WorldWideScience

Sample records for high strength pipeline

  1. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  2. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  3. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  4. Effects of cathodic protection on cracking of high-strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Elboujdaini, M.; Revie, R. W.; Attard, M. [CANMET Materials Technology Laboratory, Ottawa, ON(Canada)], email: melboujd@nrcan.gc.ca

    2010-07-01

    Four strength levels of pipeline steels, ranging from X-70 to X-120, were compared to determine whether higher strength materials are more susceptible to hydrogen embrittlement under cathodic protection. Ductility was measured in a solution at four protection levels, going from no cathodic protection to 500 mV of overprotection. All four steels showed loss of ductility under cathodic protection. Under cathodic polarization, the loss of ductility increased with the strength of the steel and the activity of the potential. After slow-strain-rate experiments conducted in air and examination of fracture surfaces, it is concluded that application of cathodic potentials, cathodic overprotection, higher strength of steel, and exposure to aqueous solution are factors that decrease the ductility of steel. Hydrogen reduction seems to be an important factor in ductility reduction and fractures. Observations suggest that high-strength pipelines need better control of cathodic protection than lower-strength pipelines.

  5. A new generation of ultra high strength steel pipelines

    International Nuclear Information System (INIS)

    Brozda, J.; Zeman, M.; Weglowski, M.

    2008-01-01

    For many years an increased demand for natural gas can be observed. Ultra high-strength pipelines with higher operating pressures and/or reduced wall thickness are a means to reduce transmission costs. Motivated by reduced investment costs (overcharge a few billion of dollars), tend towards the development of a new grade of pipeline steel with microalloying element for example Nb, that potentially lowers the total cost of long-distance gas pipelines by 5 - 15%. New long distance pipelines have budgets in excess of several billion dollars. This paper describes mechanical properties of new generation of pipelines steel with higher content of niobium and the influence the welding thermal cycles on the microstructure and brittle fracture resistance. The resistance to cold cracking has also been determined. It was found that the new steel has close properties to API X70 grade steels, but is cheaper in manufacturing and installation. The steel has been covered by the amended EN 10028-5 standard and proper modifications will also be made in other European standards. (author)

  6. Latest Development and Application of Nb-Bearing High Strength Pipeline Steels

    Science.gov (United States)

    Zhang, Yongqing; Shang, Chengjia; Guo, Aimin; Zheng, Lei; Niu, Tao; Han, Xiulin

    In order to solve the pollution problem emerging in China recently, China's central government is making great efforts to raise the percentage of natural gas consumption in the China's primary energy mix, which needs to construct big pipelines to transport natural gas from the nation's resource-rich western regions to the energy-starved east, as well as import from the Central Asia and Russia. With this mainstream trend, high strength, high toughness, heavy gauge, and large diameter pipeline steels are needed to improve the transportation efficiency. This paper describes the latest progresses in Nb-bearing high strength pipeline steels with regard to metallurgical design, development and application, including X80 coil with a thickness up to 22.0mm, X80 plate with a diameter as much as 1422mm, X80 plate with low-temperature requirements and low-Mn sour service X65 for harsh sour service environments. Moreover, based on widely accepted TMCP and HTP practices with low carbon and Nb micro-alloying design, this paper also investigated some new metallurgical phenomena based on powerful rolling mills and heavy ACC equipment.

  7. Failure Assessment for the High-Strength Pipelines with Constant-Depth Circumferential Surface Cracks

    OpenAIRE

    X. Liu; Z. X. Lu; Y. Chen; Y. L. Sui; L. H. Dai

    2018-01-01

    In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation pr...

  8. Failure Assessment for the High-Strength Pipelines with Constant-Depth Circumferential Surface Cracks

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-01-01

    Full Text Available In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation procedure based upon the GE/EPRI method to determine the J-integral for the thin-walled pipelines with small constant-depth circumferential surface cracks subject to tension and bending loads. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral estimation are derived in tabulated forms through a series of three-dimensional finite element calculations for different crack geometries and material properties. To check confidence of the J-estimation solution in practical application, J-integral values obtained from detailed finite element (FE analyses are compared with those estimated from the new influence functions. Excellent agreement of FE results with the proposed J-estimation solutions for both tension and bending loads indicates that the new solutions can be applied for accurate structural integrity assessment of high-strength pipelines with constant-depth circumferential surface cracks.

  9. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  10. Strength analysis of copper gas pipeline span

    OpenAIRE

    Ianevski, Philipp

    2016-01-01

    The purpose of the study was to analyze the stresses in a gas pipeline. While analyzing piping systems located inside building were used. Calculation of the strength of a gas pipeline is done by using information of the thickness of pipe walls, by choosing the suitable material, inner and outer diameter for the pipeline. Data for this thesis was collected through various internet sources and different books. From the study and research, the final results were reached and calculations were ...

  11. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  12. Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation

    Science.gov (United States)

    Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan

    2018-05-01

    A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.

  13. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  14. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    Science.gov (United States)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  15. Residual strength evaluation of corroded pipelines with long defects based upon limit load analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiodo, Mario S.G.; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Arquitetura Naval e Engenharia Oceanica

    2009-07-01

    Accurate evaluation of the residual strength for corroded pipes remains essential in fitness for service analyses, including repair decisions and life-extension programs, of onshore and offshore oil and gas transportation. As the pipeline infrastructure ages, material loss due to corrosion represents one of the main degradation factors of steel pipes which leads to strength reduction and potential catastrophic failures. Current high resolution methods can precisely measure the geometry of corrosion defects. Despite the improvement of those techniques, they are insufficient to ensure high levels of reliability in the burst pressure assessment because the recognized semi-empirical nature of conventional procedures. This work studies the applicability of a stress based criterion based upon plastic instability to predict the burst pressure of pipelines with axial corrosion defects. Verification studies based on experimental burst tests of large diameter pipes made of API X65 and X100 steels with different defect length showed the effectiveness of the proposed criterion based on {sigma}{sup ref} ={eta}{sigma}{sub u} in failure predictions, even though the {eta} factor exhibits a potential strong dependence of the defect geometry and material properties. In general, the results presented here provide an effective support to the ability of the proposed stress based criterion in the integrity assessment of corroded pipelines. (author)

  16. Hybrid Laser/GMAW of High Strength Steel Gas Transmission Pipelines

    Science.gov (United States)

    2008-07-01

    Pipelines will be an integral part of our energy distribution systems for the foreseeable future. Operators are currently considering the installation of tens of billions of dollars of pipeline infrastructure. In a number of cases, the cost of export...

  17. Protective coating as a factor to ensure the strength and hydraulic performance of recoverable pipelines

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2015-01-01

    Full Text Available The authors present an analysis of various types of internal protective pipeline coatings to ensure the strength and hydraulic characteristics of a remodeled pipeline and related coating methods for effective trenchless renovation of engineering systems, water supply systems and sanitation. As protective coating the authors considered a round profile tube of a smaller diameter than of the old pipe, close to the old pipe, sprayed lining on the basis of inorganic and inorganic materials. The article analyzes the methods of trenchless renovation for applying protective coatings: routing in the old pipeline of new pipes made of polymeric materials or polymeric sleeves, centrifugal spraying on the inner surface of pipelines’ inorganic and organic protective coatings. Special attention was paid to bag technology, providing the required strength properties at specific values of the modulus of elasticity and a number of external factors such as the depth of the existing pipe, the existence and magnitude of the horizon groundwater over it. Also attention is paid to the application technology of tape coatings ribbed profile on the inner surface of pipelines. This technology has a unique feature, which is the ability of recoverable pipeline functioning during its renovation by winding an endless belt and the formation of a new pipe. The tape coating winding is carried out by different types of spiral winding machines. The thickness of the protective coating layer forming the tube remains minimal. Inorganic cement-sand and organic coatings were considered as alternative options for repair of pipelines, which allow to localize the defects in the form of a fistula, minor cracks and other damages. However it is noted that a cement-sandy covering is inferior to organic, because it does not provide the strength characteristics of the pipeline system. The main advantage of the organic coating is mudding fistula of a large diameter, making a high wear

  18. Proof of pipeline strength based on measurements of inspection pigs; Festigkeitsnachweis von Pipelines aufgrund der Messergebnisse von Pruefmolchen

    Energy Technology Data Exchange (ETDEWEB)

    De la Camp, H.J.; Feser, G.; Hofmann, A.; Wolf, B.; Schmidt, H. [TUeV Sueddeutschland Bau und Betrieb GmbH, Muenchen (Germany); Herforth, H.E.; Juengling, K.H.; Schmidt, W. [TUeV Anlagentechnik GmbH, Berlin-Schoeneberg (Germany). Unternehmensgruppe TUeV Rheinland/Berlin-Brandenburg

    2002-01-01

    The report is aimed at collecting and documenting the state of the art and the extensive know how of experts and pipeline operators with regard to judging the structural integrity of pipelines. In order to assess the actual mechanical strength of pipelines based on measurement results obtained by inspection pigs, guidance is given for future processing, which eventually can be used as a basis for an industry standard. A literature study of the commercially available types of inspection pigs describes and synoptically lists the respective pros and cons. In essence the report comprises besides check lists of operating data for the pipeline and the pig runs mainly the evaluation of defects and respective calculating procedures. Included are recommendations regarding maintenance planning, verification of defects as well as repetition of pig runs. (orig.) [German] Ziel des Berichtes ist die Erfassung und Dokumentation zum derzeitigen Stand der Technik und des vorhandenen umfangreichen Know-how von Sachverstaendigen und Pipelinebetreibern auf dem Gebiet der sicherheitstechnischen Beurteilung von Pipelines. Fuer den Festigkeitsnachweis von Pipelines aufgrund der Messergebnisse von Pruefmolchen wurde ein Leitfaden als Basis fuer die zukuenftige Vorgehensweise erstellt, der eventuell die Grundlage eines normativen Regelwerkes bilden kann. In einer Literaturstudie wurden die auf dem Markt befindlichen Pruefmolchtypen zusammenfassend beschrieben und ihre Vor- und Nachteile tabellarisch gegenuebergestellt und bewertet. Neben der Erstellung von Checklisten fuer notwendige Daten zum Betrieb der Pipeline und der Molchlaeufe bildet die Fehlerbewertung mit entsprechenden Berechnungsverfahren den Hauptteil dieses Berichtes. Hinweise zur Instandhaltungsplanung (Fehlerverifikation und Molchlaufwiederholung) werden gegeben. (orig.)

  19. 49 CFR 192.505 - Strength test requirements for steel pipeline to operate at a hoop stress of 30 percent or more...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Strength test requirements for steel pipeline to...: MINIMUM FEDERAL SAFETY STANDARDS Test Requirements § 192.505 Strength test requirements for steel pipeline... as provided in paragraph (e) of this section, the strength test must be conducted by maintaining the...

  20. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  1. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  2. Influence of grade on the reliability of corroding pipelines

    International Nuclear Information System (INIS)

    Maes, M.A.; Dann, M.; Salama, M.M.

    2008-01-01

    This paper focuses on a comparative analysis of the reliability associated with the evolution of corrosion between normal and high-strength pipe material. The use of high strength steel grades such as X100 and X120 for high pressure gas pipeline in the arctic is currently being considered. To achieve this objective, a time-dependent reliability analysis using variable Y/T ratios in a multiaxial finite strain analysis of thin-walled pipeline is performed. This analysis allows for the consideration of longitudinal grooves and the presence of companion axial tension and bending loads. Limit states models are developed based on suitable strain hardening models for the ultimate behavior of corroded medium and high strength pipeline material. In an application, the evolution of corrosion is modeled in pipelines of different grades that have been subjected to an internal corrosion inspection after a specified time which allows for a Bayesian updating of long-term corrosion estimates and, hence, the derivation of annual probabilities of failure as a function of time. The effect of grade and Y/T is clearly demonstrated

  3. Using finite element method in the processof strength calculation for the pipeline supports in above-groundarea of "Zapolyar'e — NPS "PUR-PE" oil pipeline

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-01-01

    Full Text Available The present article studies a procedure of calculating the strength of pipeline support constructions of the above-ground oil trunk pipeline system «Zapolyar'e — oil pumping station «Pur-pe». The calculations of the supports stress-strain state are performed with the use of computer complex Ansys v13, which applies the finite element method. The article provides a short description of the construction of fixed, linear-sliding and free-sliding supports of the oil pipeline of above-ground routing, developed for the installation in complex climatic and geologic conditions of the far north. According to the operation specification for design — the support constructions have to maintain the resistance power and bearing capacity under the influence of the pipeline stress without sagging and considering the possible sagging of the neighboring support. The support constructions represent space structures with a complex geometry. Together with the complex geometry, contacting elements are present in the construction of the supports. There is also an interaction of the pile foundation and the nonhomogeneous foundation. The enumerated peculiarities of the construction and operating conditions of the supports considerably complicate the strength calculations by engineering methods. The method of numerical modeling (finite element method used in the article for the analysis of the supports’ operation under the stress is widely applied at the present time for calculations of space structures with a complex geometry. For the first time, while performing the supports’ strength calculations, the article considers the mutual deformation of the support, foundation grill and pile foundation in the ground, thus making it possible to consider real operation of the construction altogether. The main development stages of the calculation model “support — pile foundation — ground” in ANSYS, calculation and testing of the static strength of the support

  4. Research and Development of Ultra-High Strength X100 Welded Pipe

    Science.gov (United States)

    Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang

    Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained

  5. 49 CFR 195.452 - Pipeline integrity management in high consequence areas.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline integrity management in high consequence... Management § 195.452 Pipeline integrity management in high consequence areas. (a) Which pipelines are covered... that could affect a high consequence area, including any pipeline located in a high consequence area...

  6. Development and Applications of Pipeline Steel in Long-Distance Gas Pipeline of China

    Science.gov (United States)

    Chunyong, Huo; Yang, Li; Lingkang, Ji

    In past decades, with widely utilizing of Microalloying and Thermal Mechanical Control Processing (TMCP) technology, the good matching of strength, toughness, plasticity and weldability on pipeline steel has been reached so that oil and gas pipeline has been greatly developed in China to meet the demand of strong domestic consumption of energy. In this paper, development history of pipeline steel and gas pipeline in china is briefly reviewed. The microstructure characteristic and mechanical performance of pipeline steel used in some representative gas pipelines of china built in different stage are summarized. Through the analysis on the evolution of pipeline service environment, some prospective development trend of application of pipeline steel in China is also presented.

  7. 1998 Annual Study Report. Standardization of methods for evaluating characteristics of high-strength, large-diameter steel pipes for superhigh-pressure natural gas pipelines; 1998 nendo seika hokokusho. Chokoatsu tennen gas pipeline yo kokyodo daikei kokan no tokusei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The pipelines for safely transmitting superhigh-pressure natural gas should have excellent characteristics. The steel pipe is required to have a sufficient toughness, more concretely Charpy impact-absorbing energy, to prevent propagating shear fracture characteristic of natural gas pipelines. Recently, the natural gas pipeline is increasingly required to have higher design pressures (15 Mpa or higher) and grade (X80 or higher). In order to develop the techniques for simulating crack propagation in the propagating shear fracture of natural gas pipe lines as part of the programs to cope with these trends, the 1998 efforts were directed to reviewing the research results obtained so far and analysis of the problems to be solved and tasks to be taken, based on which the analytical procedure for gas releasing phenomena during the fracture process was basically developed, the material characteristic data were collected by the laboratory scale toughness tests, and the preliminary tests with rupture disks were conducted to verify the above analytical procedure. These efforts have established the bases for evaluating the characteristics of high-strength, large-diameter steel pipes in the light of safety against fracture, and greatly advanced the program towards the final target of developing the international specification drafts for toughness. (NEDO)

  8. Improved, Low-Stress Economical Submerged Pipeline

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive

  9. Simulation of high consequence areas for gas pipelines

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Parra

    2018-01-01

    Full Text Available The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and easy to use software, such as Google Earth and Excel, to determine and visualize the area up to which the level of radiation can affect the integrity of people and buildings. The model takes into account the pressure drop into the gas pipeline from the compression station, the gas leakage rate and possible forms of gas ignition. This development is an alternative to the use of specialized software and highly trained personnel. The simulation is applied to a traced of the Miraflores-Tunja gas pipeline, using a macro developed in Excel to determine the impact area and compare it with the coordinates of the vulnerable areas. The zones where these areas intersect are constituted in high consequence areas and are identified along with the sections of the pipeline that affect them, to provide the operator with a risk analysis tool for the determination and visualization of the gas pipeline and its environment.

  10. Advanced technologies for manufacturing high strength sour grade UOE line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Omura, Tomohiko; Takahashi, Nobuaki; Minato, Izuru; Yamamoto, Akio [Sumitomo Metal Industries, Ltd., Kashima, (Japan)

    2010-07-01

    A new kind of high strength pipeline has been manufactured for sour service in offshore pipelines. This paper first presents a review of developments in manufacturing technology to improve sour resistance. This was particularly the case with Grade UOE line pipe. The improvement was achieved by optimizing the continuous casting process, monitoring the shape of inclusions (such as MnS, CaS, Al2O3, CaO-Al2O3) and decreasing coarse precipitates (Nb(C,N), TiN). The study then used the HIC evaluation method to determine hydrogen induced cracking (HIC) resistance of the material and HAZ test for sulfide stress cracking (SSC) resistance. The evaluation of the NACE TM0284 solution A showed that these pipelines are able to resist severe sour conditions because of good HIC and SSC resistance. Optimizing others components like alloying elements and the ACC process would improve sour resistance in future applications.

  11. A study on the development of repair procedure for gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W S; Kim, Y P; Baek, J H [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-06-01

    In the buried natural gas pipelines, many defects may occur by construction faults, corrosion, third-party interference and ground movement. When a segment of a pipeline is found to be defective, one of the repair methods is to remove its contents and cut out the defective segment after shutting down the pipeline. However, the cost is extremely high in terms of venting and disrupting the gas supply. Therefore, most pipeline companies have developed in-service repair methods without removing the line from service. In general, in order to avoid removing the line from service, direct deposition of weld metal, full-encirclement sleeve, patches, stopple fittings, half-sole and branch connections are required. There are three important concerns in the sleeve-repair welding like other methods of in-service repair-welding. The first concern is the possibility of burn-through which is due to the localized heating and loss of meterial strength on the inner surface of pipe during the welding process. The pipe wall may burst under internal pressure if the loss in strength is too great. The second concern is the high cooling rates by the flowing gas which quickly removes heat from the pipe wall, resulting in accelerated cooling of the weld. Such rapid cooling rates promote the formation of hard heat affected zone microstructure making these welds susceptible to hydrogen cracking. The third concern is for the load carrying ability, such as tensile strength, fracture toughness and fatigue strength. This study was taken to investigate the effect of in-service welding conditions and assess the mechanical properties for the direct deposition welding and sleeve-repair welding of in-service gas pipelines and develope the welding procedure specification for in-service pipeline repair. 81 figs., 40 tabs.

  12. The JCSG high-throughput structural biology pipeline

    International Nuclear Information System (INIS)

    Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wooley, John; Wüthrich, Kurt; Wilson, Ian A.

    2010-01-01

    The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years and has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe. The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications

  13. Estimation of Temperature Influence on Creep Rate of High-Temperature Elements in Steam Turbines and Steam Pipelines

    Directory of Open Access Journals (Sweden)

    A. G. Gerasimova

    2011-01-01

    Full Text Available The paper considers a high temperature influence on strength characteristics of steam pipelines and steam turbine parts of high and medium pressure. The charts showing a decisive temperature importance in diffuse creep have been presented in the paper. The paper contains a calculation of steel self-diffusion coefficient. Dependence Dsd = f(t for more accurate assessment of  resource characteristics of the applied steel has been proposed in the paper.

  14. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  15. High-throughput bioinformatics with the Cyrille2 pipeline system

    Directory of Open Access Journals (Sweden)

    de Groot Joost CW

    2008-02-01

    Full Text Available Abstract Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1 a web based, graphical user interface (GUI that enables a pipeline operator to manage the system; 2 the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3 the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines.

  16. Simulation of high consequence areas for gas pipelines

    OpenAIRE

    Orlando Díaz-Parra; Enrique Vera-López

    2018-01-01

    The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and...

  17. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  18. Fracture toughness testing of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Shen, G.; Gianetto, J.A.; Bouchard, R.; Bowker, J.T.; Tyson, W.R.

    2005-06-01

    This paper reviewed the fracture toughness test standards for pipeline girth welds outlined in CSA Z662-03, Annex K as well as the referenced testing standards BS 7448 and ASTM Standard E 1290. The requirements outlined in API 1104, appendix A were also reviewed given its application throughout the world. Crack tip opening displacement (CTOD) tests were conducted on a manual shielded-metal-arc weld (SMAW) that was prepared in a high strength X80 pipeline steel. Another girth weld test consisted of a mechanized gas metal arc weld (GMAW), but only the results for the SMAW were presented in this paper. Two tensile specimens were machined parallel to the pipe axis from the base metal of the X80 pipe used in preparing the pipeline girth welds. The tensile specimens from the pipe base metal and weld metal were tested at 20 degrees C. The yield strength at the CTOD test temperature was estimated by using the yield strength-temperature relationship given in BS 7448. The experimental results obtained by applying the two testing standards were compared. The intent was to identify the differences between these two standards and their influence on test results. The authors discussed critical issues for the fracture toughness tests, such as weld position and notch orientation, circumferential sampling location, residual stress and its modification, crack length measurement and the equations used to evaluate CTOD. The variation of strength and toughness with clock position around the circumference of the girth welds was also discussed. It was concluded that for a high-strength material, local compression may be needed to create a uniform fatigue crack front. For deep-cracked specimens, the maximum allowable difference of the measured fatigue crack length varies significantly between ASTM E 1290-02 and BS 7448 by a factor of about 1 to 3 for ASTM E 1290 and 3 to 15 for BS 7448. The CTOD calculated according to ASTM E 1290-02 and according to BS 7448 can also differ substantially

  19. High-speed hierarchical pipeline for radiological projection data acquisition

    International Nuclear Information System (INIS)

    Kang Kejun; Wang Jingjin; Xu Qichun; Gao Wenhuan; Fu Changqing

    1993-01-01

    Modern radiological imaging system needs fast data acquisition technology of high density projection acquiring. For this reason, a new type of pipeline, which has multi-stage and hierarchical structure, was developed. By this pipeline, the dead time of the data acquisition system was greatly reduced, and then the throughput of the whole system was increased

  20. Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-03-01

    Full Text Available The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding

  1. Cathodic polarization as a mean to stabilize physical parameters of underground pipelines

    International Nuclear Information System (INIS)

    Skritskij, R.R.

    1993-01-01

    Possibilities of further utilization of old gas-pipelines are determined. The investigations conducted confirm the conclusions of the previous researches on the stabilizing and improving effect of cathode polarization on the physico-mechanical properties of gas pipeline steel. Efficient and constant electrochemical protection of gas pipelines with the expired or close to expiration life time stabilizers and improves the basic physicomechanical properties of pipeline steel: ultimate strength and yield point, relative stretching. The same refers to impact strength. Degradation of physico-mechanical properties of gas pipeline steel is observed only in the zone of the welded joint

  2. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  3. A theoretical/experimental approach to determining the residual strength of corroded pipelines under combined pressure/bending loads

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Roy, S.; Grigory, S.C.; Pagalthivarthi, K.V.; Maple, J.

    1992-01-01

    This paper reported on a study that examined the feasibility of developing a theoretically valid methodology for assessing the residual strength of corroded oil pipelines in combined pressure loading and axial bending conditions. Bending can occur due to local subsidence that can occur in moist soil, resulting in bending stresses that can equal or exceed the pressure-related stresses. The study involved a series of pipe testing, finite element analyses and shell theory modelling. The experiment performed to validate the modelling involved an artificially degraded 20 inch diameter X52 steel pipe that was subjected to pressure and bending loadings. The integration of the 3 technical activities demonstrated the feasibility of the proposed analysis methodology for determining the potential failure of oil and gas pipelines with metal loss. Predictions were found to be in good agreement with experimental results when the methodology was combined with criteria such as the instability of the effective plastic strain. 1 ref., 7 figs.

  4. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  5. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Science.gov (United States)

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  6. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  7. Corrosion Prevention And Control In High Pressure Oil And Gas Transmission Pipelines

    International Nuclear Information System (INIS)

    Hafez, M.T.; Radwan, M.H.; Jones, D.G.

    2004-01-01

    At the start of the 1990s there were concerns over the increasing threat of corrosion to the integrity of high-pressure oil and gas transmission pipelines. For example: corrosion was the major cause of reportable incidents in North America (1]. Corrosion was the major cause of pipeline failure in the Gulf of Mexico [2]. Corrosion in a North American onshore oil pipeline had required over $1 billion in repairs(3]. Internal corrosion along the complete length of pipelines had resulted in replacement[4] . However, the worldwide published failure statistics indicate that the incidents of corrosion are not increasing year on year(5-9]. Indeed, CONCA WE[8,9] statistics (for pipelines In Western Europe) show that the failure rate from corrosion (the most likely failure mode with increasing age) has not increased with pipeline age (Figure 1). In fact the statistics for gas pipelines in Europe

  8. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  9. Effects Of Anodic Protection On SCC Behavior Of X80 Pipeline Steel In High-pH Carbonate-Bicarbonate Solution

    Directory of Open Access Journals (Sweden)

    Zhao W.

    2015-06-01

    Full Text Available The potentiodynamic polarization test and slow strain rate tensile tests of X80 pipeline steel were performed in 0.5M Na2CO3-1M NaHCO3 solution to study the electrochemical and stress corrosion cracking properties. The results of potentiodynamic polarization test show that there is an obvious stable passive region, about from 0v to 0.8V (SCE, indicating that anodic protection is feasible. The results of slow strain rate tensile tests show that the stress corrosion cracking sensibility is high and cathodic protection effect is restricted due to the hydrogen permeation. However, the elongation, yielding strength and tensile strength all increase with anodic protection. The higher anodic protection potential in the stable passive region is benefit to improve tensile strength and yielding strength. However, the higher elongation is obtained at 0.5V (SCE anodic protection potential.

  10. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  11. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  12. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  13. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  14. High performance 14-bit pipelined redundant signed digit ADC

    International Nuclear Information System (INIS)

    Narula, Swina; Pandey, Sujata

    2016-01-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design. (paper)

  15. Corrosion Assessment Guidance for High Strength Steels (Phase 1)

    Science.gov (United States)

    2009-08-01

    The continuing worldwide demand for natural gas presents major challenges to pipeline operators. There is increasing need to construct long distance, high capacity transmission pipelines, particularly in the more remote areas of Arctic North America,...

  16. Pipeline engineering. 8. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Wagner, W.

    2000-01-01

    Apart from calculating the strength of pipeline components planning and design are the most important tasks on the areas of apparatus manufacturing, fluid engineering, process engineering and thermal engineering. It is therefore necessary that the flow diagrams of a plant are clearly understandable and in accordance with the technical rules even in the early stages of planning. This book concentrates on steel pipeline which are not laid underground but of the type used mostly in industrial applications. The pictures and equations provided can be used for the design of pipelines, tables and diagrams are given to facilitate estimation of elasticity, pipeline pressure losses and insulating thicknesses. An overview of the equations is given at the end of the book. Many examples facilitate learning. (orig.) [de

  17. Proceedings of the 5. biennial international pipeline conference, IPC 2004 : the power of technology

    International Nuclear Information System (INIS)

    Paulson, K.; Kraft, H.; Hopkins, P.

    2004-01-01

    The fifth international pipeline conference provided a forum for experts in the pipeline industry, academia and governments to discuss new technologies and approaches to pipeline transport. Presentations focused on a wide range of issues related to pipeline engineering. The conference was divided into 16 main sessions: (1) compression and pump technologies, (2) corrosion protection and analysis techniques, (3) pipeline design and construction, (4) environmental issues, (5) database development, (6) emerging issues and innovative projects, (7) inspection techniques, (8) integrity management, (9) joining, (10) materials, (11) offshore issues, (12) operations and maintenance, (13) pipeline automation and measurement, (14) pipelining in northern environments, (15) risk and reliability, (16) standards and regulations. The presentations provided up-to-date information related to future technology trends as well as recent innovations and practices. Pipeline design standards and new pipeline materials using high strength steels and reinforced composite plastic coatings were also reviewed. Other sessions discussed emerging technologies for inspection, quality control, ultrasonic testing, and the use of remote sensors. The conference also included a student paper competition. A total of 339 peer reviewed presentations were given at the conference, all of which were indexed separately for inclusion in this database. refs., tabs., fig.

  18. Review of Detection and Monitoring Systems for Buried High Pressure Pipelines: Final Report

    OpenAIRE

    Asadollahi Dolatabad, Saeid; Doree, Andries G.; olde Scholtenhuis, Léon Luc; Vahdatikhaki, Faridaddin

    2017-01-01

    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000 kilometers of high-pressure transportation pipelines. Because they are located under the ground, these pipelines are subject to excavation damages. Incidents in them Belgian Gellingen (2004) and German Ludw...

  19. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions.

    Science.gov (United States)

    Sahli, Hussein; El-Sheimy, Naser

    2016-04-21

    Pipeline inspection gauges (pigs) have been used for many years to perform various maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected during the pig journey. Although pigs use many sensors to detect the required pipeline parameters, matching these data with the corresponding pipeline location is considered a very important parameter. High-end, tactical-grade inertial measurement units (IMUs) are used in pigging applications to locate the detected problems of pipeline using other sensors, and to reconstruct the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit their use in small diameter pipelines (8″ or less). This paper describes a new methodology for the use of MEMS-based IMUs using an extended Kalman filter (EKF) and the pipeline junctions to increase the position parameters' accuracy and to reduce the total RMS errors even during the unavailability of above ground markers (AGMs). The results of this new proposed method using a micro-electro-mechanical systems (MEMS)-based IMU revealed that the position RMS errors were reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will enable the mapping of small diameter pipelines, which was not possible before.

  20. Analysis of underground concrete pipelines subjected to seismic high-frequency loads

    OpenAIRE

    Abbasiverki, Roghayeh

    2016-01-01

    Buried pipelines are tubular structures that are used for transportation of important liquid materials and gas in order to provide safety for human life. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages, possibly causing disturbance in vital systems, such as cooling of nuclear power facilities. The high level of safety has caused a demand for reliable seismic analyses, also for structures built in the regions that have not traditionally...

  1. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    International Nuclear Information System (INIS)

    Li Rutao; Zuo Xiurong; Hu Yueyue; Wang Zhenwei; Hu, Dingxu

    2011-01-01

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: →The pipe with ferrite/martensite microstructure shows high deformability. →The base metal of the pipe consists of ferrite and martensite. →Heat affected zone shows excellent low temperature toughness. →Weld metal mainly consists of intragranularly nucleated acicular ferrites. →Weld metal shows excellent low temperature toughness and high strength.

  2. Special Frits for Direct-On Enamelling of Pipelines

    International Nuclear Information System (INIS)

    Berdzenishvili, I.; Siradze, M.; Erokhin, V.; Kldiashvili, R.

    2010-01-01

    The compositions of low-melting zirconium-strontium frits have been developed for direct-on enamelling of pipes. Owing to the given combination of active cations, toxic fluorine and expensive nickel and lithium were eliminated from glass frit compositions. The enamels were subjected to firing by the induction method. In the synthesized enamels, the optimal complex of properties combining high corrosion-resistant and thermo-mechanic indices, adhesive strength and required specifications was realized. These enamels are recommended for testing on pipelines. (author)

  3. Calculating the strength of a gas pipeline with a reinforced coating

    Energy Technology Data Exchange (ETDEWEB)

    Al' shanov, A P; Abdullaev, G T; Ali-Zade, A N

    1981-10-01

    Reinforcing the coatings of gas pipelines allows an increase in their operating pressure and thus their throughput; combined with strong insulation, such reinforcing materials as metal screens and fiberglass also protect the pipeline. Soviet analysts have mathematically derived the limiting internal pressure in a line with a reinforced coating as a function of the coating's thickness and mechanical properties. The method assumes that the pipe material is isotropic and elastic. The calculations help in determining (1) the dependence of the relative limiting pressure on the relative coating thickness and (2) the effect of the ratio of the Young's modulus of the reinforcing material to that of the pipe material upon the dependence of the relative limiting pressure on coating thickness. The analysis awaits experimental confirmation.

  4. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1998-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  5. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1997-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  6. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  7. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  8. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    International Nuclear Information System (INIS)

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  9. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  10. tcpl: The ToxCast Pipeline for High-Throughput Screening Data

    Science.gov (United States)

    Motivation: The large and diverse high-throughput chemical screening efforts carried out by the US EPAToxCast program requires an efficient, transparent, and reproducible data pipeline.Summary: The tcpl R package and its associated MySQL database provide a generalized platform fo...

  11. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  14. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  15. Microstructural investigation of vintage pipeline steels highly susceptible to stress corrosion cracking

    Science.gov (United States)

    Torres, Monica

    The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical

  16. Design Optimization of Innovative High-Level Waste Pipeline Unplugging Technologies - 13341

    International Nuclear Information System (INIS)

    Pribanic, T.; Awwad, A.; Varona, J.; McDaniel, D.; Gokaltun, S.; Crespo, J.

    2013-01-01

    Florida International University (FIU) is currently working on the development and optimization of two innovative pipeline unplugging methods: the asynchronous pulsing system (APS) and the peristaltic crawler system (PCS). Experiments were conducted on the APS to determine how air in the pipeline influences the system's performance as well as determine the effectiveness of air mitigation techniques in a pipeline. The results obtained during the experimental phase of the project, including data from pipeline pressure pulse tests along with air bubble compression tests are presented. Single-cycle pulse amplification caused by a fast-acting cylinder piston pump in 21.8, 30.5, and 43.6 m pipelines were evaluated. Experiments were conducted on fully flooded pipelines as well as pipelines that contained various amounts of air to evaluate the system's performance when air is present in the pipeline. Also presented are details of the improvements implemented to the third generation crawler system (PCS). The improvements include the redesign of the rims of the unit to accommodate a camera system that provides visual feedback of the conditions inside the pipeline. Visual feedback allows the crawler to be used as a pipeline unplugging and inspection tool. Tests conducted previously demonstrated a significant reduction of the crawler speed with increasing length of tether. Current improvements include the positioning of a pneumatic valve manifold system that is located in close proximity to the crawler, rendering tether length independent of crawler speed. Additional improvements to increase the crawler's speed were also investigated and presented. Descriptions of the test beds, which were designed to emulate possible scenarios present on the Department of Energy (DOE) pipelines, are presented. Finally, conclusions and recommendations for the systems are provided. (authors)

  17. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  18. Load bearing capacity of welded joints between dissimilar pipelines with unequal wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Beak, Jonghyun; Kim, Youngpyo; Kim, Woosik [Korea Gas Corporation, Suwon (Korea, Republic of)

    2012-09-15

    The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

  19. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  20. Research and Development of Heavy Wall DNV485FDU Pipeline Plate for 3500M Deep Water Pipe Applications at Shougang

    Science.gov (United States)

    Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai

    In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.

  1. PE-3 - a high class pipeline; PE-3 - um oleoduto high-class

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, D Issao; Santos, J.A. Costa; Medeiros, A Roberto [GDK Engenharia, Salvador, BA (Brazil); Garcia, Amaury [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Santos, F Cesar [Superpesa Transportes Especiais e Intermodais, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Pipeline PE-3, with a length of approximately 17 Km mainly inside of Guanabara Bay, connects the refinery of Duque de Caxias to the terminal of the Ilha D'Agua. It is used to export dark products from the refinery. Product transfer, by operational necessity, is conducted at a temperature of 75 deg C. This introduces a considerable load of tension on the pipeline, in addition to creating a fatigue-inducing thermal cycle. Because of this, and unlike almost all other existing oil and gas pipelines, PE-3 posses a zig zag configuration, alternating a straight tube with a curve of 10 degrees. This stands out as an innovative concept. Their are only two other similar installations in the world, but in very different conditions, thus conferring a pioneering aspect on this pipeline. Due to its criticality, the pipeline is predicated on complete certification in its entirety, from design to operation and in adherence with the strictest requirements. The environmental conditions encountered along its right of way, and the constructive tolerances imposed by the project, obligate the adoption of constructive and technical solutions that are themselves innovative in the terrestrial and marine realms. The principal objective of this work is to present a general overview of the methodology employed in PE-3 construction, installation and assembly. (author)

  2. PE-3 - a high class pipeline; PE-3 - um oleoduto high-class

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, D. Issao; Santos, J.A. Costa; Medeiros, A. Roberto [GDK Engenharia, Salvador, BA (Brazil); Garcia, Amaury [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Santos, F. Cesar [Superpesa Transportes Especiais e Intermodais, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Pipeline PE-3, with a length of approximately 17 Km mainly inside of Guanabara Bay, connects the refinery of Duque de Caxias to the terminal of the Ilha D'Agua. It is used to export dark products from the refinery. Product transfer, by operational necessity, is conducted at a temperature of 75 deg C. This introduces a considerable load of tension on the pipeline, in addition to creating a fatigue-inducing thermal cycle. Because of this, and unlike almost all other existing oil and gas pipelines, PE-3 posses a zig zag configuration, alternating a straight tube with a curve of 10 degrees. This stands out as an innovative concept. Their are only two other similar installations in the world, but in very different conditions, thus conferring a pioneering aspect on this pipeline. Due to its criticality, the pipeline is predicated on complete certification in its entirety, from design to operation and in adherence with the strictest requirements. The environmental conditions encountered along its right of way, and the constructive tolerances imposed by the project, obligate the adoption of constructive and technical solutions that are themselves innovative in the terrestrial and marine realms. The principal objective of this work is to present a general overview of the methodology employed in PE-3 construction, installation and assembly. (author)

  3. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  4. Pipeline engineering

    CERN Document Server

    Liu, Henry

    2003-01-01

    PART I: PIPE FLOWSINTRODUCTIONDefinition and Scope Brief History of PipelinesExisting Major PipelinesImportance of PipelinesFreight (Solids) Transport by PipelinesTypes of PipelinesComponents of PipelinesAdvantages of PipelinesReferencesSINGLE-PHASE INCOMPRESSIBLE NEWTONIAN FLUIDIntroductionFlow RegimesLocal Mean Velocity and Its Distribution (Velocity Profile)Flow Equations for One-Dimensional AnalysisHydraulic and Energy Grade LinesCavitation in Pipeline SystemsPipe in Series and ParallelInterconnected ReservoirsPipe NetworkUnsteady Flow in PipeSINGLE-PHASE COMPRESSIBLE FLOW IN PIPEFlow Ana

  5. Development of corrosion defect assessment program for API X65 gas pipelines

    International Nuclear Information System (INIS)

    Choi, Jae Boong; Kim, Youn Ho; Kim, Young Jin; Goo, Bon Geol; Kim, Yound Pyo; Baek, Jong Hyun; Kim, Woo Sik

    2001-01-01

    Pipelines have the highest capacity and are the safest and the least environmentally disruptive way for gas or oil transmission. Recently, failures due to corrosion defects have become of major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. However, these solutions are known to be dependent on material properties and pipeline geometries. In this paper, a fitness-for-purpose type limit load solution for corroded gas pipelines made of the X65 steel is proposed. For this purpose, a series of burst tests with various types of corrosion defects are performed. Finite element simulations are carried out to derive an appropriate failure criterion. And then, further, extensive finite element analyses are performed to obtain the FFP type limit load solution for corroded X65 gas pipelines as a function of defect depth, length and pipeline geometry. And also, a window based computer program for the assessment of corrosion defect, which is named as COPAP(COrroded Pipeline Assessment Program) has been developed on the basis of proposed limit load solution

  6. A high-throughput pipeline for the design of real-time PCR signatures

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2010-06-01

    Full Text Available Abstract Background Pathogen diagnostic assays based on polymerase chain reaction (PCR technology provide high sensitivity and specificity. However, the design of these diagnostic assays is computationally intensive, requiring high-throughput methods to identify unique PCR signatures in the presence of an ever increasing availability of sequenced genomes. Results We present the Tool for PCR Signature Identification (TOPSI, a high-performance computing pipeline for the design of PCR-based pathogen diagnostic assays. The TOPSI pipeline efficiently designs PCR signatures common to multiple bacterial genomes by obtaining the shared regions through pairwise alignments between the input genomes. TOPSI successfully designed PCR signatures common to 18 Staphylococcus aureus genomes in less than 14 hours using 98 cores on a high-performance computing system. Conclusions TOPSI is a computationally efficient, fully integrated tool for high-throughput design of PCR signatures common to multiple bacterial genomes. TOPSI is freely available for download at http://www.bhsai.org/downloads/topsi.tar.gz.

  7. Causes of the cracks in the pipeline made of the 15HM steel

    Directory of Open Access Journals (Sweden)

    Słania J.

    2017-03-01

    Full Text Available Issues referring to cracks in the pipelines made of the 15HM steel are described. Metallographic specimen of welded joints are provided. The results of impact strength tests, hardness tests and static tensile tests are given. Tests results as well as direct and indirect causes of the pipeline cracks are shown.

  8. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  9. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  10. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  11. Metallurgical analysis of high pressure gas pipelines rupture

    International Nuclear Information System (INIS)

    Hasan, F.; Ahmed, F.

    2007-01-01

    On 6 July 2004, two parallel-running gas pipelines (18-inch and 24-inch diameters), in the main transmission network of SNGPL (a gas company in Pakistan) were ruptured. The ruptures occurred in the early hours of the morning about 8 miles downstream of the compressor station AC-4. The ruptures were indicated by the increased gas flow at the outlet of AC-4 (1), first at about 0648 hours and then again about 20 minutes later. The gas escaping from the ruptured lines had caught fire, and the flames had also 'affected' a third parallel-running pipeline of 30-inch diameter, lying next to the 24-inch line. The metallurgical examination of the two ruptured lines showed that the 24-inch line was ruptured with the help of an explosive device that had been placed on the underside of the pipe. An examination of the 18-inch line showed that this pipe had failed as a result of the heating of the pipe-wall, presumably, by the flame emanating from the 24-inch line. These two observations clearly suggested that the 24-inch line was the first to rupture (by explosives), and the fire following this rupture had heated the 18-inch pipe to a temperature where its yield strength was unable to support the inside gas pressure. The 20 minutes time interval between the two ruptures was obviously the time taken by the 18 inch pipe to be heated upto the level where it started to yield. The 30-inch line lying next to the 24-inch line was affected to the extent that its coating had been burnt-off over a length of about 40-50 feet. However, the pipe did not exhibit any signs of deshaping or deformation what-so-ever. A replica metallographic examination indicated that the microstructure of the pipe was not measurably affected by the heat. It was thus decided not to replace the affected part of the 30-inch pipe, but only to re-coat this affected portion. (author)

  12. The problem of modernization of the high-pressure pipelines clampers - Practice

    International Nuclear Information System (INIS)

    Komorowski, J.; Zajaczkowski, P.; Szteke, W.

    2008-01-01

    In the paper the problems connected with the modernization and repair of the clampers of high-pressure pipelines joining the boiler with the turbine, on the basis of authors experiences are presented. The basic scope of requirements and practice recommendation are also done. (author)

  13. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.

    Science.gov (United States)

    Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu

    2018-01-15

    The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.

  14. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  15. SNP-PHAGE – High throughput SNP discovery pipeline

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs, amplified fragment length polymorphisms (AFLPs and simple sequence repeats (SSRs or microsatellite markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. Results We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis and GenBank (-dbSNP submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at http://bfgl.anri.barc.usda.gov/ML/snp-phage/. Conclusion SNP-PHAGE provides a bioinformatics

  16. 77 FR 27279 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-05-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  17. 77 FR 46155 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-02

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  18. Pipelines. Economy's veins; Pipelines. Adern der Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feizlmayr, Adolf; Goestl, Stefan [ILF Beratende Ingenieure, Muenchen (Germany)

    2011-02-15

    According to the existing prognoses more than 1 million km of gas pipelines, oil pipelines and water pipelines are built up to the year 2030. The predominant portion is from gas pipelines. The safe continued utilization of the aging pipelines is a large challenge. In addition, the diagnostic technology, the evaluation and risk assessment have to be developed further. With the design of new oil pipelines and gas pipelines, aspects of environmental protection, the energy efficiency of transport and thus the emission reduction of carbon dioxide, the public acceptance and the market strategy of the exporters gain in importance. With the offshore pipelines one soon will exceed the present border of 2,000 m depth of water and penetrate into larger sea depths.

  19. Improvement of Regulatory Requirements for Ensuring the Quality of Underground Gas Pipelines in Conditions of Corrosion Fatigue

    Directory of Open Access Journals (Sweden)

    Larysa Yuzevych

    2017-09-01

    Full Text Available The article develops recommendations for improvement of normative documents concerning the quality of underground metal pipelines (gas pipelines under conditions of fatigue and the impact of an aggressive environment, taking into account cathodic (electrochemical protection. It is established that the basis of information provision of normative documents is the method which includes the following main criteria: the value of the minimum current density of cathode protection; minimum security potential; maximum protective potential, minimal displacement of protective potential; strength criteria of pipe material; criteria of strength of phase layer between the metal and the coating; the strength of the metal in the defect of the insulation coating. It has been found out that the system "metal pipe - insulating dielectric coating" is characterized by such basic procedures as: identification of hazards; various variants of load asymmetry; evaluation of the boundary and optimal values of potentials and currents for the system of cathodic protection of the pipeline. The prospect of further research in this area is determination of the complex indicator of quality and reliability of the linear part of underground main gas pipelines on the basis of research results (submitted information support.

  20. In situ determination of pipelines mechanical properties; Determinacao de propriedades mecanicas in situ de dutos terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Marcelo Torres Piza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Souza Filho, Byron Goncalves de [PETROBRAS Transportes S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Ramos Neto, Francisco F.; Franco, Vera Lucia D.S.; Franco, Sinesio Domingues [Universidade Federal de Uberlandia, MG (Brazil). Dept. de Engenharia Mecanica; Cardoso, Flavia Cristina; Soares, Alcimar Barbosa [Universidade Federal de Uberlandia, MG (Brazil). Dept. de Engenharia Eletrica

    2005-07-01

    The possibility of having technical data regarding pipeline mechanical properties (yield strength, engineering ultimate strength and real stress-strain curve) may be of great importance for pipeline operators specially for old pipes from which there are seldom precise information. The use of portable equipment based on the ball indentation technique offers the possibility of having such properties with high accuracy and speed, without the necessity of pipe specimen removal, being only necessary a ball indentation with a maximum depth of 300{mu}m, and totally nondestructive. This paper presents the calculation methodology used for obtaining the related properties trough use of the ball indentation technique as well as the final version of portable equipment with such features, named 'Propinsitu', developed by a government-company-university partnership. Finally, initial results comparing the ball indentation tests with those derived from tension test are presented for typical API steel X42 and X60. (author)

  1. 78 FR 70623 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Science.gov (United States)

    2013-11-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2009-0203] Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. [[Page...

  2. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  3. Solving an unpiggable pipeline challenge

    Energy Technology Data Exchange (ETDEWEB)

    Walker, James R. [GE Oil and Gas, PII Pipeline Solutions, Cramlington Northumberland (United Kingdom); Kern, Michael [National Grid, New Hampshire (United Kingdom)

    2009-07-01

    Technically, any pipeline can be retrofitted to enable in line inspection. Sensibly however, the expense of excavations and construction of permanent facilities have been, in many cases, exceedingly prohibitive. Even where traditional modifications are feasible from engineering perspectives, flow interruption may not be an option - either because they are critical supply lines or because the associated lost revenues could be nearly insurmountable. Savvy pipeline integrity managers know the safety issue that is at stake over the long term. They are also well aware of the accuracy benefits that high-quality in-line inspection data offer over potentially supply disruptive alternatives such as hydrostatic testing. To complicate matters further, many operators, particularly in the US, now face regulatory pressure to assess the integrity of their yet-uninspected pipelines located in highly populated areas. This paper describes an important project National Grid undertook that made use of a unique pipeline access method that did not require permanent installation of expensive facilities required for in line inspection of a pipeline previously considered 'unpiggable'. Since the pipeline was located in an urban area, flow disruption had to be minimized. This paper will define the project background, its challenges, outcomes and lessons learned for the future. (author)

  4. A new architecture for low-power high-speed pipelined ADCs using double-sampling and opamp-sharing techniques

    NARCIS (Netherlands)

    Abdinia, S.; Yavari, M.

    2009-01-01

    This paper presents a low-voltage low-power pipelined ADC with 1V supply voltage in a 90nm CMOS process. A new architecture is proposed to reduce the power consumption in high-speed pipelined analog-to-digital converters (ADCs). The presented architecture utilizes a combination of two current

  5. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  6. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  7. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Gonzalez-Rodriguez, J.G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico)], E-mail: ggonzalez@uaem.mx; Torres-Islas, A.; Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Campillo, B. [Intituto de Ciencias Fisicas-Facultad de Quimicas-Universidad Nacional Autonoma de Mexico Cuernavaca, Mor. (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Juarez-Islas, J.A. [Instituto de Investigaciones en Materiales-Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Cd. Universitaria, C.P. 04510, Mexico, D.F. (Mexico)

    2008-12-15

    The sulphide stress cracking (SSC) susceptibility of a newly developed high strength microalloyed steel with three different microstructures has been evaluated using the slow strain rate testing (SSRT) technique. Studies were complemented with potentiodynamic polarization curves and hydrogen permeation measurements. Material included a C-Mn steel having Ni, Cu, and Mo as main microalloying elements with three microstructures: martensitic, ferritic and ferritic + bainitic. Testing temperatures included 25, 50, 70 and 90 deg. C. Detailed SEM observations of the microstructure and fracture surfaces were done to identify possible degradation mechanisms. The results showed that in all cases, the corrosion rate, number of hydrogen atoms at the surface and the percentage reduction in area increased with temperature. The steel with a martensitic microstructure had the highest SSC susceptibility at all temperatures, whereas the ferritic steels were susceptible only at 25 deg. C, and the most likely mechanism is hydrogen embrittlement assisted by anodic dissolution.

  8. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  9. Neutron backscattered application in investigation for Pipeline Intelligent Gauge (PIG) tracking in RAYMINTEX matrix pipeline

    International Nuclear Information System (INIS)

    Mohd Fakarudin Badul Rahman; Ismail Mustapha; Nor Paiza Mohd Hasan; Pairu Ibrahim; Airwan Affandi Mahmood; Mior Ahmad Khusaini Adnan; Najib Mohammed Zakey

    2012-01-01

    The Radiation Vulcanized Natural Rubber Latex (RVNRL) process plants such RAYMINTEX, pipelines are used extensively to transfer a latex product from storage vessel and being irradiated to produce a high quality of latex. A hydraulically activated Pipeline Intelligent Gauge (PIG) was held back against the latex flow. Consequently, the stuck PIG in pipeline was subjected to interrupt plant operation. The investigation was carried out using the neutron backscattered technique scanner to track the stuck PIG in pipeline of RVNRL plant. The 50 mCi Americium Beryllium (AmBe 241 ) fast neutron emitter source in the range 0.5-11 MeV has been used and thermal neutrons in the 30 eV- 0.5 MeV was detected using Helium-3 (He 3 ) detector. It is observed that there is unambiguous relationship between vapour and RVNRL consequence of diverse hydrogen concentration in pipeline. Thus, neutron backscattered technique was capable to determine the location of stuck PIG in a RVNRL pipeline. (author)

  10. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  11. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  12. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  13. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  14. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  15. Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines

    International Nuclear Information System (INIS)

    Russo, Paola; Parisi, Fulvio

    2016-01-01

    Natural-gas pipeline accidents mostly result in major damage even to buildings located far away. Therefore, proper safety distances should be observed in land use planning to ensure target safety levels for both existing and new buildings. In this paper, a quantitative risk assessment procedure is presented for the estimation of the annual probability of direct structural damage to reinforced concrete buildings associated with high-pressure natural-gas pipeline explosions. The procedure is based on Monte Carlo simulation and takes into account physical features of blast generation and propagation, as well as damage to reinforced concrete columns. The natural-gas jet release process and the flammable cloud size are estimated through SLAB one-dimensional integral model incorporating a release rate model. The explosion effects are evaluated by a Multi-Energy Method. Damage to reinforced concrete columns is predicted by means of pressure–impulse diagrams. The conditional probability of damage was estimated at multiple pressure–impulse levels, allowing blast fragility surfaces to be derived at different performance limit states. Finally, blast risk was evaluated and allowed the estimation of minimum pipeline-to-building safety distances for risk-informed urban planning. The probabilistic procedure presented herein may be used for performance-based design/assessment of buildings and to define the path of new natural-gas pipeline networks. - Highlights: • The safety of buildings against blast loads due to pipeline accidents is assessed. • A probabilistic risk assessment procedure is presented for natural-gas pipelines. • The annual risk of collapse of reinforced concrete building columns is evaluated. • Monte Carlo simulation was carried out considering both pipeline and column features. • A risk-targeted safety distance is proposed for blast strength class 9.

  16. 76 FR 53086 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of Transportation (DOT...

  17. 76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Advance notice of...

  18. Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

    International Nuclear Information System (INIS)

    Baek, Jong Hyun; Kim, Young Pyo; Kim, Woo Sik; Seok, Chang Sung

    2009-01-01

    This paper prescribed the structural integrity of the API 5 L X6 5 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5 L X6 5 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5 L X6 5 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

  19. Repairing method for reactor primary system pipeline

    International Nuclear Information System (INIS)

    Hosokawa, Hideyuki; Uetake, Naoto; Hara, Teruo.

    1997-01-01

    Pipelines after decontamination of radioactive nuclides deposited on the pipelines in a nuclear power plant during operation or pipelines to replace pipelines deposited with radioactive nuclide are connected to each system of the nuclear power plant. They are heated in a gas phase containing oxygen to form an oxide film on the surface of the pipelines. The thickness of the oxide film formed in the gas phase is 1nm or greater, preferably 100nm. The concentration of oxygen in the gas phase containing oxygen must be 0.1% or greater. The heating is conducted by circulating a heated gas to the inside of the pipelines or disposing a movable heater such as a high frequency induction heater inside of the pipelines to form the oxide film. Then, redeposition of radioactive nuclide can be suppressed and since the oxide film is formed in the gas phase, a large scaled facilities are not necessary, thereby enabling to repair pipelines of reactor primary system at low cost. (N.H.)

  20. Pipelines, inexpensive and safe mode of transport

    Energy Technology Data Exchange (ETDEWEB)

    Grover, D D

    1979-01-01

    Pipelines are the leading bulk commodity transporter and should play an even more important role in the future of energy transportation and distribution. As fossil fuel and low-cost uranium resources become depleted, it will be economical to produce hydrogen by electrolysis and transport it through underground pipelines to points of consumption. The cost would be only two to three times that of transporting natural gas per unit of heat energy and substantially less than the cost of transporting electric energy in overhead, extra-high-voltage transmission lines. Pipeline design, including economic pipe diameter; pipe material; operation by remote control and automation; cathodic protection; pipeline construction; and pipeline maintenance, particularly as regards the 1157 km long Oil India Pipeline, are discussed.

  1. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  2. Effect of prestrain on ductility and toughness in high strength line pipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Y.; Besson, J. [Paristech, Evry (France). Centre des Materiaux, Mines Paris; Madi, Y. [Ecole d' Ingenieurs, Sceaux (France). Ermess EPF; Paristech, Evry (France). Centre des Materiaux, Mines Paris

    2009-07-01

    The anisotropic plasticity, ductility and toughness of an X100 steel pipeline was investigated both before and after a series of prestraining experiments. The aim of the study was to determine the effect of prestraining on ductility and toughness in high strength pipe steels. Results of the study showed that primary void growth and coalescence was dependent on initial plastic anisotropy and not dependent on tensile prestrain. Secondary void nucleation and growth was not influenced by either the initial plastic anisotropy or by prestraining. Scanning electron microscopy (SEM) studies showed that the main damage mechanism was the void growth of primary dimples. Dimples in the prestrained materials were larger than those observed in materials that had not been prestrained. However, the effect on prestrain on dimple size was limited. Results showed both plastic and rupture anisotropies. It was concluded that prestraining induces a decrease in ductility, but has a significant impact on toughness. 4 refs., 2 tabs., 12 figs.

  3. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  4. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  5. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  6. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  7. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  8. Integrity management of Brazil-Bolivia gas pipeline to reduce risks due third party damage

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Carlos Renato Aragonez de; Monte, Oswaldo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Colen, Eustaquio; Cunha, Roberto de Souza; Oliveira, Hudson Regis de [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Lima, Rogerio de Souza [RSL Consultoria Geoprojetos (Brazil); Schultz Neto, Walter [Milton Braga Assessoria Tecnica (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline has 2.600 kilometers from Rio Grande City in Bolivia to Canoas City, in the south of Brazil. The right-of-way crosses a lot of types of topography and areas subjected to various kinds of anthropological actions, like areas in class locations 3, locals under agricultural activities, forests and minerals explorations, and near constructions of highway and railway, industrial constructions, new pipelines in the same right-of -way, channels, dams, that requires special projects to avoid that the gas pipeline could be subject to strengths that were not consider in the original design. The aim of this paper is to present the jobs developed by TBG during seven years of gas pipeline operations, as public awareness program, procedures to design, construct and inspect specials constructions along and near the right-of -way, control of mineral and forest explorations, monitoring and controlling of excavations on the right-of-way to install new pipelines and optical cables, to reduce risks of gas pipeline damage due third party, as a component of TBG' Managing Integrity Gas Pipeline Program. (author)

  9. Evaluation of Failure Pressure for Gas Pipelines with Combined Defects

    Directory of Open Access Journals (Sweden)

    Tadas Vilkys

    2018-05-01

    Full Text Available The paper presents the study of the influence of mechanical damage on the safe operation of gas transmission pipelines. The main types of pipeline damage with the actual parameters and their influence on the operational parameters are analysed. The damaged fractures of the section of the pipeline Kaunas (Lithuania–Kaliningrad (Russia were investigated in the laboratory. The main operational characteristics and the structure of the pipeline’s metal after the period of long-term operation were determined using various research and experimental methods. The influence of the pipeline’s damage was modelled by using the Finite Element Method and the ANSYS code. The predictions of the failure pressure were made, taking into consideration the actual properties of the pipeline’s metal. Techniques including the hardness and microhardness measurement, chemical analysis, the impact strength test, and metallography analysis with an optical microscope, were used in the experimental study.

  10. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  11. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  12. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  13. PipelineDog: a simple and flexible graphic pipeline construction and maintenance tool.

    Science.gov (United States)

    Zhou, Anbo; Zhang, Yeting; Sun, Yazhou; Xing, Jinchuan

    2018-05-01

    Analysis pipelines are an essential part of bioinformatics research, and ad hoc pipelines are frequently created by researchers for prototyping and proof-of-concept purposes. However, most existing pipeline management system or workflow engines are too complex for rapid prototyping or learning the pipeline concept. A lightweight, user-friendly and flexible solution is thus desirable. In this study, we developed a new pipeline construction and maintenance tool, PipelineDog. This is a web-based integrated development environment with a modern web graphical user interface. It offers cross-platform compatibility, project management capabilities, code formatting and error checking functions and an online repository. It uses an easy-to-read/write script system that encourages code reuse. With the online repository, it also encourages sharing of pipelines, which enhances analysis reproducibility and accountability. For most users, PipelineDog requires no software installation. Overall, this web application provides a way to rapidly create and easily manage pipelines. PipelineDog web app is freely available at http://web.pipeline.dog. The command line version is available at http://www.npmjs.com/package/pipelinedog and online repository at http://repo.pipeline.dog. ysun@kean.edu or xing@biology.rutgers.edu or ysun@diagnoa.com. Supplementary data are available at Bioinformatics online.

  14. United States petroleum pipelines: An empirical analysis of pipeline sizing

    Science.gov (United States)

    Coburn, L. L.

    1980-12-01

    The undersizing theory hypothesizes that integrated oil companies have a strong economic incentive to size the petroleum pipelines they own and ship over in a way that means that some of the demand must utilize higher cost alternatives. The DOJ theory posits that excess or monopoly profits are earned due to the natural monopoly characteristics of petroleum pipelines and the existence of market power in some pipelines at either the upstream or downstream market. The theory holds that independent petroleum pipelines owned by companies not otherwise affiliated with the petroleum industry (independent pipelines) do not have these incentives and all the efficiencies of pipeline transportation are passed to the ultimate consumer. Integrated oil companies on the other hand, keep these cost efficiencies for themselves in the form of excess profits.

  15. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  16. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    International Nuclear Information System (INIS)

    Chiodo, Mario S.G.; Ruggieri, Claudio

    2009-01-01

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects

  17. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chiodo, Mario S.G. [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil); Ruggieri, Claudio [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil)], E-mail: claudio.ruggieri@poli.usp.br

    2009-02-15

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects.

  18. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  19. Pipeline integrity management

    Energy Technology Data Exchange (ETDEWEB)

    Guyt, J.; Macara, C.

    1997-12-31

    This paper focuses on some of the issues necessary for pipeline operators to consider when addressing the challenge of managing the integrity of their systems. Topics are: Definition; business justification; creation and safeguarding of technical integrity; control and deviation from technical integrity; pipelines; pipeline failure assessment; pipeline integrity assessment; leak detection; emergency response. 6 figs., 3 tabs.

  20. 75 FR 13342 - Pipeline Safety: Workshop on Distribution Pipeline Construction

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... natural gas distribution construction. Natural gas distribution pipelines are subject to a unique subset... distribution pipeline construction practices. This workshop will focus solely on natural gas distribution...

  1. Interaction of corrosion defects in pipelines – Part 1: Fundamentals

    International Nuclear Information System (INIS)

    Benjamin, Adilson C.; Freire, José Luiz F.; Vieira, Ronaldo D.; Cunha, Divino J.S.

    2016-01-01

    Corrosion defects, also called metal loss due to corrosion, are frequently found in carbon steel pipelines. Corrosion defects may occur singly or in colonies. Usually the failure pressure of a colony of closely spaced corrosion defects is smaller than the failure pressures that the defects would attain if they were isolated. This reduction in the corroded pipe pressure strength is due to the interaction between adjacent defects. The interaction of corrosion defects in pipelines is the subject of two companion papers. In the present paper (the Part 1 paper) a literature review and the fundamentals of interaction of corrosion defects in pipelines are presented. In the subsequent paper (the Part 2 paper) initially the database of corroded pipe tests generated during the MTI JIP is described. Then the failure pressures contained in the MTI JIP database of corroded pipe tests are compared with those predicted by six of the currently available assessment methods. MTI JIP is the acronym for Mixed Type Interaction Joint Industry Project.

  2. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters

    International Nuclear Information System (INIS)

    Carretero Olalla, V.; Bliznuk, V.; Sanchez, N.; Thibaux, P.; Kestens, L.A.I.; Petrov, R.H.

    2014-01-01

    The yield strength of different pipeline steel grades, rolled under four different conditions, was correlated with calculated strengthening contributions. Slabs with the same composition were rolled under identical roughing conditions but varied finish rolling temperature (FRT). Two cooling routes, consisting of accelerated water cooling condition (ACC) followed by slow cooling in an oven to simulate coiling and air cooling were applied after the last rolling pass. The microstructures obtained after each thermo mechanical controlled process (TMCP) schedule, were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Electron backscatter diffraction (EBSD). The mechanical properties of the plates were determined by means of tensile tests and Charpy V-notch impact test. It was confirmed that a combination of fast cooling rate and low finish rolling temperature produces higher strength than the slow cooling rate and high finish rolling temperature. Contributions to the strengthening arising from the various microstructural features like solid solution strengthening, grain size, dislocation density and precipitation hardening, were analyzed using Taylor, Hall–Petch and Ashby–Orowan approaches. The root of the sum of the squares method was applied to link the experimental with the model-predicted strength. It is believed that this approach provides a better understanding of the effect of TMCP parameters on the microstructure and strengthening mechanisms in pipeline steels

  3. Pollution from pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    During the 1980s, over 3,900 spills from land-based pipelines released nearly 20 million gallons of oil into U.S. waters-almost twice as much as was released by the March 1989 Exxon Valdez oil spill. Although the Department of Transportation is responsible for preventing water pollution from petroleum pipelines, GAO found that it has not established a program to prevent such pollution. DOT has instead delegated this responsibility to the Coast Guard, which has a program to stop water pollution from ships, but not from pipelines. This paper reports that, in the absence of any federal program to prevent water pollution from pipelines, both the Coast Guard and the Environmental Protection Agency have taken steps to plan for and respond to oil spills, including those from pipelines, as required by the Clean Water Act. The Coast Guard cannot, however, adequately plan for or ensure a timely response to pipeline spills because it generally is unaware of specific locations and operators of pipelines

  4. 75 FR 63774 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-10-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of... Gas Pipeline Safety Act of 1968, Public Law 90-481, delegated to DOT the authority to develop...

  5. 77 FR 61825 - Pipeline Safety: Notice of Public Meeting on Pipeline Data

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... program performance measures for gas distribution, gas transmission, and hazardous liquids pipelines. The... distribution pipelines (49 CFR 192.1007(e)), gas transmission pipelines (49 CFR 192.945) and hazardous liquids...

  6. Pipelines 'R' us

    International Nuclear Information System (INIS)

    Thomas, P.

    1997-01-01

    The geopolitical background to the export of oil and gas from Kazakhstan by pipeline is explored with particular reference to the sensitivities of the USA. There are now a number of pipeline proposals which would enable Kazakhstan to get its hydrocarbons to world markets. The construction of two of these formed part of a major oil deal signed recently with China in the face of stiff competition from major US companies. The most convenient and cost effective route, connecting up with Iran's existing pipeline network to the Gulf, is unlikely to be developed given continuing US sanctions against Iran. Equally unlikely seems to be the Turkmenistan to Pakistan pipeline in the light of the political volatility of Afghanistan. US companies continue to face limits on export capacity via the existing Russian pipelines from Kazakhstan. A temporary solution could be to carry some oil in the existing pipeline from Azerbaijan to Georgia which has been upgraded and is due to become operational soon, and later in a second proposed pipeline on this route. The Caspian Pipeline Consortium, consisting of three countries and eleven international companies, is building a 1500 km pipeline from the Tergiz field to Novorossiysk on the Black Sea with a view to completion in 2000. An undersea pipeline crossing the Caspian from Azerbaijan is being promoted by Turkey. There is an international perception that within the next five years Kazakhstan could be in a position to export its oil via as many as half a dozen different routes. (UK)

  7. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...... and suspended load descriptions forming the basis for seabed morphology. The model was successfully validated against experimental measurements involving scour development and eventual equilibrium in pure-current flows over a range of Shields parameters characteristic of both clear-water and live-bed regimes....... This validation complements previously demonstrated accuracy for the same model in simulating pipeline scour processes in pure-wave environments. The model was subsequently utilized to simulate combined wave-plus-current scour over a wide range of combined Keulegan–Carpenter numbers and relative current strengths...

  8. Location of leaks in pressurized underground pipelines

    International Nuclear Information System (INIS)

    Eckert, E.G.; Maresca, J.W. Jr.

    1993-01-01

    Millions of underground storage tanks (UST) are used to store petroleum and other chemicals. The pressurized underground pipelines associated with USTs containing petroleum motor fuels are typically 2 in. in diameter and 50 to 200 ft in length. These pipelines typically operate at pressures of 20 to 30 psi. Longer lines, with diameters up to 4 in., are found in some high-volume facilities. There are many systems that can be used to detect leaks in pressurized underground pipelines. When a leak is detected, the first step in the remediation process is to find its location. Passive-acoustic measurements, combined with advanced signal-processing techniques, provide a nondestructive method of leak location that is accurate and relatively simple, and that can be applied to a wide variety of pipelines and pipeline products

  9. Effects of pipelines and gathering lines on snow crab and lobster : final report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, J.L.; Covill, J.D. [Martec Ltd., Halifax, NS (Canada); Gilroy, L.; Wheaton, D.; Holtham, P.; Richards, T.; Lucas, C.; Schattschneider, G.; Religa, R.; Brannan, C. [Defence Research and Development Canada Atlantic, Dartmouth, NS (Canada); DeMont, E.; Schuegraf, M; King, K. [Saint Francis Xavier Univ., Antigonish, NS (Canada). Dept. of Biology

    2004-12-01

    A study investigating potential behavioural changes in lobster after the completion of the ExxonMobil natural gas pipeline in the vicinity of Goldboro, Nova Scotia was presented. The study was divided into 4 components: (1) field studies to measure underwater noise in the region associated with the operational gas pipeline; (2) a determination of the electromagnetic (EM) fields generated by the presence of a pipeline in the region through the creation of a numerical model; (3) a lobster catch-and-release field program to measure lobster catches, with concentrated sampling around the Goldboro pipeline landfall using 2 reference sites; and (4) a separate laboratory based study to determine the scaling and climbing ability of lobsters over 32 and 48 inch simulated gas pipelines with smooth and rough texture protective coatings. Offshore sections of the pipeline are partially or fully exposed above the sea-floor, and the laboratory experiments were conducted to asses the effects of unburied pipelines creating a barrier to lobster movement. Results of the acoustic surveys showed peaks of low frequency sound within the hearing range of lobster in the vicinity of the pipeline. The EM survey and resulting numerical model indicated that the pipeline created a narrow magnetic field affecting an area only 2 to 3 metres wide on either side of the pipeline which produced a field strength up to one third as strong as that of the earth's background magnetic field. The lobster catch and release program showed no statistically significant variation of catches between the pipeline locale and the 2 reference sites. In the laboratory testing, the rough surface coating was found to more scaleable for the lobsters than a smooth coating. 7 tabs., 7 figs.

  10. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    .... PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY... liquid pipelines to communicate the potential for damage to pipeline facilities caused by severe flooding... pipelines in case of flooding. ADDRESSES: This document can be viewed on the Office of Pipeline Safety home...

  11. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  12. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  13. Pipeline technology. Petroleum oil - long-distance pipelines. Pipelinetechnik. Mineraloelfernleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Krass, W; Kittel, A; Uhde, A

    1979-01-01

    All questions and concerns of pipeline technique are dealt with in detail. Some chapters can be applied for petroleum pipelines only or partly, for example the importance of petroleum pipelines, projecting, calculation, and operation. The sections of pipes and formings, laying, rights of way, and corrosion protection, accessories and remote effect technique, however, are of general interest, for example also for gas pipelines. In the chapter on working material, a very good summary of today's pipe working material including the thermomechanically treated steels is given. Besides methods of improving the toughness, the problems of the corrosion caused by strain cracking and the ways of avoiding it are pointed out. The pipe producing methods and, in the end of the chapter, the tests in the factory are explained. The section of laying deals with the laying methods being applied for years in pipeline construction, a big part referring to welding methods and tests. Active and passive corrosion protection are explained with all details. In addition to the solidity calculation presented with special regard to concerns of petroleum pipelines, theoretical fundaments and calculation methods for pressure are dealt with. Beside general questions of pumps, accessories, and drives, there is a section dealing with measurement and control techniques. Furthermore, remote effect and transmission techniques and news systems are explained in detail. Here, problems are referred to which are applicable not only to the operation of mineral oil pipelines. The book is completed by indications as to pipeline operation emphasizing general operation control, maintenance, repair methods and damage and their elimination. The last chapter contains a collection of the legal fundaments and the technical rules.

  14. Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns

    Directory of Open Access Journals (Sweden)

    Daniel J. Zimmerle

    2017-11-01

    Full Text Available Gathering pipelines, which transport gas from well pads to downstream processing, are a sector of the natural gas supply chain for which little measured methane emissions data are available. This study performed leak detection and measurement on 96 km of gathering pipeline and the associated 56 pigging facilities and 39 block valves. The study found one underground leak accounting for 83% (4.0 kg CH4/hr of total measured emissions. Methane emissions for the 4684 km of gathering pipeline in the study area were estimated at 402 kg CH4/hr [95 to 1065 kg CH4/hr, 95% CI], or 1% [0.2% to 2.6%] of all methane emissions measured during a prior aircraft study of the same area. Emissions estimated by this study fall within the uncertainty range of emissions estimated using emission factors from EPA’s 2015 Greenhouse Inventory and study activity estimates. While EPA’s current inventory is based upon emission factors from distribution mains measured in the 1990s, this study indicates that using emission factors from more recent distribution studies could significantly underestimate emissions from gathering pipelines. To guide broader studies of pipeline emissions, we also estimate the fraction of the pipeline length within a basin that must be measured to constrain uncertainty of pipeline emissions estimates to within 1% of total basin emissions. The study provides both substantial insight into the mix of emission sources and guidance for future gathering pipeline studies, but since measurements were made in a single basin, the results are not sufficiently representative to provide methane emission factors at the regional or national level.

  15. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  16. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  17. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  18. 77 FR 34123 - Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0100] Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines AGENCY: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, DOT. ACTION...

  19. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  20. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  1. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  2. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Regulations to require operators of gas distribution pipelines to develop and implement integrity management...

  3. Europe's gas imports via pipelines. Projects and safety aspects; Europas Gasimporte durch Pipelines. Projekte und Sicherheitsaspekte

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, R.

    2008-08-15

    By the year 2030 Europe's gas imports will have risen to approximately 200 bn m{sup 3}, necessitating the installation of new pipelines and LNG terminals. The largest growth in imports is not expected from Russia but from Africa and the Near East. An analysis of projected pipelines demonstrates these regions' contribution to securing Europe's gas supply. Because they help to establish market dominance or to fend off potential competitors these pipelines also serve corporate strategies. The most reliable supply will continue to come from Norway. By contrast, gas imports via pipelines from North Africa, Russia and the Persian Gulf all carry high risks of approximately the same degree. The greatest risks are associated with gas imports from the Caspian Sea.

  4. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  5. Black powder removal in a Mexico gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, John R. [TDW Services, Inc., New Castle, DE (United States); Drysdale, Colin; Warterfield, Bob D. [T.D.Williamson, Inc., Tulsa, OK (United States)

    2008-07-01

    This paper focuses on the cleaning methodology and operational constrains involved with the removal of black powder in a high pressure natural gas transmission pipeline. In this case, the accumulation of black powder along the pipeline system over the seven year period since it was put into service was creating significant problems in the areas of maintenance, customer relations, and cost to the pipeline operator due to clogging of filters, reduced gas flow, and penalties as result of non-compliant delivery contracts. The pipeline cleaning project consisted of running cleaning pigs or scrappers with batches of cleaning solution through each section of the pipeline while dealing with such factors as three (3) pipeline section lengths in excess of 160 kms (100 miles), gas flow velocity fluctuations, shutdowns, and gas delivery schedule requirements. The cleaning program for the entire pipeline system included the use of chemical and diesel based cleaning solution, running multiple cleaning pigs, liquid injection and separation system, mobile storage tanks, various equipment and personnel for logistical support. Upon completion of the cleaning program, the level of black powder and other solids in all pipeline sections was reduced to approximately 0.5% liquid/solid ratio and the pipeline system returned to normal optimum operation. (author.

  6. Hydrogeological considerations in northern pipeline development. [Permafrost affected by hot or chilled pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Harlan, R L

    1974-11-01

    Some of the hydrogeological implications of construction and operation of oil and gas pipelines in northern regions of Canada are considered in relation to their potential environmental impacts and those factors affecting the security of the pipeline itself. Although the extent to which water in permafrost participates in the subsurface flow regime has not been fully demonstrated, the role of liquid as well as vapor transport in frozen earth materials can be shown from theory to be highly significant; water movement rates in frozen soil are on the same order as those in unsaturated, unfrozen soil. Below 0/sup 0/C, the unfrozen water content in a fine-grained porous medium is dependent on temperature but independent of the total water content. The thermal gradient controls the rate and direction of water movement in permafrost. The groundwater stabilizes the streamflow and in the absence of large lakes provides the main source of flow during the winter. As groundwater is frequently confined by the permafrost, degradation of the permafrost can have significant consequences. The thaw bulb formed around a hot oil pipeline can induce liquefactioned flow of the thawed material. A chilled pipeline could restrict groundwater movement, resulting in buildup of artesian conditions and icings. The liberation and absorption of latent heat on freezing and thawing affects the thermal regime in the ground surface. Recommendations are given for pipeline construction and areas for further study pointed out. (DLC)

  7. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  8. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  9. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  10. Effects of C and Si on strain aging of strain-based API X60 pipeline steels

    Science.gov (United States)

    Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong

    2017-05-01

    Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.

  11. A SWOT Analysis of the Nabucco Pipeline from Romania’s Point of View

    Directory of Open Access Journals (Sweden)

    Mariana Papatulica

    2009-07-01

    Full Text Available European Union energy sources are supposed to be sufficient to cover expected growth of natural gas demand for the coming decades, but there are not enough opportunities/infrastructure to transport these volumes of gas to European markets. Arbitrary interruptions of Russia gas deliveries towards Europe, the delays in the rehabilitation of its obsolete pipeline network, the interdiction of direct Asian gas exports transit through Russian transport infrastructure, made stringently necessary for European countries to diversify gas suppliers’ portfolio, by avoiding Russian territory. Nabucco pipeline was conceived as an alternative to European Union countries’ high dependence on Russian gas (about 40% of their consumption is provided by Russia, by connecting European Union countries directly to the huge natural gas resources of Central Asia, on the route Turkey – Bulgaria – Romania – Hungary – Austria. The purpose of this paper is to make a SWOT analysis of this project, highlighting its strengths and weakness from Romania’s point of view, as well as the opportunities and threats as external factors. The main idea resulting from the analysis is that strengths are prevailing for Romania. The turning to account of this project will ensure the diversification of gas sources and the development of competitive markets which can entail price reduction. It is supposed to be a fair and advantageous option, economically reliable, that will reduce dependence on deliveries of gas from a single source – Russia, ensuring two undeniable prerequisites: accessibility (to new supply sources and availability (which refers to guarantees of long term sustainability of gas deliveries. The project implementation will allow energy to help to establish new structural links between the EU, Turkey and the Caspian Sea states and will ensure transfrontier cooperation possibilities inside some euro-regions already constituted, by accessing regional development

  12. Using industry ROV videos to assess fish associations with subsea pipelines

    Science.gov (United States)

    McLean, D. L.; Partridge, J. C.; Bond, T.; Birt, M. J.; Bornt, K. R.; Langlois, T. J.

    2017-06-01

    Remote Operated Vehicles are routinely used to undertake inspection and maintenance activities of underwater pipelines in north-west Australia. In doing so, many terabytes of geo-referenced underwater video are collected at depths, and on a scale usually unobtainable for ecological research. We assessed fish diversity and abundance from existing ROV videos collected along 2-3 km sections of two pipelines in north-west Australia, one at 60-80 m water depth and the other at 120-130 m. A total of 5962 individual fish from 92 species and 42 families were observed. Both pipelines were characterised by a high abundance of commercially important fishes including: snappers (Lutjanidae) and groupers (Epinephelidae). The presence of thousands of unidentifiable larval fish, in addition to juveniles, sub-adults and adults suggests that the pipelines may be enhancing, rather than simply attracting, fish stocks. The prevalence and high complexity of sponges on the shallower pipeline and of deepwater corals on the deeper pipeline had a strong positive correlation with the fish abundance. These habitats likely offer a significant food source and refuge for fish, but also for invertebrates upon which fish feed. A greater diversity on the shallower pipeline, and a higher abundance of fishes on both pipelines, were associated with unsupported pipeline sections (spans) and many species appeared to be utilising pipeline spans as refuges. This study is a first look at the potential value of subsea pipelines for fishes on the north-west shelf. While the results suggest that these sections of pipeline appear to offer significant habitat that supports diverse and important commercially fished species, further work, including off-pipeline surveys on the natural seafloor, are required to determine conclusively the ecological value of pipelines and thereby inform discussions regarding the ecological implications of pipeline decommissioning.

  13. Safety of long-distance pipelines. Probabilistic and deterministic aspects; Sicherheit von Rohrfernleitungen. Probabilistik und Deterministik im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Hollaender, Robert [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement

    2013-03-15

    The Committee for Long-Distance Pipelines (Berlin, Federal Republic of Germany) reported on the relation between deterministic and probabilistic approaches in order to contribute to a better understanding of the safety management of long-distance pipelines. The respective strengths and weaknesses as well as the deterministic and probabilistic fundamentals of the safety management are described. The comparison includes fundamental aspects, but is essentially determined by the special character of the technical plant 'long-distance pipeline' as an infrastructure project in the area. This special feature results to special operation conditions and related responsibilities. However, our legal system 'long-distance pipeline' does not grant the same legal position in comparison to other infrastructural facilities such as streets and railways. Thus, the question whether and in what manner the impacts from the land-use in the environment of long-distance pipelines have to be considered is again and again the initial point for the discussion on probabilistic and deterministic approaches.

  14. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  15. Maritimes and Northeast Pipeline capacity : ensuring adequate pipeline infrastructure to meet incoming LNG

    International Nuclear Information System (INIS)

    Whitwham, R.

    2005-01-01

    An overview of natural gas demand in the United States and Canada was presented with reference to demand growth, tight supply versus demand, high levels of volatility, and new frontier and nonconventional supplies. Graphs illustrating natural gas demand for use in power generation, industry, commerce and the residential sector were presented. A supply forecast indicates that the decline in conventional supply will be offset by non-conventional sources. Canadian production is expected to remain flat through 2015, while imports of liquefied natural gas (LNG) are expected to grow to 15 per cent by 2015. New sources are forecasted to reach 45 per cent of gas supply by 2015. The issue of rising natural gas prices and its influence on the strength of northeast markets was discussed. A profile of the northeast market was also included along with supply opportunities in the Maritimes and New England States. The critical success factors for LNG include supply availability, source country risk factors, shipping capacity, siting approvals and competition. Capital costs, operating costs, maintenance costs and reliability were listed as the factors that should be considered in pipeline expansion projects. figs

  16. 78 FR 41496 - Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0156] Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of advisory committee...

  17. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  18. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  19. Effect of pre-deformation on the fatigue crack initiation life of X60 pipeline steel

    International Nuclear Information System (INIS)

    Zheng, M.; Luo, J.H.; Zhao, X.W.; Bai, Z.Q.; Wang, R.

    2005-01-01

    It is impossible to keep petroleum and natural gas transmission pipelines free from defects in the manufacturing, installation and servicing processes. The damage might endanger the safety of pipelines and even shorten their service life; gas or petroleum release due to defects may jeopardise the surrounding ecological environments with associated economic and life costs. Pre-tensile deformation of X60 steel is employed to experimentally simulate the influence of dents on the fatigue crack initiation life. The investigation indicates that the fatigue crack initiation life of pre-deformed X60 pipeline steel can be assessed by a previously proposed energetic approach. The threshold for crack initiation increases with the pre-deformation due to a strain hardening effect, while the fatigue resistant factor exhibits a maximum with pre-deformation owing to its special dependence on fracture strain and fracture strength. The result is expected to be beneficial to the understanding of the effect of damage on the safety of pipelines and fatigue life prediction

  20. Simplified Technique for Predicting Offshore Pipeline Expansion

    Science.gov (United States)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  1. Application of risk assessment techniques to 'major hazard' pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R A

    1982-12-01

    A risk analysis for a hazardous-material pipeline (carrying LPG, ammonia, or high-pressure gas) is presented. The analysis gives results in a form that will assist the decisionmaker in pipeline planning and route selection. The large inventory of hazardous materials in such pipelines means that risks exist even though the accident record of pipeline transportation compares favorably with that for competing modes of transport. Risk analysis techniques - commonly used in the civil aviation, nuclear, and process industries - can be equally well applied to pipelines and can produce results that not only give a measure of the risk but also indicate the principal sources of risk and possible areas for improvement. A number of pipeline risk analyses have demonstrated the viability of the technique and its usefulness as an aid to practical engineering in design, planning, and maintenance/repair phases.

  2. North America pipeline map

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This map presents details of pipelines currently in place throughout North America. Fifty-nine natural gas pipelines are presented, as well as 16 oil pipelines. The map also identifies six proposed natural gas pipelines. Major cities, roads and highways are included as well as state and provincial boundaries. The National Petroleum Reserve is identified, as well as the Arctic National Wildlife Refuge. The following companies placed advertisements on the map with details of the services they provide relating to pipeline management and construction: Ferus Gas Industries Trust; Proline; SulfaTreat Direct Oxidation; and TransGas. 1 map

  3. 76 FR 303 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2011-01-04

    ... leak detection requirements for all pipelines; whether to require the installation of emergency flow... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 195 [Docket ID PHMSA-2010-0229] RIN 2137-AE66 Pipeline Safety: Safety of On-Shore Hazardous Liquid...

  4. Distributed fiber optic sensing enhances pipeline safety and security

    Energy Technology Data Exchange (ETDEWEB)

    Frings, Jochen; Walk, Tobias [ILF Consulting Engineers, Munich (Germany)

    2011-09-15

    Pipelines are efficient, highly reliable and safe means of transportation. However, despite intensive right of way surveillance by foot, car and out of the air, pipeline leaks and illegal tappings are a reality - sometimes with catastrophic results. These events show a gap in real-time monitoring caused by the highly distributed nature of pipelines. Parts of this gap now can be closed with distributed fiber optic sensing technology. Using various physical effects this technology is apt to detect temperature, strain, vibrations and sound with very good localization over spans up to 50 km with a single sensor cable. Various field tested applications like leakage detection, third party activity monitoring and intrusion detection or ground movement detection as well as integrity monitoring proof that distributed fiber optic sensing can enhance pipeline safety and security. (orig.)

  5. Upgrade of pipelines operated in a Polish conditions in accordance with European Standards

    International Nuclear Information System (INIS)

    Witek, M.

    2007-01-01

    This paper presents some aspects of changing polish technical requirements concerning high pressure gas pipelines in accordance with European Norm 1594 '' Gas supply system. Pipelines with maximum operating pressure over 16 bar. Functional requirements ''. An additional class location of the steel pipelines was analyzed and supported by the results on numerous pipeline cases in Poland. Minimum distances between pipelines and buildings are given as a proposal to upgrading polish technical law in the area of the gas grid. Special attention in analysis was given to the polish existing high pressure gas network and calculation examples of existing types of steel used in pipeline construction in the past. (author)

  6. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  7. 76 FR 29333 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under...

  8. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  9. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Zhong Yong; Xiao Furen; Zhang Jingwu; Shan Yiyin; Wang Wei; Yang Ke

    2006-01-01

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  10. 77 FR 16471 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-03-21

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Register (75 FR 72878) titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting...

  11. Quantitative risk analysis in two pipelines operated by TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Claudio B. [PETROBRAS Transporte S/A (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Pinho, Edson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Bittencourt, Euclides [Centro Universitario FIB, Salvador , BA (Brazil)

    2009-07-01

    Transportation risk analysis techniques were used to study two pipelines operated by TRANSPETRO. The Pipeline A is for the simultaneous transportation of diesel, gasoline and LPG and comprises three parts, all of them crossing rural areas. The Pipeline B is for oil transportation and one of its ends is located in an area of a high density population. Both pipelines had their risk studied using the PHAST RISK{sup R} software and the individual risk measures, the only considered measures for license purposes for this type of studies, presented level far below the maximum tolerable levels considered. (author)

  12. Outlook '98 - Gas and oil pipelines

    International Nuclear Information System (INIS)

    Curtis, B.

    1998-01-01

    Due to rising North American demand, especially by the United States, by the end of 1997 there were plans to build 15 new pipelines over the next three years, at an estimated cost of $17 billion. Canada''s proximity to the United States, combined with huge Canadian reserves, and the fact that Canada already supplies some 15 per cent of U.S. requirements, makes Canada the obvious choice for filling future demand. This explains why most, if not all, current pipeline expansion projects are targeting markets in the U.S. Market forces will determine which of the projects will actually go forward. From the point of view of the Canadian Energy Pipeline Association pipeline regulatory reform, pipeline safety, integrity and climate change will be the Association''s key concerns during 1998. To that end, the Association is cooperating with the National Energy Board in a multi-million dollar study of stress corrosion cracking. The Association has also developed a Manual of Recommended Practices for the use of member companies to assist them to tailor stress corrosion cracking practices to their own operations. Meeting Canada''s commitment at the Kyoto Conference for greenhouse gas emissions of six per cent below 1990 levels by the year 2008 to 2012 (in effect a 25 per cent reduction from the level anticipated in the year 2000), a very difficult task according to industry experts, is also among the high priority items on the pipeline industry''s agenda for 1998

  13. New heavy aggregate for offshore petroleum pipeline concrete coating Central West Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2014-12-01

    Full Text Available In this paper the local materials used in concrete mix are studied in a manner that they can resist the aggressive marine environment and mechanical damage, which can occur at several stages during transportation, construction and installation of the pipelines. In earlier studies we succeeded in finding the Egyptian ilmenite ore adequate for concrete weight coating and already utilized for many pipeline projects in Egypt. According to the presence of about 30% titanium oxides in ilmenite composition which may be extracted to be used in others strategically fields, the object of this paper is to study and evaluate the mechanical, chemical and physical properties of another local hematite high density iron ore to be used in subsea concrete weight coating for offshore petroleum pipelines. The results indicate that the local material of Um Bogma hematite iron ore can substitute both imported iron ore and local ilmenite from Abu Ghalaga in this field to reduce the cost effective and increased economical value of local ores. Laboratory and field tests were conducted for the hematite ore forming a concrete mix, composed of hematite ore, cement and fresh water according to international concrete coating specification requirements, the ore produces a concrete mix with 190–195 pcf minimum dry density and compressive strength, after 28 days of hydration, varying from 40 to 45 N/mm2 (400–450 kg/cm2 which comply with the international standards and specifications of submarine petroleum pipeline coating. In addition, local hematite shows superior results than local ilmenite and achieves 190 pcf instead of 180 pcf in case of using ilmenite.

  14. 75 FR 45591 - Pipeline Safety: Notice of Technical Pipeline Safety Advisory Committee Meetings

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Committee Meetings AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION... safety standards, risk assessments, and safety policies for natural gas pipelines and for hazardous...

  15. Corrosion study of API 5L x-series pipeline steels in 3.5% NaCl solution under varying conditions

    International Nuclear Information System (INIS)

    Shahid, M.; Qureshi, M.I.; Farooq, M.U.; Khan, M.I.

    2003-01-01

    Pipelines provide convenient and efficient means for mass transportation of variety of fluids, such as oil and gas, over varying distances. In the last two decades or so, pipeline designers focused mainly on the usage of larger sizes and higher operating pressures for achieving higher transportation efficiency. This has been accomplished through the provision of steels with progressive increase in yield strength coupled with good weldability and sufficient toughness to restrict crack propagation. In addition to higher strength and toughness, developing pipeline technologies have required improved resistance to corrosion, which has been tried with specific alloy additions and special control over non-metallic inclusions. Corrosion investigations were carried out on various grades of pipeline steels (API 5L X-46, X-52, X-56, X-60 and X- 70) under varying environmental conditions. This paper describes the results pertaining to corrosion behavior of the steels in 3.5% NaCl solutions in stagnant, turbulent and deaerated conditions. It was found that all grades corrode in this solution and their corrosion potentials and corrosion currents are in close vicinity of each other. Turbulent solutions, however, have shown an increase in corrosion rates whereas deaeration has revealed a relative decrease in aggressivity of the electrolyte. (author)

  16. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  17. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  18. Reliability analysis of pipelines under H2S environment as a part of ageing management

    International Nuclear Information System (INIS)

    Santosh; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Ageing management programme in a plant calls for the estimation of remaining life of the component. Reliability analysis methods using remaining life estimation models have found profound application in providing directives in ageing management programme. As a part of ageing management programme of H 2 S based heavy water plants, the remaining life estimation models are applied to the pipelines carrying H 2 S. The pipelines under H 2 S environment are more susceptible to the internal corrosion thereby reducing the pipeline's load carrying capacity. The objective of this study is to obtain the remaining life of pipelines under ageing due to internal corrosion. The ageing assessment of pipelines involves estimating the failure pressure of a pipeline and evaluating the failure surface equation. Several failure pressure models developed for assessing the pipeline's remaining strength due to internal corrosion were studied for this purpose. From the study, it was found that the modified B31G failure pressure model is most suitable for modeling the pipeline failure pressure. Due to the presence of non-linearity in the failure surface equation or limit state function and non-normal variables, the first order second moment method has been employed for carrying out the reliability analysis. The uncertainties of the random variables on which the limit state function depends are modeled using the probability distributions. The failure probabilities of the pipelines have been evaluated for the service lives of 15 and 25 years, which are the present life and designed life respectively. In addition, sensitivity analysis was carried out to identify the most important sensitive parameters in reliability analysis estimation. The paper highlights the application of these methodologies in the context of pipeline remaining life estimation with a suitable case study. (author)

  19. 77 FR 19799 - Pipeline Safety: Pipeline Damage Prevention Programs

    Science.gov (United States)

    2012-04-02

    ... noted ``when the oil pipeline industry developed the survey for its voluntary spill reporting system...) [cir] The American Public Gas Association (APGA) [cir] The Association of Oil Pipelines (AOPL) [cir... the contrary, all 50 states in the United States have a law designed to prevent excavation damage to...

  20. Analytical solutions for peak and residual uplift resistance of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Oswell, J.M. [Naviq Consulting Inc., Calgary, AB (Canada)

    2010-07-01

    Frost heave can occur on cold pipelines that traverse unfrozen, non permafrost terrain. The stresses experienced by the pipeline are partly a function of the strength of the soil on the non heaving side of the frozen-unfrozen interface. This paper proposed three analytical solutions to estimate the soil uplift resistance by considering the pipeline and soil to act similar to a strip footing, a punching shear failure, and by considering the formation of horizontal crack emanating from the spring line of the pipe. Peak uplift resistance and residual uplift resistance were discussed. Results for full scale pipe and for laboratory scale model pipes were presented, with particular reference to cover depth, temperature and crack width; and limits to residual uplift resistance. It was concluded that the peak uplift resistance and the residual uplift resistance are generally independent and controlled by different factors. The peak resistance is related directly to pipe diameter, and less strongly dependent on springline depth. It is also strongly dependent on soil temperature. However, the residual uplift resistance is strongly dependent on burial depth, weakly dependent on pipe displacement rate and also on soil temperature. 15 refs., 19 figs.

  1. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  2. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  3. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  4. Implementation of an integrity management program in a crude oil pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Maria; Tomasella, Marcelo [Oleoductos del Valle, General Roca (Argentina); Rossi, Juan; Pellicano, Adolfo [SINTEC S.A. , Mar del Plata, Buenos Aires (Argentina)

    2005-07-01

    The implementation of an Integrity Management Program (IMP) in a crude oil pipeline system is focused on the accomplishment of two primary corporative objectives: to increase safety operation margins and to optimize available resources. A proactive work philosophy ensures the safe and reliable operation of the pipeline in accordance with current legislation. The Integrity Management Program is accomplished by means of an interdisciplinary team that defines the strategic objectives that complement and are compatible with the corporative strategic business plan. The implementation of the program is based on the analysis of the risks due to external corrosion, third party damage, design and operations, and the definition of appropriate mitigation, inspection and monitoring actions, which will ensure long-term integrity of the assets. By means of a statistical propagation model of the external defects, reported by high-resolution magnetic inspection tool (MFL), together with the information provided by corrosion sensors, field repair interventions, close internal surveys and operation data, projected defect depth; remaining strength and failure probability distributions were obtained. From the analysis, feasible courses of action were established, including the inspection and repair plan, the internal inspection program and both corrosion monitoring and mitigation programs. (author)

  5. Method of drying long-distance pipelines in sections

    Energy Technology Data Exchange (ETDEWEB)

    Steinhaus, H.; Meiners, D.

    1989-04-11

    This invention provides a method of drying long distance pipelines using a vacuum, and provides high-quality drying over the whole length of the pipeline in a manageable and easily followed process. Evacuation of the pipeline is effected by means of a vacuum pump located at least at one point of the section of pipeline. The section is subsequently scavenged or flooded with scavenging gas. After a predetermined reduced pressure is reached, and while the vacuum pump continues to draw off, a scavenging is effected from the end or ends remote from the evacuation point with a molar flow rate of the stream of scavenging gas that is equal to or less than the evacuation stream in throughput, at least initially. The scavenging is effected not from the evacuation point, but from a remote point, and is also effected with a feed speed or feed amount that is throttled at least initially. This ensures that no condensation occurs even in the inner walls of the pipeline.

  6. Reliability-based assessment of flow assurance of hot waxy crude pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jinjun, Zhang; Wenke, Zhang; Jianlin, Ding; Bo, Yu [China University of Petroleum - Beijing (CUPB), Beijing (China)

    2009-07-01

    Waxy crude is characterized by its high pour point. Pipeline blockage may occur after prolonged shutdown of a pipeline due to crude oil gelation. Another flow assurance problem is the instable operation at a flow rate below the lowest allowable operation flow rate which is dependent on heat transfer of the pipeline and the viscosity vs. temperature relation of the crude pumped. Besides, for pipelines with thick wax deposition layer, massive depletion of wax deposit in some cases such as pipeline restart at high expelling pressure may also result in blockage of the pipeline, and the pig may be jammed during pigging as a result of thick wax deposition. Conventionally, assessment of these risks has been made by using the deterministic approach. However, many related physical quantities are subject to uncertainty and contribute to reliability of flow assurance. Therefore, the probabilistic approach is suggested and a framework of reliability based assessment of flow assurance of waxy crude pipelines is proposed in this paper. Discussions are also made on the limit state functions and target safety level. In the future study, development of an efficient and robust stochastic-numerical method is crucial. (author)

  7. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  8. Alternate current interference in pipeline; Interferencia por corrente alternada em dutos

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Joao Hipolito de Lima [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper regards to the concerning that the pipeline operators should take in to account to better understand and control the alternate current interference (AC- interference). Pipelines sharing rights-of-way with AC high voltage power lines are subjected to AC interference that can cause risk for personnel, operational safety and environment. The AC-interference shall be evaluated, in such way that mitigating action can be applied in order to assure the pipeline is operated in a safety way. The AC-interference evaluation should take in to account the pipeline and the electrical generation/transmission design data. Three approaches are considered: the coating integrity, the personnel chock hazards and the pipeline integrity. The coating integrity is affected by the possibility of high-voltage be induced on the pipeline during power line current fault. The operation and maintenance personnel can be prone to chock hazards (touch voltage and step voltage), depending upon the level of the induced voltage on the pipeline and the ground current. An induced voltage evaluation is then necessary to identify AC potentials in pipeline higher than the safe criteria. The pipeline integrity is concerning to the possibility of occurring alternate current corrosion (AC-corrosion) on the pipe wall. This kind of corrosion is still been investigated, and although it is less critical than the direct current corrosion, it can happen in specific situation. Parameters that affect AC-corrosion are discussed in this paper. Finely it is presented a brief guide to evaluate the possibility of occurring AC- interference in a pipeline and a mitigation measures summary. (author)

  9. Material property relationships for pipeline steels and the potential for application of NDE

    Science.gov (United States)

    Smart, Lucinda; Bond, Leonard J.

    2016-02-01

    The oil and gas industry in the USA has an extensive infrastructure of pipelines, 70% of which were installed prior to 1980, and almost half were installed during the 1950s and 1960s. Ideally the mechanical properties (i.e. yield strength, tensile strength, transition temperature, and fracture toughness) of a steel pipe must be known in order to respond to detected defects in an appropriate manner. Neither current in-ditch methods nor the ILI inspection data have yet determined and map the desired mechanical properties with adequate confidence. In the quest to obtain the mechanical properties of a steel pipe using a nondestructive method, it is important to understand that there are many inter-related variables. This paper reports a literature review and an analysis of a sample set of data. There is promise for correlating the results of NDE measurement modalities to the information required to develop relationships between those measurements and the mechanical measurements desired for pipelines to ensure proper response to defects which are of significant threat.

  10. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  11. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  12. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2012-01-01

    Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst.......Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst....

  13. Inspection of the Sloka Branch pipeline. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    By agreement between Latvijas gaze and DONG (the Danish State Gas Company) the Sloka branch on the main gas pipeline Riga-Liepaja was selected for inspection. This pipeline is 30.5 km long and was constructed in 1966/67. The objective of the project has been, based on detailed inspection of relative short lengths of pipe, to determine the integrity of the pipeline and to give advice concerning the continued use as a high pressure transmission pipeline. A further objective has been to provide Latvijas gaze with a package of modern cathodic protection measuring instruments and the necessary know-how for using the instruments. The objectives have been met as follows: Based on a document review together with measurements and observations in the field and in the laboratory, the condition of approximately 10 km of pipeline has been evaluated; Recommendations are given in this report with the aim of extending the life of the pipeline; A cathodic protection instrument package was delivered and a two week training course was arranged in Latvia for Latvijas gaze`s staff covering the use of the instruments. (EG)

  14. 49 CFR 195.210 - Pipeline location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid, as...

  15. Incidental electric heating of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sonninskii, A V; Sirotin, A M; Vasiliev, Y N

    1981-04-01

    VNIIgaz has improved the conventional Japanese SECT pipeline-heating system, which uses a small steel tube that contains an insulated heater/conductor and is welded to the top of the pipeline. The improved version has two insulated electric heaters - one on the top and the other on the bottom of the pipeline - located inside steel angle irons that are welded to the pipeline. A comparison of experimental results from heating a 200-ft pipeline with both systems at currents of up to 470 A clearly demonstrated the better heating efficiency of the VNIIgaz unit. The improved SECT system would be suitable for various types of pipelines, including gas lines, in the USSR's far north regions.

  16. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements.'' The final rule...

  17. 77 FR 36606 - Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public Meeting

    Science.gov (United States)

    2012-06-19

    ...: Threat Prevention --Working Group 2: Leak Detection/Mitigation & Storage --Working Group 3: Anomaly... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0146] Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public...

  18. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  19. Pipelines and salmon in northern British Columbia : potential impacts

    International Nuclear Information System (INIS)

    Levy, D.A.

    2009-10-01

    Four pipeline projects have been proposed for northern British Columbia that could threaten the health of the Fraser, Skeena, and Kitimat watersheds. The pipelines will expose salmon to risks on several fronts. Enbridge's Northern Gateway pipeline project has generated the most concern for a several reasons, including the risks to salmon and freshwater habitat from pipeline failures, notably leaks or ruptures. This paper reviewed the salmon resources in affected watersheds; salmon and BC's economy; salmon diversity and abundance; impacts on fish from pipeline construction, operations and failures; behaviours of different petroleum products in fresh water; hydrocarbon toxicity; history of pipeline failures; sabotage and natural disasters; and Canadian case studies. Salmon are already experiencing stresses from forestry, hydro-electricity, transportation, agriculture, mining, mountain pine beetle, climate change and coalbed methane development. Their cumulative impact will dictate the long-term health and viability of salmon. It was concluded that if all of the proposed pipelines were built, they would extend over 4,000 km, crossing more than 1,000 rivers and streams in some of Canada's most productive salmon habitat. During construction, pipeline stream crossings are vulnerable to increased sedimentation, which can degrade salmon habitat. In the event of a spill, the condensate and oil sands products carried in the pipelines are highly toxic to salmon, with serious and lasting adverse impacts on salmon and their habitat. Any decision to approve such a pipeline should be made in recognition of these risks. 73 refs., 5 tabs., 15 figs., 2 appendices.

  20. Pipeline mapping and strain assessment using ILI (In-line Inspection) tolls

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, Brian [GE PII Pipeline Solutions, Rio de Janeiro, RJ (Brazil); Huewener, Thomas [E.ON Ruhrgas AG, Essen (Germany)

    2009-07-01

    GE PII IMU Mapping inspection system measures pipeline location coordinates (x, y, z) and provides data for determining pipeline curvature and consequential pipeline bending strain. The changes in strain can be used in the application of structural analyses and integrity evaluation of pipeline systems. This paper reviews the Inertia Measuring Unit (IMU) system and field investigation works performed on a high-pressure gas pipeline for E.ON Ruhrgas AG. The Inertial Measuring Unit of the pipeline inspection tool provides continuous measurement of the pipeline centreline coordinates. More than one inspection run was performed which allowed a more accurate strain comparison to be made. Repeatability is important to establish the reasons for increasing strain values detected at specific pipeline sections through in-line inspection surveys conducted in regular intervals over many years. Moreover, the flexibility resulting from a combination of different sensor technologies, makes it possible to provide a more complete picture of the overall situation. This paper reviews the work involved in detecting, locating and determining the magnitude and type of strain corresponding to the pipeline movement in field. (author)

  1. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  2. Pipeline four-dimension management is the trend of pipeline integrity management in the future

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong; Feifan; Zhongchen, Han [China National Petroleum Corporation (CNPC), Beijing (China)

    2009-07-01

    Pipeline integrity management is essential for today's operators to operate their pipelines safety and cost effectively. The latest developments of pipeline integrity management around the world are involved with change of regulation, industry standard and innovation of technology. And who know the trend of PIM in the future, which can be answered in the paper. As a result, the concept of P4DM was set up firstly in the world. The paper analyzed the pipeline HSE management, pipeline integrity management (PIM) and asset integrity management (AIM), the problem of management was produced, and also the Pipeline 4-dimension Management (P4DM) theory was brought forward. According to P4DM, from the hierarchy of P4DM, the management elements, fields, space and time was analyzed. The main content is P4DM integrate the space geography location and time, control and manage the pipeline system in whole process, anywhere and anytime. It includes the pipeline integrity, pipeline operation and emergency, which is integrated by IT system. It come true that the idea, solution, technology, organization, manager alternately intelligently control the process of management. What the paper talks about included the definition of pipeline 4D management, the research develop of P4DM, the theory of P4DM, the relationship between P4DM and PIM, the technology basis of P4DM, how to perform the P4DM and conclusion. The P4DM was produced, which provide the development direction of PIM in the future, and also provide the new ideas for PetroChina in the field of technology and management. (author)

  3. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  4. Experience with two pipeline river crossings in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Yaremko, Eugene [Northwest Hydraulic Consultants (NHC), Edmonton (Canada); D' Agnillo, Pablo; Diaz, Jose A. [Minera Alumbrera XTRADA Copper S.A., Buenos Aires (Argentina); Bravo, Claudio

    2009-12-19

    The Alumbrera copper-gold mine located in the Province of Catamarca, northwest region of Argentina, commenced operation in October, 1997. Mine development included a 316 km long, 175 mm diameter slurry pipeline that conveys copper concentrate to a dewatering facility near the city of Tucuman, Province of Tucuman. It became apparent during the first few years of operation that, given the many potential risks of pipeline exposure associated with stream crossings, Minera Alumbrera would have to undertake an aggressive, formal program of risk management of crossings and risk mitigation. In this paper, the experience associated with two crossings is addressed: Rio Villavil; and, Rio Gastona. The original pipeline route through the 10 km length of pipeline connecting Pump Station (PS) 2 to PS 3 was directed along the bottom of the Rio Villavil valley, with most of it located within the flood way of the stream. The exposure of the pipeline at some locations and high risk of further pipeline exposures led to initiation of risk mitigation planning. Remediation work was completed by 2008. Rio Gastona, during the summer of 2001, experienced rapid shifting of the left bank at the crossing resulting in an undermined and unsupported length of pipeline. The subsequent risk mitigation method adopted in 2001 involved the planning and construction of groyne fields along both banks. (author)

  5. Pipelines to eastern Canada

    International Nuclear Information System (INIS)

    Otsason, J.

    1998-01-01

    This presentation focused on four main topics: (1) the existing path of pipelines to eastern Canada, (2) the Chicago hub, (3) transport alternatives, and (4) the Vector Pipeline' expansion plans. In the eastern Canadian market, TransCanada Pipelines dominates 96 per cent of the market share and is effectively immune to expansion costs. Issues regarding the attractiveness of the Chicago hub were addressed. One attractive feature is that the Chicago hub has access to multiple supply basins including western Canada, the Gulf Coast, the mid-continent, and the Rockies. Regarding Vector Pipelines' future plans, the company proposes to construct 343 miles of pipeline from Joliet, Illinois to Dawn, Ontario. Project description included discussion of some of the perceived advantages of this route, namely, extensive storage in Michigan and south-western Ontario, the fact that the proposed pipeline traverses major markets which would mitigate excess capacity concerns, arbitrage opportunities, cost effective expansion capability reducing tolls, and likely lower landed costs in Ontario. Project schedule, costs, rates and tariffs are also discussed. tabs., figs

  6. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Science.gov (United States)

    2013-07-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION...

  7. Induced AC voltages on pipelines may present a serious hazard

    International Nuclear Information System (INIS)

    Kirkpatrick, E.L.

    1997-01-01

    The problem of induced AC voltages on pipelines has always been with us. Early pipeline construction consisted of bare steel or cast iron pipe, which was very well grounded. Bell and spigot, mechanical, or dresser-style joint couplings often were used, creating electrically discontinuous pipelines which are less susceptible to AC induction. Although induced AC affects any pipeline parallel to a high-voltage alternating current (HVAC) power line, the effects were not noticeable on bare pipelines. With the advent of welded steel pipelines, modern cathodic protection (CP) methods and materials, and the vastly improved quality of protective coatings, induced AC effects on pipelines have become a significant consideration on many pipeline rights-of-way. In the last two to three decades, one has been seeing much more joint occupancy of the same right-of-way by one or more pipelines and power lines. As the cost of right-of-way and the difficulty in acquisition, particularly in urban areas, have risen, the concept of joint occupancy rights-of-way has become more attractive to many utility companies. Federal and state regulations usually insist on joint-use right-of-way when a utility proposes crossing regulated or publicly owned lands, wherever there is an existing easement. Such joint use allows the induced AC phenomena to occur and may create electrical hazards and interference to pipeline facilities. Underground pipelines are especially susceptible if they are well-coated and electrically isolated for CP

  8. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  9. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Putting the coal slurry pipelines to the test

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, H B

    1978-03-01

    This paper deals with the advantages and disadvantages of coal slurry pipelines and describes coal slurry tests undertaken in three test circuits with 100, 200 and 250 mm diameter pipes. The test results from the test circuits were used to scale-up pressure gradients to larger pipe diameters. The construction and installation of hydraulic transport pipelines is simple and requires a minimum of space. The crossing of rivers, roads, railways or any other obstacles is comparatively easy. The operation, supervision and maintenance of a pipeline is simple since any pipeline can be easily adapted for fully automatic control. For this reason manpower requirements are small resulting in only small increases in operating costs during the life of a pipeline. This is an attractive feature in any economy troubled by inflationary trends. In transporting a commodity such as coal the quantities handled are usually large and the distances are long. The profitability of hydraulic transportation systems benefits from such operating conditions. Even though the various components of a slurry transport system, such as the slurrying facilities at the mine end and the dewatering facilities at the utilization end, are complex, their reliability is high. Against the advantages, the following limitations can be visualized: It is practically impossible to transport solids other than those for which the pipeline was designed; in this regard, road and rail transportation is more versatile. The solids throughput through a pipeline cannot be economically increased beyond its design throughput. Pipelining involves the use of fluids, in most cases water, which in some instances may not be readily available.

  12. Influence of soil properties on the behavior of heated on bottom pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Hallai, Julian [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Offshore pipelines have increasingly been operating at high temperatures and high pressures. Compression due to these loads can lead to global buckling, either laterally and/or vertically, depending on the burial depth and soil properties. The amount of embedment of pipelines directly laid on the seabed depends on the soil properties and influences the behavior of pipelines in operation. This work investigates the interaction between the vertical and lateral buckling modes, based on the analytical approach proposed for pipeline global buckling analysis by Hobbs. Furthermore, it presents a sensitivity study characterizing the impact of the determination of accurate soil properties. Finally, a conceptual design procedure, which takes into account the particular case of short pipelines, is provided. The method is presented by means of an example case. (author)

  13. Integrated diagnostics of northern gas pipelines; Diagnostic integre des gazoducs septentrionaux

    Energy Technology Data Exchange (ETDEWEB)

    Volsky, E.; Dedikov, E.; Ananenkov, A.; Salchov, Z.; Yakupov, Z. [Joint-Stock Company, Gazprom (Russian Federation)

    2000-07-01

    The main part of gas joint - stock company 'Gazprom' extracts from the northern deposits, which are situated in the permafrost zone. Ensuring of gas transporting pipeline's safety operation is a very complex and priority problem. On the basis of usage of this complex of methods the problem to ensure the safety operation is solved systematically: gas-mine - plant IV - derivation pipelines (condensate pipeline Yamburg Novy Urengoy, gas pipeline IV - GCS with negative temperature of transported products) taking into account 'co-ordination' dynamics of changes in pipeline GTS and technological modes of equipment operation. All researches was executed on the high professional level. (authors)

  14. Alternate seismic support for pipeline systems in nuclear power plants

    International Nuclear Information System (INIS)

    Muthumani, K.; Gopalakrishnan, N.; Sathish Kumar, K.; Sreekala, R.; Rama Rao, G.V.; Reddy, G.R.; Parulekar, Y.M.

    2008-01-01

    Failure free design of supporting systems for pipe lines carrying highly toxic or radioactive liquids at very high temperature is an important issue in the safety aspect for a nuclear power plant installation which is a key topic for researchers all around the world. Generally, these pipeline systems are designed to be held rigid by conventional snubber supports for protection from earthquakes. The piping design must balance seismic deformations and other deformations due to thermal effect. A rigid pipeline system using conventional snubber supports always leads to an increase in thermal stresses; hence a rational seismic design for pipeline supporting systems becomes essential. Contrary to this rigid design, it is possible to design a flexible pipeline system and to decrease the seismic response by increasing the damping through the use of passive energy absorbing elements, which dissipate vibration energy. This paper presents the experimental and analytical studies carried out on modeling yielding type elasto-plastic passive energy-absorbing elements to be used in a passive energy-dissipating device for the control of large seismic deformations of pipelines subjected to earthquake loading. (author)

  15. Logistics aspects of petroleum pipeline operations

    Directory of Open Access Journals (Sweden)

    W. J. Pienaar

    2010-11-01

    Full Text Available The paper identifies, assesses and describes the logistics aspects of the commercial operation of petroleum pipelines. The nature of petroleum-product supply chains, in which pipelines play a role, is outlined and the types of petroleum pipeline systems are described. An outline is presented of the nature of the logistics activities of petroleum pipeline operations. The reasons for the cost efficiency of petroleum pipeline operations are given. The relative modal service effectiveness of petroleum pipeline transport, based on the most pertinent service performance measures, is offered. The segments in the petroleum-products supply chain where pipelines can play an efficient and effective role are identified.

  16. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  17. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji; Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Fujiwara, Atushi; Kawato, Yasuhiko; Nakai, Toshihiro; Nagai, Satoshi; Kobayashi, Takanori; Gojobori, Takashi; Ototake, Mitsuru

    2015-01-01

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  18. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  19. Hydrocarbons pipeline transportation risk assessment

    Science.gov (United States)

    Zanin, A. V.; Milke, A. A.; Kvasov, I. N.

    2018-04-01

    The pipeline transportation applying risks assessment issue in the arctic conditions is addressed in the paper. Pipeline quality characteristics in the given environment has been assessed. To achieve the stated objective, the pipelines mathematical model was designed and visualized by using the software product SOLIDWORKS. When developing the mathematical model the obtained results made possible to define the pipeline optimal characteristics for designing on the Arctic sea bottom. In the course of conducting the research the pipe avalanche collapse risks were examined, internal longitudinal and circular loads acting on the pipeline were analyzed, as well as the water impact hydrodynamic force was taken into consideration. The conducted calculation can contribute to the pipeline transport further development under the harsh climate conditions of the Russian Federation Arctic shelf territory.

  20. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  1. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  2. A Bridge to the Stars: A Model High School-to-College Pipeline to Improve Diversity in STEM

    Science.gov (United States)

    McIntosh, Daniel H.; Jennings, Derrick H.

    2017-01-01

    Increasing participation by historically underrepresented Americans in the STEM workforce remains a national priority. Existing strategies have failed to increase diversity especially in the physical sciences despite federal mandates. To meet this urgent challenge, it is imperative to immediately identify and support the expansion of effective high school-to-college STEM pipelines. A Bridge to the Stars (ABttS) is a creative and tested pipeline designed to steadily increase the numbers of disadvantaged 15-21 year-olds pursuing and completing 4-year STEM degrees. This unique program offers extended engagement in astronomy, arguably the most accessible window to science, through a 3-tier STEM immersion program of innovative learning (in a freshman science course), authentic research training (in a freshman science lab), and supportive near-peer mentoring at U.Missouri-Kansas City, an urban research university. Each tier of the ABttS pipeline by itself has the potential to broaden student aspirations for careers as technological innovators or STEM educators. Students who elect to transition through multiple tiers will substantially reinforce their successes with STEM activities, and significantly bolster their self-esteem necessary to personally manifest STEM aspirations. We will summarize the impact of this program after 5 years, and share our latest improvements. The long-term mission of ABttS is to see urban educational institutions across the U.S. adopt similar pipelines in all STEM disciplines built on the ABttS model.

  3. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  4. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  5. Construction and assembly of pipelines using API 5L grade X80 tubes - considerations to be observed with high-strength steels; Construcao e montagem de dutos terrestres utilizando tubos API 5L Gr. X80

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ailton C. de; Rabello, Jose Mauricio B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The use of line pipes API 5L Grade X80, at the point of view of designer allows: reduction of wall thickness and pipe weight or increase of design pressure. In the pipeline construction point of view, the use of line pipes API 5L Grade X80 provide some advantages, however some difficulties must be expected in several stages of the construction and assembly. The implications in cost, productivity, inspection and integrity, with the application of these high resistance steels, complying with PETROBRAS Standard N - 464 Construcao, Montagem e Condicionamento de Dutos Terrestres (Rev. H - 2004 Dec) and the experience consolidated in pipelines construction abroad were presented. At the design stage, a comparison between pipelines designed using API 5L-X70 and API 5L-X80 was carried out approaching the aspects of variation of thickness, pressure design and design factor. An evaluation of the expected gains when choosing API 5L Grade X80 steels were done, regarding reduction of costs and pipe weight. Regarding API 5L-X80 pipe fabrication, the obtained results were reported, proving that this aspect was already overcome, showing the viability of its production in Brazil. Difficulties were detected regarding construction and assembly stage and showing the need of revision of PETROBRAS standard N-464. (author)

  6. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  7. Local wall thickness reductions in operative high-pressure gas pipelines; Lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [Netzdienste Rhein-Main GmbH, Frankfurt am Main (Germany); Hoffmann, Ulrich [Verbundnetz Gas AG (VNG), Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany); Steiner, Michael [Open Grid Europe GmbH, Essen (Germany)

    2011-04-15

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. (orig./GL)

  8. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    Science.gov (United States)

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  9. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  10. LNG transport through pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, P; Philipps, A

    1975-01-01

    LNG pipelines could help solve some peakshaving problems if operated in conjunction with other facilities that could use the LNG cold recovered during regasification. In some areas at present, LNG is delivered by tanker and regasified near the terminal for transmission through conventional gas pipelines. In other places, utilities liquefy natural gas for easy storage for later peakshaving use. The only chance to avoid the second expensive liquefaction step would be to convey imported LNG through a suitable designed LNG pipeline. The technical problems involved in LNG pipeline construction have basically been solved in recent years, but those pipelines actually constructed have been only short ones. To be economically justified, long-distance LNG lines require additional credit, which could be obtained by selling the LNG cold recovered during regasification to industrial users located in or near the points of gas consumption. Technical details presented cover the pipe material, stress relief, steel composition, pressure enthalpy, bellows-type expansion joints, and mechanical and thermal insulation.

  11. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  12. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  13. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  14. Planned and proposed pipeline regulations

    International Nuclear Information System (INIS)

    De Leon, C.

    1992-01-01

    The Research and Special Programs Administration administers the Natural Gas Pipeline Safety Act of 1968 (NGPSA) and the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA). The RSPA issues and enforces design, construction, operation and maintenance regulations for natural gas pipelines and hazardous liquid pipelines. This paper discusses a number of proposed and pending safety regulations and legislative initiatives currently being considered by the RSPA and the US Congress. Some new regulations have been enacted. The next few years will see a great deal of regulatory activity regarding natural gas and hazardous liquid pipelines, much of it resulting from legislative requirements. The office of Pipeline Safety is currently conducting a study to streamline its operations. This study is analyzing the office's business, social and technical operations with the goal of improving overall efficiency, effectiveness, productivity and job satisfaction to meet the challenges of the future

  15. Effect of oil-pipelines existed in HVTL corridor on the electric field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, H.M. [College of Technological Studies, Kuwait (Kuwait). Dept. of Electrical Engineering

    2007-07-01

    The overhead transmission of large amounts of electricity over long distances requires high transmission voltages which can generate high electric fields that may have harmful effects on both human and animals. Therefore, corridors or right-of-way are left on both sides along the route of transmission lines. Overhead power transmission lines need strips of land to be designated as rights-of-way. These strips of land can also support other uses such as pipelines, railroads and highways. The primary purpose for minimizing the field effects of high voltage AC lines is to reduce the electric field at ground level. This study investigated the effects of oil-pipelines running parallel to the lines in the rights-of-way corridors on the electric fields generated from high voltage electrical networks in Kuwait. In order to examine the impact of certain design parameters on the electric field distribution near the ground surface, this study varied the oil pipelines diameter, the proximity of the pipeline from the transmission line center and the number of pipelines. The objective was to determine if the amount of land which is required as right-of-way can be reduced. This study also examined the effect of two parallel oil pipelines on the field distribution. Both pipelines were separated by a given distance and ran parallel to the transmission line conductors. The charge simulation method (CSM) was used to simulate and model both the conductors of the transmission lines and the oil-pipelines. Graphs for the electric field distribution profiles at the ground surface, at transmission line conductors' surfaces and at the surfaces of the oil pipelines were presented and evaluated for each scenario. 10 refs., 12 figs.

  16. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  17. Chechnya: the pipeline front

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1999-11-01

    This article examines the impact of the Russian campaign against Chechnya on projects for oil and gas pipelines from the new Caspian republics, which are seeking financial support. Topics discussed include the pipeline transport of oil from Azerbaijan through Chechnya to the Black Sea, the use of oil money to finance the war, the push for non-Russian export routes, the financing of pipelines, the impact of the war on the supply of Russian and Turkmenistan gas to Turkey, the proposed construction of the Trans Caspian pipeline, the weakening of trust between Russia and its neighbours, and the potential for trans Caucasus republics to look to western backers due to the instability of the North Caucasus. (UK)

  18. Pipelines in power plants

    International Nuclear Information System (INIS)

    Oude-Hengel, H.H.

    1978-01-01

    Since the end of the Sixties, steam-transporting pipelines are given great attention, as pipeline components often fail, partially even long before their designed operation time is over. Thus, experts must increasingly deal with questions of pipelines and their components. Design and calculation, production and operation of pipelines are included in the discussion. Within the frame of this discussion, planners, producers, operators, and technical surveillance personnel must be able to offer a homogenous 'plan for assuring the quality of pipelines' in fossil and nuclear power plants. This book tries to make a contribution to this topic. 'Quality assuring' means efforts made for meeting the demands of quality (reliability). The book does not intend to complete with well-known manuals, as for as a complete covering of the topic is concerned. A substantial part of its sections serves to show how quality assurance of pipelines can be at least partially obtained by surveillance measures beginning with the planning, covering the production, and finally accompanying the operation. There is hardly need to mention that the sort of planning, production, and operation has an important influence on the quality. This is why another part of the sections contain process aspects from the view of the planners, producers, and operators. (orig.) [de

  19. Alaska-Canada Pipeline Project : getting it done

    Energy Technology Data Exchange (ETDEWEB)

    Brintnell, R. [Enbridge Pipelines Inc., Calgary, AB (Canada)

    2005-07-01

    Enbridge's unique qualifications for the proposed Alaska-Canada pipeline that will extend from Prudhoe Bay, Alaska to Fort Saskatchewan, Alberta was discussed. Enbridge is Canada's largest local distribution company (LDC), handling approximately 14 bcf of natural gas per day through pipeline, processing and marketing. It also operates the world's longest liquids pipeline, delivering more than 2 million barrels per day. The company also has 20 years of operational experience in perma frost regions. The key challenges facing the construction of the proposed new high pressure liquids rich pipeline were discussed with reference to market outlook; cost reduction; U.S. fiscal and regulatory issues; Alaska fiscal contract; and, Canadian regulatory efficiency. A successful project will mean a $15 billion capital expenditure in Canada, $16 billion in government revenues, 12,000 construction work years, and tens of thousands of new jobs. It will also improve Alberta's position as the key energy hub and will increase the utilization of the existing infrastructure. Canadian consumers will benefit from access to a new supply basin and a more secure source of clean-burning natural gas at a cost competitive price. In order to get the project completed, the following requirements must be met: regulatory regimes must be clear and predictable; land access must be ensured in a timely manner; access to skilled human resources, material and equipment must also be ensured to facilitate timely and efficient project implementation; and, the safe and environmentally sound operation of the pipelines must also be ensured. This paper highlighted Canadian regulatory options in terms of the National Energy Board Act, Canadian Environmental Assessment Act, the Yukon Environmental and Socio-Economic Assessment Act, and the Northern Pipeline Act. Enbridge's proposed straddle plant at Fort Saskatchewan was discussed along with inter-connecting pipeline options. Enbridge

  20. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  1. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  2. Eesti Gaas. Inspection of Kohtal-Jaerve - Tallinn pipeline. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The project `Inspection of Pipelines in Estonia` was funded by Danish government and was carried out in collaboration between DONG, Balslev and FORCE. By agreement between Eesti Gaas and DONG, the pipeline system between Kohtla-Jaerve and Tallinn was selected for inspection. This pipeline system has a total length of 176.9 km. The objective of the project has been, based on detailed inspection of relative short lengths of pipe, to determine the integrity of the pipeline and to give advice concerning the continued use as a high pressure transmission pipeline. The objectives have been met as set out by the project Proposal with the investigation and this report as follows: Based on a document review together with the measurements and observations in the field and in the laboratory, the condition of approximately 5 km of the pipeline has been evaluated; Recommendations are given in this report with the aim of extending the life of the pipeline. A further objective has been to provide know-how transfer in order to permit Eesti Gaas to run similar inspections on other parts of their transmission system. (EG)

  3. Efficiency improvements in pipeline transportation systems. Technical report, Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. H.

    1977-01-01

    This report identifies those potential energy-conservative pipeline innovations that are most energy- and cost-effective, and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight programs recommended for pursuit are: gas-fired combined-cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cycle pump station; internal coatings in pipelines; and drag-reducing additives in liquid pipelines.

  4. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  5. Fishing intensity around the BBL pipeline

    NARCIS (Netherlands)

    Hintzen, Niels

    2016-01-01

    Wageningen Marine Research was requested by ACRB B.V. to investigate the fishing activities around the BBL pipeline. This gas pipeline crosses the southern North Sea from Balgzand (near Den Helder) in the Netherlands to Bacton in the UK (230km). This pipeline is abbreviated as the BBL pipeline. Part

  6. Oil pipeline performance review 1995, 1996, 1997, 1998 : Technical/statistical report

    International Nuclear Information System (INIS)

    2000-12-01

    This document provides a summary of the pipeline performance and reportable pipeline failures of liquid hydrocarbon pipelines in Canada, for the years 1995 through 1998. The year 1994 was the last one for which the Oil Pipeline Performance Review (OPPR) was published on an annual basis. The OPPR will continue to be published until such time as the Pipeline Risk Assesment Sub-Committee (PRASC) has obtained enough pipeline failure data to be aggregated into a meaningful report. The shifts in the mix of reporting pipeline companies is apparent in the data presented, comparing the volumes transported and the traffic volume during the previous ten-year period. Another table presents a summary of the failures which occurred during the period under consideration, 1995-1998, allowing for a comparison with the data for the previous ten-year period. From the current perspective and from an historical context, this document provides a statistical review of the performance of the pipelines, covering refined petroleum product pipelines, clean oil pipelines and High Vapour Pressure (HVP) pipelines downstream of battery limits. Classified as reportable are spills of 1.5 cubic metre or more of liquid hydrocarbons, any amount of HVP material, any incident involving an injury, a death, a fire, or an explosion. For those companies that responded to the survey, the major items, including number of failures and volumes released are accurate. Samples of the forms used for collecting the information are provided within the document. 6 tabs., 1 fig

  7. Diagnosing in building main pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, L.G.; Gorelov, A.S.; Kurepin, B.N.; Orekhov, V.I.; Vasil' yev, G.G.; Yakovlev, Ye. I.

    1984-01-01

    General principles are examined for technical diagnosis in building main pipelines. A technique is presented for diagnosis during construction, as well as diagnosis of the technical state of the pipeline-construction machines and mechanisms. The survey materials could be used to set up construction of main pipelines.

  8. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  9. Pipeline integrity handbook risk management and evaluation

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Based on over 40 years of experience in the field, Ramesh Singh goes beyond corrosion control, providing techniques for addressing present and future integrity issues. Pipeline Integrity Handbook provides pipeline engineers with the tools to evaluate and inspect pipelines, safeguard the life cycle of their pipeline asset and ensure that they are optimizing delivery and capability. Presented in easy-to-use, step-by-step order, Pipeline Integrity Handbook is a quick reference for day-to-day use in identifying key pipeline degradation mechanisms and threats to pipeline integrity. The book begins

  10. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  11. Internal corrosion control of northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.

    2005-02-01

    The general causes of internal corrosion in pipelines were discussed along with the methods to control them. Efficient methods are needed to determine chemical efficiency for mitigating internal corrosion in transmission pipelines, particularly those used in environmentally sensitive regions in the Arctic where harsh environmental conditions prevail. According to the Office of Pipeline Safety, 15 per cent of pipeline failures in the United States from 1994 to 2000 were caused by internal corrosion. Since pipelines in the United States are slightly older than Canadian pipelines, internal corrosion is a significant issue from a Canadian perspective. There are 306,618 km of energy-related pipelines in western Canada. Between April 2001 and March 2002 there were 808 failures, of which 425 failures resulted from internal corrosion. The approach to control internal corrosion comprises of dehydrating the gases at production facilities; controlling the quality of corrosive gases such as carbon dioxide and hydrogen sulphide; and, using internal coatings. The approaches to control internal corrosion are appropriate, when supplemented by adequate integrity management program to ensure that corrosive liquids do not collect, over the operational lifetime of the pipelines, at localized areas. It was suggested that modeling of pipeline operations may need improvement. This paper described the causes, prediction and control of internal pitting corrosion. It was concluded that carbon steel equipment can continue to be used reliably and safely as pipeline materials for northern pipelines if the causes that lead to internal corrosion are scientifically and accurately predicted, and if corrosion inhibitors are properly evaluated and applied. 5 figs.

  12. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  13. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.

    Science.gov (United States)

    Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C

    2008-01-01

    As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.

  14. Non-unions force wage cut-backs in pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Bain, D

    1984-03-01

    Faced with another year of high unemployment and shrinking markets, Western Canada's unionized pipeline construction trades have taken a step toward stabilizing the industry. The unions have struck a bargain to combat an increasing number of non-union open shops. Management and labor cooperated to insure that the unions regain their share of the pipeline construction market. The pipeline construction boom has ended, with an overcapacity, a downturn in sales, and few major projects on the drawing boards. The bargains included wage reductions of 30%, daily living allowance reductions of nearly 50%, the elimination of double time, and the use of composite crews.

  15. Trouble in the pipeline?

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2002-10-01

    The author provides a commentary on the political, economic, environmental and social problems facing the proposed 3 billion US dollars Baku-Ceyhan-Tbilisi export pipeline. The 1760 km long pipeline has been designed to carry 1 million b/d of crude oil from the Caspian Sea to Turkey's Mediterranean coast. The pipeline is being constructed by a BP-led consortium made up of Socar, Statoil, Unocal, TPAO, Eni, Itochu, Amerada Hess, TotalFinaElf and BP. (UK)

  16. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  17. Canadian pipeline transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2009-07-01

    In addition to regulating the construction and operation of 70,000 km of oil and natural gas pipelines in Canada, the National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. This report provided an assessment of the Canadian hydrocarbon transportation system in relation to its ability to provide a robust energy infrastructure. Data was collected from NEB-regulated pipeline companies and a range of publicly available sources to determine if adequate pipeline capacity is in place to transport products to consumers. The NEB also used throughput and capacity information received from pipeline operators as well as members of the investment community. The study examined price differentials compared with firm service tolls for transportation paths, as well as capacity utilization on pipelines and the degree of apportionment on major oil pipelines. This review indicated that in general, the Canadian pipeline transportation system continues to work effectively, with adequate pipeline capacity in place to move products to consumers who need them. 9 tabs., 30 figs., 3 appendices.

  18. Processing of Cu-Cr alloy for combined high strength and high conductivity

    Directory of Open Access Journals (Sweden)

    A.O Olofinjanaa

    2017-11-01

    Full Text Available High strength and high conductivity (HSHC are two intrinsic properties difficult to combine in metallic alloy design because; almost all strengthening mechanisms also lead to reduced conductivity. Precipitation hardening by nano-sized precipitates had proven to be the most adequate way to achieve the optimum combination of strength and conductivity in copper based alloys. However, established precipitation strengthened Cu- alloys are limited to very dilute concentration of solutes thereby limiting the volume proportion hardening precipitates. In this work, we report the investigation of the reprocessing of higher Cr concentration Cu- based alloys via rapid solidification. It is found that the rapid solidification in the as-cast ribbon imposed combined solution extension and ultra-refinement of Cr rich phases. X-ray diffraction evidences suggest that the solid solution extension was up to 6wt%Cr. Lattice parameters determined confirmed the many folds extension of solid solution of Cr in Cu.  Thermal aging studies of the cast ribbons indicated that peak aging treatments occurred in about twenty minutes. Peak aged hardness ranged from about 200 to well over 300Hv. The maximum peak aged hardness of 380Hv was obtained for alloy containing 6wt.%Cr but with conductivity of about 50%IACS. The best combined strength/conductivity was obtained for 4wt.%Cr  alloy with hardness of 350HV and conductivity of 80% IACS. The high strengths observed are attributed to the increased volume proportion of semi-coherent Cr rich nano-sized precipitates that evolved from the supersaturated solid solution of Cu-Cr that was achieved from the high cooling rates imposed by the ribbon casting process. The rapid overaging of the high Cr concentration Cu-Cr alloy is still a cause for concern in optimising the process for reaching peak HSHC properties. It is still important to investigate a microstructural design to slow or severely restrict the overaging process. The optimum

  19. 77 FR 6857 - Pipeline Safety: Notice of Public Meetings on Improving Pipeline Leak Detection System...

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... installed to lessen the volume of natural gas and hazardous liquid released during catastrophic pipeline... p.m. Panel 3: Considerations for Natural Gas Pipeline Leak Detection Systems 3:30 p.m. Break 3:45 p...

  20. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    International Nuclear Information System (INIS)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-01

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  1. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  2. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  3. Effects of Pipeline Construction on Wetland Ecosystems: Russia-China Oil Pipeline Project (Mohe-Daqing Section)

    Energy Technology Data Exchange (ETDEWEB)

    Xiaofei Yu; Guoping Wang; Yuanchun Zou; Qiang Wang; Hongmei Zhao; Xianguo Lu (Key Lab of Wetland Ecology and Environment, Northeast Inst. of Geography and Agroecology, Changchun (China)), e-mail: wangguoping@neigae.ac.cn

    2010-07-15

    Although the multiple roles of wetland ecosystems and their value to humanity have been increasingly understood and documented in recent years, the efforts to conserve and restore wetlands are not in harmony with the press for high speed of economy growth. The degradation of wetlands is proceeding, especially in China. Russia- China Oil Pipe-line Project (Mohe-Daqing Section) has already begun in May 2009, and is ongoing. The pipeline runs through four riverine wetlands and two marshlands of Heilongjiang Province, Northeast China. Although the project has vital significance of mitigating the energy crisis as well as guaranteeing the energy security of China, it will bring a series of ecological and environmental problems, especially for wetland ecosystems

  4. 75 FR 4134 - Pipeline Safety: Leak Detection on Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-01-26

    ... safety study on pipeline Supervisory Control and Data Acquisition (SCADA) systems (NTSB/SS-05/02). The... indications of a leak on the SCADA interface was the impetus for this study. The NTSB examined 13 hazardous... pipelines, the line balance technique for leak detection can often be performed with manual calculations...

  5. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  6. Critical defect size assessment in pipelines on a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Dimova Galya

    2018-01-01

    Full Text Available In many energy industry structures, pipeline systems are subject to the impact of mechanical forces, moments of forces and fluid flows of high pressure and temperature. These load factors cause defects in the pipeline metal. As the years of operation increase, defects may occur and grow, which may lead to the destruction of pipeline walls. Special measures have been planned and implemented to ensure the safe operation of high-energy facilities. This study focused on pipelines and nozzles of nuclear power plant equipment with bimetal welded joints on which the size of critical defects was assessed. The base of assessment covers material properties, temperature and stress fields, fracture mechanics calculations. This study involves developing of finite element models and implementing simulations on them in order to obtain temperature fields and determine the stress-strain state of the component.

  7. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  8. Pipesworld : applying planning systems to pipeline transportation

    Energy Technology Data Exchange (ETDEWEB)

    Milidiu, R.L.; Santos Liporace, F. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica

    2004-07-01

    This paper explored issues facing the complex task of managing pipelines that transport large volumes of petroleum products over long distances. Since oil pipelines are generally a few inches wide and several miles long, reasonable amounts of distinct products can be transported with very small loss due to the mixing at liquid boundaries. Optimizing the transportation through oil pipelines in terms of maintenance and environmental safety is a high priority for pipeline operators. This paper presented the Pipesworld model which takes into account features such as product interface constraints, limited product storage capacities and due dates for product delivery. It has been benchmarked as a start-of-art general purpose artificial planning system. This paper also reported the results derived by general purpose artificial intelligence planning systems when applied to the Pipesworld model. It demonstrated how various modelling techniques can be used to enhance the planners performance. Current work in developing Plumber was also presented. This dedicated solver that addresses operational situations uses both general purpose planning techniques as well as domain specific knowledge. When Plumber was incorporated into Pipesworld, its outperformed Fast-Forward, one of the best available general purpose planning systems, suggesting that improved versions of Plumber have the potential to deal with various problem scenarios in pipeline operations. 11 refs., 2 tabs., 3 figs.

  9. Contemporary methods of emergency repair works on transit pipelines. Repair works on in-service pipelines

    International Nuclear Information System (INIS)

    Olma, T.; Winckowski, J.

    2007-01-01

    The paper presents modern methods and relevant technologies of pipeline failure repairs, basing on TD Williamson technique for hermetic plugging of gas pipelines without interrupting service. Rules for management of emergency situations on the Polish Section of Yamal - Europe Transit Gas Pipeline are being discussed as well. (author)

  10. Northern pipelines : backgrounder

    International Nuclear Information System (INIS)

    2002-04-01

    Most analysts agree that demand for natural gas in North America will continue to grow. Favourable market conditions created by rising demand and declining production have sparked renewed interest in northern natural gas development. The 2002 Annual Energy Outlook forecasted U.S. consumption to increase at an annual average rate of 2 per cent from 22.8 trillion cubic feet to 33.8 TCF by 2020, mostly due to rapid growth in demand for electric power generation. Natural gas prices are also expected to increase at an annual average rate of 1.6 per cent, reaching $3.26 per thousand cubic feet in 2020. There are currently 3 proposals for pipelines to move northern gas to US markets. They include a stand-alone Mackenzie Delta Project, the Alaska Highway Pipeline Project, and an offshore route that would combine Alaskan and Canadian gas in a pipeline across the floor of the Beaufort Sea. Current market conditions and demand suggest that the projects are not mutually exclusive, but complimentary. The factors that differentiate northern pipeline proposals are reserves, preparedness for market, costs, engineering, and environmental differences. Canada has affirmed its role to provide the regulatory and fiscal certainty needed by industry to make investment decisions. The Government of the Yukon does not believe that the Alaska Highway Project will shut in Mackenzie Delta gas, but will instead pave the way for development of a new northern natural gas industry. The Alaska Highway Pipeline Project will bring significant benefits for the Yukon, the Northwest Territories and the rest of Canada. Unresolved land claims are one of the challenges that has to be addressed for both Yukon and the Northwest Territories, as the proposed Alaska Highway Pipeline will travel through traditional territories of several Yukon first Nations. 1 tab., 4 figs

  11. IN-SITU TEST OF PRESSURE PIPELINE VIBRATION BASED ON DATA ACQUISITION AND SIGNAL PROCESSING

    OpenAIRE

    Hou, Huimin; Xu, Cundong; Liu, Hui; Wang, Rongrong; Jie, Junkun; Ding, Lianying

    2015-01-01

    Pipeline vibration of high frequency and large amplitude is an important factor that impacts the safe operation of pumping station and the efficiency of the pumps. Through conducting the vibration in-situ test of pipeline system in the pumping station, we can objectively analyze the mechanism of pipeline vibration and evaluate the stability of pipeline operation. By using DASP (data acquisition & signal processing) in the in-situ test on the 2# pipeline of the third pumping station in the gen...

  12. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  13. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Science.gov (United States)

    2012-07-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. [[Page 45418

  14. Canadian pipeline contractors in holding pattern

    Energy Technology Data Exchange (ETDEWEB)

    Caron, G [Pe Ben Pipelines Ltd.; Osadchuk, V; Sharp, M; Stabback, J G

    1979-05-21

    A discussion of papers presented at a Pipe Line Contractors Association of Canada convention includes comments by G. Caron (Pe Ben Pipelines Ltd.) on the continued slack in big-inch pipeline construction into 1980 owing mainly to delayed U.S. and Canadian decisions on outstanding Alaska Highway gas pipeline issues and associated gas export bids and on the use of automatic welding for expeditious construction of the northern sections of the Alaska Highway pipeline; by V. Osadchuk (Majestic Wiley Contract. Ltd.) on the liquidation of surplus construction equipment because of these delays; by M. Sharp (Can. North. Pipeline Agency) on the need for close U.S. and Canadian governmental and industrial cooperation to permit an early 1980 start for construction of the prebuild sections of the Alaska pipeline; and by J. G. Stabback (Can. Natl. Energy Board) on the Alaska oil pipeline applications by Foothills Pipe Lines Ltd., Trans Mountain Pipe Line Co. Ltd., and Kitimat Pipe Line Ltd.

  15. 76 FR 28326 - Pipeline Safety: National Pipeline Mapping System Data Submissions and Submission Dates for Gas...

    Science.gov (United States)

    2011-05-17

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR 191... Reports AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Issuance of... Pipeline and Hazardous Materials Safety Administration (PHMSA) published a final rule on November 26, 2010...

  16. ToTem: a tool for variant calling pipeline optimization.

    Science.gov (United States)

    Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka

    2018-06-26

    High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .

  17. Measures for security and supervision of pipelines; Massnahmen zur Pipeline-Sicherheit und -Ueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, Hans-Burkhard [TU Dresden (Germany). Inst. fuer Wasserbau und Technische Hydromechanik; Giesecke, Juergen [Stuttgart Univ. (Germany). Inst. fuer Wasserbau

    2010-07-01

    In a previous publication, the two authors dealt with the hydraulic problems as regards mineral oil pipelines. The present report describes the measures mainly used to guarantee the safety of such pipelines. (orig.)

  18. Pipeline integrity evaluation of oil pipelines using free-swimming acoustic technology

    Energy Technology Data Exchange (ETDEWEB)

    Ariaratnam, Samuel T. [Arizona State University, Tempe, Arizona (United States); Chandrasekaran, Muthu [Pure Technologies Limited, Calgary, AB (Canada)

    2010-07-01

    In the United States, the Pipeline and Hazardous Materials Safety Administration (PHMSA) funded a joint academy-industry research project, which developed and refined a free-swimming tool called SmartBall. The tool swims through the pipeline and gives results at a much lower cost than current leak detection methods, and it can detect leaks as small as 0.03 gpm of oil. GPS-synchronized above-ground loggers capture acoustic signals and record the passage of the tool through the pipeline. The tool is spherical and smaller than the pipe, through which it rolls silently; it can overcome obstacles that could otherwise make a pipeline unpiggable. SmartBall uses the great potential of acoustic detection, because when a pressurized product leaks from a pipe, it produces a distinctive acoustic signal that travels through the product; at the same time, it overcomes the problem caused by the very limited range of this signal. This technology can prevent enormous economic consequences such as a 50,000-gallon gasoline spill that happened in 2003 between Tucson and Phoenix.

  19. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  20. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  1. Offshore Pipeline Locations in the Gulf of Mexico, Geographic NAD27, MMS (2007) [pipelines_vectors_mms_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Offshore Minerals Management Pipeline Locations for the Gulf of Mexico (GOM). Contains the lines of the pipeline in the GOM. All pipelines existing in the databases...

  2. Offshore Pipeline Locations in the Gulf of Mexico, Geographic NAD27, MMS (2007) [pipelines_points_mms_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Offshore Minerals Management Pipeline Locations for the Gulf of Mexico (GOM). Contains the points of the pipeline in the GOM. All pipelines existing in the databases...

  3. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  4. Northern pipelines : challenges and needs

    Energy Technology Data Exchange (ETDEWEB)

    Dean, D.; Brownie, D. [ProLog Canada Inc., Calgary, AB (Canada); Fafara, R. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2007-07-01

    Working Group 10 presented experiences acquired from the operation of pipeline systems in a northern environment. There are currently 3 pipelines operating north of 60, notably the Shiha gas pipeline near Fort Liard, the Ikhil gas pipeline in Inuvik and the Norman Wells oil pipeline. Each has its unique commissioning, operating and maintenance challenges, as well as specific training and logistical support requirements for the use of in-line inspection tools and other forms of integrity assessment. The effectiveness of cathodic protection systems in a permafrost northern environment was also discussed. It was noted that the delay of the Mackenzie Gas Pipeline Project by two to three years due to joint regulatory review may lead to resource constraints for the project as well as competition for already scarce human resources. The issue of a potential timing conflict with the Alaskan Pipeline Project was also addressed as well as land use issues for routing of supply roads. Integrity monitoring and assessment issues were outlined with reference to pipe soil interaction monitoring in discontinuous permafrost; south facing denuded slope stability; base lining projects; and reclamation issues. It was noted that automatic welding and inspection will increase productivity, while reducing the need for manual labour. In response to anticipated training needs, companies are planning to involve and train Aboriginal labour and will provide camp living conditions that will attract labour. tabs., figs.

  5. Stabilité des pipelines non ensouillés. Etude bibliographique Stability of Unburied Pipelines. Bibliographic Study

    OpenAIRE

    Alliot J. M.

    2006-01-01

    The integrity of an unburied subsea pipeline depends to a very large extent on its stability on the seabed along its entire length. Hence the determination of this stability is of great importance in the engineering design of pipelines. This article proposes to examine the principal problems raised by the stability of unburied pipelines in the field of soil mechanics. These problems mainly concern the reactions of the soil to pipelines and their assessment, i. e. the forces of soil resistance...

  6. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  7. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  8. Generating pipeline networks for corrosion assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2008-07-01

    Production characteristics and gas-fluid compositions of fluids must be known in order to assess pipelines for internal corrosion risk. In this study, a gathering system pipeline network was built in order to determine corrosion risk for gathering system pipelines. Connections were established between feeder and collector lines in order measure upstream production and the weighted average of the upstream composition of each pipeline in the system. A Norsok M-506 carbon dioxide (CO{sub 2}) corrosion rate model was used to calculate corrosion rates. A spreadsheet was then used to tabulate the obtained data. The analysis used straight lines drawn between the 'from' and 'to' legal sub-division (LSD) endpoints in order to represent pipelines on an Alberta township system (ATS) and identify connections between pipelines. Well connections were established based on matching surface hole location and 'from' LSDs. Well production, composition, pressure, and temperature data were sourced and recorded as well attributes. XSL hierarchical computations were used to determine the production and composition properties of the commingled inflows. It was concluded that the corrosion assessment process can identify locations within the pipeline network where potential deadlegs branched off from flowing pipelines. 4 refs., 2 tabs., 2 figs.

  9. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  10. Friction factor in smooth and rough gas pipelines. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Sletfjerding, Elling

    1999-01-01

    Flow of high pressure natural gas in pipelines has been studied experimentally. Pipeline flow of natural gas is characterized by high Reynolds numbers due to the low viscosity and relatively high density of pressurized gas. Friction factor correlations for high Reynolds number flow in smooth and rough pipes were developed. To study the effect of wall roughness on pipe flow at high Reynolds numbers 8 test pipes with different wall roughness were fabricated. The wall roughness in 6 of the test pipes was varied by adding glass beads in an epoxy coating applied on the pipe wall. One test pipe was treated with a smooth epoxy coating and one was left untreated. The inner diameter of the test pipes was 150 mm. Measurements of the pressure drop in the pipes were made in a closed flow loop at line pressures of 25, 70, 95 and 120 bar. The Reynolds number of the flow was varied in the range 2-30 million. The wall roughness of the test pipes was measured with a stylus instrument. Correlations between the directly measured wall roughness and the friction factor at fully rough flow conditions were presented. To characterize the wall roughness of the test pipes a parameter combining a measure of the roughness height (R{sub q}) and the texture of the wall roughness was used. Due to the high Reynolds number of the flow, minute irregularities of the pipe wall had significant effect on the friction factor in the pipe. The measured wall roughness of the test pipes was in the range 1.4 < R{sub q} <31 (my)m. The flow experiments in test pipes was compared with data from operating pipelines in the North Sea. The offshore pipelines are coated with the same epoxy coating as used in the test pipes. The friction factor in coated offshore gas pipelines showed smooth behavior when the additional pressure drop due to welds were accounted for. The study of coated gas pipelines showed that the friction factor was significantly lower than predicted by standard correlations.

  11. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  12. Lay Pipeline Abandonment Head during Some

    African Journals Online (AJOL)

    2016-12-01

    Dec 1, 2016 ... is very cruel to the structural integrity of the pipeline structure after ... and properties may be jeopardized should the pipeline structure be used for oil or gas transport when such ... pipelines under bending may alter the material.

  13. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0185] Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline and Hazardous Materials Safety...

  14. A comparison of pipeline versus truck transport of bio-oil.

    Science.gov (United States)

    Pootakham, Thanyakarn; Kumar, Amit

    2010-01-01

    Biomass-based energy and fuels are receiving attention because they are considered carbon neutral; i.e. the amount of CO(2) released during combustion of this biomass is nearly the same as that taken up by the plants during their growth. Bio-oil is a dark viscous liquid consisting of hydrocarbons. These are produced by fast pyrolysis of biomass. "As-is" biomass material has a low energy density (MJ m(-3)), hence, the cost of transporting this energy is high. Bio-oil has a high energy density as compared to "as-is" biomass material, consequently it helps in reducing the cost of energy transport. This study compares the life cycle assessment of transportation of bio-oil by pipeline with that by truck. The scope of the work includes the transportation of bio-oil by truck or pipeline from a centralized plant (supplied with forest biomass) to an end-user. Two cases are studied for pipeline transport of bio-oil: the first case considers a coal-based electricity supply for pumping the bio-oil through a pipeline; the second case considers an electricity supply from a renewable resource. The two cases of pipeline transport are compared to two cases of truck transport (truck trailer and super B-train truck). The life cycle greenhouse gas (GHG) emissions from the pipeline transport of bio-oil for the two cases of electricity supply are 345 and 17 g of CO(2) m(-3) km(-1), respectively. Similar values for transport by trailer (capacity - 30 m(3)) and super B-train truck (capacity - 60 m(3)) are 89 and 60 g of CO(2) m(-3) km(-1), respectively. Energy input for bio-oil transport is 3.95 MJ m(-3) km(-1) by pipeline, 2.59 MJ m(-3) km(-1) by truck and 1.66 MJ m(-3) km(-1) by super B-train truck. The results show that GHG emissions in pipeline transport are largely dependent on the source of electricity (higher for coal-based electricity). Substituting 250 m(3) day(-1) of pipeline-transported bio-oil for coal-based electricity can mitigate about 5.1 million tonnes of CO(2) per year

  15. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  16. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  17. U.S. interstate pipelines ran more efficiently in 1994

    International Nuclear Information System (INIS)

    True, W.R.

    1995-01-01

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies

  18. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  19. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  20. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  1. Real gas flow simulation in damaged distribution pipelines

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Skorek, Janusz

    2012-01-01

    The paper discusses chosen issues concerning damaged gas pipelines. Attention is paid to modelling the steady-state flow of natural gas in distribution pipelines, and the most commonly applied models of isothermal and adiabatic flow are evaluated for both the ideal and the real gas properties. A method of accounting for a leakage by means of a reference flow equation with a discharge coefficient is presented, and the dependency of the discharge coefficient on pressure is demonstrated both with literature data and the authors' experimental results. A relevant computational study of a pipeline failure is presented for a high- and a medium pressure pipeline. The importance of an appropriate choice of the flow model (isothermal or adiabatic flow of real or ideal gas) is demonstrated by the results of the study. It is shown that accounting for the variability of the discharge coefficient is required if medium pressure pipelines are analysed. However, it is eventually shown that the impact of the discharge coefficient on the predicted outflow rate is of lesser importance than that of the applied flow model. -- Highlights: ► Comparison of real/ideal gas, isothermal/adiabatic gas flow in a damaged pipeline. ► Variability of the discharge coefficient with pressure is demonstrated. ► Isothermal model predicts wrong values of downstream pressure, not just temperature. ► Isothermal model may cause significant error (for 2 case studies is >20%). ► Error in the discharge coefficient has a weak influence on the predicted flow rate.

  2. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  3. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  4. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  5. A quick guide to pipeline engineering

    CERN Document Server

    Alkazraji, D

    2008-01-01

    Pipeline engineering requires an understanding of a wide range of topics. Operators must take into account numerous pipeline codes and standards, calculation approaches, and reference materials in order to make accurate and informed decisions.A Quick Guide to Pipeline Engineering provides concise, easy-to-use, and accessible information on onshore and offshore pipeline engineering. Topics covered include: design; construction; testing; operation and maintenance; and decommissioning.Basic principles are discussed and clear guidance on regulations is provided, in a way that will

  6. Optimal valve location in long oil pipelines

    OpenAIRE

    Grigoriev, A.; Grigorieva, N.V.

    2007-01-01

    We address the valve location problem, one of the basic problems in design of long oil pipelines. Whenever a pipeline is depressurized, the shutoff valves block the oil flow and seal the damaged part of the pipeline. Thus, the quantity of oil possibly contaminating the area around the pipeline is determined by the volume of the damaged section of the pipeline between two consecutive valves. Then, ecologic damage can be quantified by the amount of leaked oil and the environmental characteristi...

  7. Fishing activity near offshore pipelines, 2017

    NARCIS (Netherlands)

    Machiels, Marcel

    2018-01-01

    On the North Sea bottom lie numerous pipelines to link oil- or gas offshore drilling units, - platforms and processing stations on land. Although pipeline tubes are coated and covered with protective layers, the pipelines risk being damaged through man-made hazards like anchor dropping and fishing

  8. Pipeline politics—A study of India′s proposed cross border gas projects

    International Nuclear Information System (INIS)

    Nathan, Hippu Salk Kristle; Kulkarni, Sanket Sudhir; Ahuja, Dilip R.

    2013-01-01

    India′s energy situation is characterized by increasing energy demand, high fossil fuel dependency, large import shares, and significant portion of population deprived of modern energy services. At this juncture, natural gas, being the cleanest fossil fuel with high efficiency and cost effectiveness, is expected to play an important role. India, with only 0.6% of proven world reserves, is not endowed with adequate natural gas domestically. Nevertheless, there are gas reserves in neighbouring regions which gives rise to the prospects of three cross border gas pipeline projects, namely, Iran–Pakistan–India, Turkmenistan–Afghanistan–Pakistan–India, and Myanmar–Bangladesh–India. This study is a political analysis of these pipeline projects. First, it provides justification on use of natural gas and promotion of cross border energy trade. Then it examines these three pipeline projects and analyses the security concerns, role of different actors, their positions, shifting goals, and strategies. The study develops scenarios on the basis of changing circumstances and discusses some of the pertinent issues like technology options for underground/underwater pipelines and role of private players. It also explores impact of India′s broader foreign relations and role of SAARC on the future of pipelines and proposes energy induced mutually assured protection (MAP) as a concept for regional security. -- Highlights: •We justify the need for cross border energy trade through gas pipelines for India. •We examine prospective pipeline projects—IPI, TAPI, MBI and their security issues. •We develop scenarios and analyze role of actors, their positions, and strategies. •We discuss technology and policy options for realizing these gas pipelines. •We propose energy induced mutually assured protection (MAP) for regional security

  9. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  10. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Science.gov (United States)

    2011-09-01

    ... prescribed in Sec. 195.452(h).'' Operators of shallow-water gas and hazardous liquid pipelines in the Gulf of... pipeline safety: 1. Identify persons who normally engage in shallow-water commercial fishing, shrimping... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...

  11. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  12. Living and working near pipelines : Landowner guide 2002

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The transportation of natural gas, oil and other commodities is effected by pipelines throughout most of the country. Safety in the vicinity of a pipeline is very important because damage to a pipeline could result in adverse conditions to public safety and/or the environment. Before digging, written approval must be obtained from the pipeline company. If a landowner is having difficulty negotiating an agreement with the pipeline company, they should call the National Energy Board. It is illegal to construct or excavate without authorization, and approval or denial of a request must be granted within 10 business days by the pipeline company. Three days are allowed to the pipeline company to locate its pipeline. A section dealing with pipeline right-of-way is included, as well as the safety zone and the restricted area. A 10-step checklist of safety tips assists the landowner in taking the appropriate measures in the vicinity of a pipeline. A brief overview of the responsibilities of the National Energy Board is provided, followed by a list of the main pipelines regulated by the National Energy Board. 2 figs

  13. Global offshore pipeline markets

    International Nuclear Information System (INIS)

    Knight, R.; Parsons, B.

    2001-01-01

    In this article, two experts forecast a recovery in the offshore pipeline market followed by accelerating growth. A number of clearly definable macro trends are affecting the world offshore oil and gas industry and will be of considerable significance to the offshore pipelines industry. The authors' view is of markets that show every chance of enjoying long-term growth prospects driven by the fundamentals of a continuing increase in demand for offshore oil and gas. The offshore industry however has a highly cyclical nature, due to the impact of variations in oil and gas prices and the differing state of maturity of individual regions. Therefore those companies that are able to offer the widest range of pipe types and diameters and methods of installation across the greatest range of geographic markets are likely to prosper most. Thus, this continues to be a market best suited to those able to operate on a global scale and make a corporate commitment measured in decades

  14. Submarine pipelines and the North Sea environment

    International Nuclear Information System (INIS)

    Haldane, D.; Paul, M.A.; Reuben, R.L.; Side, J.C.

    1992-01-01

    The function and design of pipelines for use on the United Kingdom continental shelf are described. Environmental influences which can threaten the integrity of seabed pipelines in the North Sea include hydrodynamic forces due to residual, tidal and wave currents, the nature of seabed sediments and corrosion by seawater. Damage may be caused to pipelines by interaction with vessel anchors and with fishing gear. Special care has to be taken over the selection of the general area for the landfall of a pipeline and the engineering of the installation where the pipeline comes ashore. Trenching and other protection techniques for pipelines are discussed together with hydrostatic testing and commissioning and subsequent inspection, maintenance and repair. (UK)

  15. The Very Large Array Data Processing Pipeline

    Science.gov (United States)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako

    2018-01-01

    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an

  16. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  17. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  18. Transmission pipeline calculations and simulations manual

    CERN Document Server

    Menon, E Shashi

    2014-01-01

    Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f

  19. Ultrasonic testing standard of fusion joint for polythylene(PE) pipeline

    International Nuclear Information System (INIS)

    Lee, Euy Jong; Hur, Sam Suk; Chae, Gug Byeong

    2006-01-01

    The polyethylene(PE) pipes are widely used to transport city gas worldwide with steel pipes. Generally, Steel pipe are used for high pressure line and PE pipe for low pressure line whose pressure is less than 4 kg/m 2 . The steel pipe line are subject to 100 percent Radiographic Testing(RT) during installation stage, on the contrary, there has been no the established testing method for the welding fusion joint of polyethylene pipes, so all quality control is limited only Visual Testing(VT) or management of Fusion welding equipment. Even though PE pipeline is exposed to lower pressure than steel pipeline, the gas leakage from PE pipe may result in almost the same serious consequence from steel pipeline. So, it is necessary to develop the reliable testing standard for PE pipeline from the point of view of NDT engineers.

  20. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  1. Pipeline rehabilitation planning

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil; Eyre, David [PENSPEN (United Kingdom)

    2005-07-01

    An operator faced with an onshore pipeline that has extensive damage must consider the need for rehabilitation, the sort of rehabilitation to be used, and the rehabilitation schedule. This paper will consider pipeline rehabilitation based on the authors' experiences from recent projects, and recommend a simple strategy for planning pipeline rehabilitation. It will also consider rehabilitation options: external re-coating; internal lining; internal painting; programmed repairs. The main focus will be external re-coating. Consideration will be given to rehabilitation coating types, including tape wraps, epoxy, and polyurethane. Finally it will discuss different options for scheduling the rehabilitation of corrosion damage including: the statistical comparison of signals from inspection pigs; statistical comparison of selected measurements from inspection pigs and other inspections; the use of corrosion rates estimated for the mechanisms and conditions; expert judgement. (author)

  2. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  3. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  4. Dynamic pressure measures for long pipeline leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  5. PLUGGING AND UNPLUGGING OF WASTE TRANSFER PIPELINES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This project, which began in FY97, involves both the flow loop research on plugging and unplugging of waste transfer pipelines, and the large-scale industrial equipment test of plugging locating and unplugging technologies. In FY98, the related work was performed under the project name ''Mixing, Settling, and Pipe Unplugging of Waste Transfer Lines.'' The mixing, settling, and pipeline plugging and unplugging are critical to the design and maintenance of a waste transfer pipeline system, especially for the High-Level Waste (HLW) pipeline transfer. The major objective of this work is to recreate pipeline plugging conditions for equipment testing of plug locating and removal and to provide systematic operating data for modification of equipment design and enhancement of performance of waste transfer lines used at DOE sites. As the waste tank clean-out and decommissioning program becomes active at the DOE sites, there is an increasing potential that the waste slurry transfer lines will become plugged and unable to transport waste slurry from one tank to another or from the mixing tank to processing facilities. Transfer systems may potentially become plugged if the solids concentration of the material being transferred increases beyond the capability of the prime mover or if upstream mixing is inadequately performed. Plugging can occur due to the solids' settling in either the mixing tank, the pumping system, or the transfer lines. In order to enhance and optimize the slurry's removal and transfer, refined and reliable data on the mixing, sampling, and pipe unplugging systems must be obtained based on both laboratory-scale and simulated in-situ operating conditions

  6. Alternatives for operational cost reduction in oil pipelines; Alternativas para reducao de custos energeticos operacionais em oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Philipe Barroso; Carneiro, Leonardo Motta; Pires, Luis Fernando Goncalves [Pontificia Universidade Catolica do Rio de Janeiro (SIMDUT/DEM/ PUC-Rio), RJ (Brazil). Dept. de Engenharia Mecancia. Nucleo de Simulacao Termo-Hidraulica de Dutos

    2012-07-01

    This paper intends to give a brief overview of some cost reduction alternatives in oil pipelines, to optimize the pipeline operation. Four different alternatives are presented, based on previous studies made on existing pipelines, to demonstrate the response obtained with these solutions. Pipeline operation, especially on mature ones, tends to have a high operational cost, be by tradition, the aging of the installation, change of operational characteristics - such as nominal flow, product, or even flow direction - for which the pipeline wasn't originally designed. The alternatives showed allow for an increase survival time of the pipeline, without resorting to major changes, such as replacement of pipes or adding pumping stations to the system. The alternative studied varies from no implementation cost to high installation cost or operational cost increase, depending on the system and the alternative chosen. From changing the pump arrays during operation or changing the products viscosity with different blends, that represent virtually no cost to the pipeline operation, to the use of VFDs, with a high installation cost or DRA, which increase the operational cost. (author)

  7. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  8. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  9. Assessing the efficiency of automatically controlled valves (ACV) for pipeline sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Leandro S. da; Silva, Marcos J.M. da; Leite, Joao Paulo de B.; Santos, Renata N.R. dos; Jardim, Rodrigo B.O.; Quinto, Thiago C. do [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In order to mitigate the effects caused by the rupture of a gas pipeline and following ASME B 31.8 recommendations, block valves are installed in these structures. However, many transportation companies also install devices capable of infer the occurrence of an accident in a gas pipeline. The most common devices are the ones that actuate when pressure in gas pipeline reaches a low value early established (PSL) and those which close valves due to high rate of pressure drop (line-break). Line-break has the function of identifying as fast as possible the occurrence of a rupture in a gas pipeline by high rate of pressure drop in that line. Although PSL presents a later actuation when compared to the line break, it represents redundancy to the line-break system, since it is able to isolate the segment where the accident happened even if other devices or the operator had not done it before. The growing of gas pipelines transport capacity has been generated transients capable of causing an erroneous shut down of the shut down valves (SDV). The aim of this paper, therefore, is to present how the operational limits of SDV can be overcome with remote operation using SCADA System. (author)

  10. Effect of Wave Impeding Barrier Depth on Buried Pipeline

    OpenAIRE

    Göktepe, Fatih; Küyük, H. Serdar; Çelebi, Erkan

    2013-01-01

    Pipelines are one of most important component of lifeline engineering. For instance, the Southern Caucasus- Eastern Turkey energy corridors are formed by several key pipelines carrying crude oil and natural gas from Azerbaijan, via Georgia, to world markets through Mediterranean Sea. Many project accomplished recently and construction of new corridors are still going on. They should be protected from earthquake disaster especially when they pass through high seismicity zones. The wave impedin...

  11. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  12. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  13. Economic evaluation: wood stave pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rook, M.E.

    The spray of leakage from the wood stave water supply pipeline serving the New England Power Company's (NEPCO) Searsburg hydroelectric development had caused this facility to be dubbed ''The Searsburg Car Wash.'' In July, 1982, excessive leakage from this pipeline prompted NEPCO to perform a technical inspection which would inform the company's decision to replace, repair, or abandon the pipeline. The inspection indicated that a combination of interrelated factors has led to rapid deterioration. The feasibility study, which included a benefit -cost analysis of a times replacement with a continued repair program weighed annually by a risk factor representing the probability of pipeline failure during the replacement period, determined that direct replacement was most advantageous. 4 figures, 1 figures.

  14. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.

    Science.gov (United States)

    Giurato, Giorgio; De Filippo, Maria Rosaria; Rinaldi, Antonio; Hashim, Adnan; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Weisz, Alessandro

    2013-12-13

    Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once. We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed mi

  15. Acoustic system for communication in pipelines

    Science.gov (United States)

    Martin, II, Louis Peter; Cooper, John F [Oakland, CA

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  16. sTools - a data reduction pipeline for the GREGOR Fabry-Pérot Interferometer and the High-resolution Fast Imager at the GREGOR solar telescope

    Science.gov (United States)

    Kuckein, C.; Denker, C.; Verma, M.; Balthasar, H.; González Manrique, S. J.; Louis, R. E.; Diercke, A.

    2017-10-01

    A huge amount of data has been acquired with the GREGOR Fabry-Pérot Interferometer (GFPI), large-format facility cameras, and since 2016 with the High-resolution Fast Imager (HiFI). These data are processed in standardized procedures with the aim of providing science-ready data for the solar physics community. For this purpose, we have developed a user-friendly data reduction pipeline called ``sTools'' based on the Interactive Data Language (IDL) and licensed under creative commons license. The pipeline delivers reduced and image-reconstructed data with a minimum of user interaction. Furthermore, quick-look data are generated as well as a webpage with an overview of the observations and their statistics. All the processed data are stored online at the GREGOR GFPI and HiFI data archive of the Leibniz Institute for Astrophysics Potsdam (AIP). The principles of the pipeline are presented together with selected high-resolution spectral scans and images processed with sTools.

  17. Health, safety and environment risk assessment in gas pipelines by indexing method:case of Kermanshah Sanandaj oil pipeline

    Directory of Open Access Journals (Sweden)

    Y. Hamidi

    2009-10-01

    Full Text Available Background and AimsUsing pipelines for oil products transportation involves ranges of safety, health and environmental risks, this option however, is dominant with numerous  advantages. The purpose of this study was; relative risk assessment of abovementioned risk in Kermanshah-Sanandaj Oil Pipeline.MethodsThe method used in this study was Kent Muhlbauer method in which relative risk was assessed using third-party damage, corrosion, design, incorrect operations and leak impact  factor.ResultsOnce applying this method, collection of required data and performing needed experiments, scoring results showed 96 risk segments along the pipeline length in which lengths 100+860, 101+384 and 103+670 had relative risk scores 9.74, 9.82 and 9.91 respectively and therefore these segments were identified as focal risk points and priority for improvement actions.ConclusionRegarding importance of pipeline failure, inspection and regular patrol along the pipeline route, precise control of cathodic protection of pipeline and using communication technologies such as SCADA or optical fibers along the pipeline route were amongst the mostimportant control action suggested by the study.

  18. Bulletin 2005-12 : revised Alberta pipeline regulation issued

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-31

    A revised Pipeline Regulation has been issued and is currently available on the Alberta Energy and Utilities Board (EUB) website. Changes to the regulation reflect bothchanges in EUB regulatory policy and processes and technological improvements. Goals of the revision include improvements in overall pipeline performance, and the implementation of recommendations derived from the Public Safety and Sour Gas Committee concerning sour gas pipeline safety. The regulation was re-organized for greater clarity, and structured into 11 parts. Issues concerning the transition to the revised regulation were presented. The summary of notable administrative changes included clarifications of when a pipeline application is not required; when ABSA approval is required for steam lines; situations for which low-pressure natural gas lines must be licensed; and emergency response requirements. Technical clarifications include requirements for pipeline operations and maintenance manuals; composite materials; limitations on amounts of H{sub 2}S in polymeric pipe; pressure mismatches; approval for testing with gaseous media; venting of small volumes of raw gas; right-of-way surveillance; inspection of surface construction activities; annual corrosion evaluations; registering of pipelines and excavators in controlled areas with Alberta One-Call; ground disturbance training; restoration and signage maintenance on abandoned pipelines; sour service steel pipelines; unused pipelines and abandoned pipelines; and remediation of stub ends in operating pipelines.

  19. Leak detection systems as a central component of pipeline safety concepts; Leckueberwachungssysteme als zentrale Bestandteile von Pipeline-Sicherheitskonzepten

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Daniel [KROHNE Oil and Gas B.V., Breda (Netherlands)

    2013-03-15

    The transport of materials in pipelines is continuously increasing worldwide. Pipelines are one of the most economic and safe transport systems in all directions. In order to ensure this, not only new pipelines but also existing pipelines have to be kept up to date technically. Leakages are a possible safety risk. Leaks are manifold and range from earth quakes, corrosion or material fatigue up to open-up by drilling by thieves. A specific leakage detection often is used in order to limit the risks. The minimization of the consequences of accidents, downtimes and product losses as well as regulatory procedures is the reason for the detection of leakages. Leaks in pipelines can be detected on different kinds - from a simple visual inspection during the inspection up to computer-assisted systems monitoring certain states also in underground and submarine pipeline.

  20. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    Science.gov (United States)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average

  1. optimization for trenchless reconstruction of pipelines

    Directory of Open Access Journals (Sweden)

    Zhmakov Gennadiy Nikolaevich

    2015-01-01

    Full Text Available Today the technologies of trenchless reconstruction of pipelines are becoming and more widely used in Russia and abroad. One of the most perspective is methods is shock-free destruction of the old pipeline being replaced with the help of hydraulic installations with working mechanism representing a cutting unit with knife disks and a conic expander. A construction of a working mechanism, which allows making trenchless reconstruction of pipelines of different diameters, is optimized and patented and its developmental prototype is manufactured. The dependence of pipeline cutting force from knifes obtusion of the working mechanisms. The cutting force of old steel pipelines with obtuse knife increases proportional to the value of its obtusion. Two stands for endurance tests of the knifes in laboratory environment are offered and patented.

  2. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  3. Stress analysis and mitigation measures for floating pipeline

    Science.gov (United States)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  4. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  5. Inquiry into the Alaska road pipeline. Enquete sur le pipeline de la route de l'Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, P

    1977-01-01

    This report is addressed to the Minister of Indian Affairs and to the Canadian North in Ottawa and deals with the social and economic impacts of a proposed gas pipeline in the South of Yukon and with the attitudes of the Yukonnese people with respect to this project. Many public hearings were held. The report discusses the Yukon people (Indians and non-Indians) and the consequences of the projected pipeline on the environment, the economics of the region and the way of life of its people. The report also presents the claims of the Indians pertaining to the land. It is advocated that an advance payment of $50M be made to the Indians and that the pipeline corporation pay a compensation of at least $200M to a fund administered by the Yukon. An organization for planning and regulating the pipeline should be establised. It is advised to delay constructing the pipeline until August 1981. Other recommendations are made. Many witnesses supported a layout following roughly the Tintina groove, but none supported the Dawson deviation. Most witnesses opposed constructing the lateral Dempster pipeline for the moment. The report is illustrated with numerous colour photographs. 7 figs., 2 tabs.

  6. Methodology for environmental audit of execution in gas-pipelines and pipelines

    International Nuclear Information System (INIS)

    Hurtado Palomino, Maria Patricia; Vargas Bejarano, Carlos Hernando

    1999-01-01

    In first instance the constructive aspects and the environmental impact related with the gas-pipes and pipelines construction are presented; then a methodology to make the environmental audit of execution in gas-pipes and pipelines, is showed. They contemplate four stages basically: planning, pre-auditory, execution and analysis, and post-auditory with their respective activities. Also, it is given to know, generalities of the practical case, to evaluate the applicability of the proposed methodology

  7. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  8. Best practices for the abandonment of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mackean, M; Reed, R; Snow, B [Nabors Canada, Calgary, AB (Canada). Abandonrite Service

    2006-07-01

    Pipeline regulations implemented in 2006 require that licensees register all pipelines. Training must also be provided for ground disturbance supervisors. In addition, signage must be maintained on abandoned pipelines, and discontinued pipelines must be properly isolated. Corrosion control and internal inhibition is required for discontinued lines. However, pipelines are often neglected during the well abandonment process. This presentation provided recommendations for coordinating well and pipeline abandonment processes. Pipeline ends can be located, depressurized, flushed and purged while wells are being abandoned. Contaminated soils around the wells can also be identified prior to reclamation activities. Administrative reviews must be conducted in order to provide accurate information on pipeline location, reclamation certification, and line break history. Field operation files must be reviewed before preliminary field work is conducted. Site inspections should be used to determine if all ends of the line are accessible. Landowners and occupants near the line must also be notified, and relevant documentation must be obtained. Skilled technicians must be used to assess the lines for obstructions as well as to cut and cap the lines after removing risers. The presentation also examined issues related to pressure change, movement, cold tapping, and live dead legs. tabs., figs.

  9. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  10. Modelling of accidental releases from a high pressure CO2 pipelines

    NARCIS (Netherlands)

    Molag, M.; Dam, C.

    2011-01-01

    In the near future large quantities of CO2 will be transported over a large distance from Carbon dioxide Capture plants to onshore and off-shore underground Storage (CCS) sites. The risk assessments for the existing CO2 pipelines show distances to harmful threshold concentrations from 1 to 7.2 km.

  11. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  12. Automated Laser Ultrasonic Testing (ALUT) of Hybrid Arc Welds for Pipeline Construction, #272

    Science.gov (United States)

    2009-12-22

    One challenge in developing new gas reserves is the high cost of pipeline construction. Welding costs are a major component of overall construction costs. Industry continues to seek advanced pipeline welding technologies to improve productivity and s...

  13. Comparisons of sediment losses from a newly constructed cross-country natural gas pipeline and an existing in-road pipeline

    Science.gov (United States)

    Pamela J. Edwards; Bridget M. Harrison; Daniel J. Holz; Karl W.J. Williard; Jon E. Schoonover

    2014-01-01

    Sediment loads were measured for about one year from natural gas pipelines in two studies in north central West Virginia. One study involved a 1-year-old pipeline buried within the bed of a 25-year-old skid road, and the other involved a newly constructed cross-country pipeline. Both pipelines were the same diameter and were installed using similar trenching and...

  14. 75 FR 53733 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0246] Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous... liquefied natural gas, hazardous liquid, and gas transmission pipeline systems operated by a company. The...

  15. Diagnosing plant pipeline system performance using radiotracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kasban, H.; Ali, Elsayed H.; Arafa, H. [Engineering Department, Nuclear Research Center, Atomic Energy Authority, Inshas (Egypt)

    2017-02-15

    This study presents an experimental work in a petrochemical company for scanning a buried pipeline using Tc{sup 99m} radiotracer based on the measured velocity changes, in order to determine the flow reduction along a pipeline. In this work, Tc{sup 99m} radiotracer was injected into the pipeline and monitored by sodium iodide scintillation detectors located at several positions along the pipeline. The flow velocity has been calculated between every two consecutive detectors along the pipeline. Practically, six experiments have been carried out using two different data acquisition systems, each of them being connected to four detectors. During the fifth experiment, a bypass was discovered between the scanned pipeline and another buried parallel pipeline connected after the injection point. The results indicate that the bypass had a bad effect on the volumetric flow rate in the scanned pipeline.

  16. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  17. 77 FR 15453 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-03-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... information collection titled, ``Gas Pipeline Safety Program Certification and Hazardous Liquid Pipeline... collection request that PHMSA will be submitting to OMB for renewal titled, ``Gas Pipeline Safety Program...

  18. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  19. The Kepler Science Data Processing Pipeline Source Code Road Map

    Science.gov (United States)

    Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima; hide

    2016-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.

  20. Facilitating major additions to gas pipeline capacity: innovative approaches to financing, contracting, and regulation

    International Nuclear Information System (INIS)

    Schlesinger, B.; George, R.

    1997-01-01

    The North American gas pipeline industry is in the process of changing from a highly regulated merchant business to a less-regulated, more competitive, transportation industry. This has changed the risk profiles of many companies. This study examined various innovative approaches to successfully financing major pipeline projects emphasizing pipeline capacity financing, contractual terms between shippers and pipelines, and regulatory developments. Besides suggesting options to enhance prospects for financing major pipeline expansion projects, the study also aimed at creating a better understanding of the regulatory market and commercial changes in the pipeline industry and their financing implications. The study also includes a review of the evolution in gas markets and a record of consultations with lenders, producers, marketers and users. Innovative financing, contracting and regulatory solutions are identified and assessed. 25 refs., 17 tabs., 16 figs

  1. 77 FR 51848 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Program for Gas Distribution Pipelines. DATES: Interested persons are invited to submit comments on or.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and...

  2. 77 FR 26822 - Pipeline Safety: Verification of Records

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0068] Pipeline Safety: Verification of Records AGENCY: Pipeline and Hazardous Materials... issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities to verify...

  3. 77 FR 74275 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-12-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and... control room. Affected Public: Operators of both natural gas and hazardous liquid pipeline systems. Annual...

  4. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    International Nuclear Information System (INIS)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon

    2014-01-01

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar

  5. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar.

  6. Selection of pipeline steels with an engineering fracture mechanical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stenbacka, N [Swedish State Power Board, Vaellingby

    1985-01-01

    Selection of pipeline steels is discussed on the basis of two mutually independent failure mechanisms: elastic fracture and plastic collapse. The presentation is restricted to axial flaws. A formal analysis shows that brittle fracture in modern pipelines has no high priority in design, since steels used today have a high fracture toughness. Instead, a case of practical concern is tha plastic collapse mode, where failure is flow stress controlled. Conditions governing this design case are specified. In conjunction with this, criterions for material selection with regard to fracture toughness is presented.

  7. Increase of ecological safety of the pipeline

    International Nuclear Information System (INIS)

    Dr Movsumov, Sh.N.; Prof Aliyev, F.G.

    2005-01-01

    Full text : For increase of ecological safety of the pipeline, necessary decrease of damage (risk) rendered by the pipeline on surrounding natural environment which depends: on the frequency of damage of the pipeline; on the volume poured oil; on the factor of sensitivity of an environment where flood of oil was. Frequency of damage of the pipeline depends on physico-chemical properties of a material of the pipeline, from its technical characteristics (thickness of a wall, length of a pipe, working pressure), on the seismic area of the district where the pipeline passed and also on the way of lining of the pipeline (underground or overground). The volume poured oil depends on diameter of the received damage, from stability of the pipeline mechanical and other external actions, from an ambient temperature, from capacity of the pipeline, from distance between the latches established in the pipeline, and also from time, necessary for their full closing. The factor of sensitivity of environment depends on geological structure and landscapes of district (mountain, the river, settlements) where passed the pipeline. At designing the pipeline, in report is shown questions of increase of ecological safety of the pipeline are considered at his construction and exploitation. For improvement of ecological safety of the pipeline is necessary to hold the following actions: Ecological education of the public, living near along a line of the oil pipeline; carrying out ecological monitoring; working of the public plan of response to oil spills; For ecological education of the public is necessary: carrying out informing of the public for all (technical, ecological, social and economic and legal) questions connected to an oil pipeline, and also on methods of protection of the rights at participation in acceptance of ecological significant decisions; Creation of public groups for realization of activity on observance of the legislation and to prevention of risks; Exposure of hot

  8. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  9. Wave Pipelining Using Self Reset Logic

    Directory of Open Access Journals (Sweden)

    Miguel E. Litvin

    2008-01-01

    Full Text Available This study presents a novel design approach combining wave pipelining and self reset logic, which provides an elegant solution at high-speed data throughput with significant savings in power and area as compared with other dynamic CMOS logic implementations. To overcome some limitations in SRL art, we employ a new SRL family, namely, dual-rail self reset logic with input disable (DRSRL-ID. These gates depict fairly constant timing parameters, specially the width of the output pulse, for varying fan-out and logic depth, helping accommodate process, supply voltage, and temperature variations (PVT. These properties simplify the implementation of wave pipelined circuits. General timing analysis is provided and compared with previous implementations. Results of circuit implementation are presented together with conclusions and future work.

  10. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  11. 75 FR 73160 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...-Related Conditions on Gas, Hazardous Liquid, and Carbon Dioxide Pipelines and Liquefied Natural Gas... Pipelines and Liquefied Natural Gas Facilities.'' The Pipeline Safety Laws (49 U.S.C. 60132) require each...

  12. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  13. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    This study investigates the presence of SRB in water, in a water pipeline and in the soil near the pipeline at a mining operation, under conditions that would be expected to be stable toward corrosion. Samples of water in pipes showed a high frequency of SRB. Cast iron coupons placed in pipes gave positive results for SRB ...

  14. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  15. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  16. Pipeline integrity: ILI baseline data for QRA

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Todd R. [Tuboscope Pipeline Services, Houston, TX (United States)]. E-mail: tporter@varco.com; Silva, Jose Augusto Pereira da [Pipeway Engenharia, Rio de Janeiro, RJ (Brazil)]. E-mail: guto@pipeway.com; Marr, James [MARR and Associates, Calgary, AB (Canada)]. E-mail: jmarr@marr-associates.com

    2003-07-01

    The initial phase of a pipeline integrity management program (IMP) is conducting a baseline assessment of the pipeline system and segments as part of Quantitative Risk Assessment (QRA). This gives the operator's integrity team the opportunity to identify critical areas and deficiencies in the protection, maintenance, and mitigation strategies. As a part of data gathering and integration of a wide variety of sources, in-line inspection (ILI) data is a key element. In order to move forward in the integrity program development and execution, the baseline geometry of the pipeline must be determined with accuracy and confidence. From this, all subsequent analysis and conclusions will be derived. Tuboscope Pipeline Services (TPS), in conjunction with Pipeway Engenharia of Brazil, operate ILI inertial navigation system (INS) and Caliper geometry tools, to address this integrity requirement. This INS and Caliper ILI tool data provides pipeline trajectory at centimeter level resolution and sub-metre 3D position accuracy along with internal geometry - ovality, dents, misalignment, and wrinkle/buckle characterization. Global strain can be derived from precise INS curvature measurements and departure from the initial pipeline state. Accurate pipeline elevation profile data is essential in the identification of sag/over bend sections for fluid dynamic and hydrostatic calculations. This data, along with pipeline construction, operations, direct assessment and maintenance data is integrated in LinaViewPRO{sup TM}, a pipeline data management system for decision support functions, and subsequent QRA operations. This technology provides the baseline for an informed, accurate and confident integrity management program. This paper/presentation will detail these aspects of an effective IMP, and experience will be presented, showing the benefits for liquid and gas pipeline systems. (author)

  17. Pressure Transient Model of Water-Hydraulic Pipelines with Cavitation

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    2018-03-01

    Full Text Available Transient pressure investigation of water-hydraulic pipelines is a challenge in the fluid transmission field, since the flow continuity equation and momentum equation are partial differential, and the vaporous cavitation has high dynamics; the frictional force caused by fluid viscosity is especially uncertain. In this study, due to the different transient pressure dynamics in upstream and downstream pipelines, the finite difference method (FDM is adopted to handle pressure transients with and without cavitation, as well as steady friction and frequency-dependent unsteady friction. Different from the traditional method of characteristics (MOC, the FDM is advantageous in terms of the simple and convenient computation. Furthermore, the mechanism of cavitation growth and collapse are captured both upstream and downstream of the water-hydraulic pipeline, i.e., the cavitation start time, the end time, the duration, the maximum volume, and the corresponding time points. By referring to the experimental results of two previous works, the comparative simulation results of two computation methods are verified in experimental water-hydraulic pipelines, which indicates that the finite difference method shows better data consistency than the MOC.

  18. Flooding simulation of hilly pipeline commisionning process

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Zhang [China National Oil and Gas Exploration and Development Corporation and China University of Petroleum, Beijing (China); Jing, Gong [China University of Petroleum, Beijing (China); Baoli, Zhu [China National Oil and Gas Exploration and Development Corporation, Beijing (China); Lin, Zheng [CNPC Oil and Gas Control Center, Beijing (China)

    2010-07-01

    When the construction of a pipeline has been completed, the pipeline flooding is done as part of the pipeline commissioning process. This method consists of filling the empty pipe with water or oil. In a pipeline situated in hilly terrain, air entrapped in the fluid causes problems with the flooding process and it is necessary to discharge the accumulated air to address this issue. The aim of this paper is to provide a model for predicting the location and volume of air pockets in a pipeline. This model was developed based on the fundamentals of mass balance and momentum transfer in multiphase flow and was then applied to a pipeline in China and compared with the SCADA data. Results showed a good match between the model's predictions of hydraulic movement and the real data from SCADA. The two flow model developed can predict hydraulic movement during pipeline flooding in a hilly area and thus it can be used to predict water front location and air pocket movement in the pipe.

  19. Development of cross border gas transmission projects raise challenging issues. Case studies: The transmed and the Maghreb/Europe pipelines

    International Nuclear Information System (INIS)

    Khene, D.

    1997-01-01

    Development of cross border gas transmission projects raise complex and interdependent issues whose successful resolution require not only technical and management strengths but also a close cooperation between the key players involved in the game. In this paper we shall attempt to explain some of the major issues encountered during the appraisal and construction of long distance gas pipeline schemes. The information used derive essentially from the experience gained during the development of the Trans-mediterranean and the Maghreb/Europe pipelines. Running through the various issues we shall also identify and then discuss a number of factors which contributed to the successful implementation of these two projects. (au)

  20. Beyond the pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, J.; Ellis, D.; McIntosh, J.

    1979-12-01

    A study was conducted on the lives of women and their families in Fort Nelson, British Columbia, and Whitehorse, Yukon Territory, two communities which are to be affected by the proposed construction of the Alaska Highway gas pipeline. The womens' socio-economic concerns resulting from the proposed construction were examined by means of interviews with samples of women living in the two communities. Results from the study include descriptions of the communities and their basic services, community planning and housing, women's work in the home and for wages, and the perceived impact of the pipeline on such matters as employment, social services, living costs, business, housing, crime, and the overall community. Recommendations are made to improve the planning process for the pipeline to include the taking into account of womens' needs in such areas as training, health care, housing, and community services. 213 refs., 4 figs., 2 tabs.

  1. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  2. Evaluation of satellite technology for pipeline route surveillance and the prevention of third party interference damage

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil [Penspen Integrity, Newcastle upon Tyne (United Kingdom)]. E-mail: r.palmer-jones@penspen.com; p.hopkins@penspen.com; Fraser, Andy [Integrated Statistical Solutions (United States)]. E-mail: andy@issquared.co.uk; Dezobry, Jerome [Gas de France, Paris (France)]. E-mail: jerome.dezobry@gazdefrance.com; Merrienboer, Hugo Van [Gasunie, Groningen (Netherlands)]. E-mail: H.A.M.van.Merrienboer@gasunie.nl

    2003-07-01

    The damage caused by Third Party Interference (TPI) is one of the major causes of pipeline failures. Consequently, new technologies for identifying activities that may cause damage to our pipelines are constantly being developed. A recently completed project sponsored by a number of pipeline operators has investigated the use of high-resolution satellites for the integrity management of onshore transmission pipelines. The sponsors were BG Technology (on behalf of Transco), Dansk Olie NatureGas, Gasunie, BP, Gaz de France, Distrigas, and the Health and Safety Executive. The project started with a general review of the satellite technologies available and their potential. The study was then focussed on the identification of activities that might result in damage to the pipeline and the potential of high-resolution optical satellites in identifying hazardous activities. A key element of the study was a comparison with existing surveillance systems, which generally involve regular aerial patrols of the pipeline route. To achieve this a survey was carried out to try and evaluate the costs and benefits of existing systems. In addition a simple model for analysing the cost benefit of pipeline surveillance was constructed, and a functional specification for a surveillance system drafted. Finally the performance of the IKONOS 2 high-resolution satellite system was tested in a controlled experiment using targets placed along a pipeline route. The results of this test were compared with a similar test of helicopter-based surveillance carried out by one of the sponsors. (author)

  3. The problem of maintenance of strength, lifetime and safety of the structural components operational NPP from items of a system approach

    International Nuclear Information System (INIS)

    Getman, A.F.

    2005-01-01

    The strength of the structural components and pipelines NPP determines largely their lifetime, radiation and nuclear safety. As shows world experience of operation NPP, in a series of cases during operation the local damages, breaks and destructions of elements of the equipment and pipelines emerge. These cases force maintaining organizations to execute on NPP large volumes of the control, repair and modernizing of the equipment and pipelines. These activities require large material inputs (net less than 50% of the cost of operation NPP), however not always are effective and in a series of cases do not allow to reach required of level reliability and safety. The reason of such condition of a problem is that the measures executed on NPP, developed on stretch of long time and under influence of the diverse factors. Besides until now there is no unified scientific methodology of a case study of maintenance of strength, lifetime and safety of the operational equipment and pipelines NPP. The application of a system approach to a problem of maintenance of strength, lifetime and safety of the equipment and pipelines operational NPP allows to consider a problem as a whole, from unified items, to define the most fast and effective paths it of the solution and to decide problems in as much as possible short times at minimum material inputs. The experience of practical application of a system approach at the solution of separate problems of operation NPP has allowed to develop a lot of effective new techniques, technologies and means, which application allows essentially to increase reliability and gamma percentage lifetime of elements NPP, to which they were applied. As an example in the report the outcomes of application of a system approach for maintenance of SG tubes integrity of reactors of a type WWER are adduced. The application of a system approach for all elements of the equipment and pipelines NPP will allow to increase it reliability and safety not less, than on 10

  4. Pipeline operators training and certification using thermohydraulic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Claudio V.; Plasencia C, Jose [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil). Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Montalvao, Filipe; Costa, Luciano [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The continuous pipeline operators training and certification of the TRANSPETRO's Pipeline National Operations Control Center (CNCO) is an essential task aiming the efficiency and safety of the oil and derivatives transport operations through the Brazilian pipeline network. For this objective, a hydraulic simulator is considered an excellent tool that allows the creation of different operational scenarios for training the pipeline hydraulic behavior as well as for testing the operator's responses to normal and abnormal real time operational conditions. The hydraulic simulator is developed based on a pipeline simulation software that supplies the hydraulic responses normally acquired from the pipeline remote units in the field. The pipeline simulation software has a communication interface system that sends and receives data to the SCADA supervisory system database. Using the SCADA graphical interface to create and to customize human machine interfaces (HMI) from which the operator/instructor has total control of the pipeline/system and instrumentation by sending commands. Therefore, it is possible to have realistic training outside of the real production systems, while acquiring experience during training hours with the operation of a real pipeline. A pilot Project was initiated at TRANSPETRO - CNCO targeting to evaluate the hydraulic simulators advantages in pipeline operators training and certification programs. The first part of the project was the development of three simulators for different pipelines. The excellent results permitted the project expansion for a total of twenty different pipelines, being implemented in training programs for pipelines presently operated by CNCO as well as for the new ones that are being migrated. The main objective of this paper is to present an overview of the implementation process and the development of a training environment through a pipe simulation environment using commercial software. This paper also presents

  5. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  6. Optimizing the TESS Planet Finding Pipeline

    Science.gov (United States)

    Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center

    2017-10-01

    The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.

  7. Simulation of pipeline in the area of the underwater crossing

    International Nuclear Information System (INIS)

    Burkov, P; Chernyavskiy, D; Burkova, S; Konan, E C

    2014-01-01

    The article studies stress-strain behavior of the main oil-pipeline section Alexandrovskoye-Anzhero-Sudzhensk using software system Ansys. This method of examination and assessment of technical conditions of objects of pipeline transport studies the objects and the processes that affect the technical condition of these facilities, including the research on the basis of computer simulation. Such approach allows to develop the theory, methods of calculations and designing of objects of pipeline transport, units and parts of machines, regardless of their industry and destination with a view to improve the existing constructions and create new structures, machines of high performance, durability and reliability, maintainability, low material capacity and cost, which have competitiveness on the world market

  8. Crude oil growth impact on pipelines

    International Nuclear Information System (INIS)

    Devries, O.

    2005-01-01

    This paper provided an outline of crude oil production and supply in Canada. Details of oil sands projects in Athabasca, Cold Lake and Peace River were presented. A chart of oil sands growth by major project was provided. A list of new emerging oil sands crude types was also presented along with details of a synthetic bitumen blending synergy. Maps of Western Canadian crude oil markets were provided, along with details of refinery and market demand by crude type. Various pipeline alternatives to new markets were examined, with reference to Enbridge Pipeline's supply and capacity. Details of the Hardisty to U.S Gulf Coast Pipeline and the Edmonton to Prince Rupert Pipeline and its terminal and dock facilities were presented. It was concluded that pipeline capacity and seasonal factors will influence market demand, while linefill, crude types and the quality of the product will influence operational strategies. tabs., figs

  9. Maritimes and Northeast Pipeline : from pipe dream to reality

    International Nuclear Information System (INIS)

    Langan, P.T.

    1998-01-01

    A general project description and time schedule of the Maritimes and Northeast Pipeline project was presented. The pipeline project is a component of the Sable Offshore Energy Project which involves the development of six separate gas fields near Sable Island on the Scotian Shelf about 250 km off the south coast of Nova Scotia. The six fields under development represent about 3.5 trillion cubic feet of proven gas supply. Another 2 trillion cubic feet of gas has been discovered in nearby pools. There is an estimated additional 13 trillion cubic feet of potential gas reserve in the Scotian Shelf region. The 2 billion-dollar offshore project involves twenty-eight production wells, construction and installation of six platforms and a 225-km long two-phase pipeline from the central platform that will transport the product to shore. A gas plant will be constructed on-shore at Goldboro at which point the liquids will be stripped from the gas stream and transported by an onshore pipeline to Point Tupper, Cape Breton Island, to a fractionation facility for further market processing. The Maritimes and Northeast Pipeline will transport the gas product to markets in Nova Scotia, New Brunswick and New England. A number of unique challenges associated with the Maritimes and Northeast Pipeline project such as the problems of serving a new market, the highly competitive anchor market in the U.S., supply and operating characteristics, the regulatory process, and various competing projects were also reviewed. Sable offshore gas is scheduled to flow by late 1999

  10. Public perceptions of CO2 transportation in pipelines

    International Nuclear Information System (INIS)

    Gough, Clair; O'Keefe, Laura; Mander, Sarah

    2014-01-01

    This paper explores the response by members of the lay public to the prospect of an onshore CO 2 pipeline through their locality as part of a proposed CCS development and presents results from deliberative Focus Groups held along a proposed pipeline route. Although there is a reasonable level of general knowledge about CO 2 across the lay public, understanding of its specific properties is more limited. The main concerns expressed around pipelines focused on five areas: (i) safe operation of the pipeline; (ii) the risks to people, livestock and vegetation arising from the leakage of CO 2 from the pipeline; (iii) the innovative and ‘first of its kind' nature of the pipeline and the consequent lack of operational CO 2 pipelines in the UK to demonstrate the technology; (iv) impacts on coastal erosion at the landfall site; and (v) the potential disruption to local communities during pipeline construction. Participants expressed scepticism over the motivations of CO 2 pipeline developers. Trust that the developer will minimise risk during the route selection and subsequent construction, operation and maintenance of the pipeline is key; building trust within the local community requires early engagement processes, tailored to deliver a variety of engagement and information approaches. - Highlights: • Lay publics express good general knowledge of CO 2 but not of its specific properties. • Key concerns relate to risk and safety and ‘first of a kind' nature of CO 2 pipeline. • Group participants are sceptical about motivations of CO 2 pipeline developers. • Communities' trust in developer is a major element of their risk assessment

  11. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  12. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  13. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  14. Low-Probability High-Consequence (LPHC) Failure Events in Geologic Carbon Sequestration Pipelines and Wells: Framework for LPHC Risk Assessment Incorporating Spatial Variability of Risk

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budnitz, Robert J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-31

    If Carbon dioxide Capture and Storage (CCS) is to be effective in mitigating climate change, it will need to be carried out on a very large scale. This will involve many thousands of miles of dedicated high-pressure pipelines in order to transport many millions of tonnes of CO2 annually, with the CO2 delivered to many thousands of wells that will inject the CO2 underground. The new CCS infrastructure could rival in size the current U.S. upstream natural gas pipeline and well infrastructure. This new infrastructure entails hazards for life, health, animals, the environment, and natural resources. Pipelines are known to rupture due to corrosion, from external forces such as impacts by vehicles or digging equipment, by defects in construction, or from the failure of valves and seals. Similarly, wells are vulnerable to catastrophic failure due to corrosion, cement degradation, or operational mistakes. While most accidents involving pipelines and wells will be minor, there is the inevitable possibility of accidents with very high consequences, especially to public health. The most important consequence of concern is CO2 release to the environment in concentrations sufficient to cause death by asphyxiation to nearby populations. Such accidents are thought to be very unlikely, but of course they cannot be excluded, even if major engineering effort is devoted (as it will be) to keeping their probability low and their consequences minimized. This project has developed a methodology for analyzing the risks of these rare but high-consequence accidents, using a step-by-step probabilistic methodology. A key difference between risks for pipelines and wells is that the former are spatially distributed along the pipe whereas the latter are confined to the vicinity of the well. Otherwise, the methodology we develop for risk assessment of pipeline and well failures is similar and provides an analysis both of the annual probabilities of

  15. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  16. Polar bear encephalitis: establishment of a comprehensive next-generation pathogen analysis pipeline for captive and free-living wildlife.

    Science.gov (United States)

    Szentiks, C A; Tsangaras, K; Abendroth, B; Scheuch, M; Stenglein, M D; Wohlsein, P; Heeger, F; Höveler, R; Chen, W; Sun, W; Damiani, A; Nikolin, V; Gruber, A D; Grobbel, M; Kalthoff, D; Höper, D; Czirják, G Á; Derisi, J; Mazzoni, C J; Schüle, A; Aue, A; East, M L; Hofer, H; Beer, M; Osterrieder, N; Greenwood, A D

    2014-05-01

    This report describes three possibly related incidences of encephalitis, two of them lethal, in captive polar bears (Ursus maritimus). Standard diagnostic methods failed to identify pathogens in any of these cases. A comprehensive, three-stage diagnostic 'pipeline' employing both standard serological methods and new DNA microarray and next generation sequencing-based diagnostics was developed, in part as a consequence of this initial failure. This pipeline approach illustrates the strengths, weaknesses and limitations of these tools in determining pathogen caused deaths in non-model organisms such as wildlife species and why the use of a limited number of diagnostic tools may fail to uncover important wildlife pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 49 CFR 192.627 - Tapping pipelines under pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping pipelines under pressure. 192.627 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.627 Tapping pipelines under pressure. Each tap made on a pipeline under pressure must be performed by a crew qualified to make...

  18. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  19. Bicycle: a bioinformatics pipeline to analyze bisulfite sequencing data.

    Science.gov (United States)

    Graña, Osvaldo; López-Fernández, Hugo; Fdez-Riverola, Florentino; González Pisano, David; Glez-Peña, Daniel

    2018-04-15

    High-throughput sequencing of bisulfite-converted DNA is a technique used to measure DNA methylation levels. Although a considerable number of computational pipelines have been developed to analyze such data, none of them tackles all the peculiarities of the analysis together, revealing limitations that can force the user to manually perform additional steps needed for a complete processing of the data. This article presents bicycle, an integrated, flexible analysis pipeline for bisulfite sequencing data. Bicycle analyzes whole genome bisulfite sequencing data, targeted bisulfite sequencing data and hydroxymethylation data. To show how bicycle overtakes other available pipelines, we compared them on a defined number of features that are summarized in a table. We also tested bicycle with both simulated and real datasets, to show its level of performance, and compared it to different state-of-the-art methylation analysis pipelines. Bicycle is publicly available under GNU LGPL v3.0 license at http://www.sing-group.org/bicycle. Users can also download a customized Ubuntu LiveCD including bicycle and other bisulfite sequencing data pipelines compared here. In addition, a docker image with bicycle and its dependencies, which allows a straightforward use of bicycle in any platform (e.g. Linux, OS X or Windows), is also available. ograna@cnio.es or dgpena@uvigo.es. Supplementary data are available at Bioinformatics online.

  20. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  1. Diagnostics and reliability of pipeline systems

    CERN Document Server

    Timashev, Sviatoslav

    2016-01-01

    The book contains solutions to fundamental problems which arise due to the logic of development of specific branches of science, which are related to pipeline safety, but mainly are subordinate to the needs of pipeline transportation.          The book deploys important but not yet solved aspects of reliability and safety assurance of pipeline systems, which are vital aspects not only for the oil and gas industry and, in general, fuel and energy industries , but also to virtually all contemporary industries and technologies. The volume will be useful to specialists and experts in the field of diagnostics/ inspection, monitoring, reliability and safety of critical infrastructures. First and foremost, it will be useful to the decision making persons —operators of different types of pipelines, pipeline diagnostics/inspection vendors, and designers of in-line –inspection (ILI) tools, industrial and ecological safety specialists, as well as to researchers and graduate students.

  2. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    International Nuclear Information System (INIS)

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  3. Integrated surface management for pipeline construction: The Mid-America Pipeline Company Four Corners Project

    Science.gov (United States)

    Maria L. Sonett

    1999-01-01

    Integrated surface management techniques for pipeline construction through arid and semi-arid rangeland ecosystems are presented in a case history of a 412-mile pipeline construction project in New Mexico. Planning, implementation and monitoring for restoration of surface hydrology, soil stabilization, soil cover, and plant species succession are discussed. Planning...

  4. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  5. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  6. Pipeline dreams face up to reality

    International Nuclear Information System (INIS)

    Ryan, Orla

    1999-01-01

    This article gives details of two gas pipelines which are expected to be built in Turkey to meet the estimated demand for gas. The Bluestream joint ENI/Gasprom project pipeline will convey Russian gas across the Black Sea to Turkey, and the PSG joint Bechtel/General Electric venture will bring gas from Turkmenistan to Turkey across the Caspian Sea. Construction of the pipelines and financing aspects are discussed. (uk)

  7. Cost reducing factors in effective pipeline piling structure design and construction in Alberta's thermal SAGD gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzad, M.A. [IMV Projects, Calgary, AB (Canada)

    2008-10-15

    Oil sands steam assisted gravity drainage (SAGD) gathering pipeline systems are typically arranged so that above-ground steam pipeline and production pipelines lay next to each other on the same steel structure. Longitudinal and lateral loads build up in the pipeline supports, and the loads are consistently changing until pipeline temperatures reach a steady state condition. SAGD pipelines are required to have enough flexibility to absorb thermal expansion or contraction movements. However, most pipeline engineers only consider upper and lower temperature limits in the design of steel structures and pilings. This paper examined the effect of considering both the thermal gradient and time factor in designing supports for pipelines. The study examined how the factors impacted on standard load calculations and pile sizings. Sixteen stress analysis models for steam and production lines were prepared and designated thermal gradients were introduced to each model. Longitudinal and lateral loads caused by thermal gradient movements were calculated for all supports. The models were analyzed and absolute values for longitudinal and lateral loads were recorded. Results of the study showed that engineers do not necessarily need to rely on maximum temperatures as the condition that results in maximum longitudinal and lateral loads on supports. It was concluded that costs related to pipeline construction can be significantly reduced by considering the effects of thermal gradients in stress analyses and load calculations. 5 refs., 14 figs.

  8. Security of pipeline facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C. [Alberta Energy and Utilities Board, Calgary, AB (Canada); Van Egmond, C.; Duquette, L. [National Energy Board, Calgary, AB (Canada); Revie, W. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada)

    2005-07-01

    This working group provided an update on provincial, federal and industry directions regarding the security of pipeline facilities. The decision to include security issues in the NEB Act was discussed as well as the Pipeline Security Management Assessment Project, which was created to establish a better understanding of existing security management programs as well as to assist the NEB in the development and implementation of security management regulations and initiatives. Amendments to the NEB were also discussed. Areas of pipeline security management assessment include physical safety management; cyber and information security management; and personnel security. Security management regulations were discussed, as well as implementation policies. Details of the Enbridge Liquids Pipelines Security Plan were examined. It was noted that the plan incorporates flexibility for operations and is integrated with Emergency Response and Crisis Management. Asset characterization and vulnerability assessments were discussed, as well as security and terrorist threats. It was noted that corporate security threat assessment and auditing are based on threat information from the United States intelligence community. It was concluded that the oil and gas industry is a leader in security in North America. The Trans Alaska Pipeline Incident was discussed as a reminder of how costly accidents can be. Issues of concern for the future included geographic and climate issues. It was concluded that limited resources are an ongoing concern, and that the regulatory environment is becoming increasingly prescriptive. Other concerns included the threat of not taking international terrorism seriously, and open media reporting of vulnerability of critical assets, including maps. tabs., figs.

  9. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  10. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  11. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  12. Landscape susceptibility, hazard and risk assessments along pipeline corridors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Blais-Stevens, A.; Couture, R.; Page, A. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Koch, J.; Clague, J.J. [Simon Fraser Univ., Burnaby, BC (Canada); Lipovsky, P.S. [Yukon Geological Survey, Whitehorse, YT (Canada)

    2010-07-01

    This article discussed work that was carried out to inventory landslides and assess hazards along two proposed gas-pipeline routes in the North. Landslide inventories and hazard assessments are necessary to quantify and qualify the risk of environmental impacts from landslides on linear infrastructure. The Yukon Alaska Highway Pipeline and the Mackenzie Gas Project Pipeline, which will both be over 800 kilometres in length, will cross harsh landscapes characterized by permafrost terrain and will be at risk from geological hazards, including landslides with debris flows, earthquakes, subsidence, and permafrost degradation. The work involved inventorying and mapping landslides via aerial photography and field visits to identify the frequency-magnitude relationships for debris flow fans along the route and the creation of qualitative parametric landslide maps for both proposed pipeline corridors. A good correlation was found between actual landslide distribution and the landslide susceptibility maps. For the Mackenzie Valley Pipeline Corridor, most landslides have occurred in fine unconsolidated sediments and shallow slopes. Landslides in the Yukon Alaska Highway Corridor mostly happened in unconsolidated sediments, but a few took place in bedrock with high relief. The preliminary investigation revealed that a slope hazard exists in both corridors and must be taken into account during pipeline development. The results are intended to facilitate better decision-making for planning, constructing, and maintaining safe and economically viable pipeline routes in Northern Canada. The mapping methodology was outlined. 13 refs., 1 tab., 6 figs.

  13. Estimation of efficiency of hydrotransport pipelines polyurethane coating application in comparison with steel pipelines

    Science.gov (United States)

    Aleksandrov, V. I.; Vasilyeva, M. A.; Pomeranets, I. B.

    2017-10-01

    The paper presents analytical calculations of specific pressure loss in hydraulic transport of the Kachkanarsky GOK iron ore processing tailing slurry. The calculations are based on the results of the experimental studies on specific pressure loss dependence upon hydraulic roughness of pipelines internal surface lined with polyurethane coating. The experiments proved that hydraulic roughness of polyurethane coating is by the factor of four smaller than that of steel pipelines, resulting in a decrease of hydraulic resistance coefficients entered into calculating formula of specific pressure loss - the Darcy-Weisbach formula. Relative and equivalent roughness coefficients are calculated for pipelines with polyurethane coating and without it. Comparative calculations show that hydrotransport pipelines polyurethane coating application is conductive to a specific energy consumption decrease in hydraulic transport of the Kachkanarsky GOC iron ore processing tailings slurry by the factor of 1.5. The experiments were performed on a laboratory hydraulic test rig with a view to estimate the character and rate of physical roughness change in pipe samples with polyurethane coating. The experiments showed that during the following 484 hours of operation, roughness changed in all pipe samples inappreciably. As a result of processing of the experimental data by the mathematical statistics methods, an empirical formula was obtained for the calculation of operating roughness of polyurethane coating surface, depending on the pipeline operating duration with iron ore processing tailings slurry.

  14. Logistics aspects of pipeline transport in the supply of petroleum products

    Directory of Open Access Journals (Sweden)

    Wessel Pienaar

    2008-09-01

    activities are involved in the flow of goods between place of origin and place of consumption or application:Demand forecasting, Facility site selection, Procurement,Materials handling, Packaging, Warehouse management, Inventory management,Order processing, Logistics communications, Transport, Reverse logistics. Because cost is incurred without adding value each time goods are handled (activity 4 at a terminal or storage facility, a primary logistics objective is to eliminate handling wherever possible. With the carriage of crude oil and petroleum products by pipeline this objective is fully met. Commodity intake, haulage, and discharge are combined in one process, usually a remote-controlled operation. Pipeline transport is a non-containerised bulk mode of transport thereby obviating the need for packaging (activity 5 and returning empty containers. Pipelines provide a direct and long-term link between these origins and destinations. If necessary a continuous service can be provided with no need for a return trip or a reverse pumping process (activity 11.The elimination of handling, packaging and reverse logistics activities contribute substantially to the high measure of economies of scale that pipeline transport enjoys. The article provides adscription of each of the eleven logistics activities in the context of pipeline transport. Effective logistics service is a prerequisite to help ensure that customers receive the required products at the desired quality and quantity, where and when needed. The most pertinent determinants of logistics service performance aresuitability, accessibility, goods security, transit time, reliability and flexibility. The article offers a discussion of the extent to which pipeline transport conforms to each of these measures of effectiveness.

  15. Environmental impact of oil transportation by tankers, pipelines, railway

    International Nuclear Information System (INIS)

    Tsitskishvili, M.S.; Chelidze, M.A.; Kaviladze, I.; Chkhartishvili, A.G.; Tsitskishvili, L.B.; Ninua, T.L.; Kordzaxia, G.I.; Gavasheli, L.; Petriashvili, E.T.; Alania, M.L.; Gigolashvili, Sh.Z.; Kordzakhia, M.O.; Chankotadze, P.

    2005-01-01

    vulnerable. Several cases of railway incidents have occurred during last ten years in Georgia and several tanks with oil have been released in the rivers causing significant contamination. The railway infrastructure needs significant improvement and strict control. The railway tanks for oil transportation should be also technically improved to minimize emissions and risks of leakage. Yet we can not avoid the fact that the railways are very often crossing the populated areas and the risks for the human life in case of collision (e.g. third party intentional actions or operational faults) are high. Very important fact is that the National Plan for Oil Spill Contingency in Georgia is almost 95% focused on off-shore spills and in fact no plan exists for the on-shore spills except the corporative oil spill plans provided by BP for the BTC and WREP pipelines. The Government has in fact no capacity to react on railway related oil spills or leakages from other pipeline systems. The government has no capacity for being involved in oil spill response actions organized by BP in case of spills from the BTC or WREP pipelines. There is no organized governmental system for emergency situations. Even BP has not introduced yet the oil spill related fire response plans (and the fires are highly probable in the cases of oil spills cause by terrorist attacks). The general system for emergency response and particularly system of fire response should be organized in the countries of the Region

  16. Sea water pipeline for nuclear power plant

    International Nuclear Information System (INIS)

    Ueno, Ken-ichi.

    1992-01-01

    Heating coils, for example, are wound around sea water pipelines as a heater. The outer wall surface of the sea water pipelines is heated by the heating coils. The inner wall surfaces of the sea water pipelines can be warmed to higher than a predetermined temperature by heating the outer wall surfaces to die out marine organisms deposited at the inner surfaces. Further, thermocouples for the external wall and the internal wall are disposed so that the temperature at the inner wall surface of the sea water pipelines can be controlled. Further, a temperature keeping material is disposed at the external surface of the sea water system pipelines. With such a constitution, the marine organisms deposited on the internal wall surface of the sea water system pipelines are died out to suppress the deposition amount of the marine organisms. Accordingly, the maintenance and the operation reliability is improved after maintenance. (I.N.)

  17. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  18. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  19. New territory for NGL pipelines

    International Nuclear Information System (INIS)

    Turner, C.L.; Billings, F.E.

    1994-01-01

    Even though the NGL pipeline industry appears mature, new geographic territory exists for expansion of NGL pipelines. However, the most fertile territory that must be pursued is the collective opportunities to better link the existing NGL industry. Associations like the Gas Processors Association can not perform the role demanded by a need to share information between the links of the chain on a more real time basis. The Association can not substitute for picking up the phone or calling a meeting of industry participants to discuss proposed changes in policies and procedures. All stakeholders must participate in squeezing out the inefficiencies of the industry. Some expansion and extension of NGL pipelines will occur in the future without ownership participation or commitments from the supply and demand businesses. However, significant expansions linking new supply sources and demand markets will only be made as the supply and demand businesses share long-term strategies and help define the pipeline opportunity. The successful industries of the twenty-first century will not be dominated by a single profitable sector, but rather by those industries which foster cooperation as well as competition. A healthy NGL industry will be comprised of profitable supply businesses and profitable demand businesses, linked together by profitable pipeline businesses

  20. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  1. Millennium Pipeline Presentation : a new northeast passage

    International Nuclear Information System (INIS)

    Wolnik, J.

    1997-01-01

    Routes of the proposed Millennium Pipeline project were presented. The pipeline is to originate at the Empress gas field in Alberta and link up to eastern markets in the United States. One of the key advantages of the pipeline is that it will have the lowest proposed rates from Empress to Chicago and through links via affiliates to New York and other eastern markets. It will include 380 miles of new 36-inch pipeline and have a capacity of 650 million cubic feet per day. In many instances it will follow existing rights-of-way. The pipeline is expected to be in service for the 1999 winter heating season. The project sponsors are Columbia Gas Transmission, CMS Energy, MCN Energy, and Westcoast Energy. 6 figs

  2. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines

    Science.gov (United States)

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-12-01

    Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.

  3. Criteria of assessment for local wall thickness reductions in operative high-pressure gas pipelines; Beurteilungskriterien fuer lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [NetzDienste Rhein/Main GmbH, Frankfurt am Main (Germany); Hoffman, Ulrich [VNG - Verbundnetz Gas AG, Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany). Bau/Betrieb Hochdrucknetz; Steiner, Michael [Open Grid Europe GmbH, Essen (Germany). Integritaet/Werkstofftechnik

    2011-07-01

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. On the basis of this literature study and additional calculations, a comparative evaluation of the available methods was made. Several methods were identified that are compatible with the existing safety concept and general availability. It was found that - nearly independent of the method - burst safeties of 1.8 to 2.0 were used. The ultimate goal is the development of a German standard evaluation concept for local wall thickness reductions in high-pressure gas pipelines in order to avoid uncertainties and/or misinterpretations.

  4. Pipeline leakage recognition based on the projection singular value features and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei; Zhang, Laibin; Mingda, Wang; Jinqiu, Hu [College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, (China)

    2010-07-01

    The negative wave pressure method is one of the processes used to detect leaks on oil pipelines. The development of new leakage recognition processes is difficult because it is practically impossible to collect leakage pressure samples. The method of leakage feature extraction and the selection of the recognition model are also important in pipeline leakage detection. This study investigated a new feature extraction approach Singular Value Projection (SVP). It projects the singular value to a standard basis. A new pipeline recognition model based on the multi-class Support Vector Machines was also developed. It was found that SVP is a clear and concise recognition feature of the negative pressure wave. Field experiments proved that the model provided a high recognition accuracy rate. This approach to pipeline leakage detection based on the SVP and SVM has a high application value.

  5. Accuracy Limitations of Pipelined ADCs

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2005-01-01

    In this paper, the key characteristics of the main errors which affect the performance of a switched capacitor pipelined ADC are presented and their effects on the ADC transfer characteristics demonstrated. Clear and concise relationships are developed to aid optimized design of the pipeline ADC and

  6. Managing the market risk in pipeline capacity positions

    International Nuclear Information System (INIS)

    Simard, T.S.

    1998-01-01

    Managing the risk involved in adding new pipeline capacity was explored in this presentation. Topics discussed included: (1) pipeline capacity positions as basis swaps, (2) physical capacity versus basis transactions, (3) managing the market price risk in a capacity position, and (4) sharing of pipeline market risk. Pipeline owners were advised to recognize that pipeline capacity carries significant market price risk, that basis markets can sometimes be more volatile than outright markets, and to treat physical capacity market risk the same way as one would treat a financial basis position. 2 figs

  7. Risk and integrity management system for PETRONAS Gas Berhad's gas and liquid hydrocarbon pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Tuan Hj. Ahmad Nadzri bin; Nasir, Osman; Napiah, Mohd Nazmi Mohd Ali [PETRONAS Gas Berhad, Johor (Malaysia); Choong, Evelyn

    2005-07-01

    PETRONAS Gas Berhad (PGB), Malaysia currently operates one of Southeast Asia's largest onshore pipeline systems comprising more than 2,500 km of large diameter high pressure gas and liquid transmission, supply and lateral pipelines. Recognizing the value of a risk based approach to pipeline integrity management program, in 2002 PGB implemented a customized and fully integrated Risk and Integrity Management System (RIMS) which included software modules for: data management; semi-quantitative risk assessment; risk control cost benefit analyses; defect assessment; corrosion growth modeling; and reporting. As part of this project, a benchmarking study performed jointly with the contractor, PGB's pipeline integrity programs were also compared with a broad group of international pipeline operators. This study compared the relative ranking position of PGB pre- and post implementation of RIMS. It demonstrated that implementation of RIMS places PGB in a select group of first quartile international pipeline operators, with respect to the implementation of pipeline integrity management best practice. This paper describes the functionalities of RIMS system and how it has benefited PGB, which have been realized to date from its implementation. (author)

  8. The Bakou-Ceyhan pipeline: paradoxes and coherence of the USA strategy of pipelines

    International Nuclear Information System (INIS)

    Jafalian, A.

    2004-01-01

    In 2002, the construction of the Bakou-Ceyhan pipeline, from the Caspian Sea to the Mediterranean Sea, is begun, in spite of the the controversies of industrialists against politicians and experts. The diplomatic USA activity in favor this pipeline largely contributes to the problems solution. The author presents the USA policy and strategy in the region, the economic constraints and the negotiations. (A.L.B.)

  9. 77 FR 32631 - Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline...

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-13-000] Lion Oil... of the Commission's Rules of Practice and Procedure, 18 CFR 385.202 (2011), Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline Company, collectively, Lion Companies...

  10. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  11. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  12. Modelling and transient simulation of water flow in pipelines using WANDA Transient software

    Directory of Open Access Journals (Sweden)

    P.U. Akpan

    2017-09-01

    Full Text Available Pressure transients in conduits such as pipelines are unsteady flow conditions caused by a sudden change in the flow velocity. These conditions might cause damage to the pipelines and its fittings if the extreme pressure (high or low is experienced within the pipeline. In order to avoid this occurrence, engineers usually carry out pressure transient analysis in the hydraulic design phase of pipeline network systems. Modelling and simulation of transients in pipelines is an acceptable and cost effective method of assessing this problem and finding technical solutions. This research predicts the pressure surge for different flow conditions in two different pipeline systems using WANDA Transient simulation software. Computer models were set-up in WANDA Transient for two different systems namely; the Graze experiment (miniature system and a simple main water riser system based on some initial laboratory data and system parameters. The initial laboratory data and system parameters were used for all the simulations. Results obtained from the computer model simulations compared favourably with the experimental results at Polytropic index of 1.2.

  13. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  14. System-Enforced Deterministic Streaming for Efficient Pipeline Parallelism

    Institute of Scientific and Technical Information of China (English)

    张昱; 李兆鹏; 曹慧芳

    2015-01-01

    Pipeline parallelism is a popular parallel programming pattern for emerging applications. However, program-ming pipelines directly on conventional multithreaded shared memory is difficult and error-prone. We present DStream, a C library that provides high-level abstractions of deterministic threads and streams for simply representing pipeline stage work-ers and their communications. The deterministic stream is established atop our proposed single-producer/multi-consumer (SPMC) virtual memory, which integrates synchronization with the virtual memory model to enforce determinism on shared memory accesses. We investigate various strategies on how to efficiently implement DStream atop the SPMC memory, so that an infinite sequence of data items can be asynchronously published (fixed) and asynchronously consumed in order among adjacent stage workers. We have successfully transformed two representative pipeline applications – ferret and dedup using DStream, and conclude conversion rules. An empirical evaluation shows that the converted ferret performed on par with its Pthreads and TBB counterparts in term of running time, while the converted dedup is close to 2.56X, 7.05X faster than the Pthreads counterpart and 1.06X, 3.9X faster than the TBB counterpart on 16 and 32 CPUs, respectively.

  15. Oil pipelines inspection with high wall thickness using MFL tool - Campos Basin experience; Inspecao de oleoduto com paredes espessas com ferramenta MFL - a experiencia da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Franzoi, Aldo; Camerini, Claudio; Bueno, Sergio I.O. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Franca, Andre; Miranda, Ivan V. Janvrot; Silva, Jose A.P.; Lima, Vinicius [PipeWay Engenharia, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Campos Basin deep water pipelines are designed to out stand internal pressure, launching loads and buckling witch demands high wall thickness up to 1 inch. On the other hand, operational conditions require high pumping temperatures to meet requirements of flow assurance. This scenario becomes difficult internal survey specially MFL tools. The present work describes PETROBRAS effort, with PipeWay partnership, looking for alternatives for internal inspection on those pipelines using MFL specially designed, showing details and results from a recent survey. (author)

  16. Pipeline investigation report : crude oil pipeline-third party damage : Trans Mountain Pipeline LP 610 millimetre-diameter crude oil pipeline : kilometre post 3.10, Westridge dock transfer line, Burnaby, British Columbia

    International Nuclear Information System (INIS)

    2009-03-01

    This report discussed an oil spill which occurred in July 2007 when a contractor's excavator bucket punctured a pipeline during the excavation of a trench for a new storm sewer line at a location in Burnaby, British Columbia (BC). The puncture caused the release of approximately 234 cubic meters of crude oil, which flowed into Burrard Inlet Bay via a storm sewer system. Eleven houses were sprayed with crude oil, and many other properties required restoration. Approximately 250 residents left their homes. While emergency workers and firefighters responding to the incident were sprayed with crude oil, no explosions, fires, or injuries occurred. The report provided details of studies conducted to determine the placement of the sewer line, as well as attempts made by the contractors to determine the lateral connection of the crude oil pipeline. Discrepancies between the location of the pipeline design drawing and its actual location on other construction drawings were also noted by the contractor. Twenty-four minutes after the rupture, the terminal was fully isolated and the drain-down of the pipeline was completed within an hour. The cause of the accident was attributed to inaccurate construction drawings and inadequate communications between contractors and consulting companies. 3 figs

  17. Impedance Method for Leak Detection in Zigzag Pipelines

    Science.gov (United States)

    Lay-Ekuakille, A.; Vergallo, P.; Trotta, A.

    2010-01-01

    Transportation of liquids is a primary aspect of human life. The most important infrastructure used accordingly is the pipeline. It serves as an asset for transporting different liquids and strategic goods. The latter are for example: chemical substances, oil, gas and water. Thus, it is necessary to monitor such infrastructures by means of specific tools. Leakage detection methods are used to reveal liquid leaks in pipelines for many applications, namely, waterworks, oil pipelines, industry heat exchangers, etc. The configuration of pipelines is a key issue because it impacts on the effectiveness of the method to be used and, consequently, on the results to be counterchecked. This research illustrated an improvement of the impedance method for zigzag pipeline by carrying out an experimental frequency analysis that has been compared with other methods based on frequency response. Hence, the impedance method is generally used for simple (straight) pipeline configurations because complicated pipelines with many curves introduce difficulties and major uncertainties in the calculation of characteristic impedance and in the statement of boundary conditions. The paper illustrates the case of a water pipeline where the leakage is acquired thanks to pressure transducers.

  18. Permanent cathodic protection monitoring systems for offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jim [Deepwater Corrosion Services Inc., Houston, TX (United States)

    2009-07-01

    Historically offshore pipeline cathodic protection monitoring has relied on the use of portable survey techniques. This has typically relied on ROV assisted or surface deployed survey methods. These methods have been shown to have technical as well as economic shortcomings, this is particularly true of buried offshore pipelines where accuracy is always questionable. As more focus is being placed on offshore pipeline integrity, it was time for a new method to emerge. The technology discussed involves the retro-placement of permanent clamp-on monitors onto the pipeline which can measure pipeline to seawater potential as well as current density. The sensors can be interrogated locally using light powered subsea voltage readouts. Application of the technology can be either during pipeline construction, during installation of life extension CP systems, or during routine subsea pipeline interventions. The new method eliminates the need for long cables or expensive acoustic or modulated data transfer and provides all the information required to fully verify CP system performance, thus eliminating the need for expensive close-interval surveys. Some deployment case histories will be presented along with feasibility of application on deep water pipelines and comparative economics. (author)

  19. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi

    2015-08-01

    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.

  20. Assessing and preparing a pipeline for in line inspection

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Larry [T.D. Williamson Inc., Tulsa, OK (United States)

    2003-07-01

    In today's pipeline environment, operators around the world face new and emerging state and federal regulations requiring validation of their pipelines' integrity. In line inspection, or smart pigging, is generally the preferred methodology used to investigate metal loss and corrosion in pipelines. Although many pipelines can accommodate smart pigging, there are many pipelines that cannot, for various reasons. Those reasons can vary from not having pig launchers and receivers installed on the line to impassable bends or restrictions and general cleanliness of the pipeline itself. Pipeline cleanliness, more times than not, is one of the main reasons for inaccurate in line inspection data gathering or failed smart pig runs. (author)

  1. The Dangers of Pipeline Thinking: How the School-to-Prison Pipeline Metaphor Squeezes out Complexity

    Science.gov (United States)

    McGrew, Ken

    2016-01-01

    In this essay Ken McGrew critically examines the "school-to-prison pipeline" metaphor and associated literature. The origins and influence of the metaphor are compared with the origins and influence of the competing "prison industrial complex" concept. Specific weaknesses in the "pipeline literature" are examined.…

  2. In line inspection of multi-diameter and high-pressure pipelines in Brazil using combined technologies: magnetic flux leakage and ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Ginten, Markus; Brockhaus, Stephan; Bouaoua, Nourreddine; Klein, Stefan [ROSEN Technology and Research Center, Lingen (Germany); Bruening, Franz [ROSEN Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The simultaneous use of the magnetic flux leakage (MFL) method and the ultrasonic testing (UT) method on a single in line inspection (ILI) tool has been identified as a versatile and accurate solution for liquid pipelines. The combination of the two methods is complementary to the restrictions of each other. Also, the overall scope of the inspection is enlarged. General wall thinning and largely corroded areas are accurately and reliably scanned with the UT unit, while very detailed information about pitting corrosion is obtained from the MFL measurement. Blind spots of echo loss, as occasionally observed for the UT channels is compensated by the more robust measurement from the MFL sensors. Consequently, this technology has been the method of choice in an in line inspection project of an onshore long distance pipeline in Brazil, facing a variety of corrosion threats. The pipeline consists of several multi-diameter sections of 18/20 inches and 20/22 inches. Furthermore, the high gravity of product in combination with a height profile, an altitude of 1152 m MSL (Mean Sea Level) had to be crossed, leads to a maximum pressure of 220 bar. These boundary conditions had to be considered during the design of the ILI-tool. The paper discusses the experience made so far with the combined technology MFL and UT. The effective use of the inspection tool for the above mentioned pipeline as well as field results from a previous inspection are described. (author)

  3. 78 FR 5866 - Pipeline Safety: Annual Reports and Validation

    Science.gov (United States)

    2013-01-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0319] Pipeline Safety: Annual Reports and Validation AGENCY: Pipeline and Hazardous Materials... 2012 gas transmission and gathering annual reports, remind pipeline owners and operators to validate...

  4. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  5. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  6. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0004] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  7. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2010-0034] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  8. 77 FR 34458 - Pipeline Safety: Requests for Special Permit

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0112] Pipeline Safety: Requests for Special Permit AGENCY: Pipeline and Hazardous Materials... BreitBurn Energy Company LP, two natural gas pipeline operators, seeking relief from compliance with...

  9. 78 FR 14877 - Pipeline Safety: Incident and Accident Reports

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2013-0028] Pipeline Safety: Incident and Accident Reports AGENCY: Pipeline and Hazardous Materials... PHMSA F 7100.2--Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems and...

  10. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  11. Regulatory reform for natural gas pipelines: The effect on pipeline and distribution company share prices

    Science.gov (United States)

    Jurman, Elisabeth Antonie

    1997-08-01

    The natural gas shortages in the 1970s focused considerable attention on the federal government's role in altering energy consumption. For the natural gas industry these shortages eventually led to the passage of the Natural Gas Policy Act (NGPA) in 1978 as part of the National Energy Plan. A series of events in the decade of the 1980s has brought about the restructuring of interstate natural gas pipelines which have been transformed by regulators and the courts from monopolies into competitive entities. This transformation also changed their relationship with their downstream customers, the LDCs, who no longer had to deal with pipelines as the only merchants of gas. Regulatory reform made it possible for LDCs to buy directly from producers using the pipelines only for delivery of their purchases. This study tests for the existence of monopoly rents by analyzing the daily returns of natural gas pipeline and utility industry stock price data from 1982 to 1990, a period of regulatory reform for the natural gas industry. The study's main objective is to investigate the degree of empirical support for claims that regulatory reforms increase profits in the affected industry, as the normative theory of regulation expects, or decrease profits, as advocates of the positive theory of regulation believe. I also test Norton's theory of risk which predicts that systematic risk will increase for firms undergoing deregulation. Based on a sample of twelve natural gas pipelines, and 25 utilities an event study concept was employed to measure the impact of regulatory event announcements on daily natural gas pipeline or utility industry stock price data using a market model regression equation. The results of this study provide some evidence that regulatory reforms did not increase the profits of pipeline firms, confirming the expectations of those who claim that excess profits result from regulation and will disappear, once that protection is removed and the firms are operating in

  12. Monitoring device for the reactor pipelines

    International Nuclear Information System (INIS)

    Fukumoto, Akira.

    1983-01-01

    Purpose: To enable rapid and accurate operator's monitoring for the state of pipelines in a BWR type reactor. Constitution: Specific symbols are attached respectively to a fluid supply source constituting the pipelines of a nuclear reactor facility, a plurality of fluid passing points and equipments to be supplied with the fluid, and a symmetrical matrix comprising these symbols in rows and columns is constituted. Then, a matrix is prepared based on detection signals for the states of the liquid supply source, equipments to be supplied with fluid and pipeline equipments by rendering the matrix elements between the signals expressing the state capable of passing the fluid as 1 and the matrix elements between the signals expressing the state incapable of passing the fluid as 0 . The matrix thus prepared in a signal procession circuit and a matrix in a memory circuit previously storing the matrix expressing the normal state of the pipelines are compared to judge the state of the pipelines in a short time and with no misjudging. (Moriyama, K.)

  13. Effort problem of chemical pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okrajni, J.; Ciesla, M.; Mutwil, K. [Silesian Technical University, Katowice (Poland)

    1998-12-31

    The problem of the technical state assessment of the chemical pipelines working under mechanical and thermal loading has been shown in the paper. The pipelines effort after the long time operating period has been analysed. Material geometrical and loading conditions of the crack initiation and crack growth process in the chosen object has been discussed. Areas of the maximal effort have been determined. The material structure charges after the long time operating period have been described. Mechanisms of the crack initiation and crack growth in the pipeline elements have been analysed and mutual relations between the chemical and mechanical influences have been shown. (orig.) 16 refs.

  14. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  15. CPL: Common Pipeline Library

    Science.gov (United States)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  16. World pipeline work set for rapid growth

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion

  17. Modeling and monitoring of pipelines and networks advanced tools for automatic monitoring and supervision of pipelines

    CERN Document Server

    Torres, Lizeth

    2017-01-01

    This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems’ security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network’s operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.

  18. Remotely operated closure device for a pipeline with a fixed pipeline flange

    International Nuclear Information System (INIS)

    Westendorf, H.

    1987-01-01

    The remotely operated closure is set by suspension centring on the circumference of a blank flange on the fixed pipeline flange to be closed. By operating a central actuating mechanism at the closure, the clamping levers are adjusted so that the blank flange is clamped to the pipeline flange and the two flanges are pressed together. The spring-loaded clamping levers are particularly suitable for actuating the closure with the pliers of a manipulator of a large cell. (DG) [de

  19. 76 FR 11853 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0027] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... a 24-inch mainline natural gas pipeline, 595 feet in length. The first segment of the special permit...

  20. 78 FR 65429 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0041] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials...-0041 Williams Gas Pipeline 49 CFR 192.150........ To authorize the extension Company, LLC (WGP). of a...

  1. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  2. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  3. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  4. Pipeline capacity and heavy oil markets

    International Nuclear Information System (INIS)

    Scott, G.R.

    1993-01-01

    Aspects of transporting heavy crude to markets from Canadian sources are discussed, with reference to pipeline expansion, western Canadian crude supply, and exports to various Petroleum Administration for Defense Districts (PADDs) in the USA. Pipeline expansions have been proposed by Interprovincial Pipeline, Trans Mountain Pipeline, Rangeland, and Wascana, and some of these proposals are in the review stage. Western Canadian crude supply is expected to peak at 1.9 million bbl/d in 1996. An increase in heavy crude supply is expected but this increase will not be sufficient to offset a decline in light crude supply. Adequate pipeline capacity should exist with the Interprovincial expansion volume of 170,000 bbl/d and the Trans Mountain expansion of 38,000 bbl/d forecast to be in place by 1995. Canadian crude exports to the USA have steadily increased since 1989, and heavy crude exports have grown an average of 20,000 bbl/d each year. In PADD Region IV, oil production is declining and ca 20,000 bbl/d of heavy crude will be needed by the year 2000; additional pipeline capacity will be required. In PADD Region II, Canadian heavy crude imports are ca 390,000 bbl/d and further market opportunities exist, after the Interprovincial expansion is complete. When the various combinations of possible pipeline expansions or reversals are considered, a range of heavy crude near-term growth potentials is obtained in which Canadian heavy oil would displace offshore heavy oil supplied to USA refineries. This potential is seen to range from 35,000 bbl/d to 200,000 bbl/d. 7 refs., 20 figs., 3 tabs

  5. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  6. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  7. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  8. 49 CFR 192.513 - Test requirements for plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Test requirements for plastic pipelines. 192.513 Section 192.513 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Test requirements for plastic pipelines. (a) Each segment of a plastic pipeline must be tested in...

  9. 75 FR 35516 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0147] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... with the Class 1 location portion of a 7.4 mile natural gas pipeline to be constructed in Alaska. This...

  10. Web-based continuous internal corrosion monitoring of a sweet natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Vorozcovs, Andrew [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    Inspection of pipelines susceptible to internal corrosion is a key ingredient in maintaining their reliable throughput. While conventional inspection consisting of in line inspection, radiography and ultrasound remain the mainstay of most integrity programs, challenging circumstances in some cases make the availability of such data inadequate, cost prohibitive, and at times entirely unavailable. These scenarios include aggressive internal corrosion, expensive excavation conditions, low or stagnant flow, and non-piggable pipeline segments. While some gas pipelines in these circumstances are considered relatively low risk and low consequence, due to the significant reclamation costs and cleanup time associated with liquid pipelines, those areas identified as being high-risk are often high-consequence and thus require a specialized inspection solution. For areas deemed to be at high-risk, or areas of low-risk with high consequence, Electrical Field Mapping (EFM) has provided a practical solution to safe operation without introducing expensive and potentially dangerous dig programs. Historically, however, this inspection approach has required manual data acquisition as part of a scheduled EFM site visit schedule. Due to the tedious nature of this data acquisition approach, the remoteness of some pipeline inspection sites and the complexity of data analysis, it has been difficult to closely monitor the most critical assets on a continuous basis. The manual component of this approach also often eliminates EFM as a practical solution due to lack of properly trained personnel. In this paper, we will discuss a new approach to data acquisition where data is acquired, transmitted, analyzed, and displayed completely automatically and remotely with virtually no human overhead or recurring operating costs. An overview of the PinPoint monitoring setup covering 180 degrees of pipe circumference is described. This advanced EFM system allows operators to observe, essentially in real

  11. Microstructural changes after control rolling and interrupted accelerated cooling simulations in pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Mourino, Nuria; Petrov, Roumen [Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Ghent (Belgium); Bae, Jin-Ho; Kim, Kisoo [Sheet Products and Process Research Group, POSCO, Jeonnam, 545-090 (Korea, Republic of); Kestens, Leo A.I. [Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft (Netherlands)

    2011-04-15

    The {gamma}-{alpha} transformation and final microstructure in pipeline steel was studied by carrying out a number of physical simulations of industrial hot rolling schedules. Particularly, the effect of the reheating temperature, deformation and cooling parameters on the transformation temperatures and final grain size were considered with a goal to obtain an appropriate thermo-mechanical processing route which will generate appropriate microstructures for pipeline applications. The CCT diagram of the steel was derived experimentally by means of dilatometric tests. Hot torsion experiments were applied in a multi-deformation cycle at various temperatures in the austenite region to simulate industrial rolling schedules. By variation of the reheating temperature, equivalent strain, and accelerated cooling, different types of microstructures were obtained. It was found that the deformation increases the transformation temperatures whereas the higher cooling rates after deformation decrease them. Post-deformation microstructure consists of fine bainitic-ferrite grains with dispersed carbides and small amount of dispersed martensite/austenite islands which can be controlled by varying the reheating temperature, deformation and post-deformation cooling. The detailed microstructure characteristics obtained from the present work could be used to optimize the mechanical properties, strength and toughness of pipeline steel grades by an appropriate control of the thermo-mechanical processing. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Improved estimation of leak location of pipelines using frequency band variation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sup [Embedded System Engineering Department, Incheon National University, Incheon (Korea, Republic of); Yoon, Dong Jin [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-02-15

    Leakage is an important factor to be considered for the management of underground water supply pipelines in a smart water grid system, especially if the pipelines are aged and buried under the pavement or various structures of a highly populated city. Because the exact detection of the location of such leaks in pipelines is essential for their efficient operation, a new methodology for leak location detection based on frequency band variation, windowing filters, and probability is proposed in this paper. Because the exact detection of the leak location depends on the precision of estimation of time delay between sensor signals due to leak noise, some window functions that offer weightings at significant frequencies are applied for calculating the improved cross-correlation function. Experimental results obtained by applying this methodology to an actual buried water supply pipeline, ∼ 253.9 m long and made of cast iron, revealed that the approach of frequency band variation with those windows and probability offers better performance for leak location detection.

  13. Improved estimation of leak location of pipelines using frequency band variation

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin

    2014-01-01

    Leakage is an important factor to be considered for the management of underground water supply pipelines in a smart water grid system, especially if the pipelines are aged and buried under the pavement or various structures of a highly populated city. Because the exact detection of the location of such leaks in pipelines is essential for their efficient operation, a new methodology for leak location detection based on frequency band variation, windowing filters, and probability is proposed in this paper. Because the exact detection of the leak location depends on the precision of estimation of time delay between sensor signals due to leak noise, some window functions that offer weightings at significant frequencies are applied for calculating the improved cross-correlation function. Experimental results obtained by applying this methodology to an actual buried water supply pipeline, ∼ 253.9 m long and made of cast iron, revealed that the approach of frequency band variation with those windows and probability offers better performance for leak location detection.

  14. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  15. 76 FR 21423 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-04-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0063] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... application is for two 30-inch segments, segments 3 and 4, of the TPL 330 natural gas pipeline located in St...

  16. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  17. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  18. 75 FR 67807 - Pipeline Safety: Emergency Preparedness Communications

    Science.gov (United States)

    2010-11-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... is issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities... Gas Pipeline Systems. Subject: Emergency Preparedness Communications. Advisory: To further enhance the...

  19. 76 FR 65778 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: 12,120. Frequency of Collection: On occasion. 2. Title: Recordkeeping for Natural Gas Pipeline... investigating incidents. Affected Public: Operators of natural gas pipeline systems. Annual Reporting and...

  20. The great pipeline debate : the Minister of everything

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This article described the challenges facing Trans-Canada Pipelines (TCPL) in the 1950s regarding the construction of a pipeline to deliver gas to central Canadian markets. Alberta had been granted gas export permits, and the proposed pipeline was financed primarily by American interests. In addition, TCPL had difficulties with several competing proposals to move gas east from Alberta. There was also opposition to TCPL's original route which was through American territory. When the pipeline was rerouted through rugged Precambrian Shield, private-sector financiers balked at the additional costs. During the Great Pipeline debate in 1956, federal Minister C.D. Howe encouraged TCPL and its competitors to merge and put a bill before Parliament to create a Crown corporation to build and own the Canadian Shield portion of the line, leasing it back to TCPL. The first president of TCPL was Eldon Tanner, member of Alberta's Legislative Assembly. He remained at the helm until the pipeline was completed. Industrialist Frank McMahon who participated in drilling activities in British Columbia and at Turner Valley, Alberta, also promoted a plan to complete the construction of the Westcoast Transmission pipeline from the Peace River, Canada's first large natural-gas pipeline. 4 figs