and the following elements: Cr, Mn, Fe, Ti and Si. Regarding the kinetics of oxidation, it was observed that in synthetic air, the steel oxidation increased gradually with the temperature, but in argon, it showed the highest oxidation at 900 ° C and the lowest oxidation at 950 ° C. (author)

  11. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  12. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  13. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  14. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  15. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  16. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  17. Elevated temperature tensile properties of borated 304 stainless steel: Effect of boride dispersion on strength and ductility

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1991-01-01

    This paper has documented the increase in strain to fracture and yield strength obtained with Grade A versions of types 304B5 and 304B7 relative to their respective Grade B, counterparts. The apparent microstructural reason for these property increases is the finer dispersion of boride in the Grade A material, obtained by means of a Powder Metallurgy process, relative to the conventional Grade B material which is produced using an Ingot Metallurgy process. The area size distribution of borides can be well approximated using a log-normal distribution, with the largest boride particles in the Grade B material having areas in the range of 450--600 μm 2 . By comparison, the largest boride particles in the Grade A material have areas nearly an order of magnitude smaller than the largest particles in their Grade B counterparts. A Section III ASME B ampersand PV code case inquiry has been initiated for non-welded versions of 304B4A, 3045A and 3046A ,material

  18. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  19. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  20. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  1. Electrochemical polarization behavior of sensitized SUS 304 stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kushiya, K [Tohoku Univ., Sendai (Japan); Sugimoto, K; Ejima, T

    1978-11-01

    Anodic polarization curves for a solution-treated or sensitized SUS 304 stainless steel and solution-treated Fe-Ni-Cr ternary alloys containing 10%Ni and 6 to 14%Cr have been measured in deaerated 0.5 mol/l Na/sub 2/SO/sub 4/ solutions of pH 2.0 to 5.9 at 298, 523 and 553 K. Corrosion potentials for U-bend SCC test specimens of sensitized SUS 304 stainless steel have also been monitored for a long time in the same solutions as those used for the polarization measurements except that they were aerated. It was found that the differences in the current densities in the passive state, i sub(pass), between the solution treated steel and the sensitized one and also between the ternary alloy with higher Cr content and the one with lower Cr content become large with increasing temperature and decreasing pH. This means that the difference in the values of i sub(pass) between grain bodies and Cr-depleted zones along grain boundaries of sensitized steel becomes larger and susceptibility to intergranular corrosion of the sensitized steel in the passivation region becomes higher with increasing temperature and decreasing pH. Since corrosion potentials for the U-bend SCC test specimens in air-satulated solutions lie in the passive region of anodic polarization curves for the sensitized steel in deaerated solutions, the intergranular stress-corrosion cracking of the sensitized steel in high temperature water with dissolved oxygen is considered to be caused by the preferential corrosion in the Cr-depleted zone.

  2. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  3. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  4. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  5. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  6. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  7. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  8. Modified stainless steel for high performance and stable anode in microbial fuel cells

    International Nuclear Information System (INIS)

    Peng, Xinwen; Chen, Shuiliang; Liu, Lang; Zheng, Suqi; Li, Ming

    2016-01-01

    Graphical abstract: A high performance and stable anode was prepared for microbial fuel cells by surface modification of stainless steel mesh including steps of acid etching, binder-free carbon black (CB) coating and the low-temperature heat treatment below 400 °C. The modified anode could deliver a stable and high current density of 1.91 mA cm −2 . - Highlights: • A high-performance anode for MFC is prepared by surface modification of SSM. • The modified SSM could generate a high current density of up to 1.91 mA cm −2 . • The formation of Fe 3 O 4 layer enhanced the interaction between the CB and SSM. • The modified SSM was stable under the potential of +0.2 V (vs. Ag/AgCl). • The modified SSM was an ideal anode for upscaling applications of MFCs. - Abstract: The surface modification of the stainless steel mesh (SSM) was conducted by acid etching, binder-free carbon black (CB) coating and the low-temperature heat treatment below 400 °C to improve the microbial bioelectrocatalytic activity for use as high-performance anode in microbial fuel cells. The modified SSM, such as SSM/CB-400, could generate a high current density of up to 1.91 mA cm −2 , which was nearly three orders of magnitude higher than the untreated SSM electrode (0.0025 mA cm −2 ). Moreover, it was stable and recovered the equal current density after removal of the formed biofilms. Surface characterization results demonstrate that the performance improvement was attributed to the CB/Fe 3 O 4 composite layer formed onto the surface of the SSM, which protected the biofilms from being poisoned by the Cr component in the SSM and ensured a rapid electron transfer from biofilms to the SSM surface. The CB/Fe 3 O 4 composite layer showed excellent corrosion-resistant under the oxidizing potential of + 0.2 V (vs. Ag/AgCl). Rising the heating temperature to 500 °C, the SSM-500 and SSM/CB-500 electrodes suffered from corrosion due to the formation of α-Fe 2 O 3 crystals.

  9. Research on Inhibition for Corrosion Fatigue of High Strength Alloys

    Science.gov (United States)

    1978-12-15

    4140 , $740 1225-1275 1600-1675 1525-1575 1100 1000.. 925 850 725 4340 1225-1275 1600-1650 1500-1550 1100 1045 921. 875 72531 0 0 85 7 0 (I43 7-.22...1 0 le -kI Io o CRACK GROWTH RATE PJamOC Figure 24. Factors that Affect the Crack Growth Rate of High- Strength AISI 4340 Steels in Aqueous

  10. Grinding damage assessment on four high-strength ceramics.

    Science.gov (United States)

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  11. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  12. Spinodal decomposition in AISI 316L stainless steel via high-speed laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Chikarakara, Evans, E-mail: evans.chikarakara2@mail.dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Dublin (Ireland); Naher, Sumsun, E-mail: sumsun.naher@city.ac.uk [School of Engineering and Mathematical Sciences, City University London (United Kingdom); Brabazon, Dermot, E-mail: dermot.brabazon@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Dublin (Ireland)

    2014-05-01

    A 1.5 kW CO{sub 2} pulsed laser was used to melt the surface of AISI 316L stainless steel with a view to enhancing the surface properties for engineering applications. A 90 μm laser beam spot size focused onto the surface was used to provide high irradiances (up to 23.56 MW/cm{sup 2}) with low residence times (as low as 50 μs) in order to induce rapid surface melting and solidification. Variations in microstructure at different points within the laser treated region were investigated. From this processing refined lamellar and nodular microstructures were produced. These sets of unique microstructures were produced within the remelted region when the highest energy densities were selected in conjunction with the lowest residence times. The transformation from the typical austenitic structure to much finer unique lamellar and nodular structures was attributed to the high thermal gradients achieved using these selected laser processing parameters. These structures resulted in unique characteristics including elimination of cracks and a reduction of inclusions within the treated region. Grain structure reorientation between the bulk alloy and laser-treated region occurred due to the induced thermal gradients. This present article reports on microstructure forms resulting from the high-speed laser surface remelting and corresponding underlying kinetics.

  13. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  14. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2017-01-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  15. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  16. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  17. Studies on microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.

  18. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M.

    2005-01-01

    The influence of initial microstructure on discontinuous dynamic recrystallization (DDRX) has been investigated by using high purity and ultra high purity austenitic stainless steels with various initial grain sizes. After uniaxial compression tests at constant strain rates and various temperatures, the steady state microstructure or the state corresponding to the maximum strain (ε = 1) attained in the test was analyzed by scanning electron microscopy aided with automated electron back scattering diffraction. Recrystallized grain size d rec and twin boundary fraction f TB measurements were carried out. The mechanical behavior was also investigated by comparing experimental stress-strain curves with various initial grain sizes. DDRX kinetics was described by the classical Avrami equation. It was concluded that larger initial grain sizes promoted a delay in the DDRX onset in the two alloys. It was also observed that the softening process progressed faster for smaller initial grain sizes. The effect of initial grain size is larger in the HP material and becomes more pronounced at low temperature

  19. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Esch, H. P. L. de, E-mail: hubert.de-esch@cea.fr; Simonin, A.; Grand, C. [CEA-Cadarache, IRFM, F-13108 St. Paul-lez-Durance (France)

    2015-04-08

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm{sup 2} electrodes have been performed at an electrode distance d=11 mm under vacuum (P∼5×10{sup −6} mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ∼10000 seconds of high-voltage (HV) on-time, having accumulated ∼1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (∼100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  20. A high molybdenum stainless steel and its resistance to chloride environments in the welded condition

    International Nuclear Information System (INIS)

    Coppolecchia, V.D.; Jasner, M.; Rockel, M.B.

    1988-01-01

    Highly alloyed stainless steels, such as 1925 hMo UNS N08925 with 6 percent molybdenum, are finding widespread use in high chloride cooling water and process environments. This alloy has good general corrosion resistance to a variety of chloride environments but it's main attraction is excellent resistance to all forms of localized corrosion. In aggressive chloride environments weldments are generally the area of concern with regard to localized corrosion. Temperature-time-sensitization diagrams are presented that demonstrate the resistance of 1925 hMo weldments to intergranular attack. Immersion tests in 10% ferric chloride substantiate that autogenous tube welds, also have excellent pitting resistance. Various filler metals are compared both electrochemically and in immersion tests. These comparisons reveal that an overalloyed filler metal is required to achieve pitting and crevice corrosion resistance equal or better than that of the base metal. Alloy 625 (UNS NO6625) has been selected. Constant extension rate tests in boiling 62% calcium chloride reveal that 1925 hMo weldments are immune to stress corrosion cracking in this environment which virtually guarantees absence of SCC in seawater regardless of temperature as well as in most commercial chemical environments

  1. Microstructural characterization of high strength and high conductivity nanocomposite wires

    International Nuclear Information System (INIS)

    Dupouy, F.; Snoeck, E.; Casanove, M.J.; Roucau, C.; Peyrade, J.P.; Askenazy, S.; Complexe Scientifique de Rangueil, Toulouse

    1996-01-01

    The generation of high pulsed magnetic fields by non-destructive magnets is a subject of research in several laboratories in the world. Combining copper and niobium seems to be a promising way to develop composites for such application. CuNb nanofilamentary wires with interesting mechanical properties for non-destructive magnets were obtained. For heavily deformed nanofilamentary wires, the fiber size decreases and the TEM studies reveal a strong fiber-matrix orientation relationship. The Cu/Nb interfaces become semi-coherent and almost completely relaxed, with a distance between misfit dislocations in good agreement with the theoretical predictions. As lowering the filament section improves the mechanical properties, one may expect to elaborate wires with larger numbers of dilaments exhibiting enhanced mechanical properties. The subsequent reduction of the filament section may lead to the formation of mono-crystalline Nb fibers and to perfect coherency of the Cu/Nb interfaces over larger distances

  2. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  3. Properties of High Strength Concrete Applied on Semarang - Bawen Highway

    Science.gov (United States)

    Setiyawan, Prabowo; Antonius; Wedyowibowo, R. Hawik Jenny

    2018-04-01

    To fulfill the needs of highway construction then a high quality concrete is expected to be produced by a short time and high workability, therefore the addition of additive chemicals needs to be conducted. The objective of the study was to find out the properties of high quality concrete including slump value, compressive strength, flexural strength, elasticity modulus and stress-strain diagrams with the addition of fly ash and superplasticizer. There were five types of mixtures were made in this study with a fas (cement water factor) was 0,41 and an additional 15% of fly ash and a varied superplasticizer of 0%, 0.5%, 1%, 2% towards the weight/volume and cement/water. Test samples of cylinders and prisms or beams were tested in the laboratory at 1, 3, 7, 14, and 28 days. The test results were then compared with the test results made without additional additives. Based on the result of this research, it can be concluded that the increase of slump value due to the addition of 15% fly ash is 0,53 cm of the base slump value. The use of superplasticizer causes the weight of the type to be greater. The optimum dose of superplasticizer is 1,2%, it is still in the usage level according to the F-type admixture brochure (water reducing, high-range admixture) such as 0,6 % -1,5 %. All mixture types which use addition materials for flexural strength (fr'=45kg/cm2) can be achieved at 3 days.

  4. Analysis of Helical Stainless Steel 08X18H10 Spring Relaxation at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available The object of this paper is to study a cylindrical helical spring to be applied at high temperatures. The aim of this work is to study the regularity of relaxation stresses in spring and evaluate its long-term stresses.The work allowed us to establish relaxation dependencies of springs under high temperatures. According to the results of creep tests at 600°, the theoretical equation of steel creep was defined concretely. It was then used for the analysis at 350°.The paper presents a created finite element model of spring relaxation. It is the stainless steel 08Х18Н10 spring to be used at the temperature of 350°.In this paper describes the basic theory of creep, considers the relationship between the creep speed and parameters. The changing compression force of springs is analyzed under fixed compression amount.The paper also analyzes the changing length of springs in the free state after various stages of high-temperature relaxation test. It determines the results of compression forces and free length under different amount of compression.The analysis to compare the theoretical calculation of the compression forces with the experimental results is conducted. Computer modeling is created in Abaqus for calculation. Spring relaxation experiments are carried out under fixed compression amount and at the temperature of 350°. It is shown that the simulation results, which are carried out in Abaqus coincide with experimental results. The study shows that it is possible to use the creep equation parameters, based on the experimental results at high temperatures, to predict creep and relaxation properties of springs, which work at less high temperatures. The work results can be used as a basis in designing the springs working at high temperatures.

  5. Applications of nitrogen-alloyed stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Sundvall, J.; Olsson, J. [Avesta Sheffield AB (Sweden); Holmberg, B. [Avesta Welding AB (Sweden)

    1999-07-01

    A selected number of applications for different types of nitrogen-alloyed stainless steels are described. The applications and grades are based on how nitrogen improves different properties. Conventional austenitic grades of type 304 and 316 can be alloyed with nitrogen to increase the strength and to maintain the austenite stability after cold deformation when exposed to cryogenic temperatures. Such examples are presented. The addition of nitrogen to duplex grades of stainless steel such as 2205 improves the pitting resistance, among other things, and also enables faster reformation of the austenite in the heat affected zone. This means that heavy plate can be welded without pre-heating or post-weld heating. Such applications are covered. Modern highly alloyed austenitic stainless steels almost always contain nitrogen and all reasons for this are covered, i.e. to stabilise the austenite, to increase the strength, and to improve the pitting resistance. The increased strength is the characteristic exemplified the least, since the higher strength of duplex grades is well known, but examples on austenite stability and improved pitting resistance are presented. (orig.)

  6. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  7. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  8. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  9. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  10. Diagnostic value of high strength MRCP in the obstructive jaundice

    International Nuclear Information System (INIS)

    Yang Yang; Dong Yuhai; Yin Jie; Lv Guoyi

    2007-01-01

    Objective: To evaluate the diagnostic value of high strength MRCP in patients with obstructive jaundice. Methods: Routine MRI and MRCP examination on 161 patients with obstructive jaundice were carded out with 1.5T Siemens super-conductive magnetic resonance machine. Of them, 103 cases were benign lesions and 58 were malignant after surgical and ERCP pathological confirmation. Results: The diagnostic accuracy of MRCP was 100%, with the qualitative diagnostic accuracy at 90.2%. Conclusion: MRCP was the best method in diagnosing patients with obstructive jaundice, the concerned performances of MRCP could provide the dependable basis for surgical operation project. (authors)

  11. PM alloy 625M for high strength corrosion resistant applications

    International Nuclear Information System (INIS)

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper

  12. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  13. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  14. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  15. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study

    Directory of Open Access Journals (Sweden)

    Parikshit Gupt

    2017-01-01

    Conclusion: Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  16. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  17. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  18. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  19. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp; Fukuya, K.

    2016-02-15

    Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni–Si or Ni–Si–Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni–Si clusters (3–4 nm in diameter), and large Ni–Si and Ni–Si–Mn clusters (8–10 nm in diameter). The total cluster number density was 7.7 × 10{sup 23} m{sup −3}. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni–Si clusters correspond to γ′ phase precipitates while the Ni–Si–Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.

  20. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  1. Influence of surface oxide films on the SCC of stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Junichi; Kato, Shunji; Hirano, Hideo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab; Kushida, H.

    2000-06-01

    Effect of pre-filming conditions on the SCC susceptibility of stainless steels (SS) was investigated by SSRT and electrochemical measurement in high temperature water. The IGSCC ratio of a specimen with the oxide film formed in hydrogen-saturated water (R film specimen) was higher than that of a specimen with the oxide film formed in air-saturated water (O film specimen). When the pre-filmed specimens were coupled with a Cr-depleted SS that simulated weld-heat-affected zones, the galvanic couple between the R film specimen and Cr-depleted SS showed higher corrosion current than the couple between the O film specimen and Cr-depleted SS. The film thickness of the Cr-depleted SS was thinner in the couple with the R film specimen after the test. These results clearly show that the SCC susceptibility of R film specimen was higher than that of the O film specimen, in accordance with the SSRT results. (author)

  2. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1 ) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  3. Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; WANG Li-jun; CUI Wen-fang; LIU Chun-ming

    2008-01-01

    The precipitation behavior of Cr2N during isothermal aging in the temperature range from 700℃to 950℃ in Fe-18Cr-12Mn-0.48N(in mass percent)high nitrogen austenitic stainless steel,including morphology and content of precipitate,was investigated using optical microscopy,scanning electron microscopy,and transmission electron microscopy.The isothermal precipitation kinetics curve of Cr2N and the corresponding precipitation activation energy were obtained.The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time.The nose temperature of Cr2N precipitation is about 800℃,with a corresponding incubation period of 30 min,and the ceiling temperature of Cr2N precipitation is 950℃.The diffusion activation energy of Cr2N precipitation is 296 kJ/mol.

  4. Microstructure characteristics of high borated stainless steel fabricated by hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Wang, Mingjia, E-mail: mingjiawangysu@126.com; Zhao, Hongchang

    2016-04-25

    The present study investigated the microstructure of powder metallurgy (P/M) high borated stainless steel through hot-pressing sintering in a temperature range of 1000–1150 °C within 30 min under 30 MPa. Microstructure and phase examinations were carried out by applying scanning electron microscope, electron backscatter diffraction and X-ray diffraction analysis. The results of as-atomized powders demonstrated that many powders kept egg-type structure with an austenite outer layer and the eutectic borides were much finer than those in traditional cast products. Microstructure studies revealed that borides suffered Ostwald ripening and were significantly influenced by the sintering temperature. Orientation maps indicated that the inter-particle contact areas consisted of equiaxed grains and the regions consisting of large elongated grains partly inherited the microstructure characteristics of as-atomized powder particles. Furthermore, the mechanisms governing the morphological changes in microstructure were discussed. - Highlights: • Near-complete densification could be obtained through hot-pressing sintering. • There was no phase transformation and present phases were M{sub 2}B and austenite. • Borides suffered Ostwald ripening and were significantly influenced by temperature. • Inter-particle contact areas consisted of equiaxed grains for recrystallization. • Deformation-free zones exhibited elongated grains for dendritic arms coarsening.

  5. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.

    2016-01-01

    Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni–Si or Ni–Si–Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni–Si clusters (3–4 nm in diameter), and large Ni–Si and Ni–Si–Mn clusters (8–10 nm in diameter). The total cluster number density was 7.7 × 10"2"3 m"−"3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni–Si clusters correspond to γ′ phase precipitates while the Ni–Si–Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.

  6. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  7. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    Science.gov (United States)

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  8. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  9. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  10. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  11. High strength fused silica flexures manufactured by femtosecond laser

    Science.gov (United States)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  12. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  13. Determination of high-strength materials diamond grinding rational modes

    Science.gov (United States)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  14. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  15. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  16. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  17. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  18. Development of a high temperature austenitic stainless steel for Stirling engine components

    International Nuclear Information System (INIS)

    Anton, D.L.; Lemkey, F.D.

    1986-01-01

    An alloy, designed NASAUT 4G-A1, was developed which exhibited an excellent balance of oxidation resistance and high temperature strength while maintaining an austenitic matrix necessary for hydrogen compatibility. This alloy, having the composition 15Cr-15Mn-2Mo-1Nb-1Si-1.5C-bal. Fe in wt%, was microstructurally characterized and shown to contain a fine M/sub 23/C/sub 6/ precipitated phase. Subsequent heat treatments were shown to substantially modify this microstructure resulting in improved mechanical properties. Yield, creep and low cycle fatigue strengths were found to be superior to the best iron base alloy thus far identified as a potential heater head candidate material, XF-818

  19. Mechanical and structural characteristics in high temperature of stainless steel welded joint

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Carvalho Mota, A.F. de

    1980-01-01

    The mechanical behavior at 600 0 C of weldments made of type 304 stainless as base metal and niobium containing type 347 stainless as weld metal has been investigated. This was done through tensile and creep tests. Heat treatments at 600 0 C and up to 6000 hours permited a simultaneous follow up of the mechanical and microstructural changes. It was observed that the exposure at 600 0 C under load contributes, from the begining, to the strengthening of the weld. This is due to the acceleration of the second phase precipitation hardening. (Author) [pt

  20. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  1. The rupture strength of dissimilar joints in high temperature

    International Nuclear Information System (INIS)

    Groenwall, B.

    1992-05-01

    In dissimilar joints between austenitic stainless steels and ferritic steels the heat affected zone in the ferritic steel always is the weakest link. Two different joints where the ferritic steel has been 10CrMo910 (2.25Cr1Mo) and X20CrMoV121 respectively (162Cr1Mo0.3V) has been investigated through thermal cycling and isothermal creep testing. In this case the purpose has been to investigate the weakest link and therefore both 10CrMo910 and X20CrMoV121 have been welded to themselves using the TIG-method with Inconel 82 (70Cr20Cr3Mn2). 5Nb as filler wire. Crossweld specimens have been taken from the joints. To accelerate the testing the tip temperature at thermal cycling and the temperature at isothermal creep testing has been in the region 600-650 degrees C. Low ductile fracture, which is typical for failures in practice, has been obtained by using a moderate tensile stress, 63 N/mm 2 . In the high temperature range, 650 degrees C, the thermal cycling compared to the isothermal testing had no influence but in lower temperatures the cycling caused decreased time to rupture. The time to rupture in thermal cycling as well as in isothermal testing as a function of testing temperature can be fitted to exponential curve of type t = a x e bT (where t and T are time and temperature respectively). Through extrapolation of the measured data it has been found that 10CrMo910 in hard conditions that is thermal cycling has a life time at 500 degrees C of about 100 000 h. If the operational temperature is constant the life time will be about four times longer. The X20CrMoV121 on the other hand has a life time at thermal cycling at 500 degrees C and moderate tensile stress of about 3 000 000 h. This means that the tensile stress can be increased considerably. The cracks appear in 10CrMo910 closely to the fusion line but in the X20CrMoV121 steel cracking and fracture arise in the heat affected zone some millimeters from the fusion line. (au)

  2. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  3. Characteristics of shock propagation in high-strength cement mortar

    Science.gov (United States)

    Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi

    2001-06-01

    Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.

  4. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  5. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  6. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  7. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    International Nuclear Information System (INIS)

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-01-01

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M 23 C 6 (M = Cr, Fe) and Cr 2 N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr 2 N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size

  8. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  9. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  10. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Machová, M.; Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T.

    2016-01-01

    Roč. 69, Dec (2016), 631–639 ISSN 0928-4931 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : selective laser melting * 316L stainless steel * porous implants * scaffolds Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  12. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  13. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  14. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  15. Corrosion fatigue behavior of high strength brass in aqueous solutions

    International Nuclear Information System (INIS)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A.

    2000-01-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 α-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  16. CO2 laser cutting of advanced high strength steels (AHSS)

    International Nuclear Information System (INIS)

    Lamikiz, A.; Lacalle, L.N. Lopez de; Sanchez, J.A.; Pozo, D. del; Etayo, J.M.; Lopez, J.M.

    2005-01-01

    This article demonstrates the optimum working areas and cutting conditions for the laser cutting of a series of advanced high strength steels (AHSS). The parameters that most influence the cutting of sheet metal have been studied and the results have been divided into two large groups with thickness of more and less than 1 mm. The influence of the material and, more important, the effect of coating have been taken into account. The results, have demonstrate very different behaviours between the thinnest and thickest sheets, whilst the variation of the cutting parameters due to the influence of the material is less relevant. The optimum cutting areas and the quality of the cut evaluated with different criteria are presented. Finally, the best position for the laser beam has been observed to be underneath the sheet

  17. Development of CSS-42L{trademark}, a high performance carburizing stainless steel for high temperature aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, H.I.; Milam, L. [Timken Co., Canton, OH (United States); Tomasello, C.M.; Balliett, S.A.; Maloney, J.L. [Latrobe Steel Co., Latrobe, PA (United States); Ogden, W.P. [MPB Corp., Lebanon, NH (United States)

    1998-12-31

    Today`s aerospace engineering challenges demand materials which can operate under conditions of temperature extremes, high loads and harsh, corrosive environments. This paper presents a technical overview of the on-going development of CSS-42L (US Patent No. 5,424,028). This alloy is a case-carburizable, stainless steel alloy suitable for use in applications up to 427 C, particularly suited to high performance rolling element bearings, gears, shafts and fasteners. The nominal chemistry of CSS-42L includes: (by weight) 0.12% carbon, 14.0% chromium, 0.60% vanadium, 2.0% nickel, 4.75% molybdenum and 12.5% cobalt. Careful balancing of these components combined with VIM-VAR melting produces an alloy that can be carburized and heat treated to achieve a high surface hardness (>58 HRC at 1mm (0.040 in) depth) with excellent corrosion resistance. The hot hardness of the carburized case is equal to or better than all competitive grades, exceeding 60 HRC at 427 C. The fracture toughness and impact resistance of the heat treated core material have likewise been evaluated in detail and found to be better than M50-NiL steel. The corrosion resistance has been shown to be equivalent to that of 440C steel in tests performed to date.

  18. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  19. Peculiarities of welding procedure for the 05Kh12K14N5M5T-VD maraging stainless steel with strength higher 1500 MPa

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1980-01-01

    The effect of welding procedure of 05Kh12K14N5M5T-VD stainless steel on the properties of its welded joints is investigated. A new procedure of welding for pressure vessels made of this steel using Sv-03Kh15K14N5M3T-EL welding wire is suggested [ru

  20. High Early-Age Strength Concrete for Rapid Repair

    Science.gov (United States)

    Maler, Matthew O.

    The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator

  1. High-temperature strength of AISI 316 steel

    International Nuclear Information System (INIS)

    Antunes, A.E.B.; Monteiro, S.N.

    1975-01-01

    The mechanical properties, especially elastic limit and strain hardening of AISI-316 austenitic stainless steel were investigated within the temperature range 150-800 0 C for two strain rates. The results showed anomalous behaviour between 200 and 650 0 C, over which range there was an increase in maximum strenght and hardening, with a tendency to show peaks. These apparentley three in number, may be connected with the effects of interaction between point defects and dislocations leading to dinamic aging phenomena. The mechanisms responsible for this anomalous behaviour produce a negative dependence on strain rate [pt

  2. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  3. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  4. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  5. High carbon microalloyed martensitic steel with ultrahigh strength-ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Ying [School of Mechanical Engineering, Shanghai Dianji University, Shanghai 200245 (China); Chen, Nailu, E-mail: nlchen@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zuo, Xunwei; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-29

    Based on the idea of rising the mechanical stability of retained austenite by the addition of Si in Fe-Mn based steels, an Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb was designed, then its hot rolled plate was successively tread by normalization process as pretreatment of novel quenching-partitioning-tempering (Q-P-T) process. Product of tensile and elongation (PSE) of 53.94 GPa% were obtained for this high carbon Q-P-T martensitic steel, and the PSE (40.18 GPa%) obtained by the conversion of tensile sample size using Oliver formula still is more excellent PSE than those of other microalloyed advanced high strength steels reported. The microstructural characterization reveals origin of ultrahigh PSE resulting from both the increase of considerable and dispersed carbon enriched retained austenite with relative high mechanical stability in volume fraction and the decrease of brittle twin-type martensite with the sensitivity of notch.

  6. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  7. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  8. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  9. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  10. Characteristics in Paintability of Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Park, Ha Sun

    2007-01-01

    It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non welded area because Si and Mn cold be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel

  11. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  12. Effect of grain size on the high temperature mechanical properties of type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Lee, Y. S.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Cho, H. D.; Han, C. H

    2001-02-01

    Nitrogen increases the high temeprature mechanical properties and decreases grain size. The effect of nitrogen on the high temperature mechanical properties was investigated in the viewpoint of grain size. Tensile strength increases with the decrease of grain size and agrees with the Hall-Petch relationship. Effect of grain size on the low cycle fatigue life properties were investigated as measuring the fatigue life from the results which had been obtained by the constant strain rate and various strain range. There was no effect on the low cycle fatigue properties by the grain size. The time to rupture decreased with the increase of grain size. The steady state creep rate decreased to a minimum and then increased as the grain size increased. This result agrees with the result predicted from Garofalo equation. The rupture elongation at the intermediate grain size showed a minimum due to the cavity formed easily by carbide precipitates in the grain boundaries.

  13. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  14. Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel

    OpenAIRE

    Machado, I. F.; Padilha, A. F.

    2000-01-01

    The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainle...

  15. Performance of high molybdenum superaustenitic stainless steel welds in harsh chloride environments

    International Nuclear Information System (INIS)

    Stenvall, P.; Liljas, M.; Wallen, B.

    1996-01-01

    Superaustenitic steels are normally welded with nickel-based alloys as filler materials. To clarify the understanding of weld behavior in superaustenitic stainless steels this paper presents the development history of 6Mo and 7Mo steels, and results of laboratory tests and field tests on welds of UNS S31254 (6Mo) and UNS S32654 (7 Mo) in different types of chloride containing environments. The laboratory tests consisted of the well known ferric chloride test (ASTM G 48 Method A). Shielded metal arc welds, gas tungsten arc welds and submerged arc welds in both grades were tested. The critical pitting temperatures were determined and the locations of the attack were noted. Some specimens were sectioned at the position of the attack followed by studies using light optical microscopy. The critical pitting temperatures of the welds in S31254 and S32654 were at normal levels for both grades, i.e., 40--50 C for S31254 and 60--75 C for S32654. The locations of the attack differed depending on the welding process. In shielded metal arc welds the attack was mostly located in the weld metal. In gas tungsten arc welds the attack was predominantly located next to the fusion line. The field tests showed that the behavior of welds and parent metal of superaustenitic stainless steels, as well as of nickel-based alloys, is much dependent on the corrosive environment. In oxidizing chloride solutions, similar results to those of the ferric chloride test, are observed. However, crevice corrosion in the parent material is at a greater risk than pitting corrosion in the welds. In very oxidizing solutions of low chloride concentrations, welds made of nickel-based fillers may corrode faster than the stainless steel base metal due to transpassive uniform corrosion. The opposite situation exists when active uniform corrosion prevails, i.e., welds made of nickel-based fillers corrode less than the stainless steel parent material

  16. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  17. In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis

    International Nuclear Information System (INIS)

    Yang, Zeheng; Wang, Kun; Shao, Zongming; Tian, Yuan; Chen, Gongde; Wang, Kai; Chen, Zhangxian; Dou, Yan; Zhang, Weixin

    2017-01-01

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe 2 O 3 hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N 2 atmosphere. As a Fenton-like catalyst, Fe 2 O 3 hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H 2 O 2 . The Fe 2 O 3 catalyst with unique hierarchical structures and efficient transport channels, effectively activates H 2 O 2 to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe 2 O 3 hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H 2 O 2 . - Highlights: • Fe 2 O 3 hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F − ions play an important role in the formation of the Fe 2 O 3 hierarchical arrays. • Fe 2 O 3 hierarchical arrays show high catalytic activity to methylene blue degradation.

  18. A morphological evaluation of a duplex stainless steel processed by high energy Ball Mill

    International Nuclear Information System (INIS)

    Yonekubo, Ariane Emi; Cintho, Osvaldo Mitsuyuki; Aguiar, Denilson Jose Marcolino de; Capocchi, Jose Deodoro Trani

    2009-01-01

    The duplex stainless steels are formed by a ferrite and austenite mixture, giving them a combination of properties. Commercially, these steels are hot rolled, developing an anisotropic, alternated ferrite and austenite elongated lamellae microstructure. In this work, a duplex stainless steel was produced by the mixture of elementary powders with the composition Fe-19.5Cr-5Ni processed in an ATTRITOR ball mill during periods up to 15 hours. The powders obtained were compressed in specimens and were heat treated in the temperatures of 900, 1050 and 1200 °C during 1 hour and analysed by x ray diffraction, optic microscopy, scanning electron microscopy and energy dispersion spectroscopy. An optimized microstructure with ultrafine, equiaxial and regular duplex microstructure was obtained in the 15 hour milling and 1200 °C heat treatment. Afterwards, a commercially super duplex stainless steel UNS S32520 was aged at 800 °C aiming the precipitation of σ phase in order to reduce its toughness and then, milled in SPEX mill. The resulting microstructure was a very fine duplex type with irregular grain boundary morphology duo to the grain growth barrier promoted by the renascent σ phase particles during sintering process. (author)

  19. Development of stainless steels for nuclear power plant - Advanced nuclear materials development -

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Ryu, Woo Seog; Chi, Se Hwan; Lee, Bong Sang; Oh, Yong Jun; Byun, Thak Sang; Oh, Jong Myung

    1994-07-01

    This report reviews the status of R and D and the material specifications of nuclear components in order to develop the stainless steels for nuclear applications, and the technology of computer-assisted alloy design is developed to establish the thermodynamic data of Fe-Cr-Ni-Mo-Si-C-N system which is the basic stainless steel systems. High strength and corrosion resistant stainless steels, 316LN and super clean 347, are developed, and the manufacturing processes and heat treatment conditions are determined. In addition, a martensitic steel is produced as a model alloy for turbine blade, and characterized. The material properties showed a good performance for nuclear applications. (Author)

  20. Effective longitudinal strength of high temperature metal-matrix composites

    International Nuclear Information System (INIS)

    Craddock, J.N.; Savvides, I.

    1991-01-01

    Several models for predicting the longitudinal strength of fiber composites are presented, ranging from a simple netting analysis to a model incorporating curvilinear strain hardening for all the components. Results from these models are presented for tungsten fiber reinforced superalloys, FeCrAlY and MARM200. It is shown that a simple elastic limit micromechanical model does not always adequately describe the useful strength of the composites. The methods proposed here are shown to be more appropriate for predicting the effective composite strength. 2 refs

  1. A new generation of ultra high strength steel pipelines

    International Nuclear Information System (INIS)

    Brozda, J.; Zeman, M.; Weglowski, M.

    2008-01-01

    For many years an increased demand for natural gas can be observed. Ultra high-strength pipelines with higher operating pressures and/or reduced wall thickness are a means to reduce transmission costs. Motivated by reduced investment costs (overcharge a few billion of dollars), tend towards the development of a new grade of pipeline steel with microalloying element for example Nb, that potentially lowers the total cost of long-distance gas pipelines by 5 - 15%. New long distance pipelines have budgets in excess of several billion dollars. This paper describes mechanical properties of new generation of pipelines steel with higher content of niobium and the influence the welding thermal cycles on the microstructure and brittle fracture resistance. The resistance to cold cracking has also been determined. It was found that the new steel has close properties to API X70 grade steels, but is cheaper in manufacturing and installation. The steel has been covered by the amended EN 10028-5 standard and proper modifications will also be made in other European standards. (author)

  2. Fatigue crack retardation of high strength steel in saltwater

    International Nuclear Information System (INIS)

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-01-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept

  3. ON THE HIGH TEMPERATURE BENDING STRENGTH OF CASTABLES

    Directory of Open Access Journals (Sweden)

    JIŘÍ HAMÁČEK

    2012-09-01

    Full Text Available The hot moduli of rupture (HMOR measurements have been performed for the low-cement castable (LCC, the ultra-low cement castable (ULCC, and the no-cement castable (NCC. All castables contained SiO2-Al2O3 based aggregates (burned fireclay and kaolin. The experimental data points have been described using the model based on the Varshni approach within the temperature region 1000-1200°C and by the model based on the Adam-Gibbs theory above 1400°C. A smooth but distinct transition between both temperature regions has been observed. The limits and applicability of the models have been analyzed. At lower temperature the loss of strength of castables was attributed to weakening of bonds most probably in the frontal process zone of cracking. At higher temperature, the liquid phase causes slowing down of the crack propagation by formation of the viscous bridging in the following wake region. And finally, at very high temperatures, the castable behaves as very viscous suspension which can be described using models originally developed for molten glasses.

  4. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  5. The use of titanium and stainless steel in fracture fixation.

    Science.gov (United States)

    Hayes, J S; Richards, R G

    2010-11-01

    The use of metal in fracture fixation has demonstrated unrivalled success for many years owing to its high stiffness, strength, biological toleration and overall reliable function. The most prominent materials used are electropolished stainless steel and commercially pure titanium, along with the more recent emergence of titanium alloys. Despite the many differences between electropolished stainless steel and titanium, both materials provide a relatively predictable clinical outcome, and offer similar success for fulfilling the main biomechanical and biological requirements of fracture fixation despite distinctive differences in implant properties and biological responses. This article explores these differences by highlighting the limitations and advantages of both materials, and addresses how this translates to clinical success.

  6. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    International Nuclear Information System (INIS)

    Tiamiyu, A.A.; Eskandari, M.; Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A.

    2016-01-01

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s −1 ) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  7. Mechanical behavior and high-resolution EBSD investigation of the microstructural evolution in AISI 321 stainless steel under dynamic loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Tiamiyu, A.A., E-mail: ahmed.tiamiyu@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada); Eskandari, M. [Department of Materials Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Sanayei, Mohsen; Odeshi, A.G.; Szpunar, J.A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask. (Canada)

    2016-09-15

    The impact response of three regions (top, mid and center) across the thickness of AISI 321 austenitic stainless steel plate at high strain rates (>6000 s{sup −1}) was studied using the split Hopkinson pressure bar system. The result shows that texture and stored energy heterogeneity across plate thickness influenced the mechanical responses of the investigated steel in these regions. Microstructural evaluation using high-resolution electron backscattered diffraction (HR-EBSD) analysis showed that strengthening in AISI 321 steel originates from the evolution of strain-induced martensite and formation of nano-carbides in addition to plastic deformation by mechanical twinning and slip. This resulted in a desirable combination of high strength and good ductility (approx. 2000 MPa at 0.42 true strain). Phase transformation, dynamic recrystallization and formation of nano-carbides were confirmed within the adiabatic shear band (ASB) region. The average dynamic recrystallized (DRX) grain size in the shear band region is 0.28 µm in comparison to grain size of 15 µm outside the shear bands. The nano-sized grain inside the shear bands is proposed to form by rotational dynamic recrystallization. A comparative study of the alloy's behavior under dynamic and quasi-static compression shows that the stability of austenite is higher at high strain rates and lower at a low strain rate. The strength in the dynamically impacted specimen is compromised as a result of the suppressed evolution of strain-induced martensite and mechanical twin. Martensitic transformation under both loading conditions follows the FCC É£-austenite→BCC ά-martensite kinetic path and both phases obey the Kurdjumov-Sachs' {(111)É£||(110)ά and <−101>É£||<1–11>ά} orientation relationship.

  8. Aspects of dislocation substructures associated with the deformation stages of stainless steel AISI 304 at high temperatures

    International Nuclear Information System (INIS)

    Oliveira, J.L.L.; Reis Filho, J.A.B.S.; Almeida, L.H. de; Monteiro, S.N.

    1978-07-01

    The development of dislocation substrutures in type 304 austenitic stainless steel at high temperatures has been associated with the deformation stages through log dσ/d epsilon x log epsilon plots, which show the transition point independently. The mechanisms responsible for the Dynamic Strain Aging particulary the Portevin-LeChatelier effect were related to the appearence of the stages. The results indicate that the deformation stages can be divided into two distinct regions. Each one of these region show particular characteristics with respect to the stress level, transition point, developed substructure and type of crystalline defects interaction with dislocations. (Author) [pt

  9. Tribological properties at 25 C of seven polyimide films bonded to 440 C high-temperature stainless steel

    Science.gov (United States)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of seven polyimide films applied to 440 C high temperature stainless steel substrates were studied at 25 C with a pin-on-disk type of friction and were apparatus. The polyimides fell into two groups according to friction and wear properties. Group I polyimides had slightly lower friction but much higher wear than group II polyimides. The wear mechanism was predominately adhesion, but the wear particles were larger for group I polyimides. For most of the polyimides the transfer films consisted of clumps of compacted wear particles. One polyimide composition produced a very thin transfer film that sheared plastically in the contact area.

  10. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Mesquita, Thiago J.; Chauveau, Eric; Mantel, Marc; Nogueira, Ricardo P.

    2013-01-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  11. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Thiago J., E-mail: thiago.mesquita@ugitech.com [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Chauveau, Eric; Mantel, Marc [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Nogueira, Ricardo P. [LEPMI UMR 5279 CNRS – Grenoble INP–Université de Savoie–Université Joseph Fourier BP 75, 38402 St Martin d’Hères (France)

    2013-04-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  12. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. High-strength cellular ceramic composites with 3D microarchitecture.

    Science.gov (United States)

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  14. A study on the improvement of oxidation resistance of OAE-added stainless steels for high temperature applications

    International Nuclear Information System (INIS)

    Kim, Dae Hwan; Kim, Gil Moo

    1996-01-01

    Since the manufacturing temperature of stainless steels is relatively high, oxidation at the elevated temperature becomes important. The chemical and physical properties of the protective oxide film which was formed on the stainless steels at high temperature for the oxidation resistance are important in determining the rate of oxidation and the life of equipment exposed to high temperature oxidizing environments. In this study, the oxidation behavior of STS 309S and STS 409L added by a small amount of oxygen active element(each + 0.5wt% Hf and Y) was studied to improve oxidation resistance. In the cyclic oxidation, while OAE-free specimens showed relatively poor oxidation resistance due to spallations and cracks of Cr-rich oxide layer, OAE-added specimens improved cyclic oxidation resistance assumably due to constant oxidation rate with stable oxide layers at high temperature. Especially Hf improved cyclic oxidation resistance by forming Cr-rich oxide layer preventing internal oxidation in STS 309S. (author)

  15. Strength and Mechanical Properties of High Strength Cement Mortar with Silica Fume

    OpenAIRE

    川上, 英男; 谷, 康博

    1993-01-01

    Two series of tests were carried out to clarify the effects of silica fume on the strength and mechanical properties of cement mortar. The test specimens of cement mortar were prepared within the flow values between 180 mm and 240 mm which qualifies better workability of the concrete. The fiow values were attained by using superplasticizer. The specimens were tested at the age of 4 weeks. Main results of the experiments are as follows. 1. At a given cement water ratio,the larger volume of sil...

  16. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    International Nuclear Information System (INIS)

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  17. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811 (DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Seith, B.; Schirra, M.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the german fast breder reactor SNR 300, was creep-tested in a temperature range of 550-650 deg C under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continous measuring of the elongation. The test results up to about 4.000 hours is described. Taking into account the results of other programs carried out with the same material between 550 and 600 deg C at similar rupture time, were defined the stresses for the longterm test. The main point of this program (''Extrapolation Program'') lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h for reactor operating temperatures. (author) [es

  18. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  19. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  20. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  1. Effect of combined addition of N and Nb on the high temperature behavior of a 25Cr-20Ni stainless steel

    International Nuclear Information System (INIS)

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    In order to clarify the effect of precipitates on creep strength at high temperature in 25Cr-20Ni stainless steels, threshold stress and void-hardening stress have been measured and compared each others. The value of threshold stress for high temperature, measured by stress abruptly loading test, is about 130 MPa. Threshold stress must be measured by the function of stress loading time in the combination hardening steel of solution hardening and precipitate hardening. Average diameter and inter-partial distance of precipitates from TEM microstructure can determine void-hardening stress. The value of void-hardening stress, evaluated by using Scattergood and Bacon's equation, was from 101 to 130 MPa. The ratio of average void hardening to threshold stress is 1.13 and both values are not equal. The result from analyzing the electron diffraction pattern shows that the dispersed precipitates in SUS310J1TB is NbCrN nitrides. Mechanism of the interaction between dislocations and precipitate particles in SUS310J1TB is Srolovitz mechanism, which is a gravitation-type interaction

  2. Experimental study of the flow rules of a 316 stainless steel at high and low stresses

    International Nuclear Information System (INIS)

    Delobelle, P.; Oytana, C.

    1984-01-01

    Creep flow rules of 316L stainless steel are studied in tensile and axial-torsion experiments. Through tensile and biaxial proportional loadings it is shown that at low creep values of epsilonkT/DGb a single kinematical variable: the internal stress takes a part in these laws. This is confirmed in non-proportional experiments. The power law with the power of nsup(*)approx.=2 relates applied and internal stresses. At higher creep rates a second scalar internal variable must be introduced and the power law no longer applies. Limiting functions in steady creep are determined for hardening and recovery. (orig.)

  3. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    OpenAIRE

    Tschiptschin, André Paulo

    2002-01-01

    Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel) under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained i...

  4. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    DEFF Research Database (Denmark)

    Howell, J.; Nielsson, O.; Horsewell, Andy

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...... instantaneous loading or during the primary creep stage. Trace analysis has shown that the multipoles are confined to {1 1 1} planes during primary creep but are not necessarily confined to these planes during steady-state creep unless they are pinned by interstitials....

  5. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  6. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  7. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  8. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  9. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  10. Ultrafine Structure and High Strength in Cold-Rolled Martensite

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Morito, S.; Hansen, Niels

    2012-01-01

    Structural refinement by cold rolling (10 to 80 pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150 mu m), and (c) fine ferrite (22 mu m). Unalloyed IF steel....... At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate...... is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers...

  11. Heavyweight cement concrete with high stability of strength parameters

    Science.gov (United States)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  12. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  13. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  14. Alloy by design : A materials genome approach to advanced high strength stainless steels for low and high temperature applications

    NARCIS (Netherlands)

    Lu, Q.; Xu, W.; Van der Zwaag, S.

    2016-01-01

    We report a computational 'alloy by design' approach which can significantly accelerate the design process and substantially reduce the development costs. This approach allows simultaneously optimization of alloy composition and heat treatment parameters based on the integration of thermodynamic,

  15. High-Temperature Phase Equilibria of Duplex Stainless Steels Assessed with a Novel In-Situ Neutron Scattering Approach

    Science.gov (United States)

    Pettersson, Niklas; Wessman, Sten; Hertzman, Staffan; Studer, Andrew

    2017-04-01

    Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.

  16. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  17. Peculiar Features of Thermal Aging and Degradation of Rapidly Quenched Stainless Steels under High-Temperature Exposures

    Science.gov (United States)

    Shulga, A. V.

    2017-12-01

    This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.

  18. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  19. Modelling of the interactions between B4C and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Veshchunov, M.S.

    1995-01-01

    Results of detailed chemical-analytical examinations of B 4 C/stainless steel (s.s.) reaction couples obtained at temperatures of 1000, 1100 and 1200 C, and a theoretical model developed on the basis of these results, which describes the reaction layers growth kinetics, are presented. The examinations were carried out by AES and XMA methods to measure concentration profiles of different elements in the various phases and the thicknesses of the formed reaction layers as function of time to determine the growth kinetics. A new approach for modelling of diffusion mass transfer through a two-phase zone in multicomponent systems is further developed for the description of the growth kinetics of the reaction layer consisting of Me 2 B (Me≡Fe, Cr, Ni) precipitates in the stainless steel matrix. Diffusion coefficients of Cr in all phases of the reaction zone are calculated. These data together with the measured boundary concentrations of the elements allow the complete description of the B 4 C/s.s. interaction kinetics at the examined test temperatures by the proposed model. (orig.)

  20. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  1. Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate

    International Nuclear Information System (INIS)

    Matteazzi, S.; Paitti, G.; Boerman, D.

    1982-01-01

    The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)

  2. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  3. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  4. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal ... mechanical properties by using the existing materials on the local market and HSC ..... general shape of the curves whether at 28 days ... Figure.7. Residual compressive strength as a function of temperature.

  5. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  6. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  7. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  8. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  9. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  10. Relationship between oxide film structures and corrosion resistance of SUS 304 L stainless steel in high temperature pure water

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Matsuda, Yasushi.

    1990-01-01

    The effect of various oxidation conditions on metal release of SUS304L stainless steels in deaerated pure water at 488 K was investigated. The behavior of metal release was also discussed in relation to the surface films which were formed by various oxidation treatments. The results obtained are as follows: (1) The oxidation treatment in high purity argon gas at high temperatures for short time such as 1273 K - 2 min (120S) was effective to decrease the metal dissolution, and the oxide films primarily consisted of spinel type double oxide layer containing high concentration of Mn and Cr. (2) The oxidation treatments in non-deaerated pure water at 561 K for 24∼336 h (86.4∼1209.6 ks) were furthermore effective to decrease the metal dissolution. (3) It may be concluded that the key factors controlling the metal release are thickness, structure and compactness together with compositions of surface oxide films. (author)

  11. Surface Nano crystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Han, Z.; Zou, H.; Wang, Z.; Ji, I.; Cai, J.; Guan, Q.

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nano crystallized surface were characterized by X-ray diffraction and electron microscopy. Two nano structures consisting of fine austenite grains (50-150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C) solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  12. Rotary bending as a mean for improving micro-cleanliness of stainless steels for high demanding applications

    Directory of Open Access Journals (Sweden)

    Sourisseau Thomas

    2018-01-01

    Full Text Available Stainless steels are used for automotive or medical applications which require a high fatigue resistance correlated to a high level of micro-cleanliness. A methodology based on rotary bending tests carried out on wires or bars has been defined to determine the material’s endurance limit (after 100 millions cycles and identify the largest subcutaneous inclusions or precipitates where failures initiate. This methodology has been applied to EN 1.4568 spring wires. Failures were found to initiate both at oxide inclusions and AlN precipitates. For the same size, AlN precipitates were observed to be more critical towards crack initiation than oxide inclusions, due to their angular shape and lower thermal expansion at high temperatures. However, oxide inclusions larger than the AlN maximum size strongly impact the material’s fatigue limit, and their density and size should be reduced.

  13. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  14. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  15. Diffusionless bonding of aluminum to type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R D

    1963-03-15

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510{sup o}C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  16. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    Watson, R.D.

    1963-03-01

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510 o C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  17. Corrosion of 316 stainless steel in high temperature molten Li{sub 2}BeF{sub 4} (FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar

    2015-06-15

    In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li{sub 2}BeF{sub 4} (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr{sub 7}C{sub 3} particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi{sub 2} phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.

  18. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  19. Microstructural stability and mechanical properties of a high nitrogen super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.-O. [AB Sandvik Steel, Sandviken (Sweden). Dept. of Phys. Metall.; Kangas, P.; Wilson, A. [AB Sandvik Steel, Sandviken (Sweden). Dept. of Tube Research; Karlsson, T. [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1999-07-01

    A time temperature transformation (TTT)-diagram with respect to the formation of intermetallic phase in the range 700-1000 C has been assessed by point counting for a 29Cr-6Ni-2Mo-0.38N super duplex stainless steel. Using a computer program developed by the authors a continuous cooling transformation (CCT)-diagram was calculated from the TTT-diagram assuming that the transformation can be described by an Avrami type equation. A comparison of impact toughness and hardness showed that toughness was a very sensitive measure of intermetallic phase formation while hardness was insensitive and showed no significant increase until the material was catastrophically brittle. It was found that Thermo-Calc could be used in a qualitative manner for predicting microstructural changes at various temperatures but was unable to predict variables such as dissolution temperature and volume percentage with accuracy. (orig.)

  20. High temperature interaction between Zircaloy-4 and stainless steel type 304

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi

    2001-03-01

    The chemical interactions between Zircaloy-4 and stainless steel type 304 were investigated in the temperature range from 1273 to 1573 K to obtain the basic information on the melt progress in the fuel bundle during an LWR severe accident. Reaction layers were formed at the contact interface and grew as the temperature and the time increase. The Zircaloy was preferentially dissolved by the reaction. The SEM/EDX analyses showed that the main process of the reaction was diffusion of Fe, Cr and Ni into the Zircaloy which resulted in the formation of a Zr-rich eutectic through the tested temperature range. Reaction rates for decrease in the materials thickness were evaluated and the reaction generally obeyed a parabolic rate law. The reaction rate constant was determined at every examined temperature and Arrhenius type rate equations were estimated for the temperature range. (author)

  1. Oxidation behavior of 304 stainless steel exposed to steam at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.; Ryu, J. R.; Park, G. H. [Kyunghee Univ., Yongin (Korea, Republic of); Yoo, T. G. [FNC Technology, Seoul (Korea, Republic of)

    2003-10-01

    An experiment was conducted on 304 stainless steel(SUS304L) at the LOCA(Lost of Coolant Accident) requirement temperature, 800 .deg. C to 1100 deg. C. SUS304L was used as clothing material and structural frame of LWR. Oxidation behavior of SUS304L by temperature and time was examined after the mechanical and chemical polishing of SUS304L plate. After oxidation, change in weight showed a linear pattern for the first 20 minutes and a parabolic pattern afterwards. Then, fine structure and oxidation layer of SUS304L plate were observed through OM photographing and oxidation characteristics of SUS304L were found through hardness measurement by depth of each plate and XRD(X-Ray Diffraction) photographing.

  2. Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water

    Science.gov (United States)

    Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao

    2018-03-01

    F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.

  3. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  4. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948)

    International Nuclear Information System (INIS)

    Solano, R. R.; Schirra, M.; Rivas, M. de la; Seith, B.

    1977-01-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10 4 h at high temperature in order to extrapolate up to 10 5 h. for reactor operating temperatures. (Author) 14 refs

  5. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  6. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  7. 'In-beam' simulation of high temperature helium embrittlement of DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Schroeder, H.; Batfalsky, P.

    1982-01-01

    This work describes a facility for high temperature creep rupture tests during homogeneous helium implantation. This 'in-beam' creep testing facility is used to simulate helium embrittlement effects which will be very important for first wall materials of future fusion reactors operated at high temperatures. First results for DIN 1.4970 austenitic stainless steel clearly demonstrate differences between samples 'in-beam' tested at 1073 K and those creep tested at the same temperature after room temperature helium implantation. The specimens ruptured 'in-beam' have much shorter lifetimes and lower ductility than the specimens tested after room temperature implantation. There are also differences in the microstructures, concerning helium bubble sizes and densities in matrix and grain boundaries. These microstructural differences may be a key for the understanding of the more severe helium embrittlement effects 'in-beam' as compared to creep tests performed after room temperature implantation. (orig.)

  8. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  9. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  10. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    International Nuclear Information System (INIS)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon

    2014-01-01

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar

  11. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar.

  12. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  13. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  14. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  15. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  16. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  17. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  18. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  19. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  20. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.