WorldWideScience

Sample records for high strength in-situ

  1. INFLUENCE OF HIGH-STRENGTH REINFORCEMENT WITHOUT ADHESION TO CONCRETE ON STRENGTH OF CAST-IN-SITU BEAMLESS FLOORS

    Directory of Open Access Journals (Sweden)

    Osipenko Yuri Grigoryevich

    2017-08-01

    Full Text Available The influence and location of prestressed high-strength reinforcement without adhesion to concrete on the strength of a beamless floor panel is considered. The work is aimed at clarifying the methodology for calculating the strength of cast-in-situ beamless floor with mixed reinforcement, where reinforcement is used in a plastic shell of monostrend type without adhesion to concrete for the most complete use of the strength characteristics of the panel material. The aim of the study is to determine the level of influence and location of prestressed reinforcement without adhesion to concrete on the strength of a panel of cast-in-situ beamless floor, as well as comparison of the results obtained for the stresses of ropes in panels with contour and diagonal arrangement of prestressed reinforcement. The shape of the rope position is represented by a part of the parabola passing through the points of the rope support. On the support, the vertical and horizontal components of the reaction are determined by the longitudinal force in the rope and the exit angle of the guy rope. 9х9m cast-in-situ beamless floor panels in two variants were investigated: with diagonal and contour stressing steel. The values of increment in stresses in the ropes and the resulting values at various prestress and deflection levels, presented in the form of tables and graphs, have been calculated. According to the results of the study, the use of high-strength prestressed ropes without adhesion to concrete, as an additional working reinforcement, reduces deflections of the panels and lowers consumption of common reinforcement. The results indicate a relative decrease in efficiency of using rope strength along with an increase in the initial prestress level. From the point of ensuring load-bearing capacity, the contour positioning of ropes is preferable, due to more complete use of strength of high-tensile reinforcement. To meet the requirements of ultimate limit states, the

  2. In-situ high field strength testing using a transportable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2008-01-01

    A reverberation chamber can create very high field strength with moderate input power. Existing chambers are making use of a paddle wheel to change the resonant modes in the chamber. In the case of a stepper motor, the field is stable for some time, and this type of reverberation chamber is called

  3. In-situ high field strength testing using a transportable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2008-01-01

    A reverberation chamber can create very high fieldstrength with moderate input power. Existing chambers are making use of a paddle wheel to change the resonant modes in the chamber. In the case of a stepper motor, the field is stable for some time, and this type of reverberation chamber is called

  4. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks.

    Science.gov (United States)

    Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-06-01

    Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C.

  5. In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew; Claus, Benjamin; Lim, Boon Him; Sun, Tao; Xiao, Xianghui; Fezzaa, Kamel; Chen, Weinong W.

    2016-12-12

    The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up. Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.

  6. In situ calibration of the sound strength parameter G.

    Science.gov (United States)

    Katz, Brian F G

    2015-08-01

    The room acoustic parameter "strength of sound G" is a measure of room amplification relative to a 10 m free-field reference. Due to this reference requirement, G is often considered excessively difficult to measure. Standards require reference measurements using reverberation or anechoic chambers. While possible for well-equipped laboratories, this is impractical for most practitioners. Considering the entire measurement chain, stability of amplifier and converter gains must be identical between on-site and calibration measurements, which cannot always be assured. An in situ calibration method is proposed, taking advantage of the full hall dataset. Results show significant advantages compared to previous methods.

  7. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  8. In-Situ Synchrotron X-ray Diffraction Studies on Effects of Plastic and Elastic Loading on bcc Phase Transformations of a 3rd Generation 1 GPa Advanced High Strength Steel

    Science.gov (United States)

    Eftekharimilani, P.; Huizenga, R. M.; Kim, B.; Bernasconi, A.; Hermans, M. J. M.

    2018-01-01

    In this paper, we describe the effects of mechanical loading on bcc-to-bcc phase transformations of an Advanced High Strength Steel during cooling. In-situ synchrotron diffraction was employed to measure time-temperature-load diffraction patterns. Calculations were made of the volume fractions of the phases, the transformation kinetics, and the austenite lattice parameter during cooling and simultaneous loading. In addition, volume fractions and lattice parameters of retained austenite at room temperature under different loading conditions were obtained. The results show that applying a load during cooling of the fcc phase significantly increases the volume fraction of a bcc phase before the start of the martensitic transformation. The kinetics of phase transformations were affected by the applied loads. The volume fraction and lattice parameter of retained austenite at room temperature vary in different samples and the highest retained austenite and the largest lattice parameter were obtained in the sample subjected to the highest load.

  9. In-situ determination of strength parameters of marine soils

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, R. L.; Green, S. L.

    1980-01-01

    Principles are developed whereby both the sear strength, S, and the effective soil strength angle, phi', can be calculated from the readings of a combined shear/normal-stress gauge mounted on the face of a rough penetrator. The method calculates S and phi' even if interface friction is the mechanism of failure, unless that friction is local to the gauge face. In that case, the method yields only the interface friction angle, delta.

  10. Determining the in situ concrete strength of existing structures for assessing their structural safety

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vervuurt, A.H.J.M.

    2012-01-01

    EN 13791 applies when assessing the in situ compressive strength of structures and precast concrete components. According to the code itself, it may be adopted when doubt arises about the compressive strength of a concrete. For assessing the structural safety of existing structures, however, the

  11. Measurement of faecal sludge in-situ shear strength and density

    African Journals Online (AJOL)

    2014-01-10

    Jan 10, 2014 ... device to physically characterise pit latrine sludge through in-situ measurement of its shear strength. The machine produces continuous profiles of shear strength with depth and is capable of testing to approximately 2.5 m below the slab. The portable penetrometer was manufactured and tested in the UK, ...

  12. Analysis of in-situ rock joint strength using digital borehole scanner images

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, Bhaskar Bahadur [Univ. of California, Berkeley, CA (United States)

    1994-09-01

    The availability of high resolution digital images of borehole walls using the Borehole Scanner System has made it possible to develop new methods of in-situ rock characterization. This thesis addresses particularly new approaches to the characterization of in-situ joint strength arising from surface roughness. An image processing technique is used to extract the roughness profile from joints in the unrolled image of the borehole wall. A method for estimating in-situ Rengers envelopes using this data is presented along with results from using the method on joints in a borehole in porphyritic granite. Next, an analysis of the joint dilation angle anisotropy is described and applied to the porphyritic granite joints. The results indicate that the dilation angle of the joints studied are anisotropic at small scales and tend to reflect joint waviness as scale increases. A procedure to unroll the opposing roughness profiles to obtain a two dimensional sample is presented. The measurement of apertures during this process is shown to produce an error which increases with the dip of the joint. The two dimensional sample of opposing profiles is used in a new kinematic analysis of the joint shear stress-shear deformation behavior. Examples of applying these methods on the porphyritic granite joints are presented. The unrolled opposing profiles were used in a numerical simulation of a direct shear test using Discontinuous Deformation Analysis. Results were compared to laboratory test results using core samples containing the same joints. The simulated dilatancy and shear stress-shear deformation curves were close to the laboratory curves in the case of a joint in porphyritic granite.

  13. Variability of in situ sediment strength and pore pressure behavior of tidal estuary surface sediments

    Science.gov (United States)

    Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen

    2017-10-01

    Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.

  14. Modeling Slip System Strength Evolution in Ti 7Al Informed by In situ Grain Stress Measurements (Postprint)

    Science.gov (United States)

    2017-02-17

    AFRL-RX-WP-JA-2017-0215 MODELING SLIP SYSTEM STRENGTH EVOLUTION IN TI-7AL INFORMED BY IN - SITU GRAIN STRESS MEASUREMENTS (POSTPRINT...7Al informed by in - situ grain stress measurements Darren C. Pagan a, *, Paul A. Shade b, Nathan R. Barton a, Jun-Sang Park c, Peter Kenesei c, David B...with increasing macroscopic strain measured during in - situ ff-HEDM. From the figure, we can view the general evolution of the slip system strengths

  15. In situ transesterification of highly wet microalgae using hydrochloric acid.

    Science.gov (United States)

    Kim, Bora; Im, Hanjin; Lee, Jae W

    2015-06-01

    This study addresses in situ transesterification of highly wet microalgae with hydrochloric acid (HCl) as a catalyst. In situ transesterification was performed by heating the mixture of wet algal cells, HCl, methanol, and solvent in one pot, resulting in the fatty acid methyl ester (FAME) yield over 90% at 95°C. The effects of reaction variables of temperature, amounts of catalyst, reactant, and solvent, and type of solvents on the yield were investigated. Compared with the catalytic effect of H2SO4, in situ transesterification using HCl has benefits of being less affected by moisture levels that are as high as or above 80%, and requiring less amounts of catalyst and solvent. For an equimolar amount of catalyst, HCl showed 15wt.% higher FAME yield than H2SO4. This in situ transesterification using HCl as a catalyst would help to realize a feasible way to produce biodiesel from wet microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  17. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  18. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and

  19. Prediction of Geomagnetic Storm Strength from Inner Heliospheric In Situ Observations

    CERN Document Server

    Kubicka, M; Amerstorfer, T; Boakes, P D; Feng, L; Eastwood, J P; Tormanen, O

    2016-01-01

    Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, Bz. Predicting the strength and duration of Bz inside a CME with sufficient accuracy is currently impossible, which forms the so-called Bz problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, Bz and the resulting Dst index at Earth based only on magnetic field data, measured in situ in the inner heliosphere (< 1AU). On 2012 June 12-16, three approximately Earthward-directed and interacting CMEs were observed the by the STEREO imagers, and by Venus Express (VEX) in situ at 0.72 AU, 6 degree away from the Sun Earth line. The CME kinematics are calculated using the drag-based and WSA-Enlil models, constrained by the arrival time at VEX, resulting in the CME arrival time and speed at Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind. Our investigation shows promising result...

  20. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  1. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  2. Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, M., E-mail: 07nd602g@hcs.ibaraki.ac.jp [Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa, 316-8511 Hitachi, Ibaraki (Japan); Adachi, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Tomota, Y. [Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa, 316-8511 Hitachi, Ibaraki (Japan); Ikeda, K. [Sumitomo Metal Industries, Ltd., Hikari, Kashima, Ibaraki 314-0014 (Japan); Kamiyama, T. [Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Katada, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2009-12-15

    With a focus on microstructural hierarchy, work hardening behaviour in high nitrogen-bearing austenitic steel (HNS) was investigated mainly by a combined technique of in situ neutron diffraction and in situ electron backscattering diffraction (EBSD). Stress partitioning due to difference in deformability among grains is enhanced in HNS. The larger stress partitioning among [h k l]-oriented family grains seems to realize high work hardening at a small strain. At a larger strain, dislocation density is higher in HNS than in low nitrogen austenitic steel (LNS), which is a possible reason for high work hardening after straining proceeds, resulting in large uniform elongation.

  3. In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength

    Directory of Open Access Journals (Sweden)

    Reza Hadjiaghaie Vafaie

    2017-06-01

    Full Text Available AC electrokinetic flow is promising in designing microfluidic chips for manipulation of biological and chemical samples toward clinical diagnostics. Four pieces of electrodes are optimized to enhance mixing effect inside a straight microchannel. In this research, the mixing dependency on the ionic strength of solutions is investigated. AC electroosmotic secondary flow is responsible for the mixing at low ionic strength (σ < 5 mS m–1, whereas AC electrothermal secondary flow is proposed to mix high conductive mediums (σ > 5 mS m–1. The electrode-electrolyte impedance analysis is employed to facilitate the in-situation mixing process by choosing appropriate electrical excitation parameters for the electrodes.

  4. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios.

    Science.gov (United States)

    Schmid, Gernot; Hirtl, Rene

    2016-06-21

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  5. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    Science.gov (United States)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  6. In-situ reflectance spectroscopy - analysing techniques for high-resolution pigment logging in sediment cores

    Science.gov (United States)

    Rein, Bert; Sirocko, Frank

    2002-03-01

    The temporal resolution of marine proxy data is limited by analytically required sample size. We present in-situ reflectance spectroscopy techniques (usually applied in remote sensing) to analyse the organic fraction of marine and terrestrial sediment. From absorption band depths, photosynthesis pigment variations are derived for sediments from the upwelling region off Peru, where productivity is related to the annual variability of El Niño strength. Quantitative estimations of diagenetic photosynthesis pigments derived from absorption band analysis in reflectance spectra are highly correlated to organic carbon content. The ratio of pigment fractions is related to chlorine concentration and reflects organic matter preservation and deep-water ventilation changes. The import of terrigenous mineroclastics (TM) by local rivers is semi-quantitatively documented in the spectrum continuum. TM is inversely varying with organic matter preservation and chlorine concentration.

  7. The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength.

    Science.gov (United States)

    Myers, B S; Belmont, P J; Richardson, W J; Yu, J R; Harper, K D; Nightingale, R W

    1996-09-01

    This study determined the predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, pedicular geometry, and mechanical testing in assessing the strength of pedicle screw fixation in an in vitro mechanical test of intra-pedicular screw fixation in the human cadaveric lumbar spine. To test several hypotheses regarding the relative predictive value of densitometry, pedicular geometry, and mechanical testing in describing pedicle screw pull-out. Previous investigations have suggested that mechanical testing, geometry, and densitometry, determined by quantitative computed tomography or dual energy x-ray absorptiometry, predict the strength of the screw-bone system. However, no study has compared the relative predictive value of these techniques. Forty-nine pedicle screw cyclic-combined flexion-extension moment-axial pull-out tests were performed on human cadaveric lumbar vertebrae. The predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, insertional torque, in situ stiffness, and pedicular geometry was assessed using multiple regression. Several variables correlated to force at failure. However, multiple regression analysis showed that bone mineral density of the pedicle determined by quantitative computed tomography, insertional torque, and in situ stiffness when used in combination resulted in the strongest prediction of pull-out force. No other measures provided additional predictive ability in the presence of these measures. Pedicle density determined by quantitative computed tomography when used with insertional torque and in situ stiffness provides the strongest predictive ability of screw pull-out. Geometric measures of the pedicle and density determined by dual energy x-ray absorptiometry do not provide additional predictive ability in the presence of these measures.

  8. In situ stylus profilometer for a high frequency reciprocating tribometer

    Science.gov (United States)

    Kamps, T. J.; Walker, J. C.; Plint, A. G.

    2017-09-01

    Measuring the friction and wear characteristics of a tribological contact is essential to gaining a detailed understanding of its performance and predicted life. Wear rate and friction coefficient measurements are obtained from instrumented benchtop tribometers designed to replicate specific tribological contacts. Due to the difficulty of measuring wear in situ, measurements are typically made before and after an experiment. The wear rate must be assumed to be linear for it to be used to predict product life, however this is assumption can hide changes occurring during an experiment which indicate wear transitions. This paper details the design and validation of an in situ stylus profilometer for a reciprocating sliding tribometer to provide an insight into the wear transitions occurring during dry sliding of 52100 bearing steel against graphitic flake cast iron. The profilometer’s performance was validated using ground roughness standards and the accuracy found to be approximately 110 nm. Incubation, run-in and steady state wear regimes were identified by the profilometer and corroborated with friction coefficient data, providing an enhanced understanding of the tribological contact behaviour.

  9. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    Science.gov (United States)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and

  10. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  11. Computing in-situ strength of rock masses based upon RQD and modified joint factor: Using pressure and damage sensitive constitutive relationship

    Directory of Open Access Journals (Sweden)

    Ashutosh Trivedi

    2015-10-01

    Full Text Available In this study, a new model was presented for computing strength of rock masses based upon in-situ observations of RQD popularly known as rock quality designation. This model links up the rock mass parameters from in-situ investigations with the strength parameters of jointed rocks obtained from laboratory scale experimental observations. Using the constitutive relation, the author derived a pressure and damage sensitive plastic parameter to determine strength of rock masses for varied extents of discontinuity and pressure induced damage. The test results show that plasticity characterized by hardening and softening inclusive of damage invariably depends upon mean pressure and extent of deformations already experienced by rock masses. The present work explores the test data that reveal the dependence of in-situ strength on incremental joint parameters obtained from the joint number, joint orientation, joint roughness, gouge parameters and water pressure. Substituting the relationship between the RQD and modified joint factor with that between modulus ratio and strength ratio, the model shows successfully that using damage inclusive plastic parameter and RQD provides a relationship for estimating the strength of rock masses. One of the main objectives of this work is to illustrate that the present model is sensitive to plasticity and damage together in estimating in-situ strength of rock masses in foundations, underground excavation and tunnels.

  12. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages

    National Research Council Canada - National Science Library

    Seung Bin Baek; Dohyun Moon; Robert Graf; Woo Jong Cho; Sung Woo Park; Tae-Ung Yoon; Seung Joo Cho; In-Chul Hwang; Youn-Sang Bae; Hans W. Spiess; Hee Cheon Lee; Kwang S. Kim

    2015-01-01

    .... Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures...

  13. In situ determination of pore sizes of high density polyester woven fabrics under biaxial loading

    Science.gov (United States)

    Türkay Kocaman, Recep; Malik, Samander Ali; Aibibu, Dilbar; Cherif, Chokri

    2017-10-01

    In this study an in situ pore size measurement method was developed to determine the pore size changes of high density polyester woven fabrics under biaxial loading. This unique method allows the non-destructive testing of the pore sizes under biaxial loading. Changes in the pore size distributions of samples were in situ determined with the newly developed method. The results show that the developed measurement method is very promising to define the pore size changes of barrier textiles in situ under loading.

  14. High Strength and High Modulus Electrospun Nanofibers

    OpenAIRE

    Jian Yao; Cees W. M. Bastiaansen; Ton Peijs

    2014-01-01

    Electrospinning is a rapidly growing polymer processing technology as it provides a viable and simple method to create ultra-fine continuous fibers. This paper presents an in-depth review of the mechanical properties of electrospun fibers and particularly focuses on methodologies to generate high strength and high modulus nanofibers. As such, it aims to provide some guidance to future research activities in the area of high performance electrospun fibers.

  15. Decaf: Decoupled Dataflows for In Situ High-Performance Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, M.; Peterka, T.

    2017-07-31

    Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steering based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.

  16. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  17. Hydrogen Assisted Cracking of High Strength Alloys

    National Research Council Canada - National Science Library

    Gangloff, Richard P

    2003-01-01

    ... (Irwin and Wells, 1997; Paris, 1998). Second, materials scientists developed metals with outstanding balances of high tensile strength and high fracture toughness (Garrison, 1990; Wells, 1993; Boyer, 1993...

  18. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  19. ABRASION RESISTANCE ESTIMATION OF HIGH STRENGTH CONCRETE

    Directory of Open Access Journals (Sweden)

    Şemsi YAZICI

    2007-01-01

    Full Text Available This study gives the results of a laboratory investigation undertaken to determine the relationship between mechanical properties (compressive and flexural strengths and abrasion resistance of 65-85 MPa high strength concretes incorporating silica fume, fly ash and silica fume-fly ash mixtures as supplementary cementing materials. A series of six different concrete mixtures including a control high strength concrete mixture (C1, and five high strength concrete mixtures (C2, C3, C4, C5, C6 incorporating supplementary cementing materials, were manufactured. The compressive strength, flexural strength, and abrasion resistance were determined for each mixture at 28-days. Mathematical expressions were suggested to estimate the abrasion resistance of concrete regarding their compressive strength and flexural strength.

  20. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  1. Influence of exposure time to saliva and antioxidant treatment on bond strength to enamel after tooth bleaching: an in situ study

    Directory of Open Access Journals (Sweden)

    Thais Aglaet Matos MIRANDA

    2013-12-01

    Full Text Available Objectives: This study evaluated the influence of different exposure times to saliva in situ in comparison with an antioxidant treatment on composite resin bond strength to human enamel restored after tooth bleaching. Material and Methods: Forty human teeth specimens measuring 5x5 mm were prepared and randomly allocated into 5 groups with 8 specimens each: Gct (control group, restored on unbleached enamel; Gbl (restored immediately after bleaching; Gsa (bleached, treated with 10% sodium ascorbate gel for 60 min and restored; G7d (bleached, exposed to saliva in situ for 7 days and restored; and G14d (bleached, exposed to saliva in situ for 14 days and restored. Restored samples were cut into 0.8 mm2 sticks that were tested in microtensile. Specimens were microscopically analyzed and failure modes were classified as adhesive, cohesive, or mixed. Pretest and cohesive failures were not considered in the statistical analysis, which was performed with one-way ANOVA and Tukey's post-hoc test (α=0.05, with the dental specimen considered as the experimental unit. Results: Mean bond strength results found for Gbl in comparison with Gct indicated that bleaching significantly reduced enamel adhesiveness (P0.05. Bond strength found for G14d was significantly higher than for Gsa (P<0.01. Fractures modes were predominantly of a mixed type. Conclusions: Bonding strength to bleached enamel was immediately restored with the application of sodium ascorbate and exposure to human saliva in situ for at least 7 days. Best results were obtained with exposure to human saliva in situ for 14 days. Treatment with sodium ascorbate gel for 60 min may be recommended in cases patients cannot wait for at least 7 days for adhesive techniques to be performed.

  2. High-pressure, high-temperature deformation of dunite, eclogite, clinopyroxenite and garnetite using in situ X-ray diffraction

    Science.gov (United States)

    Farla, R.; Rosenthal, A.; Bollinger, C.; Petitgirard, S.; Guignard, J.; Miyajima, N.; Kawazoe, T.; Crichton, W. A.; Frost, D. J.

    2017-09-01

    The rheology of eclogite, garnetite and clinopyroxenite in the peridotitic upper mantle was experimentally investigated in a large volume press combined with in situ synchrotron X-ray diffraction techniques to study the impact on mantle convection resulting from the subduction of oceanic lithosphere. Experiments were carried out over a range of constant strain rates (2 ×10-6- 3 ×10-5 s-1), pressures (4.3 to 6.7 GPa) and temperatures (1050 to 1470 K). Results show substantial strength variations among eclogitic garnet and clinopyroxene and peridotitic olivine. At low temperatures (1400 K) eclogite is weaker than dunite by 0.2 GPa or more. Garnetite and clinopyroxenite exhibit higher strength than dunite at approximately 1200 K. However, at higher temperature (1370 K), clinopyroxenite is significantly weaker than garnetite (and dunite) by more than a factor of five. We explain these observations by transitions in deformation mechanisms among the mineral phases. In clinopyroxene, high temperature dislocation creep resulting in a strength reduction replaces low temperature twinning. Whereas garnet remains very rigid at all experimental conditions when nominally anhydrous ('dry'). Microstructural observations show phase segregation of clinopyroxene and garnet, development of a crystallographic and shape preferred orientation in the former but not in the latter, suggesting an overall weak seismic anisotropy. Detection of eclogite bodies in the peridotite-dominated mantle may only be possible via observation of high VP /VS1 ratios. A comparable or weaker rheology of eclogite to dunite suggests effective stirring and mixing of eclogite in the convecting mantle.

  3. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  4. Novel, high sensitivity and high frequency instruments for in-situ measurements of volcanic gases

    Science.gov (United States)

    Burton, Mike; Chiarugi, Antonio; D'Amato, Francesco; Viciani, Silvia; Queisser, Manuel; La Spina, Alessandro

    2017-04-01

    The accurate, precise and traceable measurement of volcanic gas compositions and fluxes is a key pillar upon which our understanding of volcanic processes and geological volatile cycles rests. While enormous progress has been made in the quality and quantity of in-situ gas composition measurements in recent years, the number of instruments which are both field deployable and able to accurately measure magmatic gas compositions remains quite limited. This makes intercomparisons and validations, key activities for any quantitative field study, challenging. Furthermore, the potential of UAV and airborne technology can only be fully realised when we have high frequency measurements of volcanic gases from several gas sensors simultaneously, as gas concentrations can vary quickly during flight, and any frequency response delay between individual gas sensors may introduce significant artifacts in retrieved gas ratios. For these reasons, within the European Research Council project CO2Volc, we have produced and field-tested new, custom-built TDLS- and LED-based in-situ gas sensing systems, capable of measuring H2O, CO2, SO2, HCl and HF at 5-10 Hz and sub-ppm precision for CO2 and SO2, and 50 ppb detection limit for HCl and HF. Here, we report results from the field tests, and examine the potential new applications they offer.

  5. Prediction of Torsional Strength for Very High Early Strength Geopolymer

    Directory of Open Access Journals (Sweden)

    Woraphot PRACHASAREE

    2017-11-01

    Full Text Available Very early high strength geopolymers are gaining acceptance as alternative repair materials for highways and other infrastructure. In this study, a very rapid geopolymer binder based on Metakaolin (MK and Parawood ash (PWA, developed by the authors, was experimentally tested and a prediction model for its torsional strength is proposed. The geopolymer samples were subjected to uniaxial compression, flexural beam, and torsion tests. The modulus of rupture and torsional strength in terms of compression strength were found to be well approximated by 0.7(f’c1/2 and 1/7(x2y (f’c1/2, respectively. Also an interaction relation to describe combined bending and torsion was developed in this study. In addition, the effects of aspect ratio (y/x were studied on both torsional strength and combined bending and torsion. It was found that an aspect ratio of y/x = 3 significantly reduced the torsional resistance, to about 50 % of the torsional strength of a square section.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17280

  6. In situ high temperature XRD studies of ZnO nanopowder prepared ...

    Indian Academy of Sciences (India)

    This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using ...

  7. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  8. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties.

  9. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  10. MECHANICAL STRENGTH OF HIGHLY POROUS CERAMICS

    NARCIS (Netherlands)

    VANDENBORN, IC; SANTEN, A; HOEKSTRA, HD; DEHOSSON, JTM; Born, I.C. van den

    1991-01-01

    This paper reports on the mechanical strength of highly porous ceramics in terms of the Weibull and Duxbury-Leath distributions. More than 1000 side-crushing strength tests on silica-catalyst carriers of various particle sizes have been performed in series. Within a series, preparation conditions

  11. Preliminary studies on the effects of in situ synthesized polycrystalline particulates on the bonding strength of resin to zirconia ceramic surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yueming; Zhang, Lingling [School of Stomatology, Capital Medical University, Beijing 100050 (China); Zhang, Zutai, E-mail: showazhang@hotmail.com [School of Stomatology, Capital Medical University, Beijing 100050 (China); Ding, Ning; Liu, Yan [School of Stomatology, Capital Medical University, Beijing 100050 (China); Tian, Guozhong [State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing 102206 (China)

    2015-12-01

    Graphical abstract: In situ synthesized polycrystalline particulates on zirconium ceramic surface can effectively improve the bonding strength of resin, avoid micro cracks and maintain the mechanical strength of ceramics. - Abstract: To develop a novel zirconia surface modification method to improve the shear bond strength of resin cement. Yttrium-stabilized tetragonal zirconia (Y-TZP) discs were cut from prefabricated ceramic blocks and polished through 1200-grit SiC abrasive. Based on the immersion time of zirconia disc in HF solution, zirconia samples were divided into four groups. Then, put samples to CaCl{sub 2} solution, dipped in NaOH solution from 20 °C to 80 °C in a water bath, kept at 80 °C for 2 h. After final sintering, surface appearance and chemical components were characterized with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The surface roughness of discs was measured as well. Shear bond strength of zirconia to resin cement was tested and the failure mode was analyzed. Three point bending tests were done to determine the flexural strength of samples. The statistical analysis was also done for all above data. ZrO{sub 2} polycrystalline particulates were in situ synthesized on the surface of zirconia substrates. The Ra values of the four groups were 0.27 ± 0.05 μm, 0.89 ± 0.34 μm, 1.04 ± 0.41 μm and 1.41 ± 0.38 μm, respectively. The treated group was statistically significant different from the control group (p < 0.05). Shear bond strength values of the four groups were 7.88 ± 1.94 MPa, 11.87 ± 3.7 MPa, 17.84 ± 6.21 MPa and 16.27 ± 5.87 MPa, respectively, and those of I{sub 5} and I{sub 7} were statistically different from that of C (p < 0.05). The failure mode was mainly adhesive in group C and mixed in I{sub 5}. Three point bending strength values of the four groups were 730.21 ± 56.91 MPa, 689.81 ± 73.75 MPa, 704.25 ± 91.44 MPa and 702.28 ± 86.05 MPa

  12. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; Yang, Xiaowu; Ye, Jichun; Gorman, Brian; Al-Jassim, Mowafak

    2017-12-01

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, and arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.

  13. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies.

    Science.gov (United States)

    Pomfret, Michael B; Walker, Robert A; Owrutsky, Jeffrey C

    2012-10-18

    Solid oxide fuels cells (SOFCs) are promising devices for versatile and efficient power generation with fuel flexibility, but their viability is contingent upon understanding chemical and material processes to improve their performance and durability. Newly developed in situ optical methods provide new insight into how carbon deposition varies with different hydrocarbon and alcohol fuels and depends on operating conditions. Some findings, such as heavier hydrocarbon fuels forming more carbon than lighter fuels, are expected, but other discoveries are surprising. For example, methanol shows a greater tendency to form carbon deposits than methane at temperatures below 800 °C, and kinetically controlled steam reforming with ethanol at high temperatures (∼800 °C) is less detrimental to SOFC performance than operating the device with dry methanol as the fuel. In situ optical techniques will continue to provide the chemical information and mechanistic insight that is critical for SOFCs to become a viable energy conversion technology.

  14. Two-step in situ biodiesel production from microalgae with high free fatty acid content.

    Science.gov (United States)

    Dong, Tao; Wang, Jun; Miao, Chao; Zheng, Yubin; Chen, Shulin

    2013-05-01

    The yield of fatty acid methyl ester (FAME) from microalgae biomass is generally low via traditional extraction-conversion route due to the deficient solvent extraction. In this study a two-step in situ process was investigated to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This was accomplished with a pre-esterification process using heterogeneous catalyst to reduce FFA content prior to the base-catalyzed transesterification. The two-step in situ process resulted in a total FAME recovery up to 94.87±0.86%, which was much higher than that obtained by a one-step acid or base catalytic in situ process. The heterogeneous catalyst, Amberlyst-15, could be used for 8 cycles without significant loss in activity. This process have the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption. Copyright © 2013. Published by Elsevier Ltd.

  15. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  16. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    Science.gov (United States)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  17. The detection of microbial activity in Canadian high Arctic cryo-environments via in situ analyses

    Science.gov (United States)

    Niederberger, Thomas; Andersen, Dale; Whyte, Lyle; Perreault, Nancy; Steven, Blaire; Onstott, Tullis; Tille, Stefanie; Sherwood Lollar, Barbara; Greer, Charles; Pollard, Wayne

    The observation of newly formed stepped-delta formations on the surface of Mars suggests that alluvial activity may have occurred within the last century. Combined with the realization that microbial activity can occur at sub-zero temperatures, has led to heightened interest that a liquid system may exist below the Mars surface facilitating an ecosystem that could potentially harbor life. A radio-respirometry method recently developed at the Whyte Laboratory has detected microbial respiration at temperatures as low as -15o C under laboratory conditions in Canadian High Arctic (CHA) permafrost samples. Furthermore, we have detected low ( 0.01- 0.75 µmol/m2/s) CO2 fluxes at in situ sub-zero conditions from permafrost soils and cold saline spring sediments in the CHA through the utilization of a portable CO2 flux detection system (LiCor). Various other in situ activity assays have also been performed at these CHA sites, including leucine uptake, sulfur-oxidation and CO2 fixation, which indicate microbial activities occurring in the sediment and microbial biomass of the saline springs of the CHA. Future aims of these projects include the measurement of both in situ CO2 (respiration) and CH4 (methanogenic activity) fluxes from various sub-zero CHA ecosystems in the late winter by complementing both the LiCor instrument and cavity ring down spectroscopy to determine if these gasses are from a biotic or abiotic origin. Collectively, the fundamental knowledge from these investigations would extend our knowledge of active microbial life in similar Martian habitats and could lead to the development of in situ robotic methodologies to detect such life on Mars or Europa.

  18. Limits on rock strength under high confinement

    Science.gov (United States)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in

  19. Development of High Specific Strength Envelope Materials

    Science.gov (United States)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  20. High voltage-power frequency electrical heating in-situ conversion technology of oil shale

    Science.gov (United States)

    Sun, Youhong; Yang, Yang; Lopatin, Vladimir; Guo, Wei; Liu, Baochang; Yu, Ping; Gao, Ke; Ma, Yinlong

    2014-05-01

    With the depletion of conventional energy sources,oil shale has got much attention as a new type of energy resource,which is rich and widespread in the world.The conventional utilization of oil shale is mainly focused on resorting to produce shale oil and fuel gas with low extraction efficiency about one in a million due to many shortcomings and limitations.And the in-situ conversion of oil shale,more environmentally friendly,is still in the experimental stage.High voltage-power frequency electrical heating in-situ conversion of oil shale is a new type of in-situ pyrolysis technology.The main equipment includes a high voltage-power frequency generator and interior reactor. The high voltage-power frequency generator can provide a voltage between 220-8000 V which can be adjusted in real time according to the actual situation.Firstly,high voltage is used to breakdown the oil shale to form a dendritic crack between two electrodes providing a conductive channel inside the oil shale rock.And then the power frequency(220V) is used to generate the electric current for heating the internal surface of conductive channel,so that the energy can be transmitted to the surrounding oil shale.When the temperature reaches 350 degree,the oil shale begins to pyrolysis.In addition,the temperature in the conductive channel can be extremely high with high voltage,which makes the internal surface of conductive channel graphitization and improves its heat conduction performance.This technology can successfully make the oil shale pyrolysis, based on a lot of lab experiments,and also produce the combustible shale oil and fuel gas.Compared to other in-situ conversion technology,this method has the following advantages: high speed of heating oil shale,the equipment underground is simple,and easy to operate;it can proceed without the limitation of shale thickness, and can be used especially in the thin oil shale reservoir;the heating channel is parallel to the oil shale layers,which has more

  1. In situ surface enhanced Raman spectroscopy detection in high pressure solution

    Science.gov (United States)

    Wang, Pan; Li, Heping; Cui, Can; Jiang, Jianjun

    2017-12-01

    In situ surface enhanced Raman scattering (SERS) in solution was tested in this study at ambient temperature and high pressure (up to 978 MPa) in a diamond-anvil cell, with the intent of resolving trace detection in high pressure conditions. The 4-chlorothiophenol solution was used as the analyte in our experiments. A silver nanoparticle layer, formed by chemical reduction and assembled on a poly (allylamine hydrochloride)-modified silicon wafer, was used as the substrate. There was an obvious rise in SERS intensity when the sample chamber was pressurized for the first time in the diamond-anvil cell. But then the intensity drop occurred with increasing pressure and all peaks have pressure-induced blue shift below 700 MPa. The SERS intensity and Raman shift displayed irregular changes in the pressure range from 700 MPa to 978 MPa. The discovery of the survival of in situ high-pressure SERS in solution in the present study may make it a prospecting tool for the high-precision detection of analyte in high pressure conditions. Moreover, it could provide more information on the SERS mechanisms that have been puzzling us for decades.

  2. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    Science.gov (United States)

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  3. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein Bø; Zhao, Tiejun

    2014-01-01

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can...... be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO2 capture material, was studied at a pressure of one atmosphere in air and in CO2, at temperatures exceeding 600 °C. Images with a spatial resolution better...

  4. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection.

    Science.gov (United States)

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-15

    A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.

  5. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  6. In-situ investigation of the influence of the long-term shear strength of faults on the regional stress field in a granite rock mass

    Science.gov (United States)

    Figueiredo, Bruno; Cornet, Francois; Lamas, Luís; Muralha, José

    2016-04-01

    A case study is presented to show how stress field measurements may be used to assess the long-term rheological behaviour of an equivalent geo-material. The example concerns a granitic rock mass at the km3 scale, where an underground hydropower scheme including a new 10 km long power conduit and a powerhouse complex will be constructed. For design of the underground cavern and hydraulic pressure tunnel, several in situ stress measurements were carried out, using hydraulic borehole testing, overcoring and flat jack techniques. A first continuum mechanics model, with a homogenous material, was developed to integrate the several in situ test results and to assess the regional stress field. This model is based on elasticity and relaxation of the elastic properties measured through laboratory tests conducted on cores. Results of integration show that the long-term behavior of this granite rock mass differs markedly from the short-term behaviour as defined by laboratory tests. This suggests that the in-situ stress field depends mostly on the softer material that fills up the faults and hence results from the shear stress relaxation over a large number of pre-existing fractures and faults. A second continuum mechanics model, with consideration of two fault planes located nearby the hydraulic tests, was studied. This model is based on elasticity for the overall rock mass, with the elastic properties extracted from laboratory measurements, and visco-elasticity with small long-term shear strength for the two fault planes. Results show that the overall granite rock mass may be viewed as a combination of stiff elastic blocks separated by soft low strength material, leading to a fairly large scale homogeneous axisymmetrical stress field with vertical axis. Advantages and limitations of the two modelling approaches are discussed.

  7. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from brea...

  8. In situ observation and measurement of composites subjected to extremely high temperature

    Science.gov (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  9. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Science.gov (United States)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Gilberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm‑3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm‑3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  10. Durability improvement assessment in different high strength ...

    Indian Academy of Sciences (India)

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell ...

  11. Geotechnical in situ characterization of subaquatic slopes: The role of pore pressure transients versus frictional strength in landslide initiation

    Science.gov (United States)

    Stegmann, Sylvia; Strasser, Michael; Anselmetti, Flavio; Kopf, Achim

    2007-04-01

    Mineralogical composition and pore fluid pressure are the crucial controls for mechanical stability of water-saturated sediments. Their in situ measurements were undertaken in earthquake-triggered slope deposits in Lake Lucerne (Switzerland) in addition to geophysical characterization and laboratory index properties, shear and consolidation experiments on core. Two lithological units were identified: A weak, lightly underconsolidated section of postglacial silty clays overlies overconsolidated fine-grained glacial deposits with coarser components and excess fluid pressure (ca. 2.5× higher than in the hanging wall clay). In the event of an earthquake, hydrofracturing in the overconsolidated section facilitates an upward pore pressure pulse to the base of the softer, less stable unit. Here, excess pore pressure initiates sliding along a failure plane at the lithological boundary, causing the entire postglacial sedimentary section to slip downslope. We propose that many submarine landslides at active and passive continental margins may follow this mechanism of pore pressure-induced failure.

  12. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    Science.gov (United States)

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Jan [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)]. E-mail: macakj@vscht.cz; Sajdl, Petr [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Kucera, Pavel [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Novotny, Radek [Institute for Energy, Joint Research Centre, 1755ZG Petten (Netherlands); Vosta, Jan [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2006-04-25

    An in situ corrosion study of austenitic stainless steel 08CH18N10T in high temperature water was performed. The material under study is used in the construction of steam generator of PWR (pressurized water reactor) nuclear power stations and is similar to AISI 321 stainless steel. In situ 300-h tests were performed under autoclave conditions at 280 deg. C and 8 MPa and consisted of impedance measurements, polarization measurements and electrochemical noise measurements. The experiments were performed in deionised water with the pH adjusted to 9.5, in the presence/absence of chlorides. An additional modification of corrosivity was achieved by changing oxygen concentration. A detailed analysis of the impedance data is presented identifying in the impedance spectra contributions of oxide, corrosion reaction, double layer and diffusion process. A good agreement was found between corrosion data from electrochemical impedance spectroscopy (EIS) and that from electrochemical noise (EN) measurements. It was confirmed that the oxide response cannot be attributed to the overall oxide layer but only to the part corresponding to the space charge layer, thus indicating the semi-conductive character of the oxide.

  14. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking.

    Science.gov (United States)

    Torres, E A; Montoro, F; Righetto, R D; Ramirez, A J

    2014-06-01

    Nowadays, the implementation of sophisticated in situ electron microscopy tests is providing new insights in several areas. In this work, an in situ high-temperature strain test into a scanning electron microscope was developed. This setup was used to study the grain boundary sliding mechanism and its effect on the ductility dip cracking. This methodology was applied to study the mechanical behaviour of Ni-base filler metal alloys ERNiCrFe-7 and ERNiCr-3, which were evaluated between 700°C and 1000°C. The ductility dip cracking susceptibility (threshold strain; εmin) for both alloys was quantified. The εmin of ERNiCrFe-7 and ERNiCr-3 alloys were 7.5% and 16.5%, respectively, confirming a better resistance of ERNiCr-3 to ductility dip cracking. Furthermore, two separate components of grain boundary sliding, pure sliding (Sp) and deformation sliding (Sd), were identified and quantified. A direct and quantitative link between grain boundary tortuosity, grain boundary sliding and ductility dip cracking resistance has been established for the ERNiCrFe-7 and ERNiCr-3 alloys. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. In situ high temperature study of ZrO 2 ball-milled to nanometer sizes

    Science.gov (United States)

    Gajović, A.; Furić, K.; Štefanić, G.; Musić, S.

    2005-06-01

    Nanostructured ZrO 2 was prepared by high-energy ball-milling under different conditions and sintered at high temperatures. Structural and microstructural changes during the ball-milling were monitored using Raman spectroscopy (RS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The sintering process was monitored in situ at high temperature (300-1400 °C) by RS and XRD. The results of RS showed that the ball-milling had little or no influence on the transition from the starting monoclinic ZrO 2 to the high-temperature tetragonal ZrO 2. It was concluded that a partial transition from monoclinic to tetragonal polymorph, observed in some earlier ball-milling experiments, can be attributed to the stabilizing influence of impurities introduced due to the wearing of the milling media. In the present experiment ZrO 2 ball-milling assembly was used, which reduced the influence of an additional material. The results of the line broadening analysis, performed using Rietveld refinements of the ball-milling products with powder-to-ball weight ratio ( R) 1:10, indicated a decrease in the crystallite size and an increase in the microstrains with an increase in the ball-milling time up to 3 h. Further increase in the ball-milling time up to 10 h had a very small influence on the size and strain of the obtained m-ZrO 2 products. A difference between the results of in situ RS and XRD analysis of the samples subjected to prolonged ball-milling was attributed to the chemical and microstractural differences between the surface and the bulk of the ZrO 2 particles during the sintering at high temperatures.

  16. In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement

    Directory of Open Access Journals (Sweden)

    Beatriz Garcia-Baños

    2016-05-01

    Full Text Available Microwave-assisted processes have recognized advantages over more conventional heating techniques. However, the effects on the materials’ microstructure are still a matter of study, due to the complexity of the interaction between microwaves and matter, especially at high temperatures. Recently developed advanced microwave instrumentation allows the study of high temperature microwave heating processes in a way that was not possible before. In this paper, different materials and thermal processes induced by microwaves have been studied through the in situ characterization of their dielectric properties with temperature. This knowledge is crucial in several aspects: to analyze the effects of the microwave field on the reaction pathways; to design and optimize microwave-assisted processes, and to predict the behavior of materials leading to repeatable and reliable heating processes, etc.

  17. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  18. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  19. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  20. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    the anode and cathode flow plates. The purpose of this study is to investigate the feasibility of the proposed temperature characterization method and to identify the temperature distribution on an operating HT-PEM in various modes of operation, including a 700 h sensors durability test. The embedded......The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...... sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can...

  1. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    Science.gov (United States)

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-06-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.

  2. Sentinel lymph node biopsy in patients with pure and high-risk ductal carcinoma in situ of the breast.

    Science.gov (United States)

    D'Eredità, Giovanni; Giardina, Carmela; Napoli, Anna; Ingravallo, Giuseppe; Troilo, Vito Leopoldo; Fischetti, Fernando; Berardi, Tommaso

    2009-01-01

    The role of sentinel lymph node biopsy in patients initially diagnosed with ductal carcinoma in situ resides in determining the predictors of invasive disease. The aim of the present study was to examine the incidence of sentinel lymph node metastases in a selected group of patients, with characteristics of high-risk ductal carcinoma in situ, in order to determine the clinical usefulness of sentinel lymph node biopsy. A total of 90 patients with a biopsy diagnosis of ductal carcinoma in situ were treated. Fifty-two patients with high-risk ductal carcinoma in situ had sentinel lymph node biopsy. The following characteristics of the primary tumor were considered as indicative of a risk of invasive disease: presence of palpable mass, mammographic mass, multicentric disease that required mastectomy, and histologically high nuclear grade or non-high nuclear grade with necrosis. Subdermal injections of 99mTc-labeled human albumin and subareolar injection of blue dye were used for sentinel lymph node identification. All sentinel nodes were sectioned serially and stained with hematoxylin and eosin. Immunohistochemical analysis was performed using a cytokeratin monoclonal antibody. A positive sentinel lymph node was found in only one patient (1.9%). The patient had a double lesion, and core-needle biopsy showed an atypical ductal hyperplasia and a intermediate degree of ductal carcinoma in situ. At pathologic review of the specimen, no invasive aspect was detected. The results of our study indicate that sentinel lymph node metastasis in pure ductal carcinoma in situ is extremely uncommon. We therefore suggest that sentinel lymph node biopsy might be indicated for patients with ductal carcinoma in situ detected as a palpable mass or as large extensive microcalcifications, as well as for patients who are undergoing mastectomy, especially with immediate reconstruction.

  3. Behavioral patterns and in-situ target strength of the hairtail ( Trichiurus lepturus) via coupling of scientific echosounder and acoustic camera data

    Science.gov (United States)

    Hwang, Kangseok; Yoon, Eun-A.; Kang, Sukyung; Cha, Hyungkee; Lee, Kyounghoon

    2017-12-01

    The present study focuses on the influence of target strength (TS) changes in the swimming angle of the hairtail ( Trichiurus lepturus). We measured in-situ TS at 38 and 120 kHz with luring lamps at a fishing ground for jigging boats near the coastal waters of Jeju-do in Korea. Swimming angle and size of hairtails were measured using an acoustic camera. Results showed that mean preanal length was estimated to be 13.5 cm (SD = 2.7 cm) and mean swimming tilt angle was estimated to be 43.9° (SD = 17.6°). The mean TS values were -35.7 and -41.2 dB at 38 and 120 kHz, respectively. The results will assist in understanding the influence of swimming angle on the TS of hairtails and, thus, improve the accuracy of biomass estimates.

  4. Behavioral patterns and in-situ target strength of the hairtail (Trichiurus lepturus) via coupling of scientific echosounder and acoustic camera data

    Science.gov (United States)

    Hwang, Kangseok; Yoon, Eun-A.; Kang, Sukyung; Cha, Hyungkee; Lee, Kyounghoon

    2017-11-01

    The present study focuses on the influence of target strength (TS) changes in the swimming angle of the hairtail (Trichiurus lepturus). We measured in-situ TS at 38 and 120 kHz with luring lamps at a fishing ground for jigging boats near the coastal waters of Jeju-do in Korea. Swimming angle and size of hairtails were measured using an acoustic camera. Results showed that mean preanal length was estimated to be 13.5 cm (SD = 2.7 cm) and mean swimming tilt angle was estimated to be 43.9° (SD = 17.6°). The mean TS values were -35.7 and -41.2 dB at 38 and 120 kHz, respectively. The results will assist in understanding the influence of swimming angle on the TS of hairtails and, thus, improve the accuracy of biomass estimates.

  5. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    Science.gov (United States)

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  6. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  7. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  8. In Situ Determination of Manganese(II) Speciation in Deinococcus radiodurans by High Magnetic Field EPR

    Science.gov (United States)

    Tabares, Leandro C.; Un, Sun

    2013-01-01

    High magnetic field high frequency electron paramagnetic resonance techniques were used to measure in situ Mn(II) speciation in Deinococcus radiodurans, a radiation-resistant bacteria capable of accumulating high concentrations of Mn(II). It was possible to identify and quantify the evolution of Mn(II) species in intact cells at various stages of growth. Aside from water, 95-GHz high field electron nuclear double resonance showed that the Mn(II) ions are bound to histidines and phosphate groups, mostly from fructose-1,6-bisphosphate but also inorganic phosphates and nucleotides. During stationary growth phase, 285-GHz continuous wave EPR measurements showed that histidine is the most common ligand to Mn(II) and that significant amounts of cellular Mn(II) in D. radiodurans are bound to peptides and proteins. As much as 40% of the total Mn(II) was in manganese superoxide dismutase, and it is this protein and not smaller manganese complexes, as has been suggested recently, that is probably the primary defense against superoxide. PMID:23303180

  9. In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography.

    Science.gov (United States)

    Wang, Jianhua; Jiao, Shuliang; Ruggeri, Marco; Shousha, Mohamed Abou; Shousha, Mohammed Abou; Chen, Qi

    2009-03-01

    To demonstrate the capability of directly visualizing the tear film on contact lenses using optical coherence tomography (OCT). Six eyes of three healthy subjects wearing PureVision and ACUVUE Advance soft and Boston RGP hard contact lenses were imaged with a custom built, high speed, ultra-high resolution spectral domain optical coherence tomograph. Refresh Liquigel was used to demonstrate the effect of artificial tears on the tear film. Ultra high resolution images of the pre- and post-lens films were directly visualized when each lens was inserted onto the eye. After the instillation of artificial tears during lens wear, the tear film was thicker. The post-lens tear film underneath the lens edge was clearly shown. Interactions between the lens edges and the ocular surface were obtained for each of the lens types and base curves. With a contrast enhancement agent, tear menisci on the contact lenses around the upper and lower eyelids were highlighted. With hard contact lenses, the tear film was visualized clearly and changed after a blink when the lens was pulled up by the lid. Ultra-high resolution OCT is a potentially promising technique for imaging tears around contact lenses. This successful demonstration of in situ post-lens tear film imaging suggests that OCT could open a new era in studying tear dynamics during contact lens wear. The novel method may lead to new ways of evaluating contact lens fitting.

  10. Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse.

    Science.gov (United States)

    Xu, Shaomao; Chen, Yanan; Li, Yiju; Lu, Aijiang; Yao, Yonggang; Dai, Jiaqi; Wang, Yanbin; Liu, Boyang; Lacey, Steven D; Pastel, Glenn R; Kuang, Yudi; Danner, Valencia A; Jiang, Feng; Fu, Kun Kelvin; Hu, Liangbing

    2017-09-13

    The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co2B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co2B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS2) and cobalt oxide (Co3O4) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.

  11. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  12. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    Science.gov (United States)

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  13. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  14. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.

    2015-10-30

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study shows that an in situ transparent and conductive Gd nanolayer (with a uniform thickness of ∼1 nm) at the interface between a lattice-matched (11-20) a-sapphire substrate and ZnO is formed during the deposition. This nanolayer significantly induces a relaxation mechanism that controls the dislocation distribution along the growth direction; which consequently improves the formation of homogeneous vertically aligned ZnO NRs. We demonstrate that both the lattice orientation of the substrate and the Gd characteristics are important in enhancing the NR synthesis, and we report precise control of the NR density by changing the oxygen partial pressure. We show that these NRs possess high optical and electrical quality, with a mobility of 177 cm2 (V s)-1, which is comparable to the best-reported mobility of ZnO NRs. Therefore, this new and simple method has significant potential for improving the performance of materials used in a wide range of electronic and optoelectronic applications.

  15. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  16. In-situ spectroscopy of radiation damage of PTFE irradiated with high-energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, A.O.; Rizzutto, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Severin, D.; Seidl, T.; Neumann, R.; Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)

    2010-07-01

    Full text: Polytetrafluoroethylene (PTFE) shows an outstanding combination of chemical and physical properties such as excellent resistance to chemical reagents, thermal stability in a wide temperature range, high electric resistance, and low friction coefficient. However, PTFE is known to be extremely sensitive to high energy radiation undergoing scission of the main chain. Depending on the irradiation parameters, temperature, and atmosphere, cross-linking mechanisms can be also observed. Sometimes these mechanisms have a very short lifetime, therefore it is necessary to measure the radiation damages during the irradiation process. PTFE films (50 {mu}m thick, Enflo Canada Ltd.) were irradiated with U and Au ions up to energies of 1.3 GeV and fluences of 1 x 10{sup 13} ions/cm{sup 2} at the accelerator UNILAC at the GSI in Darmstadt, Germany. The irradiations were performed at cryo (T 23K) and room temperature in the new setup at the M3-beam line of the materials research M-Branch. This setup allows in-situ investigations of ion irradiation induced material changes with infrared spectroscopy (FTIR) and residual gas analysis (RGA). Mass spectra recorded during room temperature ion irradiation show outgassing of several fragments, with CF and CF{sub 3} being the most dominant species. Almost no fragments are observed during the cryo-irradiation. However, subsequent sample heating to room temperature leads to outgassing of the fragments starting above 150 K. This result indicates that at low irradiation temperatures small fragments are frozen in and accumulated in the sample. The online FTIR analysis of the irradiated samples shows a decrease in the absorption intensity of the bands assigned to the CF{sub 2} bonds, evidencing scission of the main polymer chain. The CF{sub 2} degradation is accompanied by the formation of the CF{sub 3} group indicated by two new bands, one at 738 cm{sup -1} (terminal - CF{sub 3} group) and another at 985 cm{sup -1} (-CF{sub 3} side

  17. Hydrogen Assisted Cracking of High Strength Alloys

    Science.gov (United States)

    2003-08-01

    Speidel reported simple Arrhenius behavior for lower strength Nimonic 105 (ays = 825 MPa) for 0C < T < 1000C (Speidel, 1974). The very high temperature... 115 of 194 L (a) R 250 nm 250 nm L (b) R Figure 43: Matching field emission SEM images of an IG facet in cz~hardened j3-Ti (Beta-C) cracked in aqueous...Thompson, ASM International, Materials Park, OH, 1974, pp. 115 -147. W.W. Gerberich, Y.T. Chen and C. St. John, A short-time diffusion correlation for

  18. High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria).

    Science.gov (United States)

    Briffa, Mark; Greenaway, Julie

    2011-01-01

    'Animal personality' means that individuals differ from one another in either single behaviours or suites of related behaviours in a way that is consistent over time. It is usually assumed that such consistent individual differences in behaviour are driven by variation in how individuals respond to information about their environment, rather than by differences in external factors such as variation in microhabitat. Since behavioural variation is ubiquitous in nature we might expect 'animal personality' to be present in diverse taxa, including animals with relatively simple nervous systems. We investigated in situ startle responses in a sea anemone, Actinia equina, to determine whether personalities might be present in this example of an animal with a simple nervous system. We found very high levels of repeatability among individuals that were re-identified in the same locations over a three week sampling period. In a subset of the data, where we used tide-pool temperature measurements to control for a key element of variation in microhabitat, these high levels of repeatability remained. Although a range of other consistent differences in micro-habitat features could have contributed to consistent differences between the behaviour of individuals, these data suggest the presence of animal personality in A. equina. Rather than being restricted to certain groups, personality may be a general feature of animals and may be particularly pronounced in species with simple nervous systems.

  19. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  20. In situ measurements of high temperature growth of correlated systems: a materials by design scheme

    Science.gov (United States)

    He, Hua

    There is great interest in developing new ways to use predictive theory to accelerate materials synthesis. We have previously shown that DFT +DMFT electronic structure calculations are successful at predicting gaps and ordered moments, even when correlations are very strong.[ 1 , 2 ] Building on these results, we set out to explore an even closer integration of theory and synthesis, aiming to discover new routes for doping Mott insulators and producing new superconductors. In situ high temperature high energy X-ray diffraction is used to determine the crystal structures of compounds just as they form from the growths, and the structural information is used as input for DFT +DMFT calculations that predict functionality, closing the synthesis loop by suggesting productive new directions. Using this approach, we have investigated the transition metal oxysulfide system Ba-Co-S-O and successfully discovered the new compound BaCoSO, and identified it as an interesting small gap Mott insulator by DFT +DMFT calculations even before any traditional crystal growth is attempted in the lab We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

  1. In Situ Measurements of Spectral Emissivity of Materials for Very High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    G. Cao; S. J. Weber; S. O. Martin; T. L. Malaney; S. R. Slattery; M. H. Anderson; K. Sridharan; T. R. Allen

    2011-08-01

    An experimental facility for in situ measurements of high-temperature spectral emissivity of materials in environments of interest to the gas-cooled very high temperature reactor (VHTR) has been developed. The facility is capable of measuring emissivities of seven materials in a single experiment, thereby enhancing the accuracy in measurements due to even minor systemic variations in temperatures and environments. The system consists of a cylindrical silicon carbide (SiC) block with seven sample cavities and a deep blackbody cavity, a detailed optical system, and a Fourier transform infrared spectrometer. The reliability of the facility has been confirmed by comparing measured spectral emissivities of SiC, boron nitride, and alumina (Al2O3) at 600 C against those reported in literature. The spectral emissivities of two candidate alloys for VHTR, INCONEL{reg_sign} alloy 617 (INCONEL is a registered trademark of the Special Metals Corporation group of companies) and SA508 steel, in air environment at 700 C were measured.

  2. High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Mark Briffa

    Full Text Available 'Animal personality' means that individuals differ from one another in either single behaviours or suites of related behaviours in a way that is consistent over time. It is usually assumed that such consistent individual differences in behaviour are driven by variation in how individuals respond to information about their environment, rather than by differences in external factors such as variation in microhabitat. Since behavioural variation is ubiquitous in nature we might expect 'animal personality' to be present in diverse taxa, including animals with relatively simple nervous systems. We investigated in situ startle responses in a sea anemone, Actinia equina, to determine whether personalities might be present in this example of an animal with a simple nervous system. We found very high levels of repeatability among individuals that were re-identified in the same locations over a three week sampling period. In a subset of the data, where we used tide-pool temperature measurements to control for a key element of variation in microhabitat, these high levels of repeatability remained. Although a range of other consistent differences in micro-habitat features could have contributed to consistent differences between the behaviour of individuals, these data suggest the presence of animal personality in A. equina. Rather than being restricted to certain groups, personality may be a general feature of animals and may be particularly pronounced in species with simple nervous systems.

  3. A Software App for Radiotherapy with In-situ Dose-painting using high Z nanoparticles.

    Science.gov (United States)

    Jermoumi, M; Yucel, A; Hao, Y; Cifter, G; Sajo, E; Ngwa, W

    2015-06-01

    The purpose of this work is to develop an user friendly and free-to-download application software that can be employed for modeling Radiotherapy with In-situ Dose-painting (RAID) using high-Z nanoparticles (HZNPs). The RAID APP is software program written in Matlab (Mathworks, Natick, MA, USA) based on deterministic code developed to simulate the space-time intra-tumor HZNPs biodistribution within the tumor, and the corresponding dose enhancement in response to low dose rate (LDR) brachytherapy of I-125, Pd-102, Cs-131 and kilovoltage x-rays such as 50 keV and 100 keV. Through the GUI of RAID APP, the user will be directed to different features to compute various parameters related to the dose enhancement and the biodistribution of NPs within high risk tumor sub-volumes. The software was developed as tool for research purposes with potential for subsequent development to guide dose-painting treatment planning using radiosensitizers such as gold (Au) and platinum (Pt).

  4. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  5. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios.

    Science.gov (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer

    2017-11-16

    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  6. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit.

    Science.gov (United States)

    Wu, Fu-Fa; Chan, K C; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-06-16

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19' phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties.

  7. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure.

    Science.gov (United States)

    Picard, A; Daniel, I; Montagnac, G; Oger, P

    2007-05-01

    We monitored alcoholic fermentation in Saccharomyces cerevisiae as a function of high hydrostatic pressure. Ethanol production from 0.15 M glucose was measured by Raman spectroscopy in situ in a diamond-anvil cell. At 10 MPa, fermentation proceeds three times faster than at ambient pressure and the fermentation yield is enhanced by 5% after 24 h. Above 20 MPa, the reaction kinetics slows down with increasing pressure. The pressure above which no more ethanol is produced is calculated to be 87 +/- 7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure up to 10 MPa. At higher pressures, they become progressively repressed, and they are completely inhibited above 87 MPa. Although fermentation was predicted to stop at ca. 50 MPa, due to the loss of activity of phosphofructokinase, the present study demonstrates that there is still an activity of ca. 30% of that measured at ambient pressure at 65 MPa. This study also validates the use of Raman spectroscopy for monitoring the metabolism of living microorganisms.

  8. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    Science.gov (United States)

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  9. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  10. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study

    Science.gov (United States)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward

    2017-10-01

    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an ;explosive; oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an ;explosion; occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  11. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  12. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  13. Application of in situ diffraction in high-throughput structure determination platforms.

    Science.gov (United States)

    Aller, Pierre; Sanchez-Weatherby, Juan; Foadi, James; Winter, Graeme; Lobley, Carina M C; Axford, Danny; Ashton, Alun W; Bellini, Domenico; Brandao-Neto, Jose; Culurgioni, Simone; Douangamath, Alice; Duman, Ramona; Evans, Gwyndaf; Fisher, Stuart; Flaig, Ralf; Hall, David R; Lukacik, Petra; Mazzorana, Marco; McAuley, Katherine E; Mykhaylyk, Vitaliy; Owen, Robin L; Paterson, Neil G; Romano, Pierpaolo; Sandy, James; Sorensen, Thomas; von Delft, Frank; Wagner, Armin; Warren, Anna; Williams, Mark; Stuart, David I; Walsh, Martin A

    2015-01-01

    Macromolecular crystallography (MX) is the most powerful technique available to structural biologists to visualize in atomic detail the macromolecular machinery of the cell. Since the emergence of structural genomics initiatives, significant advances have been made in all key steps of the structure determination process. In particular, third-generation synchrotron sources and the application of highly automated approaches to data acquisition and analysis at these facilities have been the major factors in the rate of increase of macromolecular structures determined annually. A plethora of tools are now available to users of synchrotron beamlines to enable rapid and efficient evaluation of samples, collection of the best data, and in favorable cases structure solution in near real time. Here, we provide a short overview of the emerging use of collecting X-ray diffraction data directly from the crystallization experiment. These in situ experiments are now routinely available to users at a number of synchrotron MX beamlines. A practical guide to the use of the method on the MX suite of beamlines at Diamond Light Source is given.

  14. Press hardening of alternative high strength aluminium and ultra-high strength steels

    Science.gov (United States)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  15. In Situ Characterization of Porosity and Permeability Changes at High Pressure: Application to Geological Sequestration

    Science.gov (United States)

    McGrail, B. P.; Bacon, D. H.; Saripalli, P.; Shaw, W. J.

    2004-12-01

    The global energy system is dominated by fossil fuels, which are abundant and relatively inexpensive. Carbon dioxide emissions resulting from the use of fossil fuels are responsible for most of the projected human influence on climate. As a society, if we wish to manage the risks of climate change, finding methods and developing new technologies so that fossil fuels become net zero-carbon emitting is a critical part of an overall climate change response strategy. An important technology receiving increasing attention is capturing CO2 from large stationary power sources and recycling the carbon back into the ground where it may be used for additional resource recovery (oil or natural gas) or simple sequestration. Successful implementation of carbon capture and sequestration requires a fundamental understanding of the chemical reactions of CO2 within the host formation and impacts on porosity and permeability. In this paper, we will discuss the experimental challenges associated with measurements of porosity and permeability changes under high-pressure conditions and attributing observed changes to specific dissolution-precipitation reactions or dissociation-formation reactions in the case of natural gas hydrates. Application of new techniques, such as pulsed field gradient NMR and scanning laser Raman LIDAR will be described that hold promise for in-situ measurements. Measurement of gas permeability in gas hydrate-bearing sediments will also be discussed. Such data are extremely rare, principally because of the difficulties involved in stabilizing the gas hydrate under high pressure. Gas flow rate data collected over gas hydrate saturations between 10% and 70% in Accusand show poor correlation with classical models such as Brooks-Corey.

  16. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.

    Science.gov (United States)

    Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L

    2014-10-01

    Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure. © The Author(s) 2014.

  17. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  18. High pressure in situ diffraction studies of metal-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Norwegian University of Science and Technology, Trondheim NO 7491 (Norway); Denys, R.V. [Institute for Energy Technology, Kjeller NO 2027 (Norway); Karpenko Physico-Mechanical Institute, NAS of Ukraine, Lviv 79601 (Ukraine); Webb, C.J. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia); Maehlen, J.P. [Institute for Energy Technology, Kjeller NO 2027 (Norway); Gray, E. MacA.; Blach, T. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia); Isnard, O. [Institute Neel, CNRS/UJF, 38042 Grenoble (France); Barnsley, L.C. [Queensland Micro- and Nanotechnology Centre, Griffith University (Australia)

    2011-09-15

    Research highlights: > CeNi{sub 5}-D{sub 2} and Zr(Fe,Al){sub 2}-D{sub 2} systems were studied by in situ NPD at P up to 1000 bar. > In the hexagonal CeNi{sub 5}D{sub 6.3} deuterium atoms fill three types of interstices. > In the Zr(Fe,Al){sub 2}-based deuterides D atoms occupy the Zr(Fe,Al){sub 2} tetrahedra only D/Zr(Fe,Al){sub 2}, hysteresis and hydrides stability systematically change with Al content. - Abstract: 'Hybrid' hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal-hydrogen systems correspond to low enthalpies of hydrogen absorption-desorption. This decreases the calorimetric effects of the hydride formation-decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading-removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to -20 kJ/mol H{sub 2} were studied to investigate the hydrogenation mechanism and kinetics: CeNi{sub 5}-D{sub 2} and ZrFe{sub 2-x}Al{sub x} (x = 0.02; 0.04; 0.20)-D{sub 2}. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi{sub 5} intermetallic resulted in CeNi{sub 5}D{sub 6.3} with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce{sub 2}Ni{sub 2} and Ni{sub 4} tetrahedra, and Ce{sub 2}Ni{sub 3} half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al

  19. Using High-Resolution Hand-Held Radiometers To Measure In-Situ Thermal Resistance

    Science.gov (United States)

    Burch, Douglas M.; Krintz, Donald F.

    1984-03-01

    A field study was carried out to investigate the accuracy of using high-resolution radiometers to determine the in situ thermal resistance of building components having conventional residential construction. Two different types of radiometers were used to determine the thermal resistances of the walls of six test buildings located at the National Bureau of Standards. These radiometer thermal resistance measurements were compared to reference thermal resistance values determined from steady-state series resistance predictions, time-averaged heat-flow-sensor measurements, and guarded-hot-box measurements. When measurements were carried out 5 hours after sunset when the outdoor temperature was relatively steady and the heating plant was operated in a typical cyclic fashion, the following results were obtained: for lightweight wood-frame cavity walls, the radiometer procedures were found to distinguish wall thermal resistance 4.4 h.ft2- °F/Btu (0.77 m2•K/W) systematically higher than corresponding reference values. Such a discrimination will per-mit insulated and uninsulated walls to be distinguished. However, in the case of walls having large heat capacity (e.g., masonry and log), thermal storage effects produced large time lags between the outdoor diurnal temperature variation and the heat-flow response at the inside surface. This phenomenon caused radiometer thermal resistances to deviate substantially from corresponding reference values. This study recommends that the ANSI/ASHRAE Standard 101-1981 be modified requiring the heating plant to be operated in a typical cyclic fashion instead of being turned off prior to and during radiometer measurements.

  20. High Rates of Conjugation in Bacterial Biofilms as Determined by Quantitative In Situ Analysis

    OpenAIRE

    Hausner, Martina; Wuertz, Stefan

    1999-01-01

    Quantitative in situ determination of conjugative gene transfer in defined bacterial biofilms using automated confocal laser scanning microscopy followed by three-dimensional analysis of cellular biovolumes revealed conjugation rates 1,000-fold higher than those determined by classical plating techniques. Conjugation events were not affected by nutrient concentration alone but were influenced by time and biofilm structure.

  1. Spectrometer and Radiative Transfer Model Comparison using High Sun In-Situ Observations in Pretoria

    CSIR Research Space (South Africa)

    Lysko, MD

    2012-08-01

    Full Text Available There is need for reliable in-situ spectral solar irradiance measurements. For instance, the spectrally resolved irradiance may be used to infer its influence on radiative forcing of climate and in solar energy applications. In any case, reliable...

  2. Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion

    Directory of Open Access Journals (Sweden)

    Joseph P. Patterson

    2015-12-01

    Full Text Available In this article we present in situ transmission electron microscopy (TEM of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterisation of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerisation of an oxaliplatin analogue, designed for an ongoing programme in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point towards key design parameters that enable this new characterisation approach for organic nanomaterials. We describe the preparation of the synthetic nanoparticles together with their characterisation in liquid water. Finally, we provide a future perspective of this technique for the analysis of soft and dynamic nanomaterials and discussion the progress which needs to be made in order to bring in situ liquid TEM to its full potential.

  3. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  4. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  5. Development of a Highly Portable Plate Loading Device and In Situ Modulus Measurements in Weak Rock Masses

    Science.gov (United States)

    Kallu, Raj R.; Keffeler, Evan R.; Watters, Robert J.; Warren, Sean N.

    2016-02-01

    In recent years, underground mines in Nevada are increasingly exploiting in weak mineralized zones at greater depths that are intensely fractured and highly altered. The mechanical behavior of these rock masses ranges between weak rock and very stiff soil. A common limitation for design of underground mining excavations in these types of rock masses is absence of in situ geotechnical data. This limitation is generally overcome by estimating in situ mechanical behavior from empirical relationships so that the continuum-based numerical methods can be used to evaluate ground support designs. Because of the cost, time, and specialized equipment involved, historically in situ tests have not been performed in these underground mines. Predictive rock mass modulus relationships that are currently available in the literature are derived from field testing of predominantly good-quality rock masses. Consequently, there is limited confidence in using these models for rock masses with Rock Mass Ratings less than 45. In order to overcome some of these limitations, a portable plate loading device (PPLD) was designed and fabricated. The PPLD allows one to perform low cost and relatively quick in situ deformability tests to be performed on weak rock masses in underground mines. Test procedures and data reduction methods were developed to limit potential sources of error associated with the PPLD test. A total of fourteen plate loading tests were performed in weak rock masses at two different active underground mines in Nevada, USA. The resulting the test data were compared to eight published empirical rock mass modulus relationships to determine which, if any, of these relationships are sufficiently accurate for estimating modulus in similar geotechnical conditions. Only two of these relationships were found to be sufficient for first-order estimations of in situ modulus.

  6. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  7. Design of High Compressive Strength Concrete Mix without Additives

    National Research Council Canada - National Science Library

    N, M, Akasha; Mohamed, Mansour Ahmed; Abdelrazig, Nasreen Maruiod

    2017-01-01

    .... The selected materials, with high specification using special production techniques, the properties ,the mix design procedure and mix proportion of the high strength concrete (HSC) were discussed...

  8. High-Speed In Situ Observation System for Sonoporation of Cells With Size- and Position-Controlled Microbubbles.

    Science.gov (United States)

    Kudo, Nobuki

    2017-01-01

    A high-speed in situ microscopic observation system developed for basic studies on mechanisms of sonoporation is introduced in this paper. The main part of the system is an inverted-type fluorescence microscope, and a high-speed camera of 20 MHz in a maximum framing rate was used to visualize the dynamics of cavitation bubbles that causes a sonoporation effect. Differential interference contrast and fluorescence techniques were used for sensitive visualization of cell changes during sonoporation. The system is also equipped with optical tweezers that can move a microbubble of several microns in size by using a donut-shaped light beam. In situ microscopic observation of sonoporation was carried out using a cell with a size- and position-controlled microbubble. The experimental results showed that the ability of cells to repair sonoporation-induced damage depends on their membrane tension, indicating the usefulness of the observation system as a basic tool for the investigation of sonoporation phenomena.

  9. Monitoring microstructural evolution in-situ during cyclic deformation by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Thiel, Felix; Fischer, Torben

    2017-01-01

    is gained by in-situ monitoring of the microstructural evolution during cyclic deformation. By HRRSM, a large number of individual subgrains can be resolved within individual grains in the bulk of polycrystalline specimens and their fate, their individual orientation and elastic stresses, tracked during...... different loading regimes as tension and compression. With this technique, the evolution of dislocation structures in selected grains was followed during an individual load cycle....

  10. Single-crystal-conjugated polymers with extremely high electron sensitivity through template-assisted in situ polymerization.

    Science.gov (United States)

    Xue, Mianqi; Wang, Yue; Wang, Xiaowei; Huang, Xiaochun; Ji, Junhui

    2015-10-21

    Single-crystal-conjugated polymer (SCCP) arrays are prepared successfully via a simple method, which is a combination of the contact thermochemical reaction and solvent-free in situ polymerization. The dramatic X-ray diffraction and selective-area electron diffraction results show the high crystallinity of the SCCP arrays. These SCCP arrays display unique physical properties and show great potential in flexible electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway

    Science.gov (United States)

    Hong, Ming; Wang, Qiang; Su, Zhongqing; Cheng, Li

    2014-04-01

    Based on the authors' research efforts over the years, an in situ structural health monitoring (SHM) technique taking advantage of guided elastic waves has been developed and deployed via an online diagnosis system. The technique and the system were recently implemented on China's latest high-speed train (CRH380CL) operated on Beijing-Shanghai High-Speed Railway. The system incorporated modularized components including active sensor network, active wave generation, multi-channel data acquisition, signal processing, data fusion, and results presentation. The sensor network, inspired by a new concept—"decentralized standard sensing", was integrated into the bogie frames during the final assembly of CRH380CL, to generate and acquire bogie-guided ultrasonic waves, from which a wide array of signal features were extracted. Fusion of signal features through a diagnostic imaging algorithm led to a graphic illustration of the overall health state of the bogie in a real-time and intuitive manner. The in situ experimentation covered a variety of high-speed train operation events including startup, acceleration/deceleration, full-speed operation (300 km/h), emergency braking, track change, as well as full stop. Mock-up damage affixed to the bogie was identified quantitatively and visualized in images. This in situ testing has demonstrated the feasibility, effectiveness, sensitivity, and reliability of the developed SHM technique and the system towards real-world applications.

  12. High-performance PdNi alloy structured in situ on monolithic metal foam for coalbed methane deoxygenation via catalytic combustion.

    Science.gov (United States)

    Zhang, Qiaofei; Wu, Xin-Ping; Zhao, Guofeng; Li, Yakun; Wang, Chunzheng; Liu, Ye; Gong, Xue-Qing; Lu, Yong

    2015-08-14

    A monolithic Ni-foam@PdNi(alloy) catalyst is tailored for coalbed methane deoxygenation via galvanically depositing Pd nanoparticles on a Ni-foam surface followed by in situ activation. Experimental and theoretical studies unanimously reveal that the in situ formed PdNi alloy contributes to high activity/selectivity, good stability and oscillation elimination.

  13. An in situ evaluation of the polymerization shrinkage, degree of conversion, and bond strength of resin cements used for luting fiber posts.

    Science.gov (United States)

    Pulido, Camilo Andrés; de Oliveira Franco, Ana Paula Gebert; Gomes, Giovana Mongruel; Bittencourt, Bruna Fortes; Kalinowski, Hypolito José; Gomes, João Carlos; Gomes, Osnara Maria Mongruel

    2016-10-01

    The behavior and magnitude of the deformations that occur during polymerization and the behavior of the luting agents of glass fiber posts inside the root canal require quantification. The purpose of this in vitro study was to investigate the in situ polymerization shrinkage, degree of conversion, and bond strength inside the root canal of resin cements used to lute fiber posts. Thirty maxillary canines were prepared to lute fiber posts. The teeth were randomly divided into 2 groups (n=15) according to the cementation system used, which included ARC, the conventional dual-polymerized resin cement RelyX ARC, and the U200 system, a self-adhesive resin cement, RelyX U200. Two fiber optic sensors with recorded Bragg gratings (FBG) were attached to each post before inserting the resin cement inside the root canal to measure the polymerization shrinkage (PS) of the cements in the cervical and apical root regions (με). Specimens were sectioned (into cervical and apical regions) to evaluate bond strength (BS) with a push-out test and degree of conversion (DC) with micro-Raman spectroscopy. Data were statistically analyzed with 2-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). The ARC and U200 system showed similar PS values (-276.4 ±129.2 με and -252.1 ±119.2 με, respectively). DC values from ARC were higher (87.5 ±2.7%) than those of U200 (55.9 ±9.7%). The cervical region showed higher DC values (74.8 ±15.2%) and PS values (-381.6 ±53.0 με) than those of the apical region (68.5 ±20.1% and -146.9 ±43.5 με, respectively) for both of the resin cements. BS was only statistically different between the cervical and apical regions for ARC (P<.05). The ARC system showed the highest PS and DC values compared with U200; and for both of the resin cements, the PS and DC values were higher at the cervical region than at the apical region of the canal root. BS was higher in the cervical region only for ARC. Copyright © 2016

  14. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    Science.gov (United States)

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  15. Miniaturised 'lab-on-a-chip' nitrate analyser applied to high resolution in situ analysis of glacial meltwater

    Science.gov (United States)

    Beaton, A.; Mowlem, M.; Wadham, J. L.

    2013-12-01

    In situ chemical measurements of glacial meltwater can provide high temporal and spatial resolution data that allow us to infer biogeochemical processes and calculate export from glacial systems. Despite this, in situ measurements of single chemical parameters in glacial meltwater have so far largely been restricted to pH and dissolved oxygen. The lack of high performance ruggedized in situ sensors for other analytes means that the laboratory-based analysis of manually collected samples is still routine. Microfluidics (through lab-on-a-chip technology) permits the miniaturisation of established chemical analysis techniques so that they can be performed in situ. The advantages of decreased size and low power and reagent consumption make these systems suitable for deployment in extreme and inaccessible environments where regular manual sample collection is logistically difficult. We present data from a novel stand-alone microfluidic wet chemical nitrate analyser that has been deployed to monitor a proglacial meltwater river draining from the Greenland ice sheet. By performing a measurement every 20 minutes, the analyser was able to reveal diurnal fluctuations and short term trends in nitrate concentrations that would not discernible using standard daily sampling. High resolution in situ measurements such as these can allow a more accurate determination of nutrient export fluxes from glacial systems into the polar oceans, and allow enhanced interpretation of water quality datasets. Steps have been taken to ruggedize the system so that it can survive the freeze-thaw conditions, dilute concentrations and high sediment loads that can be associated with cryospheric environments. The system is small, has low power consumption and detects nitrate and nitrite with a limit of detection (LOD) of 0.025 μM, which is sufficient for low nutrient glacial environments. On-going work looks to deploy similar nutrient analysers more widely, not only in glacial systems, but also in

  16. Influence of Different Drying Conditions on High Strength Concrete Compressive Strength

    Directory of Open Access Journals (Sweden)

    M. Safan

    2001-01-01

    Full Text Available The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.

  17. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure...... the obtainable power density and battery life time. A challenging and important task is to obtain in situ information about the formation and evolution of interfaces in an operating battery system. This work addresses these challenges and for this purpose we have developed a special microcapillary battery cell...

  18. In Situ Synthesis of Uranium Carbide and its High Temperature Cubic Phase

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Helmut Matthias [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-25

    New in situ data for the U-C system are presented, with the goal of improving knowledge of the phase diagram to enable production of new ceramic fuels. The none quenchable, cubic, δ-phase, which in turn is fundamental to computational methods, was identified. Rich datasets of the formation synthesis of uranium carbide yield kinetics data which allow the benchmarking of modeling, thermodynamic parameters etc. The order-disorder transition (carbon sublattice melting) was observed due to equal sensitivity of neutrons to both elements. This dynamic has not been accurately described in some recent simulation-based publications.

  19. In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Lun; Teng, Hsisheng; Lee, Yuh-Lang [Department of Chemical Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 7010 (China)

    2011-09-22

    By using poly(acrylonitrile-co-vinyl acetate) as a gelator in an acetonitrile-based liquid electrolyte, an in situ gelation of the liquid electrolyte can be performed inside the mesoporous matrix of TiO{sub 2} films. By introduction of TiO{sub 2} nanoparticles as fillers of the gel-electrolyte, the energy conversion efficiency of a gel-state dye-sensitized solar cell can achieve a value higher than that of a liquid-state cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. In situ X-ray diffraction environments for high-pressure reactions

    DEFF Research Database (Denmark)

    R. S. Hansen, Bjarne; Møller, Kasper Trans; Paskevicius, Mark

    2015-01-01

    New sample environments and techniques specifically designed for in situ powder X-ray diffraction studies up to 1000 bar (1 bar = 105 Pa) gas pressure are reported and discussed. The cells can be utilized for multiple purposes in a range of research fields. Specifically, investigations of gas......–solid reactions and sample handling under inert conditions are undertaken here. Sample containers allowing the introduction of gas from one or both ends are considered, enabling the possibility of flow-through studies. Various containment materials are evaluated, e.g. capillaries of single-crystal sapphire (Al2O3...

  1. A novel in situ measurement method of bubble sizes in bioreactors using a high speed camera

    DEFF Research Database (Denmark)

    Bach, Christian; Albæk, Mads Orla; Krühne, Ulrich

    to bioreactors at different conditions in terms of power input, gas flow rate and viscosity. This in situ measurement illustrates the effect of process conditions on the size of the bubbles. The information on bubble sizes at different conditions is a valuable input to mechanistic models regarding gas...... conditions affect the mass transfer rate, and hence a tool for identifying them individually is required. Available correlations for these variables are predominantly system dependent and therefore not necessarily valid in the process of interest. Currently available measurement techniques to identify bubble...

  2. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    Science.gov (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  3. Blending Model Output with satellite-based and in-situ observations to produce high-resolution estimates of population exposure to wildfire smoke

    Science.gov (United States)

    Lassman, William

    In the western US, emissions from wildfires and prescribed fire have been associated with degradation of regional air quality. Whereas atmospheric aerosol particles with aerodynamic diameters less than 2.5 mum (PM2.5) have known impacts on human health, there is uncertainty in how particle composition, concentrations, and exposure duration impact the associated health response. Due to changes in climate and land-management, wildfires have increased in frequency and severity, and this trend is expected to continue. Consequently, wildfires are expected to become an increasingly important source of PM2.5 in the western US. While composition and source of the aerosol is thought to be an important factor in the resulting human health-effects, this is currently not well-understood; therefore, there is a need to develop a quantitative understanding of wildfire-smoke-specific health effects. A necessary step in this process is to determine who was exposed to wildfire smoke, the concentration of the smoke during exposure, and the duration of the exposure. Three different tools are commonly used to assess exposure to wildfire smoke: in-situ measurements, satellite-based observations, and chemical-transport model (CTM) simulations, and each of these exposure-estimation tools have associated strengths and weakness. In this thesis, we investigate the utility of blending these tools together to produce highly accurate estimates of smoke exposure during the 2012 fire season in Washington for use in an epidemiological case study. For blending, we use a ridge regression model, as well as a geographically weighted ridge regression model. We evaluate the performance of the three individual exposure-estimate techniques and the two blended techniques using Leave-One-Out Cross-Validation. Due to the number of in-situ monitors present during this time period, we find that predictions based on in-situ monitors were more accurate for this particular fire season than the CTM simulations and

  4. High-Resolution Whole-Mount In Situ Hybridization Using Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Andriani Ioannou

    2012-01-01

    Full Text Available The photostability and narrow emission spectra of nanometer-scale semiconductor crystallites (QDs make them desirable candidates for whole-mount fluorescent in situ hybridization to detect mRNA transcripts in morphologically preserved intact embryos. We describe a method for direct QD labeling of modified oligonucleotide probes through streptavidin-biotin and antibody-mediated interactions (anti-FITC and anti-digoxigenin. To overcome permeability issues and allow QD conjugate penetration, embryos were treated with proteinase K. The use of QDs dramatically increased sensitivity of whole-mount in situ hybridization (WISH in comparison with organic fluorophores and enabled fluorescent detection of specific transcripts within cells without the use of enzymatic amplification. Therefore, this method offers significant advantages both in terms of sensitivity, as well as resolution. Specifically, the use of QDs alleviates issues of photostability and limited brightness plaguing organic fluorophores and allows fluorescent imaging of cleared embryos. It also offers new imaging possibilities, including intracellular localization of mRNAs, simultaneous multiple-transcript detection, and visualization of mRNA expression patterns in 3D.

  5. Simulation on following Performance of High-Speed Railway In Situ Testing System

    Directory of Open Access Journals (Sweden)

    Fei-Long Zheng

    2013-01-01

    Full Text Available Subgrade bears both the weight of superstructures and the impacts of running trains. Its stability affects the line smoothness directly, but in situ testing method on it is inadequate. This paper presents a railway roadbed in situ testing device, the key component of which is an excitation hydraulic servo cylinder that can output the static pressure and dynamic pressure simultaneously to simulate the force of the trains to the subgrade. The principle of the excitation system is briefly introduced, and the transfer function of the closed-loop force control system is derived and simulated; that, it shows without control algorithm, the dynamic response is very low and the following performance is quite poor. So, the improvedadaptive model following control (AMFC algorithm based on direct state method is adopted. Then, control block diagram is built and simulated with the input of different waveforms and frequencies. The simulation results show that the system has been greatly improved; the output waveform can follow the input signal much better except for a little distortion when the signal varies severely. And the following performance becomes even better as the load stiffness increases.

  6. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH.

    Science.gov (United States)

    Binay, Barış; Alagöz, Dilek; Yildirim, Deniz; Çelik, Ayhan; Tükel, S Seyhan

    2016-01-01

    This study aimed to prepare robust immobilized formate dehydrogenase (FDH) preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150), Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU), and Immobead 150 support functionalized with aldehyde groups (FDHIALD). The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t 1/2) of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.

  7. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Barış Binay

    2016-02-01

    Full Text Available This study aimed to prepare robust immobilized formate dehydrogenase (FDH preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150, Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU, and Immobead 150 support functionalized with aldehyde groups (FDHIALD. The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2 of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.

  8. In situ visualization of magma deformation at high temperature using time-lapse 3D tomography

    Science.gov (United States)

    Godinho, jose; Lee, Peter; Lavallee, Yan; Kendrick, Jackie; Von-Aulock, Felix

    2016-04-01

    We use synchrotron based x-ray computed micro-tomography (sCT) to visualize, in situ, the microstructural evolution of magma samples 3 mm diameter with a resolution of 3 μm during heating and uniaxial compression at temperatures up to 1040 °C. The interaction between crystals, melt and gas bubbles is analysed in 4D (3D + time) during sample deformation. The ability to observe the changes of the microstructure as a function of time allow us to: a) study the effect of temperature in the ability of magma to fracture or deform; b) quantify bubble nucleation and growth rates during heating; c) study the relation between crystal displacement and volatile exsolution. We will show unique beautiful videos of how bubbles grow and coalescence, how samples and crystals within the sample fracture, heal and deform. Our study establishes in situ sCT as a powerful tool to quantify and visualize with micro-scale resolution fast processes taking place in magma that are essential to understand ascent in a volcanic conduit and validate existing models for determining the explosivity of volcanic eruptions. Tracking simultaneously the time and spatial changes of magma microstructures is shown to be primordial to study disequilibrium processes between crystals, melt and gas phases.

  9. Growth and decay of a two-dimensional oxide quasicrystal: High-temperature in situ microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan [Physik-Institut, Universitaet Zuerich (Switzerland); Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Flege, Jan Ingo; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen (Germany); Zollner, Eva Maria; Schumann, Florian Otto; Hammer, Rene; Bayat, Alireza; Schindler, Karl-Michael [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2017-01-15

    The recently discovered two-dimensional oxide quasicrystal (OQC) derived from BaTiO{sub 3} on Pt(111) is the first material in which a spontaneous formation of an aperiodic structure at the interface to a periodic support has been observed. Herein, we report in situ low-energy electron microscopy (LEEM) studies on the fundamental processes involved in the OQC growth. The OQC formation proceeds in two steps via of an amorphous two-dimensional wetting layer. At 1170 K the long-range aperiodic order of the OQC develops. Annealing in O{sub 2} induces the reverse process, the conversion of the OQC into BaTiO{sub 3} islands and bare Pt(111), which has been monitored by in situ LEEM. A quantitative analysis of the temporal decay of the OQC shows that oxygen adsorption on bare Pt patches is the rate limiting step of this dewetting process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses.

    Science.gov (United States)

    Zou, Jianli; Sole, Christopher; Drewett, Nicholas E; Velický, Matěj; Hardwick, Laurence J

    2016-11-03

    An in situ Raman spectroelectrochemical study of Li intercalation into graphite flakes with different thicknesses ranging from 1.7 nm (3 graphene layers) to 61 nm (ca. 178 layers) is presented. The lithiation behavior of these flakes was compared to commercial microcrystalline graphite with a typical flake thickness of ∼100 nm. Li intercalation into the graphitic flakes was observed under potential control via in situ optical microscopy and Raman spectroscopy. As graphite flakes decreased in thickness, a Raman response indicative of increased tensile strain along the graphene sheet was observed during the early stages of intercalation. A progressively negative wavenumber shift of the interior and bounding modes of the split G band (E2g2(i) and E2g2(b)) is interpreted as a weakening of the C-C bonding. Raman spectra of Li intercalation into thin graphitic flakes are presented and discussed in the context of implications for Li ion battery applications, given that intercalation induced strain may accelerate carbon negative electrode aging and reduce long-term cycle life.

  11. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...

  12. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  13. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal steel Annaba” (Algeria) ... Keywords: High strength concrete- fillers- high-temperature- polypropylene fibres- Ground granulated. Furnace Slag ..... hybrid fibre reinforced high strength concrete after heat exposition ...

  14. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  15. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research on the sh...

  16. Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using in situ and high-resolution satellite data

    Directory of Open Access Journals (Sweden)

    Torbern Tagesson

    2013-05-01

    Full Text Available Methane (CH4 fluxes 1997–2010 were studied by combining remotely sensed normalised difference water index (NDWI with in situ CH4 fluxes from Rylekærene, a high-Arctic wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. In situ CH4 fluxes were measured using the closed-chamber technique. Regression models between in situ CH4 fluxes and environmental variables [soil temperature (Tsoil, water table depth (WtD and active layer (AL thickness] were established for different temporal and spatial scales. The relationship between in situ WtD and remotely sensed NDWI was also studied. The regression models were combined and evaluated against in situ CH4 fluxes. The models including NDWI as the input data performed on average slightly better [root mean square error (RMSE =1.56] than the models without NDWI (RMSE=1.67, and they were better in reproducing CH4 flux variability. The CH4 flux model that performed the best included exponential relationships against temporal variation in Tsoil and AL, an exponential relationship against spatial variation in WtD and a linear relationship between WtD and remotely sensed NDWI (RMSE=1.50. There were no trends in modelled CH4 flux budgets between 1997 and 2010. Hence, during this period there were no trends in the soil temperature at 10 cm depth and NDWI.

  17. HIGH IONIC STRENGTH OR PRESENCE OF INOSITOL ...

    African Journals Online (AJOL)

    Preferred Customer

    has all the characteristics associated with the reaction of CysF9(93)β, a sulphydryl group that is invariant in all mammalian haemoglobins. The slow kinetic phase is assigned to CysH3(125)β. Quantitative analysis of the pH dependence of kapp for this phase at 50 mM ionic strength gave an unusually low pKa of 6.0 for this ...

  18. HIGH IONIC STRENGTH OR PRESENCE OF INOSITOL ...

    African Journals Online (AJOL)

    Preferred Customer

    dependence of kapp for this phase at 50 mM ionic strength gave an unusually low pKa of 6.0 for this sulphydryl group. Published data on guinea pig haemoglobin show that it has a much-enhanced acid Bohr effect compared to human haemoglobin. This indicates that CysH3(125)β functions as an acid Bohr group in guinea ...

  19. Bacterial cellulose gels with high mechanical strength.

    Science.gov (United States)

    Numata, Yukari; Sakata, Tadanori; Furukawa, Hidemitsu; Tajima, Kenji

    2015-02-01

    A composite structure was formed between polyethylene glycol diacrylate (PEGDA) and bacterial cellulose (BC) gels swollen in polyethylene glycol (PEG) as a solvent (BC/PEG gel) to improve the mechanical strength of the gels. The mechanical strength under compression and the rheostatic properties of the gels were evaluated. The compression test results indicated that the mechanical strength of the gels depended on the weight percent of cross-linked PEGDA in the gel, the chain length between the cross-linking points, and the cross-linking density of PEGDA polymers. The PEGDA polymers around the cellulose fibers were resistant to pressure; thus, the BC/PEG-PEGDA gel was stronger than the BC/PEG gel under compression. The results of transmittance measurements and thermomechanical analysis showed that the rheostatic properties of the gels were retained even after composite structure formation. BC/PEG-PEGDA gels, which are expected to be biocompatible, may be useful for clinical applications as a soft material. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry.

    Science.gov (United States)

    Díaz, David Díaz; Cid, Juan José; Vázquez, Purificación; Torres, Tomás

    2008-01-01

    Stable photoactive organogels were successfully prepared by a two-step sequence involving: 1) formation of thermoreversible organogels by use of a combination of low-molecular-weight organogelators (LMOGs) and ZnII-phthalocyanine (ZnII-Pc) moieties containing complementary organogelator structures, and 2) strength enhancement of the gels by in situ cross-linking with the aid of CuI-catalysed azide-alkyne [3+2] cycloadditions (CuAACs). The optimum click reaction was carried out between a flexible C6 aliphatic diazide and a suitable dialkyne (molar ratio 1:1) added in a low proportion relative to the organogelator system [LMOG+ZnIIPc]. The dialkyne unit was incorporated into a molecule resembling the LMOGs structure in such a way that it could also participate in the self-assembly of [LMOG+ZnIIPc]. The significant compatibility of the multicomponent photoactive organogels towards this strengthening through CuAACs allowed their sol-to-gel transition temperatures (Tgel) to be enhanced by up to 15 degrees C. The Tgel values estimated by the "inverse flow method" were in good agreement with the values obtained by differential scanning calorimetry (DSC). Rheological measurements confirmed the viscoelastic, rigid, and brittle natures of all Pc-containing gels. Transmission and scanning electron microscopy (TEM, SEM) and atomic force microscopy (AFM) revealed the fibrilar nature of the gels and the morphological changes upon cross-linking by CuAAC. Emission of a red luminescence from the dry nanoscale fibrous structure-due to the self-assembly of the Pc-containing compounds in the organogel fibres-was directly observed by confocal laser scanning microscopy (CLSM). The optical properties were studied by UV/Vis and fluorescence spectroscopy. Fluorescence, Fourier-transform infrared (FTIR) and circular dichroism (CD) measurements were also carried out to complete the physicochemical characterization of selected gels. As a proof of concept, two different organogelators

  1. Mobile high-resolution time-of-flight mass spectrometer for in-situ analytics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU, Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [II. Physikalisches Institut, JLU, Giessen (Germany); GSI, Darmstadt (Germany)

    2011-07-01

    A compact multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed. For the first time it allows for mass measurements with a resolving power exceeding 100000 and sub ppm accuracy in a mobile device. Thus it allows to resolve isobars and enables to accurately determine the composition and structure of biomolecules. The MR-TOF-MS consists of an atmospheric pressure interface for DESI and REIMS, ion cooler, ion trap, time-of-flight analyzer, MCP detector and DAQ. Vacuum system components, power supplies as well as electronics are mounted together with the ion optical spectrometer parts on a single frame with a total volume of 0.8 m{sup 3}. Applications of the device within the AmbiProbe research program include in-situ mass spectrometry such as real-time tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  2. An in situ tribometer for measuring friction and wear of polymers in a high pressure hydrogen environment

    Science.gov (United States)

    Duranty, Edward R.; Roosendaal, Timothy J.; Pitman, Stan G.; Tucker, Joseph C.; Owsley, Stanley L.; Suter, Jonathan D.; Alvine, Kyle J.

    2017-09-01

    High pressure hydrogen effects on the friction and wear of polymers are of importance to myriad applications. Of special concern are those used in the infrastructure for hydrogen vehicle refueling stations, including compressor sliding seals, valves, and actuators. While much is known about potentially damaging embrittlement effects of hydrogen on metals, relatively little is known about the effects of high pressure hydrogen on polymers. However, based on the limited results that are published in the literature, polymers also apparently exhibit compatibility issues with hydrogen. An additional study is needed to elucidate these effects to avoid incompatibilities either through design or material selection. As part of this effort, we present here in situ high pressure hydrogen studies of the friction and wear on example polymers. To this end, we have built and demonstrated a custom-built pin-on-flat linear reciprocating tribometer and demonstrated its use with in situ studies of friction and wear behavior of nitrile butadiene rubber polymer samples in 28 MPa hydrogen. Tribology results indicate that friction and wear is increased in high pressure hydrogen as compared both with values measured in high pressure argon and ambient air conditions.

  3. Temporal variability in dynamic and colloidal metal fractions determined by high resolution in situ measurements in a UK estuary.

    Science.gov (United States)

    Braungardt, Charlotte B; Howell, Kate A; Tappin, Alan D; Achterberg, Eric P

    2011-07-01

    In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations. VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77±17%) and Cu (60±25%) were present as colloids, which constituted a less important fraction for Cd (37±30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  5. Review of current indications for combined very high fluence collagen cross-linking and laser in situ keratomileusis surgery

    Directory of Open Access Journals (Sweden)

    Anastasios John Kanellopoulos

    2013-01-01

    Full Text Available In this brief review we will discuss the reasoning and evolution of our current use of combined very high-fluence collagen crosslinking and laser in situ keratomileusis. Several presentations and pertinent publications are reviewed, along with the key steps of the enhanced LASIK procedure. Long term outcome data support the safety and efficacy of LASIK Xtra in stabilizing myopic but also hyperopic LASIK results.In conclusion, we have compelling evidence that LASIK Xtra is a safe and effective adjunct.

  6. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W. (WU); (UAB); (NASA); (UMASS, Amherst)

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  7. Investigation of High-Energy Ion-Irradiated MA957 Using Synchrotron Radiation under In-Situ Tension

    Directory of Open Access Journals (Sweden)

    Kun Mo

    2016-01-01

    Full Text Available In this study, an MA957 oxide dispersion-strengthened (ODS alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region ~7.5 μm in depth; the peak damage (~40 dpa was estimated to be at ~7 μm from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing of the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials’ radiation damage in a dynamic manner.

  8. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  9. Improving Stiffness, Strength, and Toughness of Poly(omega-pentadecalactone) Fibers through in Situ Reinforcement with a Vanillic Acid-Based Thermotropic Liquid Crystalline Polyester

    NARCIS (Netherlands)

    Wilsens, Carolus H. R. M.; Pepels, Mark P. F.; Spoelstra, Anne B.; Portale, Giuseppe; Auhl, Dietmar; Deshmukh, Yogesh S.; Harings, Jules A. W.

    2016-01-01

    We report on the morphology and performance of melt drawn poly(omega-pentadecalactone) (PPDL) fibers reinforced with a vanillic acid-based thermotropic liquid crystalline polyester (LCP). The in situ reinforced PPDL/LCP fibers developed in this work are considered to be renewable in nature, given

  10. In-situ observation of particles deposition process on a ferromagnetic filter during high-gradient magnetic separation process

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Noriyuki, E-mail: hirota.noriyuki@nims.go.jp [Fine Particle Engineering Group, National Institute for Materials Science, 3-13 Sakura, Tsukuba (Japan); Ando, Tsutomu; Takano, Tadamitsu [Department of Mechanical Engineering, Nihon University, 1-2-1 Izumicho, Narashino 275-8575 (Japan); Okada, Hidehiko [Fine Particle Engineering Group, National Institute for Materials Science, 3-13 Sakura, Tsukuba (Japan)

    2017-04-01

    Abstracts: In-situ observations of particles deposition process on a ferromagnetic filter in high gradient magnetic separation were carried out under high magnetic fields to obtain information for the optimization of separation condition. The spike-like deposition structure was observed on the upper stream of the magnetic filter, different from the conventional deposition image obtained for paramagnetic particles. The length of the spike structure tends to be long with lower flow velocity and lower applied magnetic field. It was also observed that the chain structure or the bundle of such chaines were formed on the way to the filter under the condition of the low applied magnetic field and low flow rates. Results obtained here indicate that the effect of deposited particles on the spatial distribution of the magnetic field and the hydrodynamics, they are often ignored in the simulation so far, should be considered appropriately. - Highlights: • In-situ observation of particles deposition process on a ferromagnetic filter in HGMS. • The spike-like deposition structure was observed on the upper stream. • Longer spike structure formed under lower magnetic fields and lower flow rates. • Effect of the magnetization of deposited particles should be considered appropriately.

  11. Study on the strength characteristics of High strength concrete with Micro steel fibers

    Science.gov (United States)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  12. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Science.gov (United States)

    Kim, Jongjin; Choi, Kyung Joon; Bahn, Chi Bum; Kim, Ji Hyun

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr2O3, NiCr2O4 and Fe3O4 at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  13. High efficiency production and genomic in situ hybridization analysis of Brassica aneuploids and homozygous plants.

    Science.gov (United States)

    Li, Zaiyun; Ceccarelli, M; Minelli, S; Contento, A; Liu, Yan; Cionini, P G

    2003-02-01

    Interspecific and intergeneric hybridizations have been widely used in plant genetics and breeding to construct stocks for genetic analysis and to introduce into crops the desirable traits and genes from their relatives. The intergeneric crosses between Brassica juncea (L.) Czern. & Coss., B. carinata A. Braun and Orychophragmus violaceus (L.) O. E. Schulz were made and the plants produced were subjected to genomic in situ hybridization analysis. The mixoploids from the cross with B. juncea were divided into three groups. The partially fertile mixoploids in the first group (2n = 36-42) mainly contained the somatic cells and pollen mother cells (PMCs) with the 36 chromosomes of B. juncea and additional chromosomes of O. violaceus. The mixoploids (2n = 30-36) in the second and third groups were morphologically quite similar to the mother plants B. juncea and showed nearly normal fertility. The plants in the second group produced the majority of PMCs (2n = 36) with their chromosomes paired and segregated normally, but 1-4 pairs of the O.violaceus chromosomes were included in some PMCs. The plants in the third group produced only PMCs with the 36 B. juncea chromosomes, which were paired and segregated normally. The mixoploids (2n = 29-34) from the cross with B. carinata produced the majority of PMCs (2n = 34) with normal chromosome pairing and segregation, but some plants had some PMCs with 1-3 pairs of chromosomes from O. violaceus and other plants had only PMCs with the B. carinata chromosomes. The Brassica homozygous plants and aneuploids with complete or partial chromosome complements of Brassica parents and various numbers of O. violaceus chromosomes were derived from these progeny plants. The results in this study provided the molecular cytogenetic evidence for the separation of parental genomes which was previously proposed to occur in the hybridizations of these two genera.

  14. An in situ synchrotron XAS methodology for surface analysis under high temperature, pressure, and shear

    Science.gov (United States)

    Dorgham, A.; Neville, A.; Ignatyev, K.; Mosselmans, F.; Morina, A.

    2017-01-01

    The complex tribochemical nature of lubricated tribological contacts is inaccessible in real time without altering their initial state. To overcome this issue, a new design of a pin-on-disc tribological apparatus was developed and combined with synchrotron X-ray absorption spectroscopy (XAS). Using the designed apparatus, it is possible to study in situ the transient decomposition reactions of various oil additives on different surfaces under a wide range of realistic operating conditions of contact pressure (1.0-3.0 GPa), temperature (25-120 °C), and sliding speed (30-3000 rpm or 0.15-15 m/s). To test the apparatus, several tribological tests were performed at different shearing times ranging from 2.5 to 60 min. These tests were carried out under helium atmosphere at a temperature of 80 °C, contact pressure of 2.2 GPa, and sliding speed of 50 rpm. The XAS experiments indicate that the zinc dialkyldithiophosphate antiwear additive decomposes in the oil to form a tribofilm on the iron surface at different reaction kinetics from the ones of the thermal film. The tribofilm composition evolves much faster than the one of the thermal film, which confirms that the formation of the tribofilm is a thermally activated process similar to the one of the thermal film but accelerated by shear. Furthermore, the results indicate that the sulfur of the formed film, whether a tribofilm or a thermal film, appears initially in the form of sulfate, with some sulfide, which under heat or shear is reduced into mainly sulfide.

  15. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  16. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training

    Science.gov (United States)

    THOMAS, MICHAEL H.; BURNS, STEVE P.

    2016-01-01

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training. PMID:27182422

  17. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high-throughput germplasm screening.

    Science.gov (United States)

    Gea, An; Stringano, Elisabetta; Brown, Ron H; Mueller-Harvey, Irene

    2011-01-26

    A rapid thiolytic degradation and cleanup procedure was developed for analyzing tannins directly in chlorophyll-containing sainfoin ( Onobrychis viciifolia ) plants. The technique proved suitable for complex tannin mixtures containing catechin, epicatechin, gallocatechin, and epigallocatechin flavan-3-ol units. The reaction time was standardized at 60 min to minimize the loss of structural information as a result of epimerization and degradation of terminal flavan-3-ol units. The results were evaluated by separate analysis of extractable and unextractable tannins, which accounted for 63.6-113.7% of the in situ plant tannins. It is of note that 70% aqueous acetone extracted tannins with a lower mean degree of polymerization (mDP) than was found for tannins analyzed in situ. Extractable tannins had between 4 and 29 lower mDP values. The method was validated by comparing results from individual and mixed sample sets. The tannin composition of different sainfoin accessions covered a range of mDP values from 16 to 83, procyanidin/prodelphinidin (PC/PD) ratios from 19.2/80.8 to 45.6/54.4, and cis/trans ratios from 74.1/25.9 to 88.0/12.0. This is the first high-throughput screening method that is suitable for analyzing condensed tannin contents and structural composition directly in green plant tissue.

  18. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  19. In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate.

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation.

  20. Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential.

    Science.gov (United States)

    Walsh, Dietrich W M; Siebenwirth, Christian; Greubel, Christoph; Ilicic, Katarina; Reindl, Judith; Girst, Stefanie; Muggiolu, Giovanna; Simon, Marina; Barberet, Philippe; Seznec, Hervé; Zischka, Hans; Multhoff, Gabriele; Schmid, Thomas E; Dollinger, Guenther

    2017-04-25

    The reliance of all cell types on the mitochondrial function for survival makes mitochondria an interesting target when trying to understand their role in the cellular response to ionizing radiation. By harnessing highly focused carbon ions and protons using microbeams, we have performed in situ live cell imaging of the targeted irradiation of individual mitochondria stained with Tetramethyl rhodamine ethyl ester (TMRE), a cationic fluorophore which accumulates electrophoretically in polarized mitochondria. Targeted irradiation with both carbon ions and protons down to beam spots of <1 μm induced a near instant loss of mitochondrial TMRE fluorescence signal in the targeted area. The loss of TMRE after targeted irradiation represents a radiation induced change in mitochondrial membrane potential. This is the first time such mitochondrial responses have been documented in situ after targeted microbeam irradiation. The methods developed and the results obtained have the ability to shed new light on not just mitochondria's response to radiation but to further elucidate a putative mechanism of radiation induced depolarization and mitochondrial response.

  1. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  2. High strength forgeable tantalum base alloy

    Science.gov (United States)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  3. Transformation Heat Treatment of Rapidly Quenched Nb3A1 Precursor Monitored in situ by High Energy Synchrotron Diffraction

    CERN Document Server

    Scheuerlein, C; Di Michiel, M; Jin, X; Takeuchi, T; Kikuchi, A; Tsuchiya, K; Nakagawa, K; Nakamoto, T

    2013-01-01

    Nb3Al superconductors are studied for use in high field magnets. Fine grained Nb3Al with nearly stoichiometric Al content is obtained by a Rapid Heating Quenching and Transformation (RHQT) process. We describe a non destructive in situ study of the transformation process step of a RHQ Nb3Al precursor wire with ramp rates of either 120 °C/h or 800 °C/h. High energy synchrotron x-ray diffraction measurements show the transformation from a Nb(Al)SS supersaturated solid solution into Nb3Al. When heating with a ramp rate of 120 °C/h a strong reduction of the Nb(Al)SS (110) diffraction peak component is observed when the temperature exceeds 660 °C. Additional diffraction peaks are detectable in the approximate temperature interval 610 °C - 750 °C and significant Nb3Al growth is observed above 730 °C.

  4. Orientation relations during the α-ω phase transition of zirconium: in situ texture observations at high pressure and temperature.

    Science.gov (United States)

    Wenk, H-R; Kaercher, P; Kanitpanyacharoen, W; Zepeda-Alarcon, E; Wang, Y

    2013-11-08

    Transition metals Ti, Zr, and Hf have a hexagonal close-packed structure (α) at ambient conditions, but undergo phase transformations with increasing temperature and pressure. Of particular significance is the high-pressure hexagonal ω phase which is brittle compared to the α phase. There has been a long debate about transformation mechanisms and orientation relations between the two crystal structures. Here we present the first high pressure experiments with in situ synchrotron x-ray diffraction texture studies on polycrystalline aggregates. We follow crystal orientation changes in Zr, confirming the original suggestion by Silcock for an α→ω martensitic transition for Ti, with (0001)(α)||(1120)(ω), and a remarkable orientation memory when ω reverts back to α.

  5. In situ ptychographic measurements of high-order harmonic sources from plasma mirrors: A theoretical and numerical study

    Science.gov (United States)

    Leblanc, A.; Quéré, F.

    2018-01-01

    Measuring the spatial properties of high-order harmonic beams produced by high-intensity laser-matter interactions directly in the target plane is very challenging due to the extreme physical conditions at stake in the interaction area. A measurement scheme has been recently developed to obtain this information experimentally, which consists in adapting a lensless imaging method known as ptychography. In this paper, we present a theoretical validation of this method in the case of harmonic generation from plasma mirrors, using a combination of simple modeling and 2D Particle-In-Cell simulations. This study investigates the concept of in situ ptychography and supports the analysis of experimental measurements presented in previous publications.

  6. In-Situ Observation of Crystallization and Growth in High-Temperature Melts Using the Confocal Laser Microscope

    Science.gov (United States)

    Sohn, Il; Dippenaar, Rian

    2016-08-01

    This review discusses the innovative efforts initiated by Emi and co-workers for in-situ observation of phase transformations at high temperatures for materials. By using the high-temperature confocal laser-scanning microscope (CLSM), a robust database of the phase transformation behavior during heating and cooling of slags, fluxes, and steel can be developed. The rate of solidification and the progression of solid-state phase transformations can be readily investigated under a variety of atmospheric conditions and be correlated with theoretical predictions. The various research efforts following the work of Emi and co-workers have allowed a deeper fundamental understanding of the elusive solidification and phase transformation mechanisms in materials beyond the ambit of steels. This technique continues to evolve in terms of its methodology, application to other materials, and its contribution to technology.

  7. Fatigue strength of truss girders made of very high strength steel

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.

    2010-01-01

    An effective application of Very High Strength Steel (VHSS) in civil engineering structures is expected in stiff, truss like structures, typically made of Circular Hollow Sections (CHS). Use of castings in combination with CHS could be promising for the design of highly fatigue resistant joints.

  8. Investigation of high-strength bolt-tightening verification techniques.

    Science.gov (United States)

    2016-03-01

    The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time : consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be some...

  9. Numerical study of high-strength concrete column confined with high-strength stirrups under axial compression

    Science.gov (United States)

    Liu, Qinwei; Wang, Nan; Niu, Xin; Cai, Zhe; Wang, Gang

    2018-01-01

    In order to study the deformation and stress distribution of confined concrete, the axial compression behavior of high-strength concrete column confined with high-strength stirrups is simulated through through nonlinear finite element program. The finite element model reflect the confining effect of high-strength stirrups in specimen. The calculated results shown that the deformation of stirrups is not equivalent in the cross section and the longitudinal section and the confined stress and axial stress of concrete is not uniform in the cross section.

  10. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can

  11. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang; Huan, Yong; Cui, Lishan; Liu, Yinong; Yang, Hong; Ren, Yang

    2017-05-01

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrix and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.

  12. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  13. In situ

    Science.gov (United States)

    Chamlagain, Bhawani; Sugito, Tessa A; Deptula, Paulina; Edelmann, Minnamari; Kariluoto, Susanna; Varmanen, Pekka; Piironen, Vieno

    2018-01-01

    The in situ production of active vitamin B12 was investigated in aqueous cereal-based matrices with three strains of food-grade Propionibacterium freudenreichii . Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6-dimethylbenzimidazole (DMBI) or its natural precursors (riboflavin and nicotinamide) on active B12 production was evaluated. Active B12 production was confirmed by UHPLC-UV-MS analysis. A B12 content of 12-37 μg·kg -1 was produced in BM; this content increased 10-fold with cobalt and reached 940-1,480 μg·kg -1 with both cobalt and DMBI. With riboflavin and nicotinamide, B12 production in cobalt-supplemented BM increased to 712 μg·kg -1 . Approximately, 10 μg·kg -1 was achieved in BF and AM and was increased to 80 μg·kg -1 in BF and 260 μg·kg -1 in AM with cobalt and DMBI. The UHPLC and microbiological assay (MBA) results agreed when both cobalt and DMBI or riboflavin and nicotinamide were supplemented. However, MBA gave ca. 20%-40% higher results in BM and AM supplemented with cobalt, indicating the presence of human inactive analogues, such as pseudovitamin B12. This study demonstrates that cereal products can be naturally fortified with active B12 to a nutritionally relevant level by fermenting with P. freudenreichii .

  14. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    Science.gov (United States)

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.

  15. In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility

    Science.gov (United States)

    Lv, Fu-Yan; Dong, Rui-Hua; Li, Zhao-Jian; Qin, Chong-Chong; Yan, Xu; He, Xiao-Xiao; Zhou, Yu; Yan, Shi-Ying; Long, Yun-Ze

    2016-01-01

    Purpose In this work, we propose an in situ precise electrospinning of medical glue fibers onto dural wound for improving sealing capability, avoiding tissue adhesion, and saving time in dural repair. Methods N-octyl-2-cyanoacrylate, a commercial tissue adhesive (medical glue), can be electrospun into ultrathin fibrous film with precise and homogeneous deposition by a gas-assisted electrospinning device. Results The self-assembled N-octyl-2-cyanoacrylate film shows high compactness and flexibility owing to its fibrous structure. Simulation experiments on egg membranes and goat meninges demonstrated that this technology can repair small membrane defects quickly and efficiently. Conclusion This method may have potential application in dural repair, for example, working as an effective supplementary technique for conventional dura suture. PMID:27621616

  16. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  17. In-situ ER-doped GaN optical storage devices using high-resolution focused ion beam milling

    Science.gov (United States)

    Lee, Boon K.; Chi, Chih-Jen; Chyr, Irving; Lee, Dong-Seon; Beyette, Fred R.; Steckl, Andrew J.

    2002-04-01

    High-density GaN:Er optical storage devices were fabricated with focused ion beam (FIB) milling techniques. In-situ Er-doped GaN films (1 - 1.5 micrometers thick) were grown on Si substrates. To `write' a bit, the GaN:Er film was selectively milled with a 30-keV Ga+ FIB. Data retrieval is accomplished by upconversion emission at 535/556 nm upon 1-micrometers IR laser stimulation. Regions where the Er-doped GaN layer is completely removed (and do not emit) are defined as logic `0,' while regions that are not milled (and do emit) are defined as logic `1.' Data patterns with submicron bit size (or 100 Mb/cm2 density) have been fabricated by FIB milling. Data written by this approach has a theoretical storage capacity approaching 10 Gbits/cm2.

  18. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines.

    Science.gov (United States)

    Witzel, O; Klein, A; Meffert, C; Wagner, S; Kaiser, S; Schulz, C; Ebert, V

    2013-08-26

    We report the first application of a vertical-cavity surfaceemitting laser (VCSEL) for calibration- and sampling-free, high-speed, in situ H2O concentration measurements in IC engines using direct TDLAS (tunable diode laser absorption spectroscopy). Measurements were performed in a single-cylinder research engine operated under motored conditions with a time resolution down to 100 μs (i.e., 1.2 crank angle degrees at 2000 rpm). Signal-to-noise ratios (1σ) up to 29 were achieved, corresponding to a H2O precision of 0.046 vol.% H2O or 39 ppm · m. The modulation frequency dependence of the performance was investigated at different engine operating points in order to quantify the advantages of VCSEL against DFB lasers.

  19. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Directory of Open Access Journals (Sweden)

    Feilong Gong

    2017-11-01

    Full Text Available Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D hierarchical structure in-situ coated with carbon.

  20. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method.

    Science.gov (United States)

    Noman, Muhammad Tayyab; Wiener, Jakub; Saskova, Jana; Ashraf, Muhammad Azeem; Vikova, Martina; Jamshaid, Hafsa; Kejzlar, Pavel

    2018-01-01

    Cotton-titania nanocomposites with multifunctional properties were synthesized through ultrasonic acoustic method (UAM). Ultrasonic irradiations were used as a potential tool to develop cotton-titania (CT) nanocomposites at low temperature in the presence of titanium tetrachloride and isopropanol. The synthesized samples were characterized by XRD, SEM, EDX and ICP-OES methods. Functional properties i.e. Ultraviolet protection factor (UPF), self-cleaning, washing durability, antimicrobial and tensile strength of the CT nanocomposites were evaluated by different methods. Central composite design and response surface methodology were employed to evaluate the effects of selected variables on responses. The results confirm the simultaneous formation and incorporation of anatase TiO2 with average crystallite size of 4nm on cotton fabric with excellent photocatalytic properties. The sustained self-cleaning efficiency of CT nanocomposites even after 30 home launderings indicates their excellent washing durability. Significant effects were obtained during statistical analysis for selected variables on the formation and incorporation of TiO2 nanoparticles (NPs) on cotton and photocatalytic properties of the CT nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    Science.gov (United States)

    Opsahl, S. P.; Musgrove, M.; Slattery, R. N.

    2017-03-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells -one rural and one urban-located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8-1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the

  2. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    Science.gov (United States)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  3. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  4. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  5. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  6. High Strength Development at Incompatible Semicrystalline Polymer-Polymer Interfaces

    Science.gov (United States)

    Hong, C. H.; Wool, Richard

    2007-03-01

    For incompatible A/B interfaces, the strength G1c is related to the equilibrium width w (normalized to the tube diameter) of the interface by G1c/G* = (w-1), where G* is the virgin strength [R.P. Wool, C.R, Chimie, 9 (2006) 25]. However, the interface strength is quite weak due to very limited interdiffusion. The mechanism of high strength development of a series of thermoplastic polyurethane elastomers (TPU) bonding with ethylene vinyl alcohol copolymers (EVOH) was investigated. During cool down of the A/B interface in the co-extruded melt, there exits a unique process window---the α-β window-which promotes considerable strength development. We used the differences in melting points and the volume contraction during asymmetric crystallization to generate influxes (σ nano-nails/unit area), where an influx occurs by the fluid being pulled into the crystallizing side. TPU samples with higher degree of crystallization typically exhibited higher peel strengths, due to the formation of both inter- and intra- spherulitic influxes of nano-dimension across the interface. The peel energy now behaves as G1c˜ σL^2, where L is the length of the influx and L>>w. Annealing between the α and βt relaxation temperatures of the EVOH generated additional influxes which provided significant connectivity and peel strength.

  7. In-situ high-P, T X-ray microtomographic imaging during large deformation

    DEFF Research Database (Denmark)

    Wang, Y; Lesher, Charles

    2011-01-01

    We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe-Ni-S) was pres......We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe...... deformation at temperatures up to 800 K. Shear strains were introduced by twisting the samples at high pressure and high temperature. At each imposed shear strain, samples were cooled to ambient temperature and tomographic images collected. The three-dimensional tomographic images were analyzed for textural...

  8. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  9. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.

    Science.gov (United States)

    Sun, Yongming; Lee, Hyun-Wook; Zheng, Guangyuan; Seh, Zhi Wei; Sun, Jie; Li, Yanbin; Cui, Yi

    2016-02-10

    The initial lithium loss during the formation stage is a critical issue that significantly reduces the specific capacity and energy density of current rechargeable lithium-ion batteries (LIBs). An effective strategy to solve this problem is using electrode prelithiation additives that can work as a secondary lithium source and compensate the initial lithium loss. Herein we show that nanocomposites of lithium fluoride and metal (e.g., LiF/Co and LiF/Fe) can be efficient cathode prelithiation materials. The thorough mixing of ultrafine lithium fluoride and metal particles (∼5 nm) allows lithium to be easily extracted from the nanocomposites via an inverse conversion reaction. The LiF/Co nanocomposite exhibits an open circuit voltage (OCV, 1.5 V) with good compatibility with that of existing cathode materials and delivers a high first-cycle "donor" lithium-ion capacity (516 mA h g(-1)). When used as an additive to a LiFePO4 cathode, the LiF/Co nanocomposite provides high lithium compensation efficiency. Importantly, the as-formed LiF/metal nanocomposites possess high stability and good compatibility with the regular solvent, binder, and existing battery processing conditions, in contrast with the anode prelithiation materials that usually suffer from issues of high chemical reactivity and instability. The facile synthesis route, high stability in ambient and battery processing conditions, and high "donor" lithium-ion capacity make the LiF/metal nanocomposites ideal cathode prelithiation materials for LIBs.

  10. Undergraduate Neuropharmacology: A Model for Delivering College-Level Neuroscience to High School Students in situ

    Science.gov (United States)

    Martin-Morris, Linda E.; Buckland, Helen T.; Popa, Simina M.; Cunningham, Susanna L.

    2015-01-01

    Our university course for non-majors (Biology 100) on the neurobiology of drug addiction was recently retooled for delivery at high schools around the state of Washington in order to engage younger students in the study of psychoactive drugs. Many of these students are earning both high school and university credits (dual-enrollment). This paper outlines the course design principles we used to ensure that high school students are earning valid college credits. We present an analysis of learning gains experienced by both university and high school students as measured by before and after course knowledge surveys. We also describe how assessment strategies used for on-campus students have been transferred to our high school partner teachers and how generous interchange and observation ensure that the high school students are engaging deeply in their study of neuroscience. Indeed, many have had a transformative experience that inspires them to contemplate the field of neuroscience as they transition into university study. PMID:25838807

  11. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... amplitude fatigue test results showed shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, the fatigue tests on high-strength steel tubular joints showed slightly longer fatigue lives than those obtained...

  12. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    Science.gov (United States)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  13. In situ high pressure infrared study of the carbon environment in (Mg,Fe)CO3 carbonate

    Science.gov (United States)

    Boulard, E.; Pan, D.; Galli, G.; Mao, W. L.

    2013-12-01

    Carbonates are likely to be the main carbon-bearing phase in the Earth's mantle, and therefore knowledge of their mineral physics down to core mantle boundary conditions is critical for understanding the deep carbon cycle. (Mg,Fe)CO3 has been the focus of many recent high pressure studies which indicate several crystallographic changes. An electronic spin transition in the iron end-member has been reported at approximately 45 GPa. As a result, a change in the volume and the equation of state, and moreover a change in the rate of C-O bond distortion were described by X-ray diffraction (XRD) studies (B. Lavina et al., 2009; 2010). At higher pressures, above 80 GPa, we have observed the transformation of (Mg,Fe)CO3 carbonate into a new high-pressure high-temperature phase by in situ XRD (Boulard et al., 2011). Investigation of the carbon environment had previously been limited to ex situ studies at ambient conditions after releasing the pressure on the sample. Spectroscopy on the carbon C-k edge indicated a potential change in the carbon environment, and a transformation of the carbonate trigonal CO3 groups into CO4 tetrahedra had been proposed (Boulard et al., 2011). However this interpretation is still under debate. To follow the evolution of C-O bonds and clarify the existence of CO4 tetrahedra in high-pressure carbonate phases, we combined in-situ infrared spectroscopy with theoretical calculations. Mid-infrared spectroscopy, performed at high pressure before and after laser heating at U2A, NSLS, BNL show several changes in the (Mg,Fe)CO3 spectrum after laser heating at 103 GPa. We will discuss the interpretation of these new spectroscopic signatures and the possibility of a dramatic change in the carbon environment. References: Boulard, E. et al., (2011). New host for carbon in the deep Earth. PNAS, 108(13), 5184-5187. Lavina, B. et al., (2009). Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical

  14. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    Science.gov (United States)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  15. High temperature in operando and in situ spectroscopy on electrified surfaces and interfaces

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hansen, Karin Vels; Holtappels, Peter

    are particularly attractive since hydrocarbon fuels in principle can be directly converted into electricity and vice versa with high efficiency. However, several side effects such as coking and poisoning with impurities e.g. sulfur on the fuel electrode, but also indication of changes in surface chemistry of oxide...... electrodes without contaminants have demanded a better insight into the electrode surface reactions and chemistries. Spectroscopic techniques can be applied to these cells but are still experimentally challenging due to the high temperature operation conditions. DTU Energy has in the recent years invested...

  16. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Science.gov (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    Science.gov (United States)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  18. System for verification in situ of current transformers in high voltage substations; Sistema para verificacao in situ de transformadores de corrente em substacoes de alta tensao

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Pedro Henrique; Costa, Marcelo M. da; Dahlke, Diogo B.; Ikeda, Minoru [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)], Emails: pedro.henrique@lactec.org.br, arinos@lactec.org.br, diogo@lactec.org.br, minoru@lactec.org.br, Celso.melo@copel.com; Carvalho, Joao Claudio D. de [ELETRONORTE, Belem, PR (Brazil)], E-mail: marcelo.melo@eln.gov.br; Teixeira Junior, Jose Arinos [ELETROSUL, Florianopolis, SC (Brazil)], E-mail: jclaudio@eletrosul.gov.br; Melo, Celso F. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)], E-mail: Celso.melo@copel.com

    2009-07-01

    This work presents an alternative proposal to the execute the calibration of conventional current transformer at the field, using a verification system composed by a optical current transformer as a reference standard, able to installation in extra high voltage bars.

  19. In situ investigation of optical absorption changes in LiNbO{sub 3} during reducing/oxidizing high-temperature treatments

    Energy Technology Data Exchange (ETDEWEB)

    Sugak, D [Institute of Materials, SRC ' Carat' , 202 Stryjska, Lviv, 79031 (Ukraine); Zhydachevskii, Ya [Lviv Polytechnic National University, 12 Bandera, Lviv, 79013 (Ukraine); Sugak, Yu [Lviv Polytechnic National University, 12 Bandera, Lviv, 79013 (Ukraine); Buryy, O [Lviv Polytechnic National University, 12 Bandera, Lviv, 79013 (Ukraine); Ubizskii, S [Lviv Polytechnic National University, 12 Bandera, Lviv, 79013 (Ukraine); Solskii, I [Institute of Materials, SRC ' Carat' , 202 Stryjska, Lviv, 79031 (Ukraine); Schrader, M [Institute of Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, D-38106 (Germany); Becker, K-D [Institute of Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, D-38106 (Germany)

    2007-02-28

    This paper presents experimental results of an in situ investigation of optical absorption of congruent lithium niobate during reducing (95% Ar+5% H{sub 2}) and oxidizing (O{sub 2}) high-temperature treatments in the temperature range from 20 to 800 deg. C. The absorption spectra measured at in situ conditions at high temperatures in reducing/oxidizing atmospheres as well as the kinetics recorded at fixed wavelength during rapid replacement of gas atmospheres have been analysed. The origin of the changes in optical absorption caused by the redox treatments is discussed in terms of hydrogen and oxygen ion diffusion and the point defect structure of the material.

  20. An apparatus for in situ spectroscopy of radiation damage of polymers by bombardment with high-energy heavy ions

    OpenAIRE

    BAAKE, Olaf; SEIDL, Tim; HOSSAIN, Umme Habiba; DELGADO, A. O.; BENDER, Markus; SEVERIN, Daniel; ENSINGER, Wolfgang

    2011-01-01

    A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing...

  1. Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Benezeth, Pascale; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.

    2014-04-17

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell’s infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct radiation from a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system is demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay’s sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve

  2. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Science.gov (United States)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Benezeth, Pascale; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.

    2014-04-01

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve

  3. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  4. High definition in-situ electro-optical characterization for Roll to Roll printed electronics

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    2017-01-01

    Resume: Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed organic electronic devices relies principally on the carrier mobility...... of the device and at any moment during its lifespan. This will help the production and development of high quality printed technologies where the semiconductor material can be accessed by infrared light, such as solar cells, displays and sensors....

  5. In-situ Phase Transformation and Deformation of Iron at High Pressure andTemperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell; Kunz, Martin; Knight, Jason; Nasiatka, James; Voltolini, Marco; Wenk, Hans-Rudolf

    2008-07-01

    With a membrane based mechanism to allow for pressure change of a sample in aradial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, itis now possible to investigate texture changes during deformation and phasetransformations over a wide range of temperature-pressure conditions. The device isused to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations are favored to transform to the hcp structure first and generate a texture of (01-10) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)bcc // (0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal {2-1-12}<2-1-13> and basal (0001)-{2-1-10} slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression.

  6. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  7. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  8. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J., E-mail: chris.thompson@pnnl.gov; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Benezeth, Pascale [Géosciences Environnement Toulouse (GET), CNRS-Université de Toulouse, 31400 Toulouse (France)

    2014-04-15

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO{sub 2} (scCO{sub 2}) to generate an infrared calibration curve and determine the solubility of water in CO{sub 2} at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO{sub 2} at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO{sub 2} hydration, and ATR measurements provided insights into competitive residency of water and CO{sub 2} on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg{sub 2}SiO{sub 4}) in water-bearing scCO{sub 2} at 50 °C and 90 bar. Immediately after water dissolved in the scCO{sub 2}, a thin film of adsorbed water formed on the mineral surface

  9. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V. [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Bommel, Sebastian [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter [Lehrstuhl fuer Funktionelle Materialien, Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany)

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  10. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Science.gov (United States)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  11. Creating High Reliability Teams in Healthcare through In situ Simulation Training

    Directory of Open Access Journals (Sweden)

    Kristi Miller RN

    2011-07-01

    Full Text Available The importance of teamwork on patient safety in healthcare has been well established. However, the theory and research of healthcare teams are seriously lacking in clinical application. While conventional team theory assumes that teams are stable and leadership is constant, a growing body of evidence indicates that most healthcare teams are unstable and lack constant leadership. For healthcare organizations to reduce error and ensure patient safety, the true nature of healthcare teams must be better understood. This study presents a taxonomy of healthcare teams and the determinants of high reliability in healthcare teams based on a series of studies undertaken over a five-year period (2005–2010.

  12. Development of a nuclear magnetic resonance system for in situ analysis of hydrogen storage materials under high pressures and temperatures.

    Science.gov (United States)

    Hashimoto, S; Noda, Y; Maekawa, H; Takamura, H; Fujito, T; Moriya, J; Ikeda, T

    2010-10-01

    A NMR system for in situ analysis of hydrogen storage materials under high pressure and temperature conditions was developed. The system consists of a gas pressure and flow rate controlling unit, a temperature controller, a high temperature NMR probe tunable for both (1)H and other nuclei, and a sample tube holder. Sample temperature can be controlled up to 623 K by heated N(2) gas flow. Sample tube atmosphere can be substituted by either H(2) or Ar and can be pressurized up to 1 MPa under constant flow rate up to 100 ml/min. During the NMR measurement, the pressure can be adjusted easily by just handle a back pressure valve. On the blank NMR measurement, (1)H background noise was confirmed to be very low. (1)H and (11)B NMR spectrum of LiBH(4) were successfully observed at high temperature for the demonstration of the system. The intensity of the (1)H NMR spectra of H(2) gas was also confirmed to be proportional to the applied pressure.

  13. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  14. In situ high-temperature scanning tunneling microscopy study of bilayer graphene growth on 6H-SiC(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yuya [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Petrova, V.; Petrov, I. [Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Kodambaka, S., E-mail: kodambaka@ucla.edu [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2012-06-01

    Using in situ high-temperature (1395 K), ultra-high vacuum, scanning tunneling microscopy (STM), we investigated the growth of bilayer graphene on 6H-SiC(0001). From the STM images, we measured areal coverages of SiC and graphene as a function of annealing time and found that graphene grows at the expense of SiC. Graphene domains were observed to grow, at comparable rates, at (I) graphene-free SiC step edges, (II) graphene-SiC interfaces, and (III) the existing graphene domain edges. Based upon our results, we suggest that the rate-limiting step controlling bilayer graphene growth is the desorption of Si from the substrate. - Highlights: Black-Right-Pointing-Pointer Use of scanning tunneling microscopy at temperatures as high as 1395 K. Black-Right-Pointing-Pointer Direct observation of graphene formation on SiC surfaces at the growth temperature. Black-Right-Pointing-Pointer Identification of atomic-scale pathways for bilayer graphene growth.

  15. Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide.

    Science.gov (United States)

    Hu, Fang Xin; Xie, Jia Le; Bao, Shu Juan; Yu, Ling; Li, Chang Ming

    2015-08-15

    Nitric oxide (NO) is an important signal molecule released by most cancer cells under drug stimulation or/and disease development but it is extremely challenging to in situ while real-time sensitively detect NO due to its large diffusivity, low concentration and fast decay. Herein, shape-controlled reduced graphene oxide nanocomposing with ceria (rGO-CeO2) was synthesized via hydrothermal reaction to construct a highly sensitive real-time sensing platform for NO detection. The crystal shape of CeO2 nanoparticles in rGO-CeO2 composites significantly affects the sensing performance of rGO-CeO2, of which the regular hexagonal nanocrystal CeO2 achieves the highest sensitivity (1676.06 mA cm(-2) M(-1)), a wide dynamic range (18.0 nM to 5.6 µM) and a low detection limit (9.6 nM). This attributes to a synergical effect from high catalytic activity of the specifically shaped CeO2 nanocrystal and good conductivity/high surface area of rGO. This work demonstrates a way by rationally compose individual merit components while well control the nanostructure for a superior synergistic effect to build a smart sensing platform, while offering a great application potential to sensitively real-time detect NO released from living cells for diagnosis or/and studies of complicated biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Construction and in-situ characterisation of high-temperature fixed point cells devoted to industrial applications

    Directory of Open Access Journals (Sweden)

    Sadli Mohamed

    2014-01-01

    Full Text Available Among the activities of the European Metrology Research Programme (EMRP project HiTeMS one work package is devoted to the development and testing of industrial solutions for long-standing temperature measurement problems at the highest temperatures. LNE-Cnam, NPL, TUBITAK-UME have worked on the design of high temperature fixed points (HTFP suitable for in-situ temperature monitoring to be implemented in the facilities of CEA (Commissariat à l’énergie atomique et aux énergies alternatives. Several high temperature fixed point cells were constructed in these three national metrology institutes (NMIs using a rugged version of cells based on the hybrid design of the laboratory HTFP developed and continuously improved at LNE-Cnam during the last years. The fixed points of interest were Co-C, Ru-C and Re-C corresponding to melting temperatures of 1324 °C, 1953 °C and 2474 °C respectively. The cells were characterised at the NMIs after their construction. Having proved robust enough, they were transported to CEA and tested in an induction furnace and cycled from room temperature to temperatures much above the melting temperatures (> +400 °C with extremely high heating and cooling rates (up to 10 000 K/h. All the cells withstood the tests and the melting plateaus could be observed in all cases.

  17. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    Science.gov (United States)

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  18. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Science.gov (United States)

    Saint-Amans, C.; Hébert, P.; Doucet, M.; de Resseguier, T.

    2015-01-01

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  19. Results in coastal waters with high resolution in situ spectral radiometry: The Marine Optical System ROV

    Science.gov (United States)

    Yarbrough, Mark; Feinholz, Michael; Flora, Stephanie; Houlihan, Terrance; Johnson, B. Carol; Kim, Yong S.; Murphy, Marilyn Y.; Ondrusek, Michael; Clark, Dennis

    2007-09-01

    The water-leaving spectral radiance is a basic ocean color remote sensing parameters required for the vicarious calibration. Determination of water-leaving spectral radiance using in-water radiometry requires measurements of the upwelling spectral radiance at several depths. The Marine Optical System (MOS) Remotely Operated Vehicle (ROV) is a portable, fiber-coupled, high-resolution spectroradiometer system with spectral coverage from 340 nm to 960 nm. MOS was developed at the same time as the Marine Optical Buoy (MOBY) spectrometer system and is optically identical except that it is configured as a profiling instrument. Concerns with instrument self-shadowing because of the large exterior dimensions of the MOS underwater housing led to adapting MOS and ROV technology. This system provides for measurement of the near-surface upwelled spectral radiance while minimizing the effects of shadowing. A major advantage of this configuration is that the ROV provides the capability to acquire measurements 5 cm to 10 cm below the water surface and is capable of very accurate depth control (1 cm) allowing for high vertical resolution observations within the very near-surface. We describe the integrated system and its characterization and calibration. Initial measurements and results from observations of coral reefs in Kaneohe Bay, Oahu, extremely turbid waters in the Chesapeake Bay, Maryland, and in Case 1 waters off Southern Oahu, Hawaii are presented.

  20. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Short, Joshua TL; Carson, James P.; Cha, Jeeyeon; Dey, Sudhansu K.; Yang, Pengxiang; Prieto Conaway, Maria C.; Laskin, Julia

    2013-10-15

    Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z values at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.

  1. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    Science.gov (United States)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten; Linnanto, Juha M.; Rätsep, Margus; Pedersen, Marie Østergaard; Lambrev, Petar H.; Dorogi, Márta; Garab, Győző; Thomsen, Karen; Jegerschöld, Caroline; Frigaard, Niels-Ulrik; Lindahl, Martin; Nielsen, Niels Chr.

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix. PMID:27534696

  2. High contrast XMT studies of in-situ electrochemical dissolution of broken dental tools

    Science.gov (United States)

    Mills, David; Mitchell, Alison; Khine, Sean; Davis, Graham

    2016-10-01

    Fracture of nickel-titanium (NiTi) endodontic files is an uncommon but potentially damaging occurrence during root canal preparation. If the broken portion of the file remains inside the tooth canal it can prevent complete preparation of the root canal with consequent negative impact on treatment outcomes. Removal of file fragment from the tooth canal is currently a mechanical process, which due to the limited working space and restricted view can lead to further problems including perforation of the tooth. Electrochemical dissolution is a relatively new method proposed to dissolve a fractured instrument, fully or partially within the canal, to enable its removal. In this article we explore the effects of electrochemical dissolution on the root canal environment using high contrast time delay integration (TDI) X-ray micro-tomography (XMT) designed specifically for dental research.

  3. New insights into hydrochemical processes in lowland river systems gained from in situ, high-resolution monitoring

    Science.gov (United States)

    Wade, Andrew; Palmer-Felgate, Elizabeth; Halliday, Sarah; Skeffington, Richard; Loewenthal, Matthew; Jarvie, Helen; Bowes, Michael; Greenway, Gillian; Haswell, Stephen; Bell, Ian; Joly, Etienne; Fallatah, Ahmed; Neal, Colin; Williams, Richard; Gozzard, Emma; Newman, Jonathan

    2013-04-01

    This work focuses on the insights obtained from in situ, high-resolution hydrochemical monitoring in three lowland UK catchments experiencing different levels of nutrient enrichment. Between November 2009 and February 2012, the upper River Kennet, the River Enborne and The Cut, all located within the Thames basin, southeast England, were instrumented with in situ analytical equipment to make hourly measurements of a range of hydrochemical determinands. The upper River Kennet is a rural catchment with limited effluent inputs above the selected monitoring point. The River Enborne is a rural catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. The Cut is a highly urbanised system significantly affected by STW discharges. On the upper River Kennet and the River Enborne hourly measurements of Total Reactive Phosphorus (TRP) were made using a Systea Micromac C. In addition on the River Enborne, a Hach Lange Nitratax was used to measure nitrate (NO3). On The Cut both Total P and TRP were measured using a Hach Lange Phosphax Sigma. At all stations nutrient monitoring was supplemented with hourly pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature using YSI 6600 Multi-parameter sondes. Instream hydrochemical dynamics were investigated using non-stationary time-series analysis techniques. The results reveal complex nutrient dynamics, with diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by flow conditions, shading and nutrient sources. On the River Enborne a marked diurnal cycle was present within the streamwater NO3 time-series. The cycle was strongest in the spring before riparian shading developed. At times of low flow a two peak diurnal cycle was also evident in the streamwater NO3 time-series. The reduction in diurnal NO3 processing after the development of riparian shading was also accompanied by a marked drop in dissolved oxygen at this time. The

  4. Workability and strength of coarse high calcium fly ash geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    P. Chindaprasirt; T. Chareerat; V. Sirivivatnanon [Khon Kaen University, Khon Kaen (Thailand). Department of Civil Engineering

    2007-03-15

    In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 {+-}5%-135 {+-}5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10-65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67-1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75{sup o}C with the curing duration of not less than two days.

  5. Optimum high temperature strength of two-dimensional nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  6. Optimum high temperature strength of two-dimensional nanocomposites

    Directory of Open Access Journals (Sweden)

    M. A. Monclús

    2013-11-01

    Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  7. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  8. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    OpenAIRE

    Rusi; Majid, S. R.

    2015-01-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentra...

  9. A new specimen for out-of-plane shear strength of advanced high strength steel sheets

    Science.gov (United States)

    Gu, B.; He, J.; Li, S. H.; Zhao, Y. X.; Li, Y. F.; Zeng, D.; Xia, Z. C.; Lin, Z. Q.

    2017-09-01

    Compared with the conventional steels, “shear fracture” is one of the main issues for advanced high strength steels (AHSS). Due to rolling, anisotropy is an intrinsic property for sheet metals. Not only the plastic responses of sheet metals but also the fracture strengths are orientation dependent. In the small radius forming process, for example, the stretch-bending deformation of sheet metals under small radius condition, the normal stress cannot be neglected. Three-dimensional loading condition constructs complex shear stress states of sheet metals especially the out-of-plane shear stress. The out-of-plane performance must be considered in order to better understand the “shear fracture” phenomenon of AHSS. Compared to in-plane shear test, the out-of-plane shear test is more difficult to carry out due to the severe restriction of the dimensions in the thickness direction. In this paper, a new specimen is presented for out-of-plane shear test. Failure of the specimen occurs in shear between two centrally located notches machined halfway through its thickness from opposing sides. Meanwhile, the finite element (FE) model and possible failure modes of this specimen are investigated in detail. At last, brief experimental results between out-of-plane shear fracture strength and the in-plane shear fracture strength are compared for DP980 sheets.

  10. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian [Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tamura, Nobumichi; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); James, Richard D. [Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-05-23

    The alloy Cu{sub 25}Au{sub 30}Zn{sub 45} undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  11. Comparative genomic and proteomic analysis of high grade glioma primary cultures and matched tumor in situ.

    LENUS (Irish Health Repository)

    Howley, R

    2012-10-15

    Developing targeted therapies for high grade gliomas (HGG), the most common primary brain tumor in adults, relies largely on glioma cultures. However, it is unclear if HGG tumorigenic signaling pathways are retained under in-vitro conditions. Using array comparative genomic hybridization and immunohistochemical profiling, we contrasted the epidermal and platelet-derived growth factor receptor (EGFR\\/PDGFR) in-vitro pathway status of twenty-six primary HGG cultures with the pathway status of their original HGG biopsies. Genomic gains or amplifications were lost during culturing while genomic losses were more likely to be retained. Loss of EGFR amplification was further verified immunohistochemically when EGFR over expression was decreased in the majority of cultures. Conversely, PDGFRα and PDGFRβ were more abundantly expressed in primary cultures than in the original tumor (p<0.05). Despite these genomic and proteomic differences, primary HGG cultures retained key aspects of dysregulated tumorigenic signaling. Both in-vivo and in-vitro the presence of EGFR resulted in downstream activation of P70s6K while reduced downstream activation was associated with the presence of PDGFR and the tumor suppressor, PTEN. The preserved pathway dysregulation make this glioma model suitable for further studies of glioma tumorigenesis, however individual culture related differences must be taken into consideration when testing responsiveness to chemotherapeutic agents.

  12. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

    Science.gov (United States)

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-01-01

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger

  13. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    Science.gov (United States)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  14. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures.

    Science.gov (United States)

    Hattrick-Simpers, Jason R; Hurst, Wilbur S; Srinivasan, Sesha S; Maslar, James E

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH(4))(2) and nano-LiBH(4)-LiNH(2)-MgH(2) hydrogen storage systems at elevated temperatures and pressures are reported.

  15. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry.

    Science.gov (United States)

    Young, Matthias J; Bedford, Nicholas M; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-07-01

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  16. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures

    Science.gov (United States)

    Hattrick-Simpers, Jason R.; Hurst, Wilbur S.; Srinivasan, Sesha S.; Maslar, James E.

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH4)2 and nano-LiBH4-LiNH2-MgH2 hydrogen storage systems at elevated temperatures and pressures are reported.

  17. Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism

    Science.gov (United States)

    Hoving, H. J. T.; Robison, B. H.

    2016-10-01

    In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.

  18. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  19. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  20. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  1. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Slattery, Richard N.

    2017-01-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells —one rural and one urban—located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8–1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate

  2. Beamline Electrostatic Levitator (BESL) for in-situ High Energy K-Ray Diffraction Studies of Levitated Solids and Liquids at High Temperature

    Science.gov (United States)

    Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.

    2005-01-01

    Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.

  3. (AJST) ANALYSIS OF THE WELD STRENGTH OF THE HIGH ...

    African Journals Online (AJOL)

    2013-08-02

    Aug 2, 2013 ... ABSTRACT: An analysis was carried out to determine the strength of welded joints in. High Density Polyethylene (HDPE) dam liners. Samples were collected of welded joints and subjected to tensile tests and creep test. It was observed that the welded joints from field welded samples were much weaker ...

  4. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  5. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  6. Fatigue experiments on connections made of very high strength steels

    NARCIS (Netherlands)

    Pijpers, R.; Kolstein, H.; Bijlaard, F.

    2013-01-01

    An effective application of Very High Strength Steels (VHSS) can be expected in truss-like structures, typically made of hollow sections. Improved design of VHSS truss structures could incorporate the application of cast joints, since an appropriate design of cast joints limits the stress

  7. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    Abstract. In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal ...

  8. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    The ascending branch of stress–strain curves depended on the ratio of confinement reinforcement was similar to the modified Kent–Park model and the descending branch similar to the Nagashima model. Keywords. High strength concrete; confined concrete; stress–strain models; ductility toughness. 1. Introduction.

  9. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    Unknown

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J RAKSHIT and P K DAS*. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. MS received 15 March 2002; revised 3 August 2002. Abstract. Four compositions of nitride bonded SiC were fabricated with ...

  10. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  11. Rheology of high melt strength polypropylene for additive manufacturing

    DEFF Research Database (Denmark)

    Jagenteufel, Ralf; Hofstätter, Thomas; Kamleitner, Florian

    2017-01-01

    Rheological measurements of high melt strength polypropylene (HMS-PP) were used in order to generate master curves describing the shear-dependent viscosity in comparison to acrylonitrile butadiene styrene copolymer (ABS). The latter material showed specific disadvantages in terms of thermal stabi...

  12. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements.

  13. Low-Stress Highly-Conductive In-Situ Boron Doped Ge0.7Si0.3 Films by LPCVD

    NARCIS (Netherlands)

    Kazmi, S.N.R.; Kovalgin, Alexeij Y.; Aarnink, Antonius A.I.; Salm, Cora; Schmitz, Jurriaan

    2012-01-01

    This paper reports on low pressure chemical vapor deposited in-situ boron doped polycrystalline germanium-silicon layers with 70% germanium content. The effect of diborane partial pressure on the properties of the GeSi alloy is investigated. The obtained high boron concentration results in

  14. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model

    NARCIS (Netherlands)

    Ragettli, S.; Pellicciotti, F.; Immerzeel, W. W.|info:eu-repo/dai/nl/290472113; Miles, E. S.; Petersen, L.; Heynen, M.; Shea, J. M.; Stumm, D.; Joshi, S.; Shrestha, A.

    2015-01-01

    The hydrology of high-elevation watersheds of the Hindu Kush-Himalaya region (HKH) is poorly known. The correct representation of internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in situ measurements. We use a new set of detailed ground data

  15. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    Science.gov (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  16. Polyacrylamide hydrogel as a template in situ synthesis of CdS nanoparticles with high photocatalytic activity and photostability

    Science.gov (United States)

    Yang, Jiangbing; Gao, Jianping; Wang, Xiaoxue; Mei, Shunkang; Zhao, Ruiru; Hao, Chaoyue; Wu, Yongli; Zhai, Xiangang; Liu, Yu

    2017-10-01

    Porous polyacrylamide hydrogel (PAM) was prepared by polymerization at room temperature. Cadmium sulfide/polyacrylamide hydrogels (CdS/PAM) was synthesized by in situ loading CdS nanoparticles and used for photocatalytic decomposition of water for the first time. The size distribution of the loaded CdS nanoparticles is 3-12 nm. We studied the enhanced photocatalytic activity and photo-corrosion inhibition of CdS/PAM the compared with pure CdS and probed the mechanism of the improvement. In particular, the CdS/PAM prepared in 0.003 M CdCl2 solution exhibited the highest hydrogen production efficiency of 2.929 mmol g-1 h-1, about 79 times that of pure CdS. The results demonstrate that the formation of new N-Cd bond and high transmittance of CdS/PAM dramatically enhance photocatalytic activity. The electron cloud of nitrogen atom can attract holes and repel photogenerated electrons, which lowers the carrier recombination probability. The results also reveal that the excellent hydrophilicity of hydrogel plays an important role in the inhibition of photocorrosion. In addition, CdS/PAM is easily recycled and processed. The present work will pave a good way for the application of smart hydrogels in the field of photocatalytic hydrogen production. [Figure not available: see fulltext.

  17. In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications

    Science.gov (United States)

    Gopalakrishnan, M.; Srikesh, G.; Mohan, A.; Arivazhagan, V.

    2017-05-01

    In this work, a low cost and pollution free in-situ synthesis of phase pure Co3O4 nanoparticles and Co3O4/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g-1 for pure and 395.04 F g-1 for Co3O4/graphite nanocomposite at a current density of 0.5 A g-1. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.

  18. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  19. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica.

    Science.gov (United States)

    Li, Chong; Yang, Xiaofeng; Gao, Shi; Wang, Huaimin; Lin, Carol Sze Ki

    2017-02-01

    In this study, in situ fibrous bed bioreactor (isFBB) was developed at the first time for efficient succinic acid (SA) production by Yarrowia lipolytica. After optimization, SA titer, productivity and yield of 51.9g/L, 1.46g/L/h and 0.42g/g were obtained respectively via isFBB fermentation under conditions of 750cm(2) cotton towel, 120g/L initial glycerol and 3L/min aeration rate. By fed batch strategy, SA titer raised up to 198.2g/L was achieved, which was the highest value ever reported. In operation stability study, SA productivity showed no obvious decrease after 12 repeated batches of 460h fermentation, and cell viability even recovered within two repeated batches after intentional interruption. This study successfully attained a highly efficient and stable isFBB for enhanced SA production by Y. lipolytica. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction.

    Science.gov (United States)

    Forien, Jean-Baptiste; Fleck, Claudia; Krywka, Christina; Zolotoyabko, Emil; Zaslansky, Paul

    2015-10-01

    Tooth dentine and other bone-like materials contain carbonated hydroxyapatite nanoparticles within a network of collagen fibrils. It is widely assumed that the elastic properties of biogenic hydroxyapatites are identical to those of geological apatite. By applying hydrostatic pressure and by in situ measurements of the a- and c- lattice parameters using high energy X-ray diffraction, we characterize the anisotropic deformability of the mineral in the crowns and roots of teeth. The collected data allowed us to calculate the bulk modulus and to derive precise estimates of Young׳s moduli and Poisson׳s ratios of the biogenic mineral particles. The results show that the dentine apatite particles are about 20% less stiff than geological and synthetic apatites and that the mineral has an average bulk modulus K=82.7 GPa. A 5% anisotropy is observed in the derived values of Young׳s moduli, with E11≈91 GPa and E33≈96 GPa, indicating that the nanoparticles are only slightly stiffer along their long axis. Poisson׳s ratio spans ν≈0.30-0.35, as expected. Our findings suggest that the carbonated nanoparticles of biogenic apatite are significantly softer than previously thought and that their elastic properties can be considered to be nearly isotropic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis.

    Science.gov (United States)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-01-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, 'theoretical' patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson's ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms.

  2. In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Sadeghi-Maleki, Mohammad-Rasool

    2016-01-01

    Photocatalysis based on semiconductor quantum dots, which utilize the solar energy can be used for elimination of pollutants from aqueous media and applied for water purification. In this paper, high stable CdS quantum dots (QDs) with good optical properties were successfully synthesized in a facile in-situ method, using Na2S2O3 as precursor and thioglycolic acid (TGA) as a catalyst, as well as capping agent in aqueous media. The synthesis process was optimized with a 2IV7-3 fractional factorial design method. Then, we studied the degradation of some industrial dyes including: alizarin, acid violet, mordant red and thymol blue as a tool to check the photocatalytic activity of synthesized CdS QDs. Results specified that the synthesized CdS QDs are capable for degradation of organic dyes under visible light irradiation with good recycling stability during photocatalytic experiments. Structural and spectroscopic properties of the synthesized CdS QDs were studied by TEM, XRD and absorption and fluorescence spectroscopy techniques. The synthesized TGA-capped CdS QDs have sizes in the range of 2.65-2.93 nm with cubic crystalline structures.

  3. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J. K. R.; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tamalonis, A.; Sendelbach, S. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Benmore, C. J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hebden, A.; Williamson, M. A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  4. Correlation between Ki-67 and telomerase expression with in situ hybridization for high-risk human papillomavirus

    Directory of Open Access Journals (Sweden)

    Vega-Peсa Arianna

    2013-01-01

    Full Text Available The objective of this research was to evaluate the relationship of Ki-67 and telomerase expression with the progression of cervical intraepithelial neoplasia (CIN and the physical state of the DNA of high-risk human papillomavirus (HR-HPV types. A comparative study was done on 80 biopsies of human (female cervical tissue, distributed in the following manner: 20 CIN-negative biopsies and 60 CIN-positive biopsies of varying grades. The detection of the proteins Ki-67 and telomerase was performed through immunohistochemistry; the detection of HR-HPV, by in situ hybridization. The expression of Ki-67 and telomerase increased with the progression of the CIN lesion (p <0.001. The HR-HPV genome was detected in 75% of the cases with CIN, as well as in 20% of the tissues without histological lesions (p=0.001. A significant association was found between the increase in telomerase and Ki-67 expression and the integration of the DNA of HR-HPV. The overexpression of Ki-67, telomerase and the presence the integration of the DNA of HR-HPV are evidenced by more aggressive lesions that may progress to invasive carcinoma.

  5. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials.

    Science.gov (United States)

    Weber, J K R; Tamalonis, A; Benmore, C J; Alderman, O L G; Sendelbach, S; Hebden, A; Williamson, M A

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  6. High-pressure characterization of nitrogen-rich bis-triaminoguanidinium azotetrazolate (TAGzT) by in situ Raman spectroscopy.

    Science.gov (United States)

    Behler, K D; Ciezak-Jenkins, J A; Sausa, R C

    2013-02-28

    Compounds rich in nitrogen are attracting significant interest not only because of their high energy content but also because they are potentially more environmentally benign in comparison to conventional energetic materials. Given this interest, it is desirable to understand their molecular composition and structural variations with pressure to derive their stability and determine the conditions in which they transform physically or chemically. In this study, we examine the room-temperature isothermal compression behavior of bis-triaminoguanidinium azotetrazolate (TAGzT) by in situ Raman spectroscopy to pressures near 17 GPa. We assign the characteristic vibrational bands and report the effects of pressure on band intensity, line width, and frequency shift. Two prominent peaks near 1370 and 1470 cm(-1) arise from the C-N and N═N symmetric stretches, respectively. Overall, the intensity of these bands and others diminishes with pressure, and their spectral linewidths increase monotonically upon compression. The vibrational frequency modes blue shift linearly upon compression, indicating a generalized stiffening of the bonds as the pressure increases. These results, together with micro Raman spectroscopic analyses of the recovered, decompressed samples, suggest that TAGzT does not undergo any phase transitions within this pressure range. We estimate and report the C-N and N═N intermolecular bond lengths under compression.

  7. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  8. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  9. ACCELERATED CARBONATION OF STEEL SLAG COMPACTS: DEVELOPMENT OF HIGH STRENGTH CONSTRUCTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur

    2015-12-01

    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  10. Microcracking and engineering properties of high-strength concrete

    Science.gov (United States)

    Carrasquillo, R. L.

    1980-03-01

    The differences in mechanical properties between high strength and normal strength concretes are established and those differences are explained in terms of differences in observed internal microcracking in concrete at different stages of loading. Concretes made using gravel and crushed limestone coarse aggregates at each of three different strength levels ranging from 4,000 psi to 11,000 psi were studied. The results of the microcracking study and the study of the mechanical properties are presented. A criterion for definition of failure in uniaxial compression for the concretes tested is presented. Failure is considered to occur at the discontinuity point defined as that point when a self propagating microcracking mechanism is developed eventually causing disruptive failure with time. The predicted stress and strain ratios at discontinuity based on the microcracking study are compared to those at which sudden changes occur in the Poisson's ratio and volume change curves.

  11. Sequencing of endurance and high-velocity strength training.

    Science.gov (United States)

    Bell, G J; Petersen, S R; Quinney, H A; Wenger, H A

    1988-12-01

    To compare two sequences of endurance (E) and high-velocity resistance (HVR) training, sixteen male oarsmen were separated into Group ES which trained endurance prior to strength and Group SE which trained strength prior to endurance. The endurance program consisted of up to 60 min a session, five days a week for five weeks. HVR exercise was conducted on 12 stations of variable resistance hydraulic equipment, four sessions per week for five weeks. Endurance training significantly improved VO2max and submaximal heart rate and blood lactate responses in both groups regardless of the sequence followed. HVR training improved VO2max in group SE only and had no effect on submaximal response to exercise. Peak torque increases for knee extension and flexion with HVR training were greater in group SE than group ES. These results show that organizing strength and endurance training into sequential programs can influence the physiological adaptation to training.

  12. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks

    Science.gov (United States)

    Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa

    2015-03-01

    Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity.

  13. Deformation behavior of a high strength multiphase steel at macro- and micro-scales

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Calderón, I. de, E-mail: irenedediego.calderon@imdea.org [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain); Santofimia, M.J. [Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Molina-Aldareguia, J.M.; Monclús, M.A.; Sabirov, I. [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain)

    2014-08-12

    Advanced high strength steels via quenching and partitioning (Q and P) process are a mainstream trend in modern steel research. This work contributes to a better understanding of their local mechanical properties and local deformation behavior at the micro-scale in relation to their local microstructure. A low alloyed steel was subjected to Q and P heat treatments leading to the formation of complex multiphase microstructures. Nanoindentation tests were performed to measure nanohardness of individual phases and to generate 2D maps showing nanohardness distribution on the surface of the material. To study local in-plane plastic strain distribution during deformation, in situ tensile tests were carried out using the digital image correlation technique. Significant partitioning of plastic strain between phase microconstituents during tensile deformation is shown. The effect of the microstructure on the mechanical behavior of the Q and P processed steel is analyzed. The local plastic deformation behavior of individual phases is discussed with respect to their strength and their spatial orientation.

  14. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  15. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    Science.gov (United States)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the

  16. In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6

    Science.gov (United States)

    Shen, Weijun; Yu, Linping; Li, Zhi; He, Yuehui; Zhang, Qiankun; Zhang, Huibin; Jiang, Yao; Lin, Nan

    2017-11-01

    A novel technology which was characterized by the vacuum solid state sintering was developed for powder metallurgy high speed steels production. During sintering, both the WC and Mo2C reacted with Fe and transformed to W and Mo rich M6C carbides which were the common hard phases in high speed steels. Also, a high number of W, Mo and Fe were dissolved in VC, forming the MC carbides. The densification of the material mainly relied on the solubility effect during the M6C and MC carbides formation. By alloying with a 0.1 wt% of LaB6 to the steel, the bending strength and the fracture toughness were improved from 3290 MPa and 25.6 MPam1/2 to 4018 MPa and 29.4 MPam1/2, respectively. The TEM analysis demonstrated three types of reaction products by the LaB6 addition: the amorphous phase, the core-shell structure and the La2O3 phase. The impurity elements such as the Mg, Al, Si, S, Ca, and O were absorbed following the LaB6 addition. Moreover, the deoxidization effect caused by the LaB6 addition promoted the sintering at a high-temperature period which contributed to the bending strength and fracture toughness improvement.

  17. Crack propagation modelling for high strength steel welded structural details

    Science.gov (United States)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  18. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  19. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    Science.gov (United States)

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  20. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Science.gov (United States)

    Elliot, Alan J.; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z.

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ˜1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  1. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongjin; Choi, Kyung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University 2, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  2. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  3. The Pathologic Finding of Combined Lobular Carcinoma In Situ and Invasive Lobular Cancer May Indicate more than Just a High-Risk Marker Role of Lobular Carcinoma In Situ.

    Science.gov (United States)

    Jean-Louis, Christopher J; Masdon, Joshua; Smith, Betsy; Battles, Oscar; Dale, Paul

    2017-05-01

    For years, lobular carcinoma In Situ (LCIS) has been considered a high-risk marker for developing breast cancer. It is well known that ductal carcinoma In Situ is a precursor for the development of invasive ductal carcinoma, and ductal carcinoma In Situ is reported to be present in invasive ductal carcinoma in at least 40 per cent of cases. A similar relationship between LCIS and invasive lobular carcinoma (ILC) remains in question. This study evaluates the incidence of synchronous LCIS and ILC at our institution. This is a retrospective review of our tumor registry database of women diagnosed with LCIS or ILC from 2000 to 2014. Pathology reports were evaluated to determine the incidence of pure ILC and mixed ILC/LCIS. Those with both LCIS/ILC (mixed group) and those with pure ILC (pure group) were compared for age, surgical intervention, lymph node involvement, tumor size, nuclear grade, and margins between these two groups. A total of 182 women were identified with LCIS, ILC, or mixed LCIS and ILC. There were 76 subjects with pure ILC and 90 with mixed LCIS and ILC. The median and age range for each group were 63.6 (range: 40-97) for the mixed and 64.1 (range: 40-86) for pure groups. Tumor size was evaluated for each group and the median tumor size was 2.5 cm (range: 0.1-7.0cm) for the mixed group and 3.0 cm (range: 0.5-12.5 cm) for the pure group. Nodal involvement was present in 35.23 per cent of the mixed group and 46.3 per cent in the pure group. Surgical treatment for each group was similar, with mastectomy being the preferred surgical option over breast conservation therapy in the mixed and pure groups, 67.07 and 64.71 per cent, respectively. Presently, LCIS is considered a marker, or risk factor, for development of future breast cancer. This retrospective study does identify a strong relationship, 54 per cent, between LCIS and ILC at diagnosis. This high percentage of concurrent LCIS and ILC in surgical/pathological specimens supports the notion that LCIS

  4. Durable high strength cement concrete topping for asphalt roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  5. In-Situ Study of Gaseous Reduction of Magnetite Doped with Alumina Using High-Temperature XRD Analysis

    Science.gov (United States)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg

    2015-12-01

    The reduction of magnetite of technical grade and magnetite doped with 3 mass pct Al2O3 was studied in situ using high-temperature XRD (HT-XRD) analysis. Magnetite was reduced by CO-CO2 gas (80 vol pct CO) at 1023 K (750 °C). Reduction of magnetite doped with alumina occurred from the Fe3O4-FeAl2O4 solid solution which has a miscibility gap with critical temperature of 1133 K (860 °C). The degree of reduction of magnetite was derived using Rietveld refinement of the HT-XRD spectra; the compositions of the Fe3O4-FeAl2O4 solid solution and the concentrations of carbon in γ-iron were determined from the lattice constants of the solutions. The reduction of magnetite progressed topochemically with the formation of a dense iron shell. The reduction of alumina-containing magnetite started along certain lattice planes with the formation of a network-like structure. Reduction of alumina-containing magnetite was faster than that of un-doped magnetite; this difference was attributed to the formation of the network-like structure. Hercynite content in the Fe3O4-FeAl2O4 solid solution in the process of reduction of magnetite doped with 3 mass pct Al2O3 increased from 5.11 to 20 mass pct, which is close to the miscibility gap at 1023 K (750 °C). The concentration of carbon in γ-Fe (0.76 mass pct) formed in the reduced sample of magnetite doped with 3 mass pct Al2O3 was close to the equilibrium value with 80 vol pct CO to 20 vol pct CO2 gas used in the HT-XRD experiments.

  6. In situ development of high-elevation, low-relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan

    Science.gov (United States)

    Adams, B. A.; Whipple, K. X.; Hodges, K. V.; Heimsath, A. M.

    2016-02-01

    Prior studies have proposed tectonic and climatic mechanisms to explain surface uplift throughout the Bhutan Himalaya. While the resulting enigmatic, low-relief landscapes, elevated above deeply incised canyons, are a popular setting to test ideas of interacting tectonic and climatic forces, when and why these landscapes formed is still debated. We test the idea that these landscapes were created by a spatially variable and recent increase in rock uplift rate associated with the formation of structural duplexes at depth. We utilize a new suite of erosion rates derived from detrital cosmogenic nuclide techniques, geomorphic observations, and a landscape evolution model to demonstrate the viability of this hypothesis. Low-relief landscapes in Bhutan are eroding at a rate of ~70 m/Ma, while basins from surrounding steep landscapes yield erosion rates of ~950 m/Ma, demonstrating that this portion of the range is in a transient period of increasing relief. Applying insights from our erosion rates, we explore the influence of an active duplex on overlying topography using a landscape evolution model by imposing a high rock uplift rate in the middle of a mountain range. Our simulations show that low-relief landscapes with thick alluvial fills form upstream of convex knickpoints as rivers adjust to higher uplift rates downstream, a pattern consistent with geologic, geomorphic, and thermochronometric data from Bhutan. With our new erosion rates, reconstructed paleo-river profiles, and landscape evolution simulations, we show that the low-relief landscapes were formed in situ as they were uplifted ~800 m in the past ~0.8-1 Ma.

  7. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  8. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team.

    Science.gov (United States)

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Boehler, Reinhard; Shen, Guoyin

    2015-07-01

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  9. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  10. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin; Balo, Aidin R.; Kissick, David J.; Ogata, Craig M.; Kuo, Anling; Ernst, Oliver P.

    2016-10-12

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.

  11. In-situ annotation of carbohydrate diversity, abundance, and degradability in highly complex mixtures using NMR spectroscopy

    DEFF Research Database (Denmark)

    Meier, Sebastian

    2014-01-01

    , abundance, and degradability of such short structural motifs in plant-derived carbohydrates. Assignments of carbohydrate signals for 1H–13C NMR spectra of beer, wine, and fruit juice yield up to >130 assignments in situ, i.e. in individual samples without separation or derivatization. More than 500...

  12. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica

    DEFF Research Database (Denmark)

    Wu, Qiong; Andersson, Richard L.; Holgate, Tim

    2014-01-01

    This article presents a novel type of flame-retardant biohybrid foam with good insulation properties based on wheat gluten and silica, the latter polymerized in situ from hydrolysed tetraethyl orthosilicate (TEOS). This led to the formation of intimately mixed wheat gluten and silica phases, where...

  13. Lightweight High Strength Concrete with Expanded Polystyrene Beads

    OpenAIRE

    Subhan, Tengku Fitriani L

    2006-01-01

    This paper is a literature study about lightweight high strength concrete by incorporating expanded polystyrene beads. Basically polystyrene is disposal material from packaging industry. However, after being processed in a special manner, polystyrene can be expanded and used as lightweight concrete making material. Therefore, the use of expanded polystyrene beads in concrete is not only beneficial for engineering studies but also provide solution for the environmental problem

  14. Analysis of phase transformation in high strength low alloyed steels

    OpenAIRE

    A. Di Schino

    2017-01-01

    The effect of low-alloy additions on phase transformation of high strength low alloyed steels is reported. Various as-quenched materials with microstructures consisting of low carbon (granular) bainitic, mixed bainitic/martensitic and fully martensitic microstructures were reproduced in laboratory. Results show that for a given cooling rate, an increase of austenite grain size (AGS) and of Mo and Cr contents decreases the transformation temperatures and promotes martensite formation.

  15. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials...one common problem has involved an increase in the fracture rate of the veneered zirconium oxide compared to metal-ceramic crowns potentially caused

  16. Long-term efficacy of excimer laser in situ keratomileusis in the management of children with high anisometropic amblyopia.

    Science.gov (United States)

    Lin, Xiao-Ming; Yan, Xiao-He; Wang, Zheng; Yang, Bin; Chen, Qi-Wen; Su, Jin-Ai; Ye, Xue-Lian

    2009-04-05

    Children with anisometropic amblyopia are often noncompliant with traditional treatment including spectacules and contact lenses. This study was to evaluate the long-term efficacy of excimer laser in situ keratomileusis (LASIK) for children with high anisometropic amblyopia. A retrospective analysis of 24 children with high unilateral anisometropic amblyopia, who underwent LASIK during the period between August 2000 and September 2005 in our hospital, was conducted. The mean age of these children was (7.4 +/- 1.9) years (range 5 - 14 years) and the mean follow-up period was (33.3 +/- 14.2) months (range 18.5 - 74.2 months). After LASIK, visual acuity, refraction and far or near stereoacuity were analyzed. Near stereoacuity was measured by the random-dot butterfly stereogram and the pre-school random-dot stereogram, while far stereoacuity was measured by the synoptophore with Yan's random-dot stereogram. Mean preoperative uncorrected visual acuity was 0.06 +/- 0.05, while mean postoperative uncorrected visual acuity was elevated to 0.43 +/- 0.33. Mean preoperative best-corrected visual acuity was 0.26 +/- 0.22, while mean postoperative best-corrected visual acuity was elevated to 0.67 +/- 0.40. For patients with myopic anisometropia, preoperative mean spherical equivalent refraction was (-8.01 +/- 2.70) D while postoperative value significantly reduced to (-1.32 +/- 2.47) D. For patients with hyperopic anisometropia, preoperative mean spherical equivalent refraction was (+7.35 +/- 1.55) D while postoperative value significantly reduced to (+3.30 +/- 0.86) D. These results demonstrated that there was statistical difference in these parameters between preoperative and postoperative tests. At the last follow-up, 20 patients had near stereoacuity, and the mean near stereoacuities measured by the random-dot butterfly stereogram and the preschool random-dot stereogram were (149.00 +/- 152.93)'' and (201.05 +/- 235.94)'', respectively. In contrast, 11 patients had far

  17. New heat treatment process for advanced high-strength steels

    Science.gov (United States)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  18. Ti-Al Composite Wires with High Specific Strength

    Directory of Open Access Journals (Sweden)

    Ludwig Schultz

    2011-11-01

    Full Text Available An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in 〈111〉 fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.

  19. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  20. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  1. Mining nitrate concentration patterns from high-frequency in situ monitoring: a step towards more detailed understanding of hydrological processes?

    Science.gov (United States)

    Aubert, Alice; Houska, Tobias; Plesca, Ina; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    Recently developed sensing technics allow collecting a considerable amount of high-frequency data; not only for hydrologic parameters (water levels, rainfall, etc.) but also for water chemistry. With devices such as in situ spectrophotometer, nitrate concentration can be monitored down to sub-hourly intervals. Thus, opening the way to new questions: what about daily or sub-daily instream nitrate concentration variations? What do these newly observed variations tell us about hydrological processes? In the Vollnkirchener Bach catchment, a headwater creek flows through a human impacted landscape dominated by agricultural and forest use and including a small settlement. Since March 2013, a Pro-PS device has been installed at the gauging station (monitored since 2011). Nitrate concentration is measured every 15 minutes, discharge and water temperature every 5 minutes. Data mining, more precisely motif discovery, is performed on these time series to identify high-resolution patterns. Spectral analysis highlighted that, in data measured at sub-hourly sampling frequency, variations up to a few hours are more likely to be dominated by measurement noise rather than real-world fluctuations. Therefore, we focus on daily motifs and flood patterns (given the fact that hydrological conditions are changing during flood events, we assume that nitrate concentration changes are depicting real processes). Various flood motifs were extracted: (1) nitrate can either be diluted or (2) concentrated, or (3) both (dilution followed by a bumpy recession curve indicating nitrate enrichment at the end of the flood). In addition to these classical nutrient-discharge behaviors, a variety of other interesting motifs were highlighted. (4) A daily nitrate cycle is clearly observed, but only during a specific year period. (5) Lag to peak time between parameters differentiate flood patterns: sometimes nitrate peaks first, sometimes discharge peaks first. (6) Furthermore, we are able to pinpoint the

  2. A comparison between ultra-high-strength and conventional high-strength fastener steels : Mechanical properties at elevated temperature and microstructural mechanisms

    NARCIS (Netherlands)

    Ohlund, C.E.I.C.; Lukovic, M.; Weidow, J; Thuvander, M; Offerman, S.E.

    2016-01-01

    A comparison is made between the mechanical properties of the ultra-high-strength steel KNDS4 of fastener grade 14.9 and of conventional, high-strength steels 34Cr4 of fastener grade 12.9 and 33B2 of grade 10.9. The results show that the ratio of the yield strength at elevated temperatures to the

  3. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  4. A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice

    Science.gov (United States)

    Sun, Hongbao; Liu, Hai; Wu, Yiyong

    2017-09-01

    We report a green and reusable surface-enhanced Raman scattering (SERS) film based on PMMA/Ag NPs/graphene. By using this Raman substrate, the SERS signals of R6G were significantly enhanced reaching a minimum detectable concentration of 5 × 10-8 M, due to having lots of hot spots adhered backside to the exposed graphene. The SERS film can be used for in-situ monitoring of trace thiram in apple juice with a detection limit of 1 × 10-6 M (0.24 ppm), which is below the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). Furthermore, reusability studies show that the SERS film can be used repeatedly. In addition, the graphene-enhanced SERS technique shows great potential applications for the in-situ detection and identification of pesticide residues in environmental water, fruits and vegetables.

  5. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites.

    Science.gov (United States)

    Yang, Liping; Kong, Junhua; Yee, Wu Aik; Liu, Wanshuang; Phua, Si Lei; Toh, Cher Ling; Huang, Shu; Lu, Xuehong

    2012-08-21

    Polydopamine-coated graphene oxide (DGO) films exhibit electrical conductivities of 11,000 S m(-1) and 30,000 S m(-1) upon vacuum annealing at 130 °C and 180 °C, respectively. Conductive poly(vinyl alcohol)/graphene and epoxy/graphene nanocomposites show low percolation thresholds due to the excellent dispersibility of the DGO sheets and their effective in situ reduction.

  6. In-situ Optical Characterization of Noble Metal Thin Film Deposition and Development of a High-performance Plasmonic Sensor

    OpenAIRE

    Mandia, David J.

    2017-01-01

    The present work addressed in this thesis introduces, for the first time, the use of tilted fiber Bragg grating (TFBG) sensors for accurate, real-time, and in-situ characterization of CVD and ALD processes for noble metals, but with a particular focus on gold due to its desirable optical and plasmonic properties. Through the use of orthogonally-polarized transverse electric (TE) and transverse magnetic (TM) resonance modes imposed by a boundary condition at the cladding-metal interface of the...

  7. MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland

    OpenAIRE

    Wang, Xianwei; Zender, Charles S

    2010-01-01

    In situ measurements of snow albedo at five stations along a north–south transect in the dry-snow facies of the interior of Greenland follow the theoretically expected dependence of snow albedo with solar zenith angle (SZA). Greenland Climate Network (GC-Net) measurements from 1997 through 2007 exhibit the trend of modest surface brightening with increasing SZA on both diurnal and seasonal timescales. SZA explains up to 50% of seasonal albedo variability. The two other environmental factors c...

  8. The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser In Situ Keratomileusis

    OpenAIRE

    Wenjing Wu; Yan Wang

    2015-01-01

    Background. To investigate the correlation between corneal biomechanics and the surgically induced corneal high-order aberrations (HOAs) after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). Methods. A total of 150 right myopic eyes that underwent SMILE or FS-LASIK surgery were included in this retrospective study, 75 eyes in each group. The corneal hysteresis (CH) and the corneal resistance factor (CRF) with the corneal HOAs of the anterio...

  9. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    Science.gov (United States)

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-02

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.

  10. High-early-strength high-performance concrete for rapid pavement repair.

    Science.gov (United States)

    2016-01-01

    In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...

  11. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    Science.gov (United States)

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  12. High Frequency Transducer Dedicated to the High-resolution in Situ Measurement of the Distance between Two Nuclear Fuel Plates

    Science.gov (United States)

    Zaz, G.; Dekkious, A.; Meignen, P. A.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors for research purposes have fuel elements composed of plates and not pencils. The measure of inter-plate distance of a fuel element is tricky since a resolution of a micron is searched to measure plate swellings of about ten microns while the dimension between the plates is close to the millimeter. This measure should provide information about the fuel and particularly its history of irradiation. That is the reason why a solution has been considered: a robust device based upon high frequency ultrasonic probes adapted to the high radiation environment and thinned to 1 mm to be inserted into a 1.8 mm width water channel between two fuel plates. To achieve the expected resolution, the system is excited with frequencies up to 150 MHz. Thanks to a specific signal processing, this device allows the distance measurement through an ultrasonic wave's time of flight. The feasibility of such challenging distance measurement has already been proved with success on a full size irradiated fuel element of the RHF.

  13. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  14. A new high strength alloy for hydrogen fueled propulsion systems

    Science.gov (United States)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  15. NASA vane alloy boasts high-temperature strength

    Science.gov (United States)

    Waters, W. J.; Freche, J. C.

    1975-01-01

    The higher inlet-gas temperatures in new aircraft turbine engines make it necessary to use improved superalloys in engine design. Such superalloys are provided by WAZ alloys. NASA has explored the Ni-W-Al system in an attempt to find higher-strength nickel-based alloys for use as stator vane materials. Critical performance goals have been met with the new alloy WAZ-16. With suitable protective coatings, WAZ-16 appears to have considerable potential for high-temperature stator vane applications.

  16. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  17. Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application.

    Science.gov (United States)

    Xue, Jingjing; Chen, Xinyi; Liu, Shanglin; Zheng, Fenfen; He, Li; Li, Lingling; Zhu, Jun-Jie

    2015-09-02

    The polyaniline (PAN)-coated CdSeTe quantum dots (QDs) were prepared by in situ polymerization of aniline on the surface of CdSeTe QDs. The PAN-coated CdSeTe QDs has a tremendously enhanced fluorescence (∼40 times) and improved biocompatibility compared to the uncoated CdSeTe QDs. The fluorescence intensity of the PAN-coated CdSeTe QDs can be adjusted by controlling the construction parameters of the PAN shell. The kinetics of the in situ controllable polymerization process was studied by varying the temperature, and the apparent activation energy of polymerization was estimated. With the same method, a series of the PAN derivatives were also tested to coat the CdSeTe QDs in this study. All the QDs showed a significant enhancement of the fluorescence intensity and better biocompatibility. The significantly enhanced fluorescence can provide highly amplified signal for luminescence-based cell imaging.

  18. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.

    2014-05-27

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  19. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  20. In situ analysis of proteins at high temperatures mediated by capillary-flow hydrothermal UV-vis spectrophotometer with a water-soluble chromogenic reagent.

    Science.gov (United States)

    Kawamura, Kunio; Nagayoshi, Hiroki; Yao, Toshio

    2010-05-14

    In situ monitoring of quantities, interactions, and conformations of proteins is essential for the study of biochemistry under hydrothermal environments and the analysis of hyperthermophilic organisms in natural hydrothermal systems on Earth. We have investigated the potential of a capillary-flow hydrothermal UV-vis spectrophotometer (CHUS) for performing in situ measurements of proteins and determining their behavior at extremely high temperatures, in combination with a chromogenic reagents probe, which interacts with the proteins. The spectral shift obtained using a combination of water-soluble porphyrin (TPPS) and bovine serum albumin (BSA) was the best among the spectral shifts obtained using different combinations of chromogenic reagents and proteins. The association behavior of TPPS with BSA was investigated in detail using CHUS at temperatures up to 175 degrees C and the association constant (K(ass)) of TPPS with BSA was successfully determined at temperatures up to 100 degrees C. The lnK(ass) values were inversely proportional to the T(-1) values in the temperature range 50-100 degrees C. These analyses showed for the first time that the decrease of association of TPPS with BSA is due to the conformational change, fragmentation, and/or denaturing of BSA rather than the decrease of the hydrophobic association between TPPS and BSA. This study conclusively demonstrates the usability of the CHUS system with a chromogenic reagent as an in situ detection and measurement system for thermostable proteins at extremely high temperatures. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Todd J.; Shade, Paul A.; Bernier, Joel V.; Li, Shiu Fai; Schuren, Jay C.; Lind, Jonathan; Lienert, Ulrich; Kenesei, Peter; Suter, Robert M.; Blank, Basil; Almer, Jonathan

    2016-03-18

    High-energy diffraction microscopy (HEDM) constitutes a suite of combined X-ray characterization methods, which hold the unique advantage of illuminating the microstructure and micromechanical state of a material during concurrent in situ mechanical deformation. The data generated from HEDM experiments provides a heretofore unrealized opportunity to validate meso-scale modeling techniques, such as crystal plasticity finite element modeling (CPFEM), by explicitly testing the accuracy of these models at the length scales where the models predict their response. Combining HEDM methods with in situ loading under known and controlled boundary conditions represents a significant challenge, inspiring the recent development of a new high-precision rotation and axial motion system for simultaneously rotating and axially loading a sample. In this paper, we describe the initial HEDM dataset collected using this hardware on an alpha-titanium alloy (Ti-7Al) under in situ tensile deformation at the Advanced Photon Source, Argonne National Laboratory. We present both near-field HEDM data that maps out the grain morphology and intragranular crystallographic orientations and far-field HEDM data that provides the grain centroid, grain average crystallographic orientation, and grain average elastic strain tensor for each grain. Finally, we provide a finite element mesh that can be utilized to simulate deformation in the volume of this Ti-7Al specimen. The dataset supporting this article is available in the National Institute of Standards and Technology (NIST) repository (http://hdl.handle.net/11256/599).

  2. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  3. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li+/Li, an ionic conductivity of 6.79 × 10-4 S cm-1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn2+ ions at 25 and 55 °C. Thus, the LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  4. In situ determination of manganese(II) speciation in Deinococcus radiodurans by high magnetic field EPR: detection of high levels of Mn(II) bound to proteins.

    Science.gov (United States)

    Tabares, Leandro C; Un, Sun

    2013-02-15

    High magnetic field high frequency electron paramagnetic resonance techniques were used to measure in situ Mn(II) speciation in Deinococcus radiodurans, a radiation-resistant bacteria capable of accumulating high concentrations of Mn(II). It was possible to identify and quantify the evolution of Mn(II) species in intact cells at various stages of growth. Aside from water, 95-GHz high field electron nuclear double resonance showed that the Mn(II) ions are bound to histidines and phosphate groups, mostly from fructose-1,6-bisphosphate but also inorganic phosphates and nucleotides. During stationary growth phase, 285-GHz continuous wave EPR measurements showed that histidine is the most common ligand to Mn(II) and that significant amounts of cellular Mn(II) in D. radiodurans are bound to peptides and proteins. As much as 40% of the total Mn(II) was in manganese superoxide dismutase, and it is this protein and not smaller manganese complexes, as has been suggested recently, that is probably the primary defense against superoxide.

  5. The treatment of high strength protein wastewater by UASB system

    Directory of Open Access Journals (Sweden)

    Ploypatarapinyo, P.

    2006-01-01

    Full Text Available The objective of this investigation was to treat the high strength protein wastewater by UASB system. The wastewater of this experiment had COD 2,938 mg/l, SS 478 mg/l and total of nitrogen 435 mg/l. The granule was developed from bacteria of activated sludge system as suspended sludge by fermenting anaerobically at 40ºC for 1 month and acclimatizing with the high strength protein wastewater for another month. The MLSS and MLVSS of the started bacterial sludge were 7,105 mg/l and 5,360 mg/l respectively.The maximum organic volume loading of this system was 6 kg COD/m3.d at the hydraulic retention time 12 hrs. The efficiency of COD and BOD removal was 88.38 and 93.07% respectively. The biogas production was 0.52 l/g CODr.d. The content of methane gas was 76.20%. The bacterial suspended sludge was developed to granular sludge with the granule's size of 1.0 mm as 86.02%, 2.05%, 11.84% and 0.09% respectively.

  6. Evolution of dislocation structures following a change in loading conditions studied by in situ high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Wejdemann, Christian

    corresponding to the contributions from the subgrains and the walls. The analysis showed that the morphology of the dislocation structures is almost unchanged during the micro-plastic range of the in situ deformation, and during the macroplastic range the evolution occurs in a gradual manner without any sudden......-granular stresses are substantially redistributed during the micro-plastic range. In a few individual subgrains it was possible to follow the evolution of the elastic back-strain from the tensile to the compressive case. Following an increase in temperature from -196 ○C to room temperature, both the average intra...

  7. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  8. In situ Rumen Degradation Kinetics of High-Protein Forage Crops in Temperate Climates Cinética de Degradación Ruminal in situ en Forrajes de Alto Contenido Proteico en Clima Templado

    Directory of Open Access Journals (Sweden)

    Ximena Valderrama L.

    2011-12-01

    Full Text Available The present study was conducted to evaluate the nutritional value and in situ degradation kinetics of eight high protein forage crops: alfalfa (Medicago sativa L., forage oat (Avena sativa L., mixed pasture, and ryegrass (Lolium multiflorum Lam. pasture in early vegetative stages, two forage lupins (Lupinus albus L. in early bloom stages, sugar beet (Beta vulgaris L. and kale (Brassica napus var. pabularia (DC. Rchb. leaves at root maturity. Dry matter (DM and crude protein (CP degradation kinetics were evaluated by the nylon bag technique through the in situ procedure described by 0rskov and MacDonald (1979 using three ruminally cannulated sheep. Chemical composition of the forage crops showed on average 13.7% DM; 21.4% CP; 31.5% neutral detergent fiber (NDF; 17.7% crude fiber (CF, 80.6% digestibility of organic matter (DOMD and 12.13 MJ kg-1 metabolizable energy (ME. The high total degradability of forage crops reported here (> 87% DM; > 93% CP can be associated with the presence of large quantities of fraction a (> 34% DMa; > 29% CPa and high degradability of fraction b, resulting in low amounts of undegradable fraction (U (7.02% DM and 3.55% CP. Correlations between CPb and DMb degradability (r = 0.79 and CPc and DMc degradation rates (r = 0.78 were high, however differences in c were not explained by differences in CP or NDF contents, nor by the amounts of a or b fractions. Degradation for DM and CP during the first 6 h of incubation was strongly and inversely correlated to b (36 h (r = 0.93 (P El presente estudio se desarrolló con el objetivo de evaluar el valor nutricional y la cinética de degradación in situ de ocho forrajes de alto valor proteico: alfalfa (Medicago sativa L., avena (Avena sativa L., pastos mixtos y pastos de ballica (Lolium multiflorum Lam., en las primeras etapas vegetativas, dos lupinos forrajeros (Lupinus albus L. en etapas inicio de la floración, hojas de remolacha azucarera (Beta vulgaris L. y de col (Brassica

  9. Simultaneous P and B diffusion, in-situ surface passivation, impurity filtering and gettering for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krygowski, T.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States); Ruby, D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    A technique is presented to simultaneously diffuse boron and phosphorus in silicon, and grow an in-situ passivating oxide in a single furnace step. It is shown that limited solid doping sources made from P and B Spin-On Dopant (SOD) films can produce optimal n{sup +} and p{sup +} profiles simultaneously without the deleterious effects of cross doping. A high quality passivating oxide is grown in-situ beneath the thin ({approximately} 60 {angstrom}) diffusion glass, resulting in low J{sub o} values below 100 fA/cm{sup 2} for transparent ({approximately} 100 {Omega}/{open_square}) phosphorus and boron diffusions. For the first time it is shown that impurities present in the boron SOD film can be effectively filtered out by employing separate source wafers, resulting in bulk lifetimes in excess of 1 ms for the sample wafers. The degree of lifetime degradation in the sources is related to the gettering efficiency of boron in silicon. This novel simultaneous diffusion, in-situ oxidation, impurity filtering and gettering technique was successfully used to produce 20.3% Fz, and 19.1% Cz solar cells, in one furnace step.

  10. In-situ synthesis of sulfur-TiO2 hollow shell materials for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Hai, Bo; Ma, Litong; Yan, Hui; Wei, Hang

    2017-05-01

    Lithium-sulfur batteries with higher energy density are highly attractive, but the practical applications have been greatly affected by their poor cycle performance. Despite much effort has been devoted to design the structure of sulfur cathode to suppress polysulfide dissolution, relatively little emphasis has been placed on in-situ immobilizing the sulfur atoms. Herein, we demonstrate a new approach of in-situ immobilizing the sulfur atoms into the TiO2 host, in which, the polysulphides can localized in the cathode side and efficiently reused during cycling due to the novel S-TiO2 hollow shell structure. The battery based on the well-designed S-TiO2 cathode can deliver a discharge capacity of 601 mA h g-1 at 0.5 C after 100 cycles. The good electrochemical performance could be attributed to the homogeneous dispersing of sulfur in the TiO2 host in the in-situ formation process, and the hollow structure of the S-TiO2 materials. The economical and simple strategy to overcome the polysulfide dissolution issues provides a commercially feasible way for the construction of lithium-sulfur batteries.

  11. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: liyan-nwnu@163.com [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Chang, Yin [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhao, Yun [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Wang, Jian; Wang, Cheng-wei [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China)

    2016-09-15

    Oriented nickel sulfide (NiS) nanotube arrays were successfully in-situ fabricated on conductive glass substrate and used directly as counter electrode for dye-sensitized solar cells without any post-processing. Compared with Pt counter electrode, for the beneficial effect of electronic transport along the axial direction through the arrays to the substrate, oriented NiS nanotube arrays exhibit both higher electrocatalytic activity for I{sub 3}{sup −} reduction and better electrochemical stability, resulting in a significantly improved power conversion efficiency of 9.8%. Such in-situ grown oriented sulfide semiconductor nanotube arrays is expected to lead a new class structure of composites for highly efficient cathode materials. - Highlights: • In-situ synthesis strategy was proposed to construct oriented NiS nanotube arrays. • Such oriented tube nanostructure benefits the electronic transport along the axial direction of the arrays. • As CE of DSSCs, NiS nanotube arrays exhibit both higher efficiency (9.8%) and electrochemical stability than Pt.

  12. Strength calculation for fiber concrete slabs under high velocity impact

    Science.gov (United States)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  13. Strength of VGCF/Al Composites for High Thermal Conductivity

    Science.gov (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  14. Design of Reforma 509 with High Strength Steel

    Science.gov (United States)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  15. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network.

    Science.gov (United States)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; Bacsa, Wolfgang; Zhao, Naiqin; He, Chunnian

    2017-08-24

    Graphene or graphene-like nanosheets have been emerging as an attractive reinforcement for composites due to their unique mechanical and electrical properties as well as their fascinating two-dimensional structure. It is a great challenge to efficiently and homogeneously disperse them within a metal matrix for achieving metal matrix composites with excellent mechanical and physical performance. In this work, we have developed an innovative in situ processing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network (3D GN). The processing route involves the in situ synthesis of the encapsulation structure of 3D GN powders tightly anchored with Cu nanoparticles (NPs) (3D GN@Cu) to ensure mixing at the molecular level between graphene-like nanosheets and metal, coating of Cu on the 3D GN@Cu (3D GN@Cu@Cu), and consolidation of the 3D GN@Cu@Cu powders. This process can produce GN/Cu composites on a large scale, in which the in situ synthesized 3D GN not only maintains the perfect 3D network structure within the composites, but also has robust interfacial bonding with the metal matrix. As a consequence, the as-obtained 3D GN/Cu composites exhibit exceptionally high strength and superior ductility (the uniform and total elongation to failure of the composite are even much higher than the unreinforced Cu matrix). To the best of our knowledge, this work is the first report validating that a discontinuous 3D graphene-like network can simultaneously remarkably enhance the strength and ductility of the metal matrix.

  16. In situ coating of Poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries

    Science.gov (United States)

    Song, Jongchan; Noh, Hyungjun; Lee, Jinhong; Nah, In-Wook; Cho, Won-Il; Kim, Hee-Tak

    2016-11-01

    Polysulfide (PS) shuttle, which is one of the critical problems that need to be addressed for realizing lithium sulfur batteries, can be suppressed by confining PSs within microporous or mesoporous templates. However, PS dissolution through the external opening of the templates has to be further prevented. In this work, a poly (3,4-ethylenedioxythiophene) (PEDOT) layer is formed in situ on the CMK-3/S cathode by inducing the electro-oxidative polymerization of the EDOT monomer included in electrolytes during pre-charging. The PEDOT layer covering the external cathode surface functions as a PS blocking layer, which suppresses the PS shuttle and, thus, improves the cycling stability. The spectroscopic analysis indicates that the PEDOT layer reduces the decomposition of the electrolyte by preventing any reaction between the active PS species and electrolytes. Therefore, the in situ formation of the PS blocking layer from the electrolyte additive provides a simple and effective method to improve the cycling stability of lithium sulfur batteries.

  17. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    Science.gov (United States)

    Rusi; Majid, S. R.

    2015-11-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg-1 and 68 kWkg-1 at current density of 20 Ag-1 in mixed KOH/K3Fe(CN)6 electrolyte.

  18. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors.

    Science.gov (United States)

    Rusi; Majid, S R

    2015-11-05

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.

  19. Simultaneous in-situ observations of the signatures of dayside reconnection at the high- and low-latitude magnetopause

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2005-02-01

    Full Text Available We present magnetic field and particle data recorded by the Cluster and Geotail satellites in the vicinity of the high- and low-latitude dayside magnetopause, respectively, on 17 February 2003. A favourable conjunction of these spacecraft culminated in the observation of a series of flux transfer events (FTEs, characterised by bipolar perturbations in the component of the magnetic field normal to the magnetopause, an enhancement in the overall magnetic field strength, and field tilting effects in the plane of the magnetopause whilst the satellites were located on the magnetosheath side of the boundary. Whilst a subset of the FTE signatures observed could be identified as being either normal or reverse polarity, the rapid succession of events observed made it difficult to classify some of the signatures unambiguously. Nevertheless, by considering the source region and motion of flux tubes opened by magnetic reconnection at low latitudes (i.e. between Cluster and Geotail, we demonstrate that the observations are consistent with the motion of northward (southward and tailward moving flux tubes anchored in the Northern (Southern Hemisphere passing in close proximity to the Cluster (Geotail satellites. We are able to demonstrate that a multi-spacecraft approach, coupled with a realistic model of flux tube motion in the magnetosheath, enables us to infer the approximate position of the reconnection site, which in this case was located at near-equatorial latitudes.

  20. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  1. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Md. Safiuddin

    2016-05-01

    Full Text Available Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC containing palm oil fuel ash (POFA. The present study has used artificial neural networks (ANN to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70% of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2 for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  2. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  3. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  4. High resolution patterning of nanoparticles by evaporative self-assembly enabled by in situ creation and mechanical lift-off of a polymer template

    Science.gov (United States)

    Demko, Michael T.; Choi, Sun; Zohdi, Tarek I.; Pisano, Albert P.

    2011-12-01

    High-resolution patterning of nanostructured materials into open templates is limited by the processes of creation and removal of the necessary template. In this work, a process for forming a micropatterned template from cellulose acetate polymer in situ on the substrate is demonstrated. Nanoparticles are patterned by evaporative self-assembly, and the template is removed by mechanical means. The process is demonstrated by patterning zinc oxide nanoparticles on silicon and cyclic olefin copolymer substrates and by creating a highly sensitive ultraviolet light detector.

  5. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers.

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-04-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

  6. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  7. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Directory of Open Access Journals (Sweden)

    Wisena Perceka

    2016-04-01

    Full Text Available Addition of steel fibers to high strength concrete (HSC improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out.

  8. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    Science.gov (United States)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  9. High strength and low weight hollow carbon fibres

    Science.gov (United States)

    Köhler, T.; Brüll, R.; Pursche, F.; Langgartner, J.; Seide, G.; Gries, T.

    2017-10-01

    Carbon fibres have strengths of 2.5 to 5 GPa in the fibre direction and an elastic modulus of 200 to 500 GPa. Carbon fibres have equal mechanical properties as steel but 20% of the weight. But the material is more expensive than steel. Therefore, they are only used in industry sectors where the benefits legitimate the high costs. The use of hollow rather than solid fibres allows an even lower weight of the components. At the same time, similar mechanical properties are achieved by the circular cross section. Carbon fibres are obtained from polyacrylonitrile fibers (PAN). These can be produced as hollow fibres. As a first step stabilization and carbonization of hollow PAN precursors is investigated to produce hollow carbon fibres.

  10. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    of the strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  11. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    Accurate calculations of the stiffness of concrete members are rare. Only in the uncracked state and the fully cracked state, where the reinforcement is near yielding, the stiffness calculations are relatively easy. The difficulties are due to the fact that concrete between cracks may give...... a substantial contribution to the stiffness, a phenomenon which is generally referred to as tension stiffening. The present paper describes a new theory of tension stiffening. It is based on a simple physical model for pure tension, which works with three different stages of crack generation. In a simplified...... form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  12. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...... on the extrusion speed and diameter, resulting in an optimal printing speed of 60 to 80 mm/min. The HMS-PP granule was extruded into a filament of 1.75 mm diameter and then extruded through a J-Head and E3D with 0.4 mm nozzle-diameter and 200 to 240 °C. A comparison of the primary material with the printed...

  13. Deposition kinetics of colloidal particles at high ionic strengths

    Science.gov (United States)

    Cejas, Cesare; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    Using microfluidic experiments, we describe the deposition of a fluid suspension of weakly brownian particles transported in a straight channel at small Reynolds numbers under conditions of high ionic strengths. Our studies fall in a regime where electrostatic interactions are neglected and particle-wall van der Waals interactions govern the deposition mechanism on channel walls. We calculate the deposition kinetics analytically for a wide range of physical parameters. We find that the theory agrees with numerical Langevin simulations, which both confirm the experimental results. From this analysis, we demonstrate a universal dimensionless deposition function described by contributions from advection-diffusion transport and adhesion interactions (Hamaker constant). Results show that we accurately confirm the theoretical expression for the deposition kinetics. From a surface science perspective, working in the van der Waals regime enables to measure the Hamaker constant, a task that would take much longer to perform with the standard AFM. Funding from Sanofi Recherche and ESPCI.

  14. In-situ preparation of Fe{sub 2}O{sub 3} hierarchical arrays on stainless steel substrate for high efficient catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zeheng, E-mail: zehengyang@hfut.edu.cn [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Wang, Kun; Shao, Zongming; Tian, Yuan [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Chen, Gongde [Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521 (United States); Wang, Kai; Chen, Zhangxian; Dou, Yan [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Weixin, E-mail: wxzhang@hfut.edu.cn [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2017-02-15

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe{sub 2}O{sub 3} hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N{sub 2} atmosphere. As a Fenton-like catalyst, Fe{sub 2}O{sub 3} hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. The Fe{sub 2}O{sub 3} catalyst with unique hierarchical structures and efficient transport channels, effectively activates H{sub 2}O{sub 2} to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe{sub 2}O{sub 3} hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. - Highlights: • Fe{sub 2}O{sub 3} hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F{sup −} ions play an important role in the formation of the Fe{sub 2}O{sub 3} hierarchical arrays. • Fe{sub 2}O{sub 3} hierarchical arrays show high catalytic activity to methylene blue degradation.

  15. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  16. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis.

    Science.gov (United States)

    Boyle, Shelagh; Rodesch, Matthew J; Halvensleben, Heather A; Jeddeloh, Jeffrey A; Bickmore, Wendy A

    2011-10-01

    The ability to visualize specific DNA sequences, on chromosomes and in nuclei, by fluorescence in situ hybridization (FISH) is fundamental to many aspects of genetics, genomics and cell biology. Probe selection is currently limited by the availability of DNA clones or the appropriate pool of DNA sequences for PCR amplification. Here, we show that liquid-phase probe pools from sequence capture technology can be adapted to generate fluorescently labelled pools of oligonucleotides that are very effective as repeat-free FISH probes in mammalian cells. As well as detection of small (15 kb) and larger (100 kb) specific loci in both cultured cells and tissue sections, we show that complex oligonucleotide pools can be used as probes to visualize features of nuclear organization. Using this approach, we dramatically reveal the disposition of exons around the outside of a chromosome territory core and away from the nuclear periphery.

  17. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  18. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.

    Science.gov (United States)

    Shen, Lanyao; Shen, Lian; Wang, Zhaoxiang; Chen, Liquan

    2014-07-01

    Electrode integrity and electric contact between particles and between particle and current collector are critical for electrochemical performance, especially for that of electrode materials with large volume change during cycling and with poor electric conductivity. We report on the in situ thermally cross-linked polyacrylonitrile (PAN) as a binder for silicon-based anodes of lithium-ion batteries. The electrode delivers excellent cycle life and rate capability with a reversible capacity of about 1450 mA h g(-1) even after 100 cycles. The improved electrochemical performance of such silicon electrodes is attributed to heat-treatment-induced cross-linking and the formation of conjugated PAN. These findings open new avenues to explore other polymers for both anode and cathode electrodes of rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination.

    Science.gov (United States)

    Zhang, Kun; Wu, Fan; Xie, Aming; Sun, Mengxiao; Dong, Wei

    2017-09-27

    The design of novel hybrid nanostructures has been seen as an effective route to tune the properties of materials. Herein, we provide an in situ growth strategy to efficiently construct kebab-like hybrids, which are composed of one-dimensional SiC nanowires stringing polyhedral metal organic frameworks (MOFs). Through a heat-treatment process regardless of under air or argon, these hybrids generate an excellent electromagnetic absorption (EMA) ability. We comprehensively explored the growth and calcination process of these hybrids as well as their EMA enhanced mechanism. The results indicate that the MOFs kept as shrunken polyhedrons under air but decomposed to small particles under argon, due to the different calcination mechanism. In addition, the enhanced EMA ability should be attributed to the combined influences of the reduced dielectric constant, enlarged aspect ratio, and enhanced interface polarization. This research opens up the rational designs and applications of novel materials by the hybridizing of nanomaterials in multidimensions.

  20. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries

    Science.gov (United States)

    An, Yongling; Zhang, Zhen; Fei, Huifang; Xu, Xiaoyan; Xiong, Shenglin; Feng, Jinkui; Ci, Lijie

    2017-09-01

    Lithium metal is considered to be the optimal choice of next-generation anode materials due to its ultrahigh theoretical capacity and the lowest redox potential. However, the growth of dendritic and mossy lithium for rechargeable Li metal batteries lead to the possible short circuiting and subsequently serious safety issues during charge/discharge cycles. For the further practical applications of Li anode, here we report a facile method for fabricating robust interfacial layer via in-situ olefin polymerization. The resulting polymer layer effectively suppresses the formation of Li dendrites and enables the long-term operation of Li metal batteries. Using Li-S cells as a test system, we also demonstrate an improved capacity retention with the protection of tetramethylethylene-polymer. Our results indicate that this method could be a promising strategy to tackle the intrinsic problems of lithium metal anodes and promote the development of Li metal batteries.

  1. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  2. Influence of steel fibres on the blast response of normal-strength and high-strength reinforced concrete columns

    Science.gov (United States)

    Hammoud, A.; Aoude, H.

    2017-09-01

    This paper examines the influence of steel fibres on the blast performance of normal-strength concrete and high-strength concrete columns. As part of the study, four normal-strength and high-strength concrete columns built with and without steel fibres are tested under simulated blast loads using the shock-tube facility at the University of Ottawa. The specimens include two columns built with plain concrete and two columns built with steel fibre-reinforced concrete. The results show that the addition of steel fibres in reinforced concrete columns leads to important enhancements in blast performance, with improved control of mid-span displacements at equivalent blasts and increased damage tolerance.

  3. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  4. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental...

  5. The ability of rock physics models to infer marine in situ pore pressure

    Science.gov (United States)

    Hornbach, Matthew J.; Manga, Michael

    2014-12-01

    fluid pressure is an important parameter defining the mechanical strength of marine sediments. Obtaining high spatial resolution in situ pore pressure measurements in marine sediments, however, is a challenge, and as a result, only a handful of in situ pore pressure measurements exist at scientific drill sites. Integrating rock physics models with standard IODP/ODP measurements provides a potentially widely applicable approach for calculating in situ pore pressure. Here we use a rock physics approach to estimate in situ pore pressure at two Scientific Ocean Drill Sites where in situ pressure is well constrained: ODP Site 1173, used as reference for normal (hydrostatic) fluid pressures, and ODP Site 948, where previous studies infer high fluid pressures (λ* ˜ 0.45-0.95, where the pore pressure ratio λ* is defined as the pore pressure above hydrostatic divided by the difference between the largest principal stress and hydrostatic stress). Our analysis indicates that the rock physics method provides an accurate, low-precision method for estimating in situ pore pressure at these drill sites, and sensitivity analysis indicates this method can detect modestly high (λ* > 0.6) pore pressure at the 95% confidence level. This approach has broad applicability because it provides an inexpensive, high-resolution (meter-scale) method for retrospectively detecting and quantifying high pore pressure at any drill site where quality wireline logs and ocean drilling data exist.

  6. Damage characterization of high-strength multiphase steels

    Science.gov (United States)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  7. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  8. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  9. In Situ Multitechnical Investigation into Capacity Fading of High-Voltage LiNi0.5Co0.2Mn0.3O2.

    Science.gov (United States)

    Shen, Chong-Heng; Wang, Qi; Chen, Hong-Jiang; Shi, Chen-Guang; Zhang, Hui-Yi; Huang, Ling; Li, Jun-Tao; Sun, Shi-Gang

    2016-12-28

    LiNi0.5Co0.2Mn0.3O2 positive electrode materials of lithium ion battery can release a discharge capacity larger than 200 mAh/g at high potential (>4.30 V). However, its inevitable capacity fading, which is greatly related to the structural evolution, reduces the cycling performance. The origin of this capacity fading is investigated by coupled in situ XRD-PITT-EIS. A new phase of NiMn2O4 is discovered on the surface of the LiNi0.5Co0.2Mn0.3O2 upon charging to high voltage, which blocks Li(+) diffusion pathways. Theoretical calculations predict the formation of cubic NiMn2O4. Moreover, corrosion, cracks, and microstress appear to increase the difficulty of Li(+) transportation, which are attributed to the protection degradation of the interfacial film on the positive electrode material at high voltage. After 50 electrochemical cycles, the increase in degree of crystal defects by low-angle grain boundary, evidenced through HR-TEM, leads to poor Li(+) kinetics, which in turn causes capacity loss. The in situ XRD-PITT-EIS technique can bring multiperspective insights into fading mechanism of the high-voltage positive electrode materials and provide a solution to control or suppress the problem on the basis of structural, kinetic, and electrochemical interfacial understandings.

  10. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  11. HIGH-IMPACT STRENGTH AS-POLYMERIZED PLLA

    NARCIS (Netherlands)

    GRIJPMA, DW; NIJENHUIS, AJ; VANWIJK, PGT; PENNINGS, AJ

    1992-01-01

    As-polymerized poly(L-lactide), (PLLA), has a much higher impact strength than after compression moulding. Several routes have been explored to further increase the impact strength of nascent PLLA. First results on the preparation of composites with carbon fibres, the copolymerization with

  12. High bonding temperatures greatly improve soy adhesive wet strength

    Science.gov (United States)

    Charles R. Frihart; Thomas Coolidge; Chera Mock; Eder Valle

    2016-01-01

    Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s) for this has not been intensively investigated. Although these prior...

  13. Effects of high and low volume of strength training on muscle strength, muscle volume and lipid profile in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Cleiton Silva Correa

    2014-12-01

    Full Text Available Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD, especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set and high volume of strength training (HVST; n = 11, 3 sets, or control group (n = 12. Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001, maximal dynamic strength (p < 0.001, and muscle volume (p = 0.048. Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047. Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group.

  14. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model

    National Research Council Canada - National Science Library

    Nhat-Duc Hoang; Anh-Duc Pham; Quoc-Lam Nguyen; Quang-Nhat Pham

    2016-01-01

    ...) for modeling compressive strength of high-performance concrete (HPC). This machine learning approach is utilized to establish the nonlinear functional mapping between the compressive strength and HPC ingredients...

  15. A high sensing fluorescence probe to in situ study the microstructural changes of tungsten oxide nanowires induced by thermal effect

    Science.gov (United States)

    Luo, Jianyi; Huang, Jingcheng; Chen, Feng; Xu, Youxin; Zhong, Changping; Zeng, Qingguang; Tang, Xiufeng; Hu, Linshun

    2017-06-01

    In this paper, a characterization method has been developed in situ to study the microstructural changes of tungsten oxide nanowires induced by thermal effects, in which the Eu3+ rare earth ions are pre-doped into the WO3 nanowires (Eu@WO3 nanowires). The thermal effect in the Eu@WO3 nanowires have been studied by increasing the sample temperature in a nitrogen gas environment, and the results indicate the microstructural changes induced by the thermal effect could be not detected by the micro-Raman spectrum, but could be obviously detected by the fluorescence spectrum of Eu3+ fluorescence centers. The most notable effect of the increasing temperature is the appearance of two new fluorescence emissions related with a broad band emission at 675 nm and two sharp peaks at 525 and 530 nm, respectively. The understanding picture for the relationship between the new fluorescence emissions and the microstructural changes of the Eu@WO3 nanowires has also been proposed in this paper.

  16. Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption.

    Science.gov (United States)

    Chen, Li-Feng; Fan, Hai-Yang; Zhang, Yi-Ping; Wei, Wei; Lin, Jin-Ping; Wei, Dong-Zhi; Wang, Hua-Lei

    2017-06-10

    Asymmetric reduction of ethyl 4-chloro-3-oxobutyrate (COBE) by carbonyl reductases presents an efficient way to produce Ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important chiral intermediate for the synthesis of hydroxymethylglutaryl-CoA reductase inhibitors such as Lipitor®. In this study, an NADPH-dependent carbonyl reductase (SrCR) from Synechocystis sp. was characterized to demonstrate a broad substrate spectrum, and the highest activity (53.1U/mg protein) with COBE. To regenerate the cofactor NADPH, Bacillus subtilis glucose dehydrogenase was successfully coexpressed with SrCR. Owing to the product inhibition, no more than 400mM of COBE could be completely reduced to (S)-CHBE using the recombinant Escherichia coli/pET-SrCR-GDH. The macroporous adsorption resin HZ 814 was applied to adsorb (S)-CHBE in situ to alleviate the product inhibitio. Consequently, 3000mM (494g/L) of COBE was bioconverted within 8h, resulting in a (S)-CHBE yield of 98.2%, with 99.4% ee and total turnover number of 15,000, revealed great industrial potential of (S)-CHBE production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  18. High resolution in situ magneto-optic Kerr effect and scanning tunneling microscopy setup with all optical components in UHV.

    Science.gov (United States)

    Lehnert, A; Buluschek, P; Weiss, N; Giesecke, J; Treier, M; Rusponi, S; Brune, H

    2009-02-01

    A surface magneto-optic Kerr effect (MOKE) setup fully integrated in an ultrahigh vacuum chamber is presented. The system has been designed to combine in situ MOKE and scanning tunneling microscopy. Magnetic fields up to 0.3 T can be applied at any angle in the transverse plane allowing the study of in-plane and out-of-plane magnetization. The setup performance is demonstrated for a continuous film of 0.9 monolayers (ML) Co/Rh(111) with in-plane easy axis and for a superlattice of nanometric double layer Co islands on Au(11,12,12) with out-of-plane easy axis. For Co/Au(11,12,12) we demonstrate that the magnetic anisotropy energies deduced from thermally induced magnetization reversal and from applying a torque onto the magnetization by turning the field are the same. For the presented setup we establish a coverage detection limit of 0.5 ML for transverse and 0.1 ML for polar MOKE. For island superlattices with the density of Co/Au(11,12,12), the latter limit corresponds to islands composed of about 50 atoms. The detection limit can be further reduced when optimizing the MOKE setup for either one of the two Kerr configurations.

  19. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    Science.gov (United States)

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, Jihun; Yang, Junghee; Lee, Hyoyoung

    2015-09-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.

  20. Multiferroic CuCrO₂ under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Alka B., E-mail: alkagarg@barc.gov.in; Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-10-07

    The compression behavior of delafossite compound CuCrO₂ has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, κ{sub c} = 1.26 × 10⁻³(1) GPa⁻¹ and a-axis compressibility, κ{sub a} = 8.90 × 10⁻³(6) GPa⁻¹. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B₀ = 156.7(2.8) GPa with its pressure derivative, B₀{sup ’} as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  1. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  2. In Situ Growth of Highly Adhesive Surface Layer on Titanium Foil as Durable Counter Electrodes for Efficient Dye-sensitized Solar Cells

    Science.gov (United States)

    Liu, Wantao; Xu, Peng; Guo, Yanjun; Lin, Yuan; Yin, Xiong; Tang, Guangshi; He, Meng

    2016-10-01

    Counter electrodes (CEs) of dye-sensitized solar cells (DSCs) are usually fabricated by depositing catalytic materials on substrates. The poor adhesion of the catalytic material to the substrate often results in the exfoliation of catalytic materials, and then the deterioration of cell performance or even the failure of DSCs. In this study, a highly adhesive surface layer is in situ grown on the titanium foil via a facile process and applied as CEs for DSCs. The DSCs applying such CEs demonstrate decent power conversion efficiencies, 6.26% and 4.37% for rigid and flexible devices, respectively. The adhesion of the surface layer to the metal substrate is so strong that the photovoltaic performance of the devices is well retained even after the CEs are bended for 20 cycles and torn twice with adhesive tape. The results reported here indicate that the in situ growth of highly adhesive surface layers on metal substrate is a promising way to prepare durable CEs for efficient DSCs.

  3. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    Science.gov (United States)

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution.

  4. High temperature exposure of in-situ thermocouple fixed-point cells: stability with up to three months of continuous use

    Science.gov (United States)

    Elliott, C. J.; Greenen, A.; Lowe, D.; Pearce, J. V.; Machin, G.

    2015-04-01

    To categorise thermocouples in batches, manufacturers state an expected operating tolerance for when the thermocouples are as-new. In use, thermocouple behaviour can rapidly change and the tolerance becomes invalid, especially when used at high temperatures (i.e. above 1000 °C) as the processes leading to de-calibration, such as oxidation and contamination, can be very fast and lead to erroneous readings. In-situ thermocouple self-validation provides a method to track the drift and correct the thermocouple reading in real-time, but it must be shown to be reliable. Two miniature temperature fixed-point cells designed at NPL for in-situ thermocouple self-validation, the first containing a Pt-C eutectic alloy and the second containing a Ru-C eutectic alloy, have been exposed to temperatures close to their melting point for 2200 h and 1570 h, respectively, and continuously, for up to three months. Recalibration after this long-term high-temperature exposure, where a tantalum-sheathed thermocouple was always in place, is used to show that no significant change of the temperature reference point (the melting temperature) has occurred in either the Pt-C ingot or the Ru-C ingot, over timescales far longer than previously demonstrated and approaching that required by industry for practical use of the device.

  5. Ammonia recovery from high strength agro industry effluents.

    Science.gov (United States)

    Altinbas, M; Ozturk, I; Aydin, A F

    2002-01-01

    The aim of the study was to investigate ammonia recovery from high strength agro industry effluents involving significant amounts of ammonia, by applying magnesium ammonium phosphate (MAP) precipitation technology. Two types of industrial effluents have been tested in the study. The first plant was an opium alkaloid processing industry and the second one was a baker's yeast industry. High chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and unacceptable dark brown color characterized effluents from both industries. Effluents from the biologically treated opium alkaloid and baker's yeast industries were both applied at the stoichiometric ratio (Mg:NH4:PO4 = 1:1:1) and above the stoichiometric ratio (Mg:NH4:PO4 = 1.1:1:1.1) to MAP precipitation. NH4 removals of 61-80% were achieved at the pH of 9.2 at the stoichiometric ratio, whereas 83% NH4 removal was obtained at the pH of 9.2 above the stoichiometric ratio. Experimental studies performed on both anaerobically and/or aerobically treated baker's yeast and opium alkaloid industry effluents have clearly indicated that MAP precipitation was an appropriate treatment option for NH4 removal or struvite recovery from high ammonia content agro industry effluents. Additional ammonia recovery studies were conducted on ozonated and Fenton's oxidation applied effluents and these have also indicated that the amounts of struvite and the quality of MAP precipitate was increased significantly. In this framework, MAP sludge recovered from combined biological and Fenton's oxidation treatment effluents were considered as a more valuable slow release fertilizer for agricultural use.

  6. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    Science.gov (United States)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  7. IN SITU MEASUREMENTS OF THE ACOUSTIC TARGET ...

    African Journals Online (AJOL)

    The acoustic target strength (TS) of Cape horse mackerel Trachurus trachurus capensis was measured in situ at 38 kHz during two surveys over the Namibian continental shelf in 1998 and 1999 using a SIMRAD EK500 echosounder/ES38D submersible split-beam transducer. Scattered aggregations of horse mackerel ...

  8. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G. (University of Rhode Island, Kingston, RI); Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter (University of Rhode Island, Kingston, RI)

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  9. Examination of the Atomic Pair Distribution Function (PDF) of SiC Nanocrystals by In-situ High Pressure Diffraction

    Science.gov (United States)

    Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.

    2003-01-01

    Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.

  10. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  11. Facile synthesis of hollow Sn–Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Xu, Xinhua, E-mail: xhxutju@gmail.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2015-08-30

    Highlights: • Hollow Sn–Co nanospheres were synthesized via a facile galvanic replacement method. • PMMA layers were uniform coated on the surface of Sn–Co composites via in situ emulsion polymerization. • The coating layers are beneficial to suppress the aggregation and stabilize the SEI formation on the surface. • Excellent cycling stability and rate capability were obtained by coating PMMA protective layers on the surface of hollow Sn–Co nanospheres. - Abstract: Polymethyl methacrylate (PMMA)-coated hollow Sn–Co nanospheres (Sn–Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn–Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn–Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g{sup −1} after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn–Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  12. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    Science.gov (United States)

    Zhao, Hang; Li, Jian-jun; Zheng, Zhi-zhen; Wang, Ai-hua; Huang, Qi-wen; Zeng, Da-wen

    2015-12-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400 µm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhardness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the samples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstructure and to the presence of TiC particles.

  13. A high-vacuum deposition system for in situ and real-time electrical characterization of organic thin-film transistors.

    Science.gov (United States)

    Quiroga, Santiago David; Shehu, Arian; Albonetti, Cristiano; Murgia, Mauro; Stoliar, Pablo; Borgatti, Francesco; Biscarini, Fabio

    2011-02-01

    We present a home-built high-vacuum system for performing organic semiconductor thin-film growth and its electrical characterization during deposition (real-time) or after deposition (in situ). Since the environment conditions remain unchanged during the deposition and electrical characterization process, a direct correlation between growth mode and electrical properties of thin film can be obtained. Deposition rate and substrate temperature can be systematically set in the range 0.1-10 ML∕min and RT-150 °C, respectively. The sample-holder configuration allows the simultaneous electrical monitoring of up to five organic thin-film transistors (OTFTs). The OTFTs parameters such as charge carrier mobility μ, threshold voltage V(TH), and the on-off ratio I(on)∕I(off) are studied as a function of the semiconductor thickness, with a submonolayer accuracy. Design, operation, and performance of the setup are detailed. As an example, the in situ and real-time electrical characterization of pentacene TFTs is reported.

  14. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    Science.gov (United States)

    Zheng, Xueli; Zhang, Bo; de Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J.; He, Sisi; Xin, Huolin L.; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H.

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

  15. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  16. Experiments and fracture modeling of high-strength pipelines for high and low stress triaxialities

    NARCIS (Netherlands)

    Walters, C.L.; Kofiani, K.; Nonn, A.; Wierzbicki, T.; Kalwa, C.

    2012-01-01

    This paper provides results from a comprehensive study on mechanical characterization of high-strength pipeline steel, grade X100 using experimental and numerical methods. The material was characterized for anisotropic plasticity, fracture initiation for various states of stress, (pre-cracked)

  17. High-precision high field strength partitioning between garnet, amphibole, and alkaline melt, Kakanui, New Zealand

    NARCIS (Netherlands)

    Fulmer, E.J.; Nebel, O.; van Westrenen, W.

    2010-01-01

    The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients

  18. Enhancement of dielectric strength in nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [Applied Superconductivity Group, Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Sauers, Isidor [Applied Superconductivity Group, Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); James, D Randy [Applied Superconductivity Group, Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ellis, Alvin R [Applied Superconductivity Group, Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Paranthaman, M Parans [Materials Chemistry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Goyal, Amit [Superconductive and Energy Efficient Materials Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); More, Karren L [Microscopy Microanalysis and Microstructures Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2007-08-15

    In this paper, we report the dielectric breakdown properties of a nanocomposite, a potential electrical insulation material for cryogenic high voltage applications. The material is composed of a high molecular weight polyvinyl alcohol and nanosized in situ synthesized titanate particles. The dielectric breakdown strengths of the filled material samples, measured in liquid nitrogen, indicate a significant increase in their strengths as compared to unfilled polyvinyl alcohol. We conclude that nanometre-sized particles can be adopted as a voltage stabilization additive.

  19. Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability

    Science.gov (United States)

    Xiao, Jian-Hua; Huang, Wei-Qing; Hu, Yong-sheng; Zeng, Fan; Huang, Qin-Yi; Zhou, Bing-Xin; Pan, Anlian; Li, Kai; Huang, Gui-Fang

    2018-02-01

    High photocatalytic activity and photostability are the pursuit of the goal for designing promising photocatalysts. Herein, using ZnO to encapsulate ZnS nanoparticles is proposed as an effective strategy to enhance photocatalytic activity and anti-photocorrosion. The ZnS/ZnO core/shell heterostructures are obtained via an annealing treatment of ZnS nanoparticles produced by a facile wet chemical approach. Due to its small size, the nascent cubic sphalerite ZnS (s-ZnS) converts into a hexagonal wurtzite ZnS (w-ZnS)/ZnO core/shell structure after annealing treatment. In situ oxidation leads to increasing ZnO, simultaneously decreasing the w-ZnS content in the resultant w-ZnS/ZnO with thermal annealing time. The w-ZnS/ZnO core/shell heterostructures show high photocatalytic activity, demonstrated by the photodegradation rate of methylene blue being up to ten-fold and seven-fold higher than that of s-ZnS under UV and visible light irradiation, respectively, and the high capability of degrading rhodamine B. The enhanced photocatalytic activity may be attributed to the large specific surface and improved charge carrier separation at the core/shell interface. Moreover, it displays high photostability owing to the protection of the ZnO shell, greatly inhibiting the photocorrosion of ZnS. This facile in situ oxidation is effective and easily scalable, providing opportunities for developing novel core/shell structure photocatalysts with high activity and photostability.

  20. Rapid in situ synthesis of spherical microflower Pt/C catalyst via spray-drying for high performance fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Balgis, R.; Ogi, T.; Okuyama, K. [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima (Japan); Anilkumar, G.M.; Sago, S. [Research and Development Centre, Noritake Co., Ltd., Higashiyama, Miyoshi, Aichi (Japan)

    2012-08-15

    A facile route for the rapid in situ synthesis of platinum nanoparticles on spherical microflower carbon has been developed. An aqueous precursor slurry containing carbon black, polystyrene latex (PSL), polyvinyl alcohol, and platinum salt was spray-dried, followed by calcination to simultaneously reduce platinum salt and to decompose PSL particles. Prepared Pt/C catalyst showed high-performance electrocatalytic activity with excellent durability. The mass activity and specific activity values were 132.26 mA mg{sup -1} Pt and 207.62 {mu}A cm{sup -2} Pt, respectively. This work presents a future direction for the production of high-performance Pt/C catalyst in an industrial scale. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. METHOD OF MEASUREMENT OF STRENGTH OF CORE CASTING PAINT AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2017-01-01

    Full Text Available The method and device for measuring of the strength of the core casting refractory paint at high temperatures were developed. It has been shown that the failure strength sodium aluminates binder after testified that decrease of sodium aluminates binder strength after being in the range of 300–600 °C is lower than that for sodium silicate. There is a correlation between hardness and strength of the paint during heating at 1300 °C.

  2. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  3. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  4. Normal Health-Related Quality of Life and Ability to Work Twenty-nine Years After in Situ Arthrodesis for High-Grade Isthmic Spondylolisthesis.

    Science.gov (United States)

    Joelson, Anders; Hedlund, Rune; Frennered, Karin

    2014-06-18

    The purpose of this mixed prospective and retrospective case series was to evaluate the long-term health-related quality of life and physical disability after in situ arthrodesis for high-grade isthmic spondylolisthesis. Thirty-five of forty consecutive patients who had in situ spinal arthrodesis for high-grade isthmic spondylolisthesis at a mean age of fifteen years (range, nine to twenty-five years) completed validated questionnaires (Short Form-36 [SF-36], EuroQol-5 Dimensions [EQ-5D], Zung depression scale, Oswestry disability index [ODI], Million score, and back and leg pain visual analog scale [VAS]) and underwent physical examination twenty-nine years (range, twenty-three to thirty-five years) after surgery. The mean age at the time of follow-up was forty-three years (range, thirty-seven to fifty-one years). In the absence of a formal control group, the scores on the SF-36 and EQ-5D were compared with Swedish normative data. The proportion of patients at work was compared with an age-matched control group derived from official statistics of Sweden. The Million score at the long-term follow-up was compared with the corresponding results at the mid-term follow-up of the same patients at a mean age of twenty-two years. The scores on the SF-36 and EQ-5D were similar to the scores of the general Swedish population. The mean Zung depression scale score was 30 (range, 20 to 52), the mean ODI score was 10 (range, 0 to 34), the mean back pain VAS score was 13 (range, 0 to 72), and the mean leg pain VAS score was 9 (range, 0 to 60). The Million score averaged 28 (range, 0 to 109) and was slightly worsened compared with the score of 19 (range, 0 to 94) at the mid-term follow-up (p = 0.034). The proportion of patients at work was the same as that for the age-matched general Swedish population. Our study shows good outcomes in health-related quality of life, disability, pain, and ability to work at up to twenty-nine years after in situ lumbar spine arthrodesis for high

  5. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  6. High-throughput workflow for identification of phosphorylated peptides by LC-MALDI-TOF/TOF-MS coupled to in situ enrichment on MALDI plates functionalized by ion landing.

    Science.gov (United States)

    Krásný, Lukáš; Pompach, Petr; Strnadová, Marcela; Hynek, Radovan; Vališ, Karel; Havlíček, Vladimír; Novák, Petr; Volný, Michael

    2015-06-01

    We report an MS-based workflow for identification of phosphorylated peptides from trypsinized protein mixtures and cell lysates that is suitable for high-throughput sample analysis. The workflow is based on an in situ enrichment on matrix-assisted laser desorption/ionization (MALDI) plates that were functionalized by TiO2 using automated ion landing apparatus that can operate unsupervised. The MALDI plate can be functionalized by TiO2 into any array of predefined geometry (here, 96 positions for samples and 24 for mass calibration standards) made compatible with a standard MALDI spotter and coupled with high-performance liquid chromatography. The in situ MALDI plate enrichment was compared with a standard precolumn-based separation and achieved comparable or better results than the standard method. The performance of this new workflow was demonstrated on a model mixture of proteins as well as on Jurkat cells lysates. The method showed improved signal-to-noise ratio in a single MS spectrum, which resulted in better identification by MS/MS and a subsequent database search. Using the workflow, we also found specific phosphorylations in Jurkat cells that were nonspecifically activated by phorbol 12-myristate 13-acetate. These phosphorylations concerned the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and its targets and were in agreement with the current knowledge of this signaling cascade. Control sample of non-activated cells was devoid of these phosphorylations. Overall, the presented analytical workflow is able to detect dynamic phosphorylation events in minimally processed mammalian cells while using only a short high-performance liquid chromatography gradient. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Long-term safety and efficacy follow-up of prophylactic higher fluence collagen cross-linking in high myopic laser-assisted in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2012-07-01

    Full Text Available Anastasios John KanellopoulosLaservision.gr Institute, Athens, Greece, and New York University Medical School, New York, NY, USABackground: The purpose of this study was to evaluate the safety and efficacy of ultraviolet A irradiation cross-linking on completion for cases of high myopic laser-assisted in situ keratomileusis (LASIK.Methods: Forty-three consecutive LASIK cases treated with femtosecond laser flap and the WaveLight excimer platform were evaluated perioperatively for uncorrected visual acuity, best corrected spectacle visual acuity, refraction, keratometry, topography, total and flap pachymetry, corneal optical coherence tomography, and endothelial cell count. All eyes at the completion of LASIK had cross-linking through the repositioned flap, with higher fluence (10 mW/cm2 ultraviolet light of an average 370 µm wavelength and 10 mW/cm2 fluence applied for 3 minutes following an earlier single instillation of 0.1% riboflavin within the flap interface. Mean follow-up duration was 3.5 (range 1.0–4.5 years.Results: Mean uncorrected visual acuity changed from 0.2 to 1.2, best corrected spectacle visual acuity from 1.1 to 1.2, spherical equivalent from -7.5 diopters (D to -0.2 D, keratometry from 44.5 D to 38 D, flap pachymetry from 105 µm to, total pachymetry from 525 to 405, and endothelial cell count from 2750 to 2800. None of the cases developed signs of ectasia or significant regression during follow-up.Conclusion: Prophylactic collagen cross-linking for high-risk LASIK cases appears to be a safe and effective adjunctive treatment for refractive regression and potential ectasia. This application may be viewed as prophylactic customization of the biomechanical behavior of corneal collagen.Keywords: prophylactic collagen cross-linking, laser-assisted in situ keratomileusis, high-risk, post-LASIK ectasia

  8. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    Science.gov (United States)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  9. New weldable high strength aluminum alloy developed for cryogenic service

    Science.gov (United States)

    1966-01-01

    Wrought aluminum alloy has improved low temperature notch toughness and weldability. This alloy can be mill-fabricated to plate and sheet without difficulty. Post-weld aging improves weld ductility and strength properties. A typical treatment is 8 hours at 225 deg F plus 16 hours at 300 deg F.

  10. New tungsten alloy has high strength at elevated temperatures

    Science.gov (United States)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.

  11. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  12. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573...

  13. In situ electric fields causing electro-stimulation from conductor contact of charged human.

    Science.gov (United States)

    Nagai, Toshihiro; Hirata, Akimasa

    2010-08-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength-duration curves with parameters used in previous studies.

  14. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  15. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete

    National Research Council Canada - National Science Library

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    ...) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study...

  16. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    National Research Council Canada - National Science Library

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    ...) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study...

  17. Investigation of the Effect of Tungsten Substitution on Microstructure and Abrasive Wear Performance of In Situ VC-Reinforced High-Manganese Austenitic Steel Matrix Composite

    Science.gov (United States)

    Moghaddam, Emad Galin; Karimzadeh, Neda; Varahram, Naser; Davami, Parviz

    2013-08-01

    Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W3C phase and reduced the abrasive wear resistance because of decrease in distribution homogeneity and volume fraction of the reinforcing VC particles.

  18. In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope

    Directory of Open Access Journals (Sweden)

    J. Ishioka

    2017-03-01

    Full Text Available ZnO photocatalysts in water react with environmental water molecules and corrode under illumination. ZnO nanorods in water can also grow because of water splitting induced by UV irradiation. To investigate their morphological behavior caused by crystal growth and corrosion, here we developed a new laser-equipped high-voltage electron microscope and observed crystal ZnO nanorods immersed in ionic liquid. Exposing the specimen holder to a laser with a wavelength of 325 nm, we observed the photocorrosion in situ at the atomic scale for the first time. This experiment revealed that Zn and O atoms near the interface between the ZnO nanorods and the ionic liquid tended to dissolve into the liquid. The polarity and facet of the nanorods were strongly related to photocorrosion and crystal growth.

  19. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    Science.gov (United States)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  20. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Science.gov (United States)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  1. Identification of Treponema pedis as the predominant Treponema species in porcine skin ulcers by fluorescence in situ hybridization and high-throughput sequencing

    DEFF Research Database (Denmark)

    Karlsson, Frida; Schou, Kirstine Klitgaard; Jensen, Tim Kåre

    2014-01-01

    Skin lesions often seen in pig production are of great animal welfare concern. To study the potential role of Treponema bacteria in porcine skin ulcers, we investigated the presence and distribution of these organisms in decubital shoulder ulcers (n=51) and ear necroses (n=54) by fluorescence....... The results from this study point toward an important role of T. pedis as a secondary bacterial infection in porcine skin ulcers, especially in severe and chronic lesions....... in situ hybridization (FISH) and high-throughput sequencing. In addition, two cases of facial ulcers and five cases of other skin ulcers were included in the study. Samples from all 112 skin lesions and intact skin from pigs without skin ulcers (n=14) were screened by FISH. Three different oligonucleotide...

  2. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Yan, Lijing; Liu, Jie; Wang, Qianqian; Sun, Minghao; Jiang, Zhanguo; Liang, Chengdu; Pan, Feng; Lin, Zhan

    2017-11-08

    Silicon (Si) has aroused great interest as the most attractive anode candidate for energy-dense lithium-ion batteries (LIBs) in the past decade because of its significantly high capacity and low discharge potential. However, the large volume change during cycling impedes its practical application, which is more serious in the case of high mass loading. Designing Si anode with high mass loading and high areal capacity by a simple, scalable, and environmentally friendly method is still a big challenge. Herein, we report in situ one-pot synthesis of Si/C composite, where Si nanoparticles are wrapped by graphene-like 2D carbon nanosheets. After 500 cycles at 420 mA g(-1), the Si/C anode displays a gravimetric capacity of 881 mAh g(-1) with 86.4% capacity being retained. More specially, a high areal capacity of 3.13 mAh cm(-2) at 5.00 mg cm(-2) after 100 cycles is achieved. This study demonstrates a novel route for the preparation of the Si/C composite with high material utilization and may expand the possibility of future design Si-based anode with high areal capacity for high energy LIBs.

  3. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    National Research Council Canada - National Science Library

    Mochamad Solikin; Budi Setiawan

    2017-01-01

    ...) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete...

  4. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries.

    Science.gov (United States)

    Xue, Hairong; Zhao, Jianqing; Tang, Jing; Gong, Hao; He, Ping; Zhou, Haoshen; Yamauchi, Yusuke; He, Jianping

    2016-03-24

    Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three-dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m(2) g(-1)), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium-ion batteries, a SnO2 @OMC composite material can deliver an initial charge capacity of 943 mAh g(-1) and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g(-1), even exhibit a capacity of 503 mA h g(-1) after 100 cycles at 160 mA g(-1). In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium-ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  6. Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed In Situ by High-Pressure Pyrolysis for Efficient Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2016-01-01

    Carbon-supported PtFe alloy catalysts are synthesized by the one-step, high-temperature pyrolysis of Pt, Fe, and C precursors. As a result of the high temperature, the formed PtFe nanoparticles possess highly ordered, face-centered tetragonal, intermetallic structures with a mean size of ≈11.8 nm...

  7. Durability Index Performance of High Strength Concretes Made Based on Different Standard Portland Cements

    Directory of Open Access Journals (Sweden)

    Stephen O. Ekolu

    2012-01-01

    Full Text Available A consortium of three durability index test methods consisting of oxygen permeability, sorptivity and chloride conductivity were used to evaluate the potential influence of four (4 common SANS 10197 cements on strength and durability of concrete. Twenty four (24 concrete mixtures of water-cement ratios (w/c's = 0.4, 0.5, 0.65 were cast using the cement types CEM I 42.5N, CEM II/A-M (V-L 42.5N, CEM IV/B 32.5R and CEM II/A-V 52.5N. The concretes investigated fall in the range of normal strength, medium strength and high strength concretes. It was found that the marked differences in oxygen permeability and sorptivity results observed at normal and medium strengths tended to vanish at high concrete strengths. Also, the durability effects attributed to use of different cement types appear to diminish at high strengths. Cements of low strength and/or that contained no extenders (CEM 32.5R, CEM I 42.5N showed greater sensitivity to sorptivity, relative to other cement types. Results also show that while concrete resistance to chlorides generally improves with increase in strength, adequately high chloride resistance may not be achieved based on high strength alone, and appropriate incorporation of extenders may be necessary.

  8. Kiwifruit-like Persistent Luminescent Nanoparticles with High-Performance and in Situ Activable Near-Infrared Persistent Luminescence for Long-Term in Vivo Bioimaging.

    Science.gov (United States)

    Lin, Xia-Hui; Song, Liang; Chen, Shan; Chen, Xiao-Feng; Wei, Jing-Jing; Li, Jingying; Huang, Guoming; Yang, Huang-Hao

    2017-11-29

    Persistent luminescence nanoparticles (PLNPs) have great potential for bioimaging because they can eliminate the tissue autofluorescence and improve the signal-to-noise ratio significantly. High-temperature calcination is a necessary process for the PLNPs to achieve high luminescence intensity and long afterglow time. However, high-temperature calcination usually results in uncontrollable morphology and poor homogeneity of PLNPs, which greatly limit their applications. Therefore, there is still a high demand to find a suitable method for synthesizing PLNPs with high luminescence intensity and long afterglow time while maintaining their monodispersed morphology. Herein, we report a facile silica template method to synthesize PLNPs with a kiwifruit-like structure that can tolerate high-temperature calcination. The as-prepared kiwifruit-like SiO2@ZnGa2O4:Cr3+@SiO2 PLNPs have enhanced near-infrared persistent luminescence, uniform morphology and size, and good biocompatibility. Moreover, the SiO2@ZnGa2O4:Cr3+@SiO2 PLNPs can be repeatedly activated by soft X-rays in situ and emit near-infrared persistent luminescence with long decay time, holding great potential for deep-tissue and long-term in vivo bioimaging. We believe that this study will open new perspectives for synthesizing high-performance PLNPs for optical imaging and diversified applications.

  9. Correlation between Compressive Strength and Rheological Parameters of High-Performance Concrete

    Directory of Open Access Journals (Sweden)

    Aminul Islam Laskar

    2007-01-01

    Full Text Available Compressive strength is greatly influenced by the performance of concrete in its fresh stage such as uniform mixing, proper compaction, resistance to segregation during transporting and placing. Attempt has, therefore, been made to correlate compressive strength to the rheological behavior of high performance concrete with a modified setup of parallel plate rheometer. Modified setup considers the shearing of concrete at the centre of the cylindrical container that takes into account the resistance between concrete and the vertical side of the wall. It has been observed that compressive strength increases steeply as the yield strength increases up to a certain level. Plastic viscosity, however, shows optimum value for maximum compressive strength.

  10. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  11. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  12. Double-faced γ-Fe2O3||SiO2 nanohybrids: flame synthesis, in situ selective modification and highly interfacial activity

    Science.gov (United States)

    Li, Yunfeng; Hu, Yanjie; Jiang, Hao; Li, Chunzhong

    2013-05-01

    Double-faced γ-Fe2O3||SiO2 nanohybrids (NHs) and their in situ selective modification on silica faces with the 3-methacryloxypropyltrimethoxysilane molecules have been successfully prepared by a simple, rapid and scalable flame aerosol route. The double-faced NHs perfectly integrate magnetic hematite hemispheres and non-magnetic silica parts into an almost intact nanoparticle as a result of phase segregation during the preparation process. The unique feature allows us to easily manipulate these particles into one-dimensional chain-like nanostructures. On the other hand, in situ selectively modified double-faced γ-Fe2O3||SiO2 NHs possess excellent interfacial activities, which can assemble into many interesting architectures, such as interfacial film, magnetic responsive capsules, novel magnetic liquid marbles and so forth. The modified NHs prefer to assemble at the interface of water-oil or oil-water systems. It is believed that the highly interfacial active NHs are not only beneficial for the development of interface reaction in a miniature reactor, but also very promising functional materials for other smart applications.Double-faced γ-Fe2O3||SiO2 nanohybrids (NHs) and their in situ selective modification on silica faces with the 3-methacryloxypropyltrimethoxysilane molecules have been successfully prepared by a simple, rapid and scalable flame aerosol route. The double-faced NHs perfectly integrate magnetic hematite hemispheres and non-magnetic silica parts into an almost intact nanoparticle as a result of phase segregation during the preparation process. The unique feature allows us to easily manipulate these particles into one-dimensional chain-like nanostructures. On the other hand, in situ selectively modified double-faced γ-Fe2O3||SiO2 NHs possess excellent interfacial activities, which can assemble into many interesting architectures, such as interfacial film, magnetic responsive capsules, novel magnetic liquid marbles and so forth. The modified NHs

  13. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  14. Insights from in-situ, UV-based, high-frequency sensor for characterizing storm-event particulate organic carbon in stream runoff

    Science.gov (United States)

    Inamdar, S. P.; Rowland, R. D.; Del Percio, S.; Johnson, E. R.

    2016-12-01

    While dissolved forms of organic carbon (e.g., DOC) make up a large portion of the runoff load during baseflow and small storms, large storms can erode and mobilize significant amounts of particulate organic carbon (POC). Large storms yield sudden and rapid changes in POC which occur at minutes to hours and typically early in the storm event. Capturing these "hot moments" of POC is critical for understanding watershed processes, developing accurate budgets of solute flux, assessing the impacts on receiving aquatic ecosystems and developing sustainable mitigation strategies. The recent availability of in-situ, high-frequency, electronic sensors has shown considerable promise for characterizing dissolved forms of solutes (e.g., DOC, nitrate-nitrogen), but their ability to measure POC has yet to be rigorously evaluated. We evaluated the accuracy of a UV-based sensor to measure POC concentrations using a combination of field and laboratory based studies. Stream water POC concentrations were studied for multiple storms over a 2-year period (2015-2016) in a 79 ha forested watershed (second-order stream) in the Piedmont region of Maryland. Storm sampling was performed using ISCO samplers and POC (% OC content) was determined for suspended sediments (SS) retained on a 0.7 micron filter. POC values measured by the in-situ stream sensor are being evaluated against those determined for suspended sediments from stream runoff. Sensor versus lab-determined POC concentrations will be evaluated for: magnitude, intensity, and seasonal timing of the storms; values on the rising versus falling limb of the hydrograph; and potential sources of POC. Simultaneously, a laboratory experiment was performed where sensor versus lab-determined POC were examined for varying POC concentrations; variety of POC sources including stream banks, stream bed, forest floor, upland A horizon; and four particle size classes (2000-1000 µm; 1000-250 µm; 250-63 µm and climate change predictions that

  15. In situ synthesis of Co{sub 3}O{sub 4}/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bei, E-mail: Bei.Wang-1@student.uts.edu.au [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Wang Ying [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Park, Jinsoo; Ahn, Hyojun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong Jinju, Gyeongnam 660-701 (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2011-07-21

    Highlights: > In situ solution-based preparation of Co{sub 3}O{sub 4}/graphene composite material. > Well dispersed Co{sub 3}O{sub 4} nanoparticles on graphene nanosheets. > Co{sub 3}O{sub 4}/graphene exhibits highly reversible lithium storage capacity. > Co{sub 3}O{sub 4}/graphene delivers superior supercapacitance up to 478 F g{sup -1}. > Functional groups make contributions to the overall supercapacitance. - Abstract: Co{sub 3}O{sub 4}/graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co{sup 2+} salts were converted to Co{sub 3}O{sub 4} nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co{sub 3}O{sub 4} nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g{sup -1} in lithium-ion cells and a specific supercapacitance of 478 F g{sup -1} in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co{sub 3}O{sub 4} nanoparticles. Co{sub 3}O{sub 4}/graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.

  16. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  17. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  18. In situ strain investigation during laser welding using digital image correlation and finite-element-based numerical simulation

    NARCIS (Netherlands)

    Agarwal, G.; Gao, H.; Amirthalingam, M.; Hermans, M.J.M.

    2018-01-01

    In situ strain evolution during laser welding has been measured by means of digital image correlation to assess the susceptibility of an advanced high strength automotive steel to solidification cracking. A novel method realised using auxiliary illumination and optical narrow bandpass filter

  19. In situ strain investigation during laser welding using digital image correlation and finite-element-based numerical simulation

    NARCIS (Netherlands)

    Agarwal, G.; Gao, H.; Amirthalingam, M.; Hermans, M.J.M.

    2017-01-01

    In situ strain evolution during laser welding has been measured by means of digital image correlation to assess the susceptibility of an advanced high strength automotive steel to solidification cracking. A novel method realised using auxiliary illumination and optical narrow bandpass filter

  20. Intra-arterial papaverine and leg vascular resistance during in situ bypass surgery with high or low epidural anaesthesia

    DEFF Research Database (Denmark)

    Rørdam, Peter; Jensen, Leif Panduro; Schroeder, T V

    1993-01-01

    patients were operated during high epidural anaesthesia (> Th. 10). Flow increased and arterial pressure decreased after i.a. papaverine in all patients. When compared with patients operated during high epidural anaesthesia, flow increase and decrease in vascular resistance took place in patients operated...... in flow after i.a. papaverine was not significantly different to that noted during high epidural anaesthesia. The results indicate that the level of analgesia influences graft flow after i.a. papaverine, probably reflecting differences in the effect of epidural anaesthesia on sympathetic tone to the leg....

  1. Assessing water stress of desert Tamarugo trees using in situ data and very high spatial resolution remote sensing

    National Research Council Canada - National Science Library

    Chávez Oyanadel, R.O; Clevers, J.G.P.W; Herold, M; Acevedo, E; Ortiz, M

    2013-01-01

    .... One such species is the tree Prosopis tamarugo Phil. Because Tamarugo completely depends on groundwater, it is being threatened by the high water demand from the Chilean mining industry and the human consumption...

  2. Oldest biliary endoprosthesis in situ.

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-07-16

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing "irretrievable stones" include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis.

  3. Oldest biliary endoprosthesis in situ

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-01-01

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing “irretrievable stones” include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis. PMID:23858381

  4. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  5. Longitudinal differences of the PMSE strength at high Arctic latitudes

    Science.gov (United States)

    Latteck, Ralph; Singer, Werner; Swarnalingam, Nimalan; Maik Wissing, Jan; Meek, Chris; Manson, Allan H.; Drummond, James; Hocking, Wayne K.

    2010-05-01

    Observations of Polar Mesosphere Summer Echoes (PMSE) obtained by the ALWIN VHF radar, located in Andenes, Norway (69°N, 16°E) and by the Resolute Bay VHF radar, located in Nunavut, Canada (75°N, 95°W), are characterized by differences in occurrence rate and PMSE strengths, with generally lower levels at Resolute Bay. Even though both radars are well calibrated, the effect of the different radar hardware, especially the antenna systems, on the observations still causes concerns if comparisons of results from both sites are presented. Now, PMSE observations with identical radar hardware and identical analysis software are possible using the recently installed SKiYMET meteor radar at Eureka (80°N, 86°W) and the SKiYMET meteor radar at Andenes. Eureka is located in the same longitudinal sector as Resolute Bay, but 5 degrees north of the site, the Andenes SKiYMET radar is co-located with the ALWIN VHF radar. Both SKiYMET radars are calibrated using cosmic sky noise variations. A 4-week measurement campaign was performed during July in 2008, with both the Andenes and Eureka meteor radars running in a special mode designed for PMSE studies. Lower levels of PMSE strength were found at Eureka, confirming the earlier observations at Resolute Bay obtained by VHF radar. The observations are discussed in relation to dynamics, thermal conditions, and ionization. Strong indications exist that the observed differences of PMSE strength are related to the different levels of ionisation due to precipitating particles in the auroral oval and inside the polar cap. Global maps of precipitating energetic electrons (energy band: 6.5 keV-9.46 keV) and energetic protons (energy band 80 keV-240 keV) derived from POES satellites clearly indicate that Eureka and Resolute Bay are always inside the polar cap where, under geomagnetically quiet conditions, ionisation due to particle precipitation is missing.

  6. In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity.

    Science.gov (United States)

    Zhang, Xin; Shao, Changlu; Zhang, Zhenyi; Li, Jinhuan; Zhang, Peng; Zhang, Mingyi; Mu, Jingbo; Guo, Zengcai; Liang, Pingping; Liu, Yichun

    2012-02-01

    The ZnO quantum dots-SiO(2) nanotubes (ZQDs-SNTs) nanocomposite was successfully fabricated by direct heat treatment of the electrospun zinc acetate/tetraethyl orthosilicate (TEOS)/polymer nanotubes (NTs). The results indicated that the ZnO quantum dots (ZQDs) with diameter about 3-5 nm were highly dispersed on the SiO(2) nanotubes (SNTs). And, there might be Zn-O-Si bonds between ZQDs and SiO(2) matrix, which formed interface states in the ZQDs-SNTs nanocomposite. The photocatalytic studies revealed that the ZQDs-SNTs nanocomposite exhibited high photocatalytic activity to degrade Rhodamine B (RB) under ultraviolet (UV) light irradiation, which might be ascribed to two reasons. The first one was the high dispersity of ZQDs; another one was the high separation efficiency of photogenerated electron-hole pairs due to the trap effect for photogenerated electrons of the interface states between ZQDs and SiO(2). During the photocatalytic reaction, the ZQDs-SNTs nanocomposite also exhibited high chemical stability in a wide range of pH values, which might be ascribed to the protective action of SiO(2) and the presence of Zn-O-Si bonds between ZQDs and SiO(2). Furthermore, the ZQDs-SNTs nanocomposites could be easily recycled because of their one-dimensional nanostructure property.

  7. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  8. Navy High-Strength Steel Corrosion-Fatigue Modeling Program

    Science.gov (United States)

    2006-10-01

    For elastic-plastic materials additional coefficients can be formula- based: the yield strength, the Ramberg - Osgood parameters, etc. The formulae...analysis codes having three different solution techniques (h-version finite element analy- sis in ABAQUS , p-version finite element analysis in StressCheck...inches] St re ss C on ce nt ra tio n Fa ct or ABAQUS BEASY StressCheck D=0.0625” D=0.25” D=1.0” Figure 5.2.5-1. Analysis Results of Various

  9. A constitutive model for the anelastic behavior of Advanced High Strength Steels

    NARCIS (Netherlands)

    Torkabadi, Ali; van Liempt, P.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2015-01-01

    In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good

  10. High strength fibre reinforced concrete : Static and fatigue behaviour in bending

    NARCIS (Netherlands)

    Lappa, E.S.

    2007-01-01

    Recently, a number of high strength and ultra high strength steel fibre concretes have been developed. Since these materials seem very suitable for structures that might be prone to fatigue failure, such as bridge decks, the understanding of the static and fatigue bending behaviour is vital. In

  11. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    dental manufacturers and laboratories have been marketing high- translucency monolithic zirconia restorative materials with claims of good esthetics ...restorations to combine the esthetics of all-ceramic restorations with the strength properties of zirconia. The purpose of this study was to evaluate...the translucency and strength of new highly translucent monolithic zirconia ceramic materials. Four monolithic zirconium-oxide materials marketed as

  12. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  13. In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    Directory of Open Access Journals (Sweden)

    Chunli Zhu

    2016-01-01

    Full Text Available The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction algorithm based on the theory of Taylor expansion is proposed to obtain the vibration response curve. Compared with the result simulated by using the finite element method, the video extraction result shows the same head wave and tail wave phenomenon, demonstrating that the vibration measurement by using the high-speed imaging technology is an effective measuring way. It can achieve noncontact and remote vibration measurement and has important practical value.

  14. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-30

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  15. High-energy radiation monitoring based on radio-fluorogenic co-polymerization. I : Small volume in situ probe

    NARCIS (Netherlands)

    Warman, J.M.; De Haas, M.P.; Luthjens, L.

    2009-01-01

    A method of radiation dosimetry is described which is based on the radiation-induced initiation of polymerization of a bulk monomer (e.g. methyl methacrylate) containing a small concentration (about 100 ppm) of a compound which is non-fluorescent but which becomes highly fluorescent when it is

  16. Microstructure evolutions of graded high-vanadium tool steel composite coating in-situ fabricated via atmospheric plasma beam alloying

    NARCIS (Netherlands)

    Cao, Huatang; Dong, XuanPu; Chen, Shuqun; Dutka, Mikhail; Pei, Yutao

    2017-01-01

    A novel high-vanadium based hard composite coating was synthesized from premixed powders (V, Cr, Mo, Ti, Nb) on ductile iron (DI) substrate via atmospheric plasma beam surface alloying process. The graded coating can be divided into three distinct zones: upper alloyed zone (AZ) rich with spherical

  17. Assessing water stress of desert Tamarugo trees using in situ data and very high spatial resolution remote sensing

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.; Clevers, J.G.P.W.; Herold, M.; Acevedo, E.; Ortiz, M.

    2013-01-01

    The hyper-arid Atacama Desert is one of the most extreme environments for life and only few species have evolved to survive its aridness. One such species is the tree Prosopis tamarugo Phil. Because Tamarugo completely depends on groundwater, it is being threatened by the high water demand from the

  18. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Science.gov (United States)

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  19. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  20. Optical and Microcantilever-Based Sensors for Real-Time In Situ Characterization of High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Gilbert M.; Bryan, Samuel

    2002-06-01

    Fundamental research is being conducted to develop sensors for strontium that can be used in real-time to characterize high-level waste (HLW) process streams. Two fundamentally different approaches are being pursued, which have in common the dependence on highly selective molecular recognition agents. In one approach, an array of chemically selective sensors with sensitive fluorescent probes to signal the presence of the constituent of interest are coupled to fiber optics for remote analytical applications. The second approach employs sensitive microcantilever sensors that have been demonstrated to have unprecedented sensitivity in solution for Cs+ and CrO4 -. Selectivity in microcantilever-based sensors is achieved by modifying the surface of a gold-coated cantilever with a monolayer coating of an alkanethiol derivative of the molecular recognition agent. The approaches are complementary since fiber optic sensors can be deployed in the highly alkaline environment of HLW, bu t a method of immobilizing a fluorescent molecular recognition agents in a polymer film or bead on the surface of the optical fiber has yet to be demonstrated. The microcantilever-based sensors function by converting molecular complexation into surface stress, and they have been demonstrated to have the requisite sensitivity. However, we will investigate method of protecting Si or SiN microcantilever sensors in the highly alkaline environment of HLW while maintaining high selectivity. One objective of this project is to develop Sr(II) molecular recognition agents with rapidly established equilibria needed for real-time analysis, and initial research will focus on calixarene-crown ethers as a platform. Sensors for alkali metal ions, hydroxide, and temperature will be part of the array of sensor elements that will be demonstrated in this program for both the cantilever and fiber optic sensor approaches.

  1. Optical and Microcantilever-Based Sensors for Real-Time In Situ Characterization of High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Bryan, Samuel

    2003-06-01

    Fundamental research is being conducted to develop sensors for cesium and strontium that can be used in real-time to characterize high-level waste (HLW) process streams. Two fundamentally different approaches are being pursued, having in common the dependence on highly selective molecular recognition agents. In one approach, an array of chemically selective sensors with sensitive fluorescent probes to signal the presence of the constituent of interest will be coupled to fiber optics for remote analytical applications. The second approach employs sensitive microcantilever sensors that have been demonstrated to have unprecedented sensitivity in solution for Cs+ and CrO4 -. Selectivity in microcantilever-based sensors is achieved by modifying the surface of a gold-coated cantilever with a monolayer coating of an alkanethiol derivative of the molecular recognition agent. The approaches are complementary since fiber optic sensors can be deployed in the highly alkaline environment of HLW, but a method of immobilizing a fluorescent molecular recognition agent in a polymer film or bead on the surface of the optical fiber has yet to be demonstrated. The microcantilever-based sensors function by converting molecular complexation into surface stress, and they have been demonstrated to have the requisite sensitivity. However, a method of protecting Si or SiN microcantilever sensors in the highly alkaline environment of HLW while maintaining high selectivity remains to be demonstrated. The fundamental technology for fiber optic and cantilever sensors has been developed by our collaborators David Walt and Thomas Thundat, respectively, and the goal of this project is to adapt molecular recognition chemistry to the methods already being employed. To develop molecular recognition agents for Cs+ and Sr(II) with rapidly established equilibria needed for real-time analysis, we will focus on calixarene-crown ethers as a platform. Sensors for alkali metal ions, hydroxide, and

  2. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  3. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  4. The research on delayed fracture behavior of high-strength bolts in steel structure

    Science.gov (United States)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  5. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline.

    Science.gov (United States)

    Lin, You-Yu; Hsieh, Chia-Hung; Chen, Jiun-Hong; Lu, Xuemei; Kao, Jia-Horng; Chen, Pei-Jer; Chen, Ding-Shinn; Wang, Hurng-Yi

    2017-04-26

    The accuracy of metagenomic assembly is usually compromised by high levels of polymorphism due to divergent reads from the same genomic region recognized as different loci when sequenced and assembled together. A viral quasispecies is a group of abundant and diversified genetically related viruses found in a single carrier. Current mainstream assembly methods, such as Velvet and SOAPdenovo, were not originally intended for the assembly of such metagenomics data, and therefore demands for new methods to provide accurate and informative assembly results for metagenomic data. In this study, we present a hybrid method for assembling highly polymorphic data combining the partial de novo-reference assembly (PDR) strategy and the BLAST-based assembly pipeline (BBAP). The PDR strategy generates in situ reference sequences through de novo assembly of a randomly extracted partial data set which is subsequently used for the reference assembly for the full data set. BBAP employs a greedy algorithm to assemble polymorphic reads. We used 12 hepatitis B virus quasispecies NGS data sets from a previous study to assess and compare the performance of both PDR and BBAP. Analyses suggest the high polymorphism of a full metagenomic data set leads to fragmentized de novo assembly results, whereas the biased or limited representation of external reference sequences included fewer reads into the assembly with lower assembly accuracy and variation sensitivity. In comparison, the PDR generated in situ reference sequence incorporated more reads into the final PDR assembly of the full metagenomics data set along with greater accuracy and higher variation sensitivity. BBAP assembly results also suggest higher assembly efficiency and accuracy compared to other assembly methods. Additionally, BBAP assembly recovered HBV structural variants that were not observed amongst assembly results of other methods. Together, PDR/BBAP assembly results were significantly better than other compared methods

  6. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries

    Science.gov (United States)

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-07-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li+ due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle

  7. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope

    Science.gov (United States)

    Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C. Y.; Tang, C. C.; Bando, Y.; Lourie, O.

    2006-03-01

    Boron nitride nanotubes filled with magnesium oxides [MgO,MgO2] and/or hydroxide [Mg(OH)2] are electrically probed and delicately manipulated inside a 300kV JEOL-3000F high-resolution transmission analytical electron microscope equipped with a side-entry "Nanofactory Instruments" piezoholder. At a low bias the nanotubes demonstrate truly insulating behavior. At a high bias of ±30V they show reversible breakdown current of several dozens of nA. Under 300kV electron beam irradiation the nanotubes are positively charged that allows us to perform on-demand manipulation with them through tuning of polarity and/or value of a bias voltage on a gold counterelectrode from -140 to +140V, owing to the prominent electrostatic nanotube-electrode interactions.

  8. In situ preparation of biomimetic thin films and their surface-shielding effect for organisms in high vacuum.

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    Full Text Available Self-standing biocompatible films have yet to be prepared by physical or chemical vapor deposition assisted by plasma polymerization because gaseous monomers have thus far been used to create only polymer membranes. Using a nongaseous monomer, we previously found a simple fabrication method for a free-standing thin film prepared from solution by plasma polymerization, and a nano-suit made by polyoxyethylene (20 sorbitan monolaurate can render multicellular organisms highly tolerant to high vacuum. Here we report thin films prepared by plasma polymerization from various monomer solutions. The films had a flat surface at the irradiated site and were similar to films produced by vapor deposition of gaseous monomers. However, they also exhibited unique characteristics, such as a pinhole-free surface, transparency, solvent stability, flexibility, and a unique out-of-plane molecular density gradient from the irradiated to the unirradiated surface of the film. Additionally, covering mosquito larvae with the films protected the shape of the organism and kept them alive under the high vacuum conditions in a field emission-scanning electron microscope. Our method will be useful for numerous applications, particularly in the biological sciences.

  9. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H2O2, facilitating the continuous O2 gas generation in a relatively mild manner even if incubated with 10 μM H2O2, which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H2O2-enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  10. In situ, high sensitivity, measurement of sup 9 sup 0 strontium in ground water using Cherenkov light

    CERN Document Server

    Bowyer, T W; Hossbach, T W; Hansen, R; Wilcox, W A

    2000-01-01

    The measurement of sup 9 sup 0 Sr in soils and ground water is important for characterization and remediation of radioactively contaminated sites. Measuring the sup 9 sup 0 Sr content to a few pCi/g of soil has been accomplished based on a design of scintillating fibers in a multilayered configuration measuring the high-energy beta emitted from sup 9 sup 0 Y decay (when in secular equilibrium with sup 9 sup 0 Sr), but has not been applied to water because the technique is sensitive to only the first few mm of soil. The volume of the source to which the detector is sensitive limits the theoretical sensitivity of such a detector, unless chemical preprocessing to strip the sup 9 sup 0 Sr from the water is performed. sup 9 sup 0 Sr activity in water can be quantified by detecting the high-energy beta particle by the Cherenkov light it produces when the high-energy beta from sup 9 sup 0 Y passes through the medium. We have used this phenomenon to sensitively measure sup 9 sup 0 Sr ( sup 9 sup 0 Y) from a volume of...

  11. Experimental Study of Confined Low-, Medium- and High-Strength Concrete Subjected to Concentric Compression

    Directory of Open Access Journals (Sweden)

    Antonius

    2012-11-01

    Full Text Available An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects of these parameters on the strength and ductility of square-confined concrete were evaluated. Of the specimens tested in this study, the columns made with higher-strength concrete produced less strength enhancement and ductility than those with lower-strength concrete. The steel configurations were found to have an important role in governing the strength and ductility of the confined high-strength concrete. Moreover, several models of strength enhancement for confined concrete available in the literature turned out to be quite accurate in predicting the experimental results.

  12. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  13. Perspectives for in situ Scanning Tunnel Microscopic Imaging of Proteins at HOPG surfaces

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Thuesen, Marianne Hallberg; Møller, Per

    1996-01-01

    potentials on in situ potentiostatic control and releases nm size HOPG scrap bits. These are clearly different in shape from the ex situ imaged molecular-size structures. Laccase could not, however, be imaged by in situ STM, most likely due to structural incompatibility between hydrophobic HOPG surface......We have investigated the behaviour of the four-copper fungal metalloenzyme laccase (MW~68kDa) at highly oriented pyrolytic graphite (HOPG) surfaces by ex situ and in situ STM. The four copper atoms ar suited to stimulate long-range inelastic tunnel modes through the protein. The proteins forms...... crystalline or amorphous structures of micro-meter lateral extension during evaporation of aqueous laccase solution at low ionic strength. Individual molecular-size structures distinct from the HOPG background, and possibly arising from tip dislodging can also be imaged. The HOPG surface cracks at certain...

  14. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix

    DEFF Research Database (Denmark)

    Mayorca-Guiliani, Alejandro E.; Madsen, Chris D.; Cox, Thomas R.

    2017-01-01

    decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM....... We also describe differing patterns of basement-membrane organization surrounding different types of blood vessels in healthy and diseased tissues. The ISDoT procedure allows for the study of native ECM structure under normal and pathological conditions in unprecedented detail....

  15. In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells.

    Science.gov (United States)

    Hu, Aifeng; Wang, Qingxia; Chen, Lie; Hu, Xiaotian; Zhang, Yong; Wu, Yinfu; Chen, Yiwang

    2015-07-29

    A novel electron transport layer (ETL) based on zinc oxide@graphene:ethyl cellulose (ZnO@G:EC) nanocomposite is prepared by in situ formation of zinc oxide (ZnO) nanocrystals in a graphene matrix to improve the performance of polymer solar cells. Liquid ultrasound exfoliation by ethyl cellulose as stabilizer not only allows for uniform dispersion of graphene solution but also maintains an original structure of graphene gaining a high conductivity. The ZnO@G:EC ETL displays a quite smooth morphology and develops the energy-level alignment for the electron extraction and transportation. Subsequently, the device based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methyl ester (PC61BM) with the ZnO@G:EC as ETL obtains a power conversion efficiency (PCE) of 3.9%, exhibiting a ∼20% improvement compared to the familiar device with bare ZnO nanocrystals as ETL. Replacing the active layer with polythieno[3,4-b]thiophene/benzodithiophene (PTB7): (6,6)-phenyl-C71 butyric acid methyl ester (PC71BM), the PCE can be dramatically improved to 8.4%. This facile and fascinating method to produce a smooth and highly conductive electron transport layer provides an anticipated approach to obtain high performance polymer solar cells.

  16. In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites

    Directory of Open Access Journals (Sweden)

    Jilin Wang

    2017-10-01

    Full Text Available In this work, a reaction coupling self-propagating high-temperature synthesis (RC-SHS method was developed for the in situ controlled synthesis of novel, high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites using TiO2, Mg, B2O3, KBH4 and NH4NO3 as raw materials. The as-synthesized samples were characterized using X-ray diffraction (XRD, scanning electron microscope (SEM, X-ray energy dispersive spectroscopy (EDX, transition electron microscopy (TEM, high-resolution TEM (HRTEM and selected-area electron diffraction (SAED. The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100–500 nm, and every particle surface was covered by many multibranched, tapered nanorods with diameters in the range of 10–40 nm and lengths of 50–200 nm. In addition, the tapered nanorod presents a rough surface with abundant exposed atoms. The internal and external components of the nanorods were TiB2 and TiN, respectively. Additionally, a thermogravimetric and differential scanning calorimetry analyzer (TG-DSC comparison analysis indicated that the as-synthesized samples presented better chemical activity than that of commercial TiB2 powders. Finally, the possible chemical reactions as well as the proposed growth mechanism of the TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites were further discussed.

  17. Comparison of high resolution chromosome banding and fluorescence in situ hybridization (FISH) for the laboratory evaluation of Prader-Willi syndrome and Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Delach, J.A.; Rosengren, S.S.; Kaplan, L.; Greenstein, R.M.; Cassidy, S.B.; Benn, P.A.

    1994-08-01

    The development of probes containing segments of DNA from chromosome region 15q11-q13 provides the opportunity to confirm the diagnosis of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) by fluorescence in situ hybridization (FISH). We have evaluated FISH studies and high resolution chromosome banding studies in 14 patients referred to confirm or rule out AS. In four patients (three from the PWS category and 1 from the AS group) chromosome analysis suggested that a deletion was present but FISH failed to confirm the finding. In one AS group patient, FISH identified a deletion not detectable by high resolution banding. Review of the clinical findings in the discrepant cases suggested that FISH results were correct and high resolution findings were erroneous. Studies with a chromosome 15 alpha satellite probe (D15Z) on both normal and abnormal individuals suggested that incorrect interpretation of chromosome banding may occasionally be attributable to alpha satellite polymorphism but other variation of 15q11-q13 chromosome bands also contributes to misinterpretation. We conclude that patients who have been reported to have a cytogenetic deletion of 15q11-q13 and who have clinical findings inconsistent with PWS and AS should be re-evaluated by molecular genetic techniques. 31 refs., 3 figs., 2 tabs.

  18. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: Insights into phosphorus mobilization and microbial iron reduction.

    Science.gov (United States)

    Ma, Wei-Wei; Zhu, Mao-Xu; Yang, Gui-Peng; Li, Tie

    2017-11-15

    Dissolved sulfide, iron (Fe), and phosphorus (P) concentrations in sediments of the East China Sea were simultaneously measured in situ by diffusive gradients in thin films (DGT) technique. The results, by combination with solid-phase Fe speciation, were used to characterize the interplays of Fe, S and P. Diverse distributions of dissolved sulfide among the sites are attributable to highly dynamic diagenetic regimes and varying availability of labile organic carbon (OC). The DGT technique provided high-resolution evidence for coexistence of microbial iron reduction (MIR) and sulfate reduction in localized zones, and for Fe-coupled P mobilization. Measured Fe2+/P ratios suggest that Fe2+ reoxidatiion at the oxic zones can serve as an efficient scavenger of P. Empirical estimation indicates that MIR plays an important role in anaerobic OC mineralization in the sediments, which is a combined result of low availability of labile OC, high reactive Fe content, and unsteady diagenetic regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In-situ synthesis of Co{sub 3}O{sub 4}/graphite nanocomposite for high-performance supercapacitor electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    M, Gopalakrishnan, E-mail: gopalkphy@gmail.com [Department of Physics, Vivekanandha College of Arts and Science for Women, Tiruchengode, Namakkal, 637205, Tamilnadu (India); G, Srikesh [Department of Chemistry, Material Electrochemistry Lab, Karunya University, Coimbatore 641114, Tamilnadu (India); A, Mohan [Department of Physics, Thin Film Laboratory, Karunya University, Coimbatore 641114, Tamilnadu (India); V, Arivazhagan [Department of Physics and Technology, University of Bergen, Bergen (Norway)

    2017-05-01

    Highlights: • High surface area, which governs the specific capacitance. • High chemical and thermal stability. • Co{sub 3}O{sub 4}/graphite nanocomposite electrode shows lower resistance. - Abstract: In this work, a low cost and pollution free in-situ synthesis of phase pure Co{sub 3}O{sub 4} nanoparticles and Co{sub 3}O{sub 4}/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g{sup −1} for pure and 395.04 F g{sup −1} for Co{sub 3}O{sub 4}/graphite nanocomposite at a current density of 0.5 A g{sup −1}. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.

  20. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.