WorldWideScience

Sample records for high strength dexterous

  1. Predicting hand function in older adults: evaluations of grip strength, arm curl strength, and manual dexterity.

    Science.gov (United States)

    Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing

    2017-08-01

    Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p function test. In comparison, older adults with better grip strength (β = .40, p function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.

  2. Disease activity, handgrip strengths, and hand dexterity in patients with rheumatoid arthritis.

    Science.gov (United States)

    Palamar, D; Er, G; Terlemez, R; Ustun, I; Can, G; Saridogan, M

    2017-07-18

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the hand joints and leading to impairment in hand functions. Evaluation of functional impairment is necessary for assessing patient's quality of life, disease activity, and treatment outcome. To date, many scientific studies assessed the disease activity of patients with RA, but little attention has been carried out to assess these patients' hand functions and dexterity. The purposes of this study were to determine the clinical relevance of the Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH), hand dexterity with the Purdue Pegboard Test (PPT), and handgrip strength and pinch strengths of RA patients and to look into their relation between each other. A prospective trial was performed in women with RA who were followed at the physical medicine and rehabilitation department of our university hospital. Eighty-two women between the ages of 18 and 70, with a diagnosis of RA according to the 2010 American College of Rheumatology/the European League Against Rheumatism (ACR/EULAR) criterion, were recruited to the study. The Disease Activity Scores were determined by using Disease Activity Score-28 (DAS-28). Handgrip strength was measured with a Jamar dynamometer, and lateral, palmar, and tip pinch strengths were measured by a pinchmeter. Hand functions were evaluated with the PPT, and functional outcomes were assessed with the QuickDASH questionnaire. The mean age of the study group was 49.27 ± 10.69 years. The average values of DAS-28 and the QuickDASH values were found to be 4.22 ± 1.28 and 38.33 ± 19.78, consecutively. High correlation was observed between DAS-28 and the QuickDASH values (p hands were significantly correlated with the QuickDASH values (p hand (p hand (p hands were correlated statistically significantly with DAS-28 and the QuickDASH scores (p hands were correlated with DAS-28 scores, but correlation with the QuickDASH scores was seen just in the dominant

  3. Motor dexterity and strength depend upon integrity of the attention-control system.

    Science.gov (United States)

    Rinne, Paul; Hassan, Mursyida; Fernandes, Cristina; Han, Erika; Hennessy, Emma; Waldman, Adam; Sharma, Pankaj; Soto, David; Leech, Robert; Malhotra, Paresh A; Bentley, Paul

    2018-01-16

    Attention control (or executive control) is a higher cognitive function involved in response selection and inhibition, through close interactions with the motor system. Here, we tested whether influences of attention control are also seen on lower level motor functions of dexterity and strength-by examining relationships between attention control and motor performance in healthy-aged and hemiparetic-stroke subjects ( n = 93 and 167, respectively). Subjects undertook simple-tracking, precision-hold, and maximum force-generation tasks, with each hand. Performance across all tasks correlated strongly with attention control (measured as distractor resistance), independently of factors such as baseline performance, hand use, lesion size, mood, fatigue, or whether distraction was tested during motor or nonmotor cognitive tasks. Critically, asymmetric dissociations occurred in all tasks, in that severe motor impairment coexisted with normal (or impaired) attention control whereas normal motor performance was never associated with impaired attention control (below a task-dependent threshold). This implies that dexterity and force generation require intact attention control. Subsequently, we examined how motor and attention-control performance mapped to lesion location and cerebral functional connectivity. One component of motor performance (common to both arms), as well as attention control, correlated with the anatomical and functional integrity of a cingulo-opercular "salience" network. Independently of this, motor performance difference between arms correlated negatively with the integrity of the primary sensorimotor network and corticospinal tract. These results suggest that the salience network, and its attention-control function, are necessary for virtually all volitional motor acts while its damage contributes significantly to the cardinal motor deficits of stroke. Copyright © 2018 the Author(s). Published by PNAS.

  4. Effects of a Single Hand-Exercise Session on Manual Dexterity and Strength in Persons with Parkinson Disease: A Randomized Controlled Trial.

    Science.gov (United States)

    Mateos-Toset, Sara; Cabrera-Martos, Irene; Torres-Sánchez, Irene; Ortiz-Rubio, Araceli; González-Jiménez, Emilio; Valenza, Marie Carmen

    2016-02-01

    To evaluate the effects on manual dexterity, hand grip, and pinch strength of a single intervention focused on hand exercises. Randomized, controlled, blinded study. Sixty people with Parkinson disease (PD) were recruited; 30 participants were allocated to a brief exercise session and 30 to a control group. Participants randomized to the experimental group received a 15-minute exercise session focused on hand training using therapeutic putty. Participants allocated to the control group performed active upper limb exercises. Measures of manual dexterity (assessed by the Purdue Pegboard Test and the Chessington Occupational Therapy Neurologic Assessment Battery dexterity task) and strength (hand grip and pinch strength) were recorded at baseline and after the intervention. Participants had significantly improved manual dexterity values (P exercise session showed an improvement in manual dexterity and strength in persons with PD. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. The effects of strength training on finger strength and hand dexterity in healthy elderly individuals.

    Science.gov (United States)

    Olafsdottir, Halla B; Zatsiorsky, Vladimir M; Latash, Mark L

    2008-10-01

    We investigated the effect of 6 wk of strength training on maximal pressing (MVC) force, indexes of finger individuation (enslaving), and performance in accurate force production tests and in functional hand tests in healthy, physically fit, elderly individuals. Twelve participants (average age 76 yr) exercised with both hands. One of the hands exercised by pressing with the proximal phalanges (targeting mainly intrinsic hand muscles), whereas the other hand exercised by pressing with the finger tips (targeting mainly extrinsic hand muscles). Training led to higher MVC forces, higher enslaving indexes, and improved performance on the pegboard grooved test. Changes in an index of multi-finger force stabilizing synergy showed a significant correlation with changes in the index of force variability in the accurate force production test. Strong transfer effects were seen to the site that did not perform strength training exercise within each hand. Effects of exercise at the proximal site were somewhat stronger compared with those of exercise at the finger tips, although the differences did not reach significance level. Control tests showed that repetitive testing by itself did not significantly change the maximal finger force and enslaving. The results suggest that strength training is an effective way to improve finger strength. It can also lead to changes in finger interaction and in performance of accurate force production tasks. Adaptations at a neural level are likely to mediate the observed effects. Overall, the data suggest that strength training can also improve the hand function of less healthy elderly subjects.

  6. The effects of strength training on finger strength and hand dexterity in healthy elderly individuals

    OpenAIRE

    Olafsdottir, Halla B.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2008-01-01

    We investigated the effect of 6 wk of strength training on maximal pressing (MVC) force, indexes of finger individuation (enslaving), and performance in accurate force production tests and in functional hand tests in healthy, physically fit, elderly individuals. Twelve participants (average age 76 yr) exercised with both hands. One of the hands exercised by pressing with the proximal phalanges (targeting mainly intrinsic hand muscles), whereas the other hand exercised by pressing with the fin...

  7. Very fast motion planning for highly dexterous-articulated robots

    Science.gov (United States)

    Challou, Daniel J.; Gini, Maria; Kumar, Vipin

    1994-01-01

    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.

  8. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.

    Science.gov (United States)

    Abidi, Haider; Gerboni, Giada; Brancadoro, Margherita; Fras, Jan; Diodato, Alessandro; Cianchetti, Matteo; Wurdemann, Helge; Althoefer, Kaspar; Menciassi, Arianna

    2018-02-01

    For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. Simulations and experiments show the efficacy of the proposed soft robot. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Mental fatigue negatively influences manual dexterity and anticipation timing but not repeated high-intensity exercise performance in trained adults.

    Science.gov (United States)

    Duncan, Michael J; Fowler, Nicholas; George, Oliver; Joyce, Samuel; Hankey, Joanne

    2015-01-01

    This study examined the impact of a period of mental fatigue on manual dexterity, anticipation timing and repeated high intensity exercise performance. Using a randomised, repeated measures experimental design, eight physically trained adults (mean age = 24.8 ± 4.1 years) undertook a 40 minute vigilance task to elicit mental fatigue or a control condition followed by four repeated Wingate anaerobic performance tests. Pre, post fatigue/control and post each Wingate test, manual dexterity (Seconds), coincidence anticipation (absolute error) were assessed. A series of two (condition) by six (time) ways repeated measures ANOVAs indicated a significant condition by time interactions for manual dexterity time (p = 0.021) and absolute error (p = 0.028). Manual dexterity and coincidence anticipation were significantly poorer post mental fatigue compared with control. There were no significant differences in mean power between conditions or across trials (all p > 0.05).

  10. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity.

    Science.gov (United States)

    Pixa, Nils H; Steinberg, Fabian; Doppelmayr, Michael

    2017-03-16

    While most research on brain stimulation with transcranial direct current stimulation (tDCS) targets unimanual motor tasks, little is known about its effects on bimanual motor performance. This study aims to investigate the effects of tDCS on unimanual as well as bimanual motor dexterity. We examined the effects of bihemispheric anodal high-definition tDCS (HD-atDCS) on both primary motor cortices (M1) applied concurrent with unimanual and bimanual motor training. We then measured the effects with the Purdue Pegboard Test (PPT) and compared them to a sham stimulation. Between a pretest and posttest, 31 healthy, right-handed participants practiced the PPT on three consecutive days and received - simultaneous to motor practice - either HD-atDCS over the left and right M1 (STIM, n=16) or a sham stimulation (SHAM, n=15). Five to seven days after the posttest, a follow-up test was conducted. Two-way ANOVAs with repeated measures showed significantly increased performance for all PPT-scores (p<0.001) in both groups. The scores for the right hand, both hands, and overall showed significant TIME x GROUP interactions (p<.05) with more improved performance for the STIM group, while left hand performance was not significantly altered. These effects were most pronounced in the follow-up test. Thus, we can conclude that a bihemispheric HD-atDCS of both M1's improves performance of unimanual and bimanual dexterity. The strength of the effects, however, depends on which hand is used in the unimanual task and the type of bimanual task performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effectiveness of a fine motor skills rehabilitation program on upper limb disability, manual dexterity, pinch strength, range of fingers motion, performance in activities of daily living, functional independency, and general self-efficacy in hand osteoarthritis: A randomized clinical trial.

    Science.gov (United States)

    Pérez-Mármol, Jose Manuel; García-Ríos, Ma Carmen; Ortega-Valdivieso, María Azucena; Cano-Deltell, Enrique Elías; Peralta-Ramírez, María Isabel; Ickmans, Kelly; Aguilar-Ferrándiz, María Encarnación

    A randomized clinical trial. Rehabilitation treatments for improving fine motor skills (FMS) in hand osteoarthritis (HOA) have not been well explored yet. To assess the effectiveness of a rehabilitation program on upper limb disability, independence of activities of daily living (ADLs), fine motor abilities, functional independency, and general self-efficacy in older adults with HOA. About 45 adults (74-86 years) with HOA were assigned to an experimental group for completing an FMS intervention or a control group receiving conventional occupational therapy. Both interventions were performed 3 times/wk, 45 minutes each session, during 8 weeks. Upper limb disability, performance in ADLs, pinch strength, manual dexterity, range of fingers motion, functional independency, and general self-efficacy were assessed at baseline, immediately after treatment, and after 2 months of follow-up. FMS group showed significant improvements with a small effect size on manual dexterity (P ≤ .034; d ≥ 0.48) and a moderate-high effect on range of index (P ≤ .018; d ≥ 0.58) and thumb (P ≤ .027; d ≥ 0.39) motion. The control group showed a significant worse range of motion over time in some joints at the index (P ≤ .037; d ≥ 0.36) finger and thumb (P ≤ .017; d ≥ 0.55). A rehabilitation intervention for FMS may improve manual dexterity and range of fingers motion in HOA, but its effects on upper limb disability, performance in ADLs, pinch strength, functionality, and self-efficacy remain uncertain. Specific interventions of the hand are needed to prevent a worsening in range of finger motion. 1b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  12. Identifying with Dexter

    Directory of Open Access Journals (Sweden)

    Houwen Janna

    2015-06-01

    Full Text Available Many contemporary high quality TV series tend to enable identification with protagonists who engage in morally dubious or outright abject acts. This essay takes Showtime’s series Dexter as a pre-eminent and extreme example of this tendency, and explores how the viewer’s identification with the serial-killing protagonist of the show is constructed and altered throughout several seasons of the series. In order to analyze the specific relation between Dexter and its audience, this essay first examines the more general possibility television series to produce firm identification of viewers with protagonists by comparing the format of the television series to two media that can be understood as its predecessors: literature and film.

  13. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  14. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  15. Development of a new high-dexterity manipulator for robot-assisted microsurgery

    Science.gov (United States)

    Schenker, Paul S.; Das, Hari; Ohm, Timothy R.

    1995-12-01

    We are developing a new robotic system applicable to micro- and minimally invasive surgeries. The goal is a dexterity-enhancing master-slave that will refine the scale of current microsurgeries, and minimize effects of involuntary tremor and jerk in surgeons' hands. As a result, new procedures of the eye, ear, brain and other critical faculties will become possible, and the positive outcome rates in conventional procedures will improve. In nominal configuration, this new robot assisted microsurgery (RAMS) system has a surgeon's hand controller immediately adjacent to the robot. The RAMS system is also potentially applicable to `telesurgery' -- surgeries to be carried out in local-remote settings and time-delayed operating theaters -- as considered important in field emergencies and displaced expertise scenarios. As of August 1994 we have developed and demonstrated a new 6 degree-of- freedom robot (slave) for the RAMS system. The robot and its associated Cartesian controls enable relative positioning of surgical tools to approximately 25 microns within a non-indexed and singularity-free work volume of approximately 20 cubic centimeters. This implies the capability to down-scale hand motion inputs by two to three times, and the consequent performance of delicate procedures in such areas as vitreo-retinal surgery, for which clinical trials of this robot are planned in 1996. Further, by virtue of an innovative drive actuation, the robot can sustain full extent loads up to three pounds, making it applicable to both fine manipulation of microsurgical tools and also the dexterous handling of larger powered devices of minimally invasive surgery. In this paper, we overview the robot mechanical design, controls implementation, and our preliminary experimentation with same. Our accompanying oral presentation includes a five minute video tape display of some engineering laboratory results achieved to date.

  16. A Parametric Modelling Method for Dexterous Finger Reachable Workspaces

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2016-03-01

    Full Text Available The well-known algorithms, such as the graphic method, analytical method or numerical method, have some defects when modelling the dexterous finger workspace, which is a significant kinematical feature of dexterous hands and valuable for grasp planning, motion control and mechanical design. A novel modelling method with convenient and parametric performances is introduced to generate the dexterous-finger reachable workspace. This method constructs the geometric topology of the dexterous-finger reachable workspace, and uses a joint feature recognition algorithm to extract the kinematical parameters of the dexterous finger. Compared with graphic, analytical and numerical methods, this parametric modelling method can automatically and conveniently construct a more vivid workspace's forms and contours of the dexterous finger. The main contribution of this paper is that a workspace-modelling tool with high interactive efficiency is developed for designers to precisely visualize the dexterous-finger reachable workspace, which is valuable for analysing the flexibility of the dexterous finger.

  17. Automation of motor dexterity assessment.

    Science.gov (United States)

    Heyer, Patrick; Castrejon, Luis R; Orihuela-Espina, Felipe; Sucar, Luis Enrique

    2017-07-01

    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p < 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives.

  18. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  19. Fetal cor triatriatum dexter

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Graem, Niels; Skibsted, Lillian

    2008-01-01

    Two early-2nd-trimester fetuses were aborted as a result of nuchal edema and suspected severe heart malformation. At autopsy one fetus demonstrated nuchal edema, mild hydronephrosis, and cor triatriatum dexter associated with ventricular septal defect and tubular hypoplasia of the aortic arch. Th...... of the embryonic sinus venosus. This malformation has been diagnosed in adults and children by echocardiography, surgery, or autopsy but has not previously been published in fetuses....

  20. High Strength and High Modulus Electrospun Nanofibers

    OpenAIRE

    Jian Yao; Cees W. M. Bastiaansen; Ton Peijs

    2014-01-01

    Electrospinning is a rapidly growing polymer processing technology as it provides a viable and simple method to create ultra-fine continuous fibers. This paper presents an in-depth review of the mechanical properties of electrospun fibers and particularly focuses on methodologies to generate high strength and high modulus nanofibers. As such, it aims to provide some guidance to future research activities in the area of high performance electrospun fibers.

  1. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  2. Hydrogen Assisted Cracking of High Strength Alloys

    National Research Council Canada - National Science Library

    Gangloff, Richard P

    2003-01-01

    ... (Irwin and Wells, 1997; Paris, 1998). Second, materials scientists developed metals with outstanding balances of high tensile strength and high fracture toughness (Garrison, 1990; Wells, 1993; Boyer, 1993...

  3. ABRASION RESISTANCE ESTIMATION OF HIGH STRENGTH CONCRETE

    Directory of Open Access Journals (Sweden)

    Şemsi YAZICI

    2007-01-01

    Full Text Available This study gives the results of a laboratory investigation undertaken to determine the relationship between mechanical properties (compressive and flexural strengths and abrasion resistance of 65-85 MPa high strength concretes incorporating silica fume, fly ash and silica fume-fly ash mixtures as supplementary cementing materials. A series of six different concrete mixtures including a control high strength concrete mixture (C1, and five high strength concrete mixtures (C2, C3, C4, C5, C6 incorporating supplementary cementing materials, were manufactured. The compressive strength, flexural strength, and abrasion resistance were determined for each mixture at 28-days. Mathematical expressions were suggested to estimate the abrasion resistance of concrete regarding their compressive strength and flexural strength.

  4. Prediction of Torsional Strength for Very High Early Strength Geopolymer

    Directory of Open Access Journals (Sweden)

    Woraphot PRACHASAREE

    2017-11-01

    Full Text Available Very early high strength geopolymers are gaining acceptance as alternative repair materials for highways and other infrastructure. In this study, a very rapid geopolymer binder based on Metakaolin (MK and Parawood ash (PWA, developed by the authors, was experimentally tested and a prediction model for its torsional strength is proposed. The geopolymer samples were subjected to uniaxial compression, flexural beam, and torsion tests. The modulus of rupture and torsional strength in terms of compression strength were found to be well approximated by 0.7(f’c1/2 and 1/7(x2y (f’c1/2, respectively. Also an interaction relation to describe combined bending and torsion was developed in this study. In addition, the effects of aspect ratio (y/x were studied on both torsional strength and combined bending and torsion. It was found that an aspect ratio of y/x = 3 significantly reduced the torsional resistance, to about 50 % of the torsional strength of a square section.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17280

  5. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties.

  6. MECHANICAL STRENGTH OF HIGHLY POROUS CERAMICS

    NARCIS (Netherlands)

    VANDENBORN, IC; SANTEN, A; HOEKSTRA, HD; DEHOSSON, JTM; Born, I.C. van den

    1991-01-01

    This paper reports on the mechanical strength of highly porous ceramics in terms of the Weibull and Duxbury-Leath distributions. More than 1000 side-crushing strength tests on silica-catalyst carriers of various particle sizes have been performed in series. Within a series, preparation conditions

  7. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator

    Science.gov (United States)

    Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran

    2016-01-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy. PMID:27818607

  8. Limits on rock strength under high confinement

    Science.gov (United States)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in

  9. Development of High Specific Strength Envelope Materials

    Science.gov (United States)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  10. Application of dexterous space robotics technology to myoelectric prostheses

    Science.gov (United States)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  11. Durability improvement assessment in different high strength ...

    Indian Academy of Sciences (India)

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell ...

  12. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  13. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  14. Designing Dexter-based cooperative hypermedia systems

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Madsen, Ole Lehrmann; Sloth, Lennard

    1993-01-01

    This paper discusses issues for the design of a Dexter-based cooperative hypermedia architecture and a specific system, DeVise Hypermedia (DHM), developed from this architecture. The Dexter Hypertext Reference Model [Hala90] was used as basis for designing the architecture. The Dexter model...... provides a general and solid foundation for designing a general hypermedia architecture. It introduces central concepts and proposes a layering of the architecture. However, to handle cooperative work aspects, such as sharing material and cooperative authoring, we have to go beyond the Dexter model...... concepts. To deal with such aspects we have extended our implementation of the Dexter concepts with support for long-term transactions, locking and event notification as called for by Halasz [Hala88]. The result is a platform independent architecture for developing cooperative hypermedia systems...

  15. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  16. Hydrogen Assisted Cracking of High Strength Alloys

    Science.gov (United States)

    2003-08-01

    Speidel reported simple Arrhenius behavior for lower strength Nimonic 105 (ays = 825 MPa) for 0C < T < 1000C (Speidel, 1974). The very high temperature... 115 of 194 L (a) R 250 nm 250 nm L (b) R Figure 43: Matching field emission SEM images of an IG facet in cz~hardened j3-Ti (Beta-C) cracked in aqueous...Thompson, ASM International, Materials Park, OH, 1974, pp. 115 -147. W.W. Gerberich, Y.T. Chen and C. St. John, A short-time diffusion correlation for

  17. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  18. Dexterity analysis and robot hand design

    Science.gov (United States)

    Li, LU; Soni, A. H.; Chunsheng, Cai; Brown, Max

    1988-01-01

    Understanding about a dexterous robot hand's motion ranges is important to the precision grasping and precision manipulation. A planar robot hand is studied for object orientation, including ranges of motion, measures with respect to the palm, position reaching of a point in the grasped object, and rotation of the object about the reference point. The rotational dexterity index and dexterity chart are introduced and an analysis procedure is developed for calculating these quantities. A design procedure for determining the hand kinematic parameters based on a desired partial or complete dexterity chart is also developed. These procedures have been tested in detail for a planar robot hand with two 2- or 3-link fingers. The derived results are shown to be useful to performance evaluation, kinematic parameter design, and grasping motion planning for a planar robot hand.

  19. Press hardening of alternative high strength aluminium and ultra-high strength steels

    Science.gov (United States)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  20. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  1. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  2. Finger dexterity and visual discrimination following two yoga breathing practices

    Directory of Open Access Journals (Sweden)

    Shirley Telles

    2012-01-01

    Full Text Available Background: Practicing yoga has been shown to improve motor functions and attention. Though attention is required for fine motor and discrimination tasks, the effect of yoga breathing techniques on fine motor skills and visual discrimination has not been assessed. Aim: To study the effect of yoga breathing techniques on finger dexterity and visual discrimination. Materials and Methods: The present study consisted of one hundred and forty subjects who had enrolled for stress management. They were randomly divided into two groups, one group practiced high frequency yoga breathing while the other group practiced breath awareness. High frequency yoga breathing (kapalabhati, breath rate 1.0 Hz and breath awareness are two yoga practices which improve attention. The immediate effect of high frequency yoga breathing and breath awareness (i were assessed on the performance on the O′Connor finger dexterity task and (ii (in a shape and size discrimination task. Results: There was a significant improvement in the finger dexterity task by 19% after kapalabhati and 9% after breath awareness (P<0.001 in both cases, repeated measures ANOVA and post-hoc analyses. There was a significant reduction (P<0.001 in error (41% after kapalabhati and 21% after breath awareness as well as time taken to complete the shape and size discrimination test (15% after kapalabhati and 15% after breath awareness; P<0.001 was also observed. Conclusion: Both kapalabahati and breath awareness can improve fine motor skills and visual discrimination, with a greater magnitude of change after kapalabhati.

  3. MoveBots - Flexible Object Handling using Dexterous Grippers

    DEFF Research Database (Denmark)

    Jørgensen, Jimmy Alison

    Within recent years there has been an increased focus in flexible automationin industrial production. This focus is strongly related to the demandfor small product batches and individually customized products. To enablesuch flexibility large machinery is exchanged or upgraded with high degreeof f...... for increasing flexibilityand robustness in robotic grasping where dexterous hands and tactilesensors are used....... freedom robot manipulators. These manipulators are programmable andmultipurpose and often only limited by their gripper systems. These limitationsare significant since the design and flexibility of the gripper determineswhich objects the system can handle.Current gripper systems are typically simple.......This dissertation present work that focus on increasing flexibility ofrobotic grasping by using simulation tools, dexterous hands and tactile sensors.The work is centered on development of tools and methods for graspplanning, analysis and simulation.Overall the research contributes with valuable tools...

  4. Design of High Compressive Strength Concrete Mix without Additives

    National Research Council Canada - National Science Library

    N, M, Akasha; Mohamed, Mansour Ahmed; Abdelrazig, Nasreen Maruiod

    2017-01-01

    .... The selected materials, with high specification using special production techniques, the properties ,the mix design procedure and mix proportion of the high strength concrete (HSC) were discussed...

  5. Complex hand dexterity: a review of biomechanical methods for measuring musical performance.

    Science.gov (United States)

    Metcalf, Cheryl D; Irvine, Thomas A; Sims, Jennifer L; Wang, Yu L; Su, Alvin W Y; Norris, David O

    2014-01-01

    Complex hand dexterity is fundamental to our interactions with the physical, social, and cultural environment. Dexterity can be an expression of creativity and precision in a range of activities, including musical performance. Little is understood about complex hand dexterity or how virtuoso expertise is acquired, due to the versatility of movement combinations available to complete any given task. This has historically limited progress of the field because of difficulties in measuring movements of the hand. Recent developments in methods of motion capture and analysis mean it is now possible to explore the intricate movements of the hand and fingers. These methods allow us insights into the neurophysiological mechanisms underpinning complex hand dexterity and motor learning. They also allow investigation into the key factors that contribute to injury, recovery and functional compensation. The application of such analytical techniques within musical performance provides a multidisciplinary framework for purposeful investigation into the process of learning and skill acquisition in instrumental performance. These highly skilled manual and cognitive tasks present the ultimate achievement in complex hand dexterity. This paper will review methods of assessing instrumental performance in music, focusing specifically on biomechanical measurement and the associated technical challenges faced when measuring highly dexterous activities.

  6. Complex Hand Dexterity: A Review of Biomechanical Methods for Measuring Musical Performance

    Directory of Open Access Journals (Sweden)

    Cheryl Diane Metcalf

    2014-05-01

    Full Text Available Complex hand dexterity is fundamental to our interactions with the physical, social and cultural environment. Dexterity can be an expression of creativity and precision in a range of activities, including musical performance. Little is understood about complex hand dexterity or how virtuoso expertise is acquired, due to the versatility of movement combinations available to complete any given task. This has historically limited progress of the field because of difficulties in measuring movements of the hand. Recent developments in methods of motion capture and analysis mean it is now possible to explore the intricate movements of the hand and fingers. These methods allow us insights into the neurophysiological mechanisms underpinning complex hand dexterity and motor learning. They also allow investigation into the key factors that contribute to injury, recovery and functional compensation.The application of such analytical techniques within musical performance provides a multidisciplinary framework for purposeful investigation into the process of learning and skill acquisition in instrumental performance. These highly skilled manual and cognitive tasks present the ultimate achievement in complex hand dexterity. This paper will review methods of assessing instrumental performance in music, focusing specifically on biomechanical measurement and the associated technical challenges faced when measuring highly dexterous activities.

  7. Influence of Different Drying Conditions on High Strength Concrete Compressive Strength

    Directory of Open Access Journals (Sweden)

    M. Safan

    2001-01-01

    Full Text Available The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.

  8. SERIAL TELEVISI DEXTER SEBAGAI ANAKRONISME DALAM SASTRA POPULER

    OpenAIRE

    Ida Rochani Adi

    2014-01-01

    In the popular literature context, this study aims to investigate: (1) how the formulation of the characterization of Dexter in the television serial Dexter violates the tradition of literary characterization, and (2) how the formula of moral values is dramatized through Dexter, who is a sociopath, psychopath, serial killer, and person without moral. The research object was the television serial Dexter, which ranks five in popularity in the world. The data were collected by documenting 84 epi...

  9. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...

  10. Tweezer dexterity aptitude of dental students.

    Science.gov (United States)

    Lundergan, William P; Soderstrom, Elizabeth J; Chambers, David W

    2007-08-01

    The rationale for using the Perceptual Ability Test (PAT) as a component in admissions decisions for dental schools is that candidates vary in an underlying aptitude that is predictive of degree of success in technique course performance and perhaps in clinical performance. There have been periodic attempts to identify tests that more directly measure manual dexterity aptitude that would supplement the predictive power of admissions decisions. Previous research has demonstrated that a commercially available "speeded" tweezer dexterity test (Johnson O'Connor Test #32022) is not associated with performance in dental school or dental practice. Our research investigated both Test #32022 and Test #18 that measure both speed and accuracy as potential predictors of dental school performance in technical and clinical courses. This article reports the results of a longitudinal, comparative study of tweezer dexterity scores for students at the University of the Pacific School of Dentistry during their first and last quarters in school. The goals of the study were to 1) evaluate the correlation between beginning students' scores on two different types of tweezer dexterity tests; 2) compare dental students' scores to normative data for the general population; 3) determine the effect of a dental curriculum on students' performance on Test #18; and 4) evaluate the two tests as potential dental school admission screening instruments in comparison to the PAT. Fifty first-quarter students were tested from a class of 134. Forty-nine of these students were retested on Test #18 during their final quarter. The predictor value of the initial scores for the two dexterity tests was assessed for seven outcome measures reflecting student technique performance. Analysis showed a significant correlation (r=0.318, pstudent mean for Test #18 (40.42) was not significant (p>0.05). The correlation between the first and final quarter administrations for Test #18 was r=0.517 (pweak. Results suggest

  11. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  12. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal steel Annaba” (Algeria) ... Keywords: High strength concrete- fillers- high-temperature- polypropylene fibres- Ground granulated. Furnace Slag ..... hybrid fibre reinforced high strength concrete after heat exposition ...

  13. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  14. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research on the sh...

  15. HIGH IONIC STRENGTH OR PRESENCE OF INOSITOL ...

    African Journals Online (AJOL)

    Preferred Customer

    has all the characteristics associated with the reaction of CysF9(93)β, a sulphydryl group that is invariant in all mammalian haemoglobins. The slow kinetic phase is assigned to CysH3(125)β. Quantitative analysis of the pH dependence of kapp for this phase at 50 mM ionic strength gave an unusually low pKa of 6.0 for this ...

  16. HIGH IONIC STRENGTH OR PRESENCE OF INOSITOL ...

    African Journals Online (AJOL)

    Preferred Customer

    dependence of kapp for this phase at 50 mM ionic strength gave an unusually low pKa of 6.0 for this sulphydryl group. Published data on guinea pig haemoglobin show that it has a much-enhanced acid Bohr effect compared to human haemoglobin. This indicates that CysH3(125)β functions as an acid Bohr group in guinea ...

  17. Bacterial cellulose gels with high mechanical strength.

    Science.gov (United States)

    Numata, Yukari; Sakata, Tadanori; Furukawa, Hidemitsu; Tajima, Kenji

    2015-02-01

    A composite structure was formed between polyethylene glycol diacrylate (PEGDA) and bacterial cellulose (BC) gels swollen in polyethylene glycol (PEG) as a solvent (BC/PEG gel) to improve the mechanical strength of the gels. The mechanical strength under compression and the rheostatic properties of the gels were evaluated. The compression test results indicated that the mechanical strength of the gels depended on the weight percent of cross-linked PEGDA in the gel, the chain length between the cross-linking points, and the cross-linking density of PEGDA polymers. The PEGDA polymers around the cellulose fibers were resistant to pressure; thus, the BC/PEG-PEGDA gel was stronger than the BC/PEG gel under compression. The results of transmittance measurements and thermomechanical analysis showed that the rheostatic properties of the gels were retained even after composite structure formation. BC/PEG-PEGDA gels, which are expected to be biocompatible, may be useful for clinical applications as a soft material. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  19. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  20. Study on the strength characteristics of High strength concrete with Micro steel fibers

    Science.gov (United States)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  1. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  2. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training

    Science.gov (United States)

    THOMAS, MICHAEL H.; BURNS, STEVE P.

    2016-01-01

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training. PMID:27182422

  3. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  4. High strength forgeable tantalum base alloy

    Science.gov (United States)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  5. Fatigue strength of truss girders made of very high strength steel

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.

    2010-01-01

    An effective application of Very High Strength Steel (VHSS) in civil engineering structures is expected in stiff, truss like structures, typically made of Circular Hollow Sections (CHS). Use of castings in combination with CHS could be promising for the design of highly fatigue resistant joints.

  6. Investigation of high-strength bolt-tightening verification techniques.

    Science.gov (United States)

    2016-03-01

    The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time : consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be some...

  7. Numerical study of high-strength concrete column confined with high-strength stirrups under axial compression

    Science.gov (United States)

    Liu, Qinwei; Wang, Nan; Niu, Xin; Cai, Zhe; Wang, Gang

    2018-01-01

    In order to study the deformation and stress distribution of confined concrete, the axial compression behavior of high-strength concrete column confined with high-strength stirrups is simulated through through nonlinear finite element program. The finite element model reflect the confining effect of high-strength stirrups in specimen. The calculated results shown that the deformation of stirrups is not equivalent in the cross section and the longitudinal section and the confined stress and axial stress of concrete is not uniform in the cross section.

  8. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can

  9. COR TRIATRIATUM DEXTER EN LA EDAD ADULTA / Cor triatriatum dexter in adulthood

    Directory of Open Access Journals (Sweden)

    Aliet Arrué Guerrero

    2013-07-01

    Full Text Available Resumen: El cor triatriatum dexter es una malformación muy rara, en el cual la aurícula derecha está dividida en dos cámaras por un tabique. Se presenta el caso de una joven de 24 años de edad con antecedentes de insuficiencia cardíaca por miocardiopatía puerperal, que acude al servicio de urgencias por descompensación de su enfermedad de base. Se solicita ecocardiograma donde se diagnostica el cor triatriatum dexter. Se envía la paciente al servicio de cirugía cardiovascular para resección quirúrgica. / Abstract: Cor triatriatum dexter is a very rare malformation in which the right atrium is divided into two chambers by a membrane. The case of a 24-year-old woman with a history of heart failure due to postpartum cardiomyopathy is reported. She was admitted to the emergency department for an acute exacerbation of her underlying disease. An echocardiogram was performed and cor triatriatum dexter was diagnosed. The pa-tient was referred to the cardiovascular surgery department for surgical resection.

  10. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  11. High Strength Development at Incompatible Semicrystalline Polymer-Polymer Interfaces

    Science.gov (United States)

    Hong, C. H.; Wool, Richard

    2007-03-01

    For incompatible A/B interfaces, the strength G1c is related to the equilibrium width w (normalized to the tube diameter) of the interface by G1c/G* = (w-1), where G* is the virgin strength [R.P. Wool, C.R, Chimie, 9 (2006) 25]. However, the interface strength is quite weak due to very limited interdiffusion. The mechanism of high strength development of a series of thermoplastic polyurethane elastomers (TPU) bonding with ethylene vinyl alcohol copolymers (EVOH) was investigated. During cool down of the A/B interface in the co-extruded melt, there exits a unique process window---the α-β window-which promotes considerable strength development. We used the differences in melting points and the volume contraction during asymmetric crystallization to generate influxes (σ nano-nails/unit area), where an influx occurs by the fluid being pulled into the crystallizing side. TPU samples with higher degree of crystallization typically exhibited higher peel strengths, due to the formation of both inter- and intra- spherulitic influxes of nano-dimension across the interface. The peel energy now behaves as G1c˜ σL^2, where L is the length of the influx and L>>w. Annealing between the α and βt relaxation temperatures of the EVOH generated additional influxes which provided significant connectivity and peel strength.

  12. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... amplitude fatigue test results showed shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, the fatigue tests on high-strength steel tubular joints showed slightly longer fatigue lives than those obtained...

  13. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  14. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  15. Workability and strength of coarse high calcium fly ash geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    P. Chindaprasirt; T. Chareerat; V. Sirivivatnanon [Khon Kaen University, Khon Kaen (Thailand). Department of Civil Engineering

    2007-03-15

    In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 {+-}5%-135 {+-}5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10-65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67-1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75{sup o}C with the curing duration of not less than two days.

  16. Optimum high temperature strength of two-dimensional nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  17. Optimum high temperature strength of two-dimensional nanocomposites

    Directory of Open Access Journals (Sweden)

    M. A. Monclús

    2013-11-01

    Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  18. A new specimen for out-of-plane shear strength of advanced high strength steel sheets

    Science.gov (United States)

    Gu, B.; He, J.; Li, S. H.; Zhao, Y. X.; Li, Y. F.; Zeng, D.; Xia, Z. C.; Lin, Z. Q.

    2017-09-01

    Compared with the conventional steels, “shear fracture” is one of the main issues for advanced high strength steels (AHSS). Due to rolling, anisotropy is an intrinsic property for sheet metals. Not only the plastic responses of sheet metals but also the fracture strengths are orientation dependent. In the small radius forming process, for example, the stretch-bending deformation of sheet metals under small radius condition, the normal stress cannot be neglected. Three-dimensional loading condition constructs complex shear stress states of sheet metals especially the out-of-plane shear stress. The out-of-plane performance must be considered in order to better understand the “shear fracture” phenomenon of AHSS. Compared to in-plane shear test, the out-of-plane shear test is more difficult to carry out due to the severe restriction of the dimensions in the thickness direction. In this paper, a new specimen is presented for out-of-plane shear test. Failure of the specimen occurs in shear between two centrally located notches machined halfway through its thickness from opposing sides. Meanwhile, the finite element (FE) model and possible failure modes of this specimen are investigated in detail. At last, brief experimental results between out-of-plane shear fracture strength and the in-plane shear fracture strength are compared for DP980 sheets.

  19. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  20. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  1. A Novel Method of Dexterity Analysis for a 5-DOF Manipulator

    Directory of Open Access Journals (Sweden)

    Wanjin Guo

    2016-01-01

    Full Text Available The dexterity characteristics and dexterous workspace features are applied as the considerable and key kinematics properties to evaluate the manipulator performance. In this paper, a novel method of the dexterity analysis with the character of graphic dexterity and a new concept of the spatial mapping envelope surface are proposed for a 5-degree of freedom (DOF manipulator. Additionally, for an arbitrary selected point and a dexterous workspace, the dexterity characteristics and the dexterity conditions are drawn, respectively. Finally, the dexterous workspace of this 5-DOF manipulator is obtained and it can be utilized as the basis research of this manipulator in future such as the structure optimization and motion control.

  2. (AJST) ANALYSIS OF THE WELD STRENGTH OF THE HIGH ...

    African Journals Online (AJOL)

    2013-08-02

    Aug 2, 2013 ... ABSTRACT: An analysis was carried out to determine the strength of welded joints in. High Density Polyethylene (HDPE) dam liners. Samples were collected of welded joints and subjected to tensile tests and creep test. It was observed that the welded joints from field welded samples were much weaker ...

  3. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  4. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  5. Fatigue experiments on connections made of very high strength steels

    NARCIS (Netherlands)

    Pijpers, R.; Kolstein, H.; Bijlaard, F.

    2013-01-01

    An effective application of Very High Strength Steels (VHSS) can be expected in truss-like structures, typically made of hollow sections. Improved design of VHSS truss structures could incorporate the application of cast joints, since an appropriate design of cast joints limits the stress

  6. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    Abstract. In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal ...

  7. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    The ascending branch of stress–strain curves depended on the ratio of confinement reinforcement was similar to the modified Kent–Park model and the descending branch similar to the Nagashima model. Keywords. High strength concrete; confined concrete; stress–strain models; ductility toughness. 1. Introduction.

  8. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    Unknown

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J RAKSHIT and P K DAS*. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. MS received 15 March 2002; revised 3 August 2002. Abstract. Four compositions of nitride bonded SiC were fabricated with ...

  9. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  10. Rheology of high melt strength polypropylene for additive manufacturing

    DEFF Research Database (Denmark)

    Jagenteufel, Ralf; Hofstätter, Thomas; Kamleitner, Florian

    2017-01-01

    Rheological measurements of high melt strength polypropylene (HMS-PP) were used in order to generate master curves describing the shear-dependent viscosity in comparison to acrylonitrile butadiene styrene copolymer (ABS). The latter material showed specific disadvantages in terms of thermal stabi...

  11. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements.

  12. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  13. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  14. Microcracking and engineering properties of high-strength concrete

    Science.gov (United States)

    Carrasquillo, R. L.

    1980-03-01

    The differences in mechanical properties between high strength and normal strength concretes are established and those differences are explained in terms of differences in observed internal microcracking in concrete at different stages of loading. Concretes made using gravel and crushed limestone coarse aggregates at each of three different strength levels ranging from 4,000 psi to 11,000 psi were studied. The results of the microcracking study and the study of the mechanical properties are presented. A criterion for definition of failure in uniaxial compression for the concretes tested is presented. Failure is considered to occur at the discontinuity point defined as that point when a self propagating microcracking mechanism is developed eventually causing disruptive failure with time. The predicted stress and strain ratios at discontinuity based on the microcracking study are compared to those at which sudden changes occur in the Poisson's ratio and volume change curves.

  15. Sequencing of endurance and high-velocity strength training.

    Science.gov (United States)

    Bell, G J; Petersen, S R; Quinney, H A; Wenger, H A

    1988-12-01

    To compare two sequences of endurance (E) and high-velocity resistance (HVR) training, sixteen male oarsmen were separated into Group ES which trained endurance prior to strength and Group SE which trained strength prior to endurance. The endurance program consisted of up to 60 min a session, five days a week for five weeks. HVR exercise was conducted on 12 stations of variable resistance hydraulic equipment, four sessions per week for five weeks. Endurance training significantly improved VO2max and submaximal heart rate and blood lactate responses in both groups regardless of the sequence followed. HVR training improved VO2max in group SE only and had no effect on submaximal response to exercise. Peak torque increases for knee extension and flexion with HVR training were greater in group SE than group ES. These results show that organizing strength and endurance training into sequential programs can influence the physiological adaptation to training.

  16. Crack propagation modelling for high strength steel welded structural details

    Science.gov (United States)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  17. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  18. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  19. Durable high strength cement concrete topping for asphalt roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  20. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  1. Lightweight High Strength Concrete with Expanded Polystyrene Beads

    OpenAIRE

    Subhan, Tengku Fitriani L

    2006-01-01

    This paper is a literature study about lightweight high strength concrete by incorporating expanded polystyrene beads. Basically polystyrene is disposal material from packaging industry. However, after being processed in a special manner, polystyrene can be expanded and used as lightweight concrete making material. Therefore, the use of expanded polystyrene beads in concrete is not only beneficial for engineering studies but also provide solution for the environmental problem

  2. Analysis of phase transformation in high strength low alloyed steels

    OpenAIRE

    A. Di Schino

    2017-01-01

    The effect of low-alloy additions on phase transformation of high strength low alloyed steels is reported. Various as-quenched materials with microstructures consisting of low carbon (granular) bainitic, mixed bainitic/martensitic and fully martensitic microstructures were reproduced in laboratory. Results show that for a given cooling rate, an increase of austenite grain size (AGS) and of Mo and Cr contents decreases the transformation temperatures and promotes martensite formation.

  3. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials...one common problem has involved an increase in the fracture rate of the veneered zirconium oxide compared to metal-ceramic crowns potentially caused

  4. SERIAL TELEVISI DEXTER SEBAGAI ANAKRONISME DALAM SASTRA POPULER

    Directory of Open Access Journals (Sweden)

    Ida Rochani Adi

    2014-06-01

    Full Text Available In the popular literature context, this study aims to investigate: (1 how the formulation of the characterization of Dexter in the television serial Dexter violates the tradition of literary characterization, and (2 how the formula of moral values is dramatized through Dexter, who is a sociopath, psychopath, serial killer, and person without moral. The research object was the television serial Dexter, which ranks five in popularity in the world. The data were collected by documenting 84 episodes of the serial having been broadcast since 2006. They were analyzed by means of content analysis and qualitative descriptive techniques. Based on the findings, the conclusions are as follows. First, there is a violation or anachronism of characterization through the main character in the serial. Second, the dramatized moral values still contain conventional values although they are in different forms.

  5. Cor triatriatum dexter: A rare cause of childhood cyanosis

    Directory of Open Access Journals (Sweden)

    Ahmad Rustam bin Mohd Zainudin

    2012-01-01

    Full Text Available Cor triatriatum dexter is a rare congenital heart anomaly where the right atrium is divided into two chambers by a membrane. We report a boy who had persistent mild cyanosis and diagnosed to have cor triatriatum dexter with secundum atrial septal defect by transoesophageal echocardiography. Interestingly, he had persistent mild cyanosis despite insignificant obstruction to the right ventricular inflow and normal pulmonary artery pressure. The pathophysiology, approach to the diagnosis, and mode of treatment are also discussed.

  6. New heat treatment process for advanced high-strength steels

    Science.gov (United States)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  7. Ti-Al Composite Wires with High Specific Strength

    Directory of Open Access Journals (Sweden)

    Ludwig Schultz

    2011-11-01

    Full Text Available An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in 〈111〉 fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.

  8. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  9. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  10. A comparison between ultra-high-strength and conventional high-strength fastener steels : Mechanical properties at elevated temperature and microstructural mechanisms

    NARCIS (Netherlands)

    Ohlund, C.E.I.C.; Lukovic, M.; Weidow, J; Thuvander, M; Offerman, S.E.

    2016-01-01

    A comparison is made between the mechanical properties of the ultra-high-strength steel KNDS4 of fastener grade 14.9 and of conventional, high-strength steels 34Cr4 of fastener grade 12.9 and 33B2 of grade 10.9. The results show that the ratio of the yield strength at elevated temperatures to the

  11. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  12. High-early-strength high-performance concrete for rapid pavement repair.

    Science.gov (United States)

    2016-01-01

    In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...

  13. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    Science.gov (United States)

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  14. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  15. A new high strength alloy for hydrogen fueled propulsion systems

    Science.gov (United States)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  16. NASA vane alloy boasts high-temperature strength

    Science.gov (United States)

    Waters, W. J.; Freche, J. C.

    1975-01-01

    The higher inlet-gas temperatures in new aircraft turbine engines make it necessary to use improved superalloys in engine design. Such superalloys are provided by WAZ alloys. NASA has explored the Ni-W-Al system in an attempt to find higher-strength nickel-based alloys for use as stator vane materials. Critical performance goals have been met with the new alloy WAZ-16. With suitable protective coatings, WAZ-16 appears to have considerable potential for high-temperature stator vane applications.

  17. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  18. Design and implementation of dexterous robotic hand for human controlled interfaces: a comparative analysis with EAP systems

    Science.gov (United States)

    Thayer, Nicholas; Priya, Shashank

    2010-04-01

    An anthropomorphic robotic hand was developed with 23 degree of freedom (DOF) and dexterity to meet the requirements for typing on a standard keyboard. The design was inspired by human hand physiology and consists of 19 servo motors that drive tendons which run from the forearm to the hand. Antagonistic torsional springs and a 4-bar mechanism was used to decrease the number of actuators while maintaining human-like dexterity. The high dexterity also allows other complex tasks such as grasping and object manipulation. In order to achieving complete resemblance to the human hand, servo motors should be replaced with smart actuators that offer advantages in terms of energy density, power consumption, mechanical deformation, response time and noise. This paper will review the advantages and disadvantages of traditional servo motors with respect to commonly studied electro-active polymer based actuators and how they can affect the performance and appearance of humanoid hand.

  19. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  20. The treatment of high strength protein wastewater by UASB system

    Directory of Open Access Journals (Sweden)

    Ploypatarapinyo, P.

    2006-01-01

    Full Text Available The objective of this investigation was to treat the high strength protein wastewater by UASB system. The wastewater of this experiment had COD 2,938 mg/l, SS 478 mg/l and total of nitrogen 435 mg/l. The granule was developed from bacteria of activated sludge system as suspended sludge by fermenting anaerobically at 40ºC for 1 month and acclimatizing with the high strength protein wastewater for another month. The MLSS and MLVSS of the started bacterial sludge were 7,105 mg/l and 5,360 mg/l respectively.The maximum organic volume loading of this system was 6 kg COD/m3.d at the hydraulic retention time 12 hrs. The efficiency of COD and BOD removal was 88.38 and 93.07% respectively. The biogas production was 0.52 l/g CODr.d. The content of methane gas was 76.20%. The bacterial suspended sludge was developed to granular sludge with the granule's size of 1.0 mm as 86.02%, 2.05%, 11.84% and 0.09% respectively.

  1. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  2. Strength calculation for fiber concrete slabs under high velocity impact

    Science.gov (United States)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  3. Strength of VGCF/Al Composites for High Thermal Conductivity

    Science.gov (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  4. Design of Reforma 509 with High Strength Steel

    Science.gov (United States)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  5. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  6. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Md. Safiuddin

    2016-05-01

    Full Text Available Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC containing palm oil fuel ash (POFA. The present study has used artificial neural networks (ANN to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70% of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2 for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  7. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  8. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers.

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-04-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

  10. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  11. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Directory of Open Access Journals (Sweden)

    Wisena Perceka

    2016-04-01

    Full Text Available Addition of steel fibers to high strength concrete (HSC improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out.

  12. Issues in human/computer control of dexterous remote hands

    Science.gov (United States)

    Salisbury, K.

    1987-01-01

    Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.

  13. High strength and low weight hollow carbon fibres

    Science.gov (United States)

    Köhler, T.; Brüll, R.; Pursche, F.; Langgartner, J.; Seide, G.; Gries, T.

    2017-10-01

    Carbon fibres have strengths of 2.5 to 5 GPa in the fibre direction and an elastic modulus of 200 to 500 GPa. Carbon fibres have equal mechanical properties as steel but 20% of the weight. But the material is more expensive than steel. Therefore, they are only used in industry sectors where the benefits legitimate the high costs. The use of hollow rather than solid fibres allows an even lower weight of the components. At the same time, similar mechanical properties are achieved by the circular cross section. Carbon fibres are obtained from polyacrylonitrile fibers (PAN). These can be produced as hollow fibres. As a first step stabilization and carbonization of hollow PAN precursors is investigated to produce hollow carbon fibres.

  14. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    of the strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  15. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    Accurate calculations of the stiffness of concrete members are rare. Only in the uncracked state and the fully cracked state, where the reinforcement is near yielding, the stiffness calculations are relatively easy. The difficulties are due to the fact that concrete between cracks may give...... a substantial contribution to the stiffness, a phenomenon which is generally referred to as tension stiffening. The present paper describes a new theory of tension stiffening. It is based on a simple physical model for pure tension, which works with three different stages of crack generation. In a simplified...... form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  16. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...... on the extrusion speed and diameter, resulting in an optimal printing speed of 60 to 80 mm/min. The HMS-PP granule was extruded into a filament of 1.75 mm diameter and then extruded through a J-Head and E3D with 0.4 mm nozzle-diameter and 200 to 240 °C. A comparison of the primary material with the printed...

  17. Deposition kinetics of colloidal particles at high ionic strengths

    Science.gov (United States)

    Cejas, Cesare; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    Using microfluidic experiments, we describe the deposition of a fluid suspension of weakly brownian particles transported in a straight channel at small Reynolds numbers under conditions of high ionic strengths. Our studies fall in a regime where electrostatic interactions are neglected and particle-wall van der Waals interactions govern the deposition mechanism on channel walls. We calculate the deposition kinetics analytically for a wide range of physical parameters. We find that the theory agrees with numerical Langevin simulations, which both confirm the experimental results. From this analysis, we demonstrate a universal dimensionless deposition function described by contributions from advection-diffusion transport and adhesion interactions (Hamaker constant). Results show that we accurately confirm the theoretical expression for the deposition kinetics. From a surface science perspective, working in the van der Waals regime enables to measure the Hamaker constant, a task that would take much longer to perform with the standard AFM. Funding from Sanofi Recherche and ESPCI.

  18. Manual dexterity aptitude testing: a soap carving study.

    Science.gov (United States)

    Tang, Christopher G; Hilsinger, Raymond L; Cruz, Raul M; Schloegel, Luke J; Byl, Fred M; Rasgon, Barry M

    2014-03-01

    Currently there are few validated metrics for predicting surgical skill among otolaryngology residency applicants. To determine whether manual dexterity aptitude testing in the form of soap carving during otolaryngology residency interviews at Kaiser Permanente Medical Center Oakland predicts surgical skill at the time of graduation from otolaryngology residency programs. This study was conducted to determine how applicants with the best and worst soap carvings compared at the time of graduation with respect to various metrics including visuospatial ability and manual dexterity. Over the last 25 years, applicants to the residency program at Kaiser Permanente Oakland were required to carve soap during their residency interview. The 3 best and 3 worst soap carvings from 1990 through 2006 were determined. Of the individuals who carved those soaps, 62 qualified for the study and matriculated into otolaryngology residency programs. Surveys were sent to the 62 individuals' residency programs to evaluate those individuals on a 5-point Likert scale in various categories as well as to rank those individuals as being in the top 50% or bottom 50% of their graduating class. All else being equal, we hypothesized that applicants who had the manual dexterity and visuospatial skills to accurately carve a bar of soap would more likely possess the skills necessary to become a good surgeon. There was no difference between individuals with the best soap carvings and those with the worst soap carvings in all categories: cognitive knowledge, visuospatial ability, manual dexterity, decision making, and overall score (P > .10 for all categories). There was a 95% response rate, with 35 of 37 residency programs responding and 59 of 62 surveys returned. Manual dexterity aptitude testing in the form of soap carving does not appear to correlate with surgical skill at the time of graduation. Further studies need to be conducted to determine the role of manual dexterity and visuospatial

  19. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  20. Influence of steel fibres on the blast response of normal-strength and high-strength reinforced concrete columns

    Science.gov (United States)

    Hammoud, A.; Aoude, H.

    2017-09-01

    This paper examines the influence of steel fibres on the blast performance of normal-strength concrete and high-strength concrete columns. As part of the study, four normal-strength and high-strength concrete columns built with and without steel fibres are tested under simulated blast loads using the shock-tube facility at the University of Ottawa. The specimens include two columns built with plain concrete and two columns built with steel fibre-reinforced concrete. The results show that the addition of steel fibres in reinforced concrete columns leads to important enhancements in blast performance, with improved control of mid-span displacements at equivalent blasts and increased damage tolerance.

  1. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  2. Damage characterization of high-strength multiphase steels

    Science.gov (United States)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  3. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  4. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  5. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  6. HIGH-IMPACT STRENGTH AS-POLYMERIZED PLLA

    NARCIS (Netherlands)

    GRIJPMA, DW; NIJENHUIS, AJ; VANWIJK, PGT; PENNINGS, AJ

    1992-01-01

    As-polymerized poly(L-lactide), (PLLA), has a much higher impact strength than after compression moulding. Several routes have been explored to further increase the impact strength of nascent PLLA. First results on the preparation of composites with carbon fibres, the copolymerization with

  7. High bonding temperatures greatly improve soy adhesive wet strength

    Science.gov (United States)

    Charles R. Frihart; Thomas Coolidge; Chera Mock; Eder Valle

    2016-01-01

    Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s) for this has not been intensively investigated. Although these prior...

  8. Dexterous robotic motion planning using intelligent algorithms

    OpenAIRE

    Arismendi Gutiérrez, César Augusto

    2015-01-01

    The fundamental purpose of robots is to help humans in a variety of difficult tasks, enabling people to increase their capabilities of strength, energy, speed, memory, and to operate in hazardous environments and many other applications. Service robots, more precisely mobile manipulators, incorporate one or two robotic arms and a mobile base, and must accomplish complex manipulations tasks, interacting with tools or objects and navigating through cluttered environments. To this end, the motio...

  9. Effects of high and low volume of strength training on muscle strength, muscle volume and lipid profile in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Cleiton Silva Correa

    2014-12-01

    Full Text Available Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD, especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set and high volume of strength training (HVST; n = 11, 3 sets, or control group (n = 12. Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001, maximal dynamic strength (p < 0.001, and muscle volume (p = 0.048. Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047. Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group.

  10. Design issues for a Dexter-based hypermedia system

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Trigg, Randall H.

    1992-01-01

    This paper discusses experiences and lessons learned from the design of an openhypermedia system, one that integrates applications and data not "owned" bythe hypermedia. The Dexter Hypertext Reference Model [8] was used as thebasis for the design. Though our experiences were generally positive, we...

  11. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model

    National Research Council Canada - National Science Library

    Nhat-Duc Hoang; Anh-Duc Pham; Quoc-Lam Nguyen; Quang-Nhat Pham

    2016-01-01

    ...) for modeling compressive strength of high-performance concrete (HPC). This machine learning approach is utilized to establish the nonlinear functional mapping between the compressive strength and HPC ingredients...

  12. Impaired Finger Dexterity in Parkinson's Disease Is Associated with Praxis Function

    Science.gov (United States)

    Vanbellingen, T.; Kersten, B.; Bellion, M.; Temperli, P.; Baronti, F.; Muri, R.; Bohlhalter, S.

    2011-01-01

    A controversial concept suggests that impaired finger dexterity in Parkinson's disease may be related to limb kinetic apraxia that is not explained by elemental motor deficits such as bradykinesia. To explore the nature of dexterous difficulties, the aim of the present study was to assess the relationship of finger dexterity with ideomotor praxis…

  13. Ammonia recovery from high strength agro industry effluents.

    Science.gov (United States)

    Altinbas, M; Ozturk, I; Aydin, A F

    2002-01-01

    The aim of the study was to investigate ammonia recovery from high strength agro industry effluents involving significant amounts of ammonia, by applying magnesium ammonium phosphate (MAP) precipitation technology. Two types of industrial effluents have been tested in the study. The first plant was an opium alkaloid processing industry and the second one was a baker's yeast industry. High chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and unacceptable dark brown color characterized effluents from both industries. Effluents from the biologically treated opium alkaloid and baker's yeast industries were both applied at the stoichiometric ratio (Mg:NH4:PO4 = 1:1:1) and above the stoichiometric ratio (Mg:NH4:PO4 = 1.1:1:1.1) to MAP precipitation. NH4 removals of 61-80% were achieved at the pH of 9.2 at the stoichiometric ratio, whereas 83% NH4 removal was obtained at the pH of 9.2 above the stoichiometric ratio. Experimental studies performed on both anaerobically and/or aerobically treated baker's yeast and opium alkaloid industry effluents have clearly indicated that MAP precipitation was an appropriate treatment option for NH4 removal or struvite recovery from high ammonia content agro industry effluents. Additional ammonia recovery studies were conducted on ozonated and Fenton's oxidation applied effluents and these have also indicated that the amounts of struvite and the quality of MAP precipitate was increased significantly. In this framework, MAP sludge recovered from combined biological and Fenton's oxidation treatment effluents were considered as a more valuable slow release fertilizer for agricultural use.

  14. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    Science.gov (United States)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  15. SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling

    Science.gov (United States)

    Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.

    2006-12-01

    While autonomous undersea vehicles are increasingly being used for surveying and mapping missions, as of yet there has been little concerted effort to create a system capable of performing physical sampling or other manipulation of the local environment. This type of activity has typically been performed under teleoperated control from ROVs, which provides high-bandwidth real-time human direction of the manipulation activities. Manipulation from an AUV will require a completely autonomous sampling system, which implies both advanced technologies such as machine vision and autonomous target designation, but also dexterous robot manipulators to perform the actual sampling without human intervention. As part of the NASA Astrobiology Science and Technology for Exploring the Planets (ASTEP) program, the University of Maryland Space Systems Laboratory has been adapting and extending robotics technologies developed for spacecraft assembly and maintenance to the problem of autonomous sampling of biologicals and soil samples around hydrothermal vents. The Sub-polar ice Advanced Manipulator for Universal Sampling and Autonomous Intervention (SAMURAI) system is comprised of a 6000-meter capable six-degree-of-freedom dexterous manipulator, along with an autonomous vision system, multi-level control system, and sampling end effectors and storage mechanisms to allow collection of samples from vent fields. SAMURAI will be integrated onto the Woods Hole Oceanographic Institute (WHOI) Jaguar AUV, and used in Arctic during the fall of 2007 for autonomous vent field sampling on the Gakkel Ridge. Under the current operations concept, the JAGUAR and PUMA AUVs will survey the water column and localize on hydrothermal vents. Early mapping missions will create photomosaics of the vents and local surroundings, allowing scientists on the mission to designate desirable sampling targets. Based on physical characteristics such as size, shape, and coloration, the targets will be loaded into the

  16. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G. (University of Rhode Island, Kingston, RI); Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter (University of Rhode Island, Kingston, RI)

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  17. INFLUENCE OF HIGH-STRENGTH REINFORCEMENT WITHOUT ADHESION TO CONCRETE ON STRENGTH OF CAST-IN-SITU BEAMLESS FLOORS

    Directory of Open Access Journals (Sweden)

    Osipenko Yuri Grigoryevich

    2017-08-01

    Full Text Available The influence and location of prestressed high-strength reinforcement without adhesion to concrete on the strength of a beamless floor panel is considered. The work is aimed at clarifying the methodology for calculating the strength of cast-in-situ beamless floor with mixed reinforcement, where reinforcement is used in a plastic shell of monostrend type without adhesion to concrete for the most complete use of the strength characteristics of the panel material. The aim of the study is to determine the level of influence and location of prestressed reinforcement without adhesion to concrete on the strength of a panel of cast-in-situ beamless floor, as well as comparison of the results obtained for the stresses of ropes in panels with contour and diagonal arrangement of prestressed reinforcement. The shape of the rope position is represented by a part of the parabola passing through the points of the rope support. On the support, the vertical and horizontal components of the reaction are determined by the longitudinal force in the rope and the exit angle of the guy rope. 9х9m cast-in-situ beamless floor panels in two variants were investigated: with diagonal and contour stressing steel. The values of increment in stresses in the ropes and the resulting values at various prestress and deflection levels, presented in the form of tables and graphs, have been calculated. According to the results of the study, the use of high-strength prestressed ropes without adhesion to concrete, as an additional working reinforcement, reduces deflections of the panels and lowers consumption of common reinforcement. The results indicate a relative decrease in efficiency of using rope strength along with an increase in the initial prestress level. From the point of ensuring load-bearing capacity, the contour positioning of ropes is preferable, due to more complete use of strength of high-tensile reinforcement. To meet the requirements of ultimate limit states, the

  18. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  19. Experiments and fracture modeling of high-strength pipelines for high and low stress triaxialities

    NARCIS (Netherlands)

    Walters, C.L.; Kofiani, K.; Nonn, A.; Wierzbicki, T.; Kalwa, C.

    2012-01-01

    This paper provides results from a comprehensive study on mechanical characterization of high-strength pipeline steel, grade X100 using experimental and numerical methods. The material was characterized for anisotropic plasticity, fracture initiation for various states of stress, (pre-cracked)

  20. High-precision high field strength partitioning between garnet, amphibole, and alkaline melt, Kakanui, New Zealand

    NARCIS (Netherlands)

    Fulmer, E.J.; Nebel, O.; van Westrenen, W.

    2010-01-01

    The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients

  1. METHOD OF MEASUREMENT OF STRENGTH OF CORE CASTING PAINT AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2017-01-01

    Full Text Available The method and device for measuring of the strength of the core casting refractory paint at high temperatures were developed. It has been shown that the failure strength sodium aluminates binder after testified that decrease of sodium aluminates binder strength after being in the range of 300–600 °C is lower than that for sodium silicate. There is a correlation between hardness and strength of the paint during heating at 1300 °C.

  2. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  3. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  4. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  5. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    Science.gov (United States)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  6. New weldable high strength aluminum alloy developed for cryogenic service

    Science.gov (United States)

    1966-01-01

    Wrought aluminum alloy has improved low temperature notch toughness and weldability. This alloy can be mill-fabricated to plate and sheet without difficulty. Post-weld aging improves weld ductility and strength properties. A typical treatment is 8 hours at 225 deg F plus 16 hours at 300 deg F.

  7. New tungsten alloy has high strength at elevated temperatures

    Science.gov (United States)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.

  8. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  9. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573...

  10. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  11. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete

    National Research Council Canada - National Science Library

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    ...) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study...

  12. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    National Research Council Canada - National Science Library

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    ...) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study...

  13. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    National Research Council Canada - National Science Library

    Mochamad Solikin; Budi Setiawan

    2017-01-01

    ...) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete...

  14. Durability Index Performance of High Strength Concretes Made Based on Different Standard Portland Cements

    Directory of Open Access Journals (Sweden)

    Stephen O. Ekolu

    2012-01-01

    Full Text Available A consortium of three durability index test methods consisting of oxygen permeability, sorptivity and chloride conductivity were used to evaluate the potential influence of four (4 common SANS 10197 cements on strength and durability of concrete. Twenty four (24 concrete mixtures of water-cement ratios (w/c's = 0.4, 0.5, 0.65 were cast using the cement types CEM I 42.5N, CEM II/A-M (V-L 42.5N, CEM IV/B 32.5R and CEM II/A-V 52.5N. The concretes investigated fall in the range of normal strength, medium strength and high strength concretes. It was found that the marked differences in oxygen permeability and sorptivity results observed at normal and medium strengths tended to vanish at high concrete strengths. Also, the durability effects attributed to use of different cement types appear to diminish at high strengths. Cements of low strength and/or that contained no extenders (CEM 32.5R, CEM I 42.5N showed greater sensitivity to sorptivity, relative to other cement types. Results also show that while concrete resistance to chlorides generally improves with increase in strength, adequately high chloride resistance may not be achieved based on high strength alone, and appropriate incorporation of extenders may be necessary.

  15. Correlation between Compressive Strength and Rheological Parameters of High-Performance Concrete

    Directory of Open Access Journals (Sweden)

    Aminul Islam Laskar

    2007-01-01

    Full Text Available Compressive strength is greatly influenced by the performance of concrete in its fresh stage such as uniform mixing, proper compaction, resistance to segregation during transporting and placing. Attempt has, therefore, been made to correlate compressive strength to the rheological behavior of high performance concrete with a modified setup of parallel plate rheometer. Modified setup considers the shearing of concrete at the centre of the cylindrical container that takes into account the resistance between concrete and the vertical side of the wall. It has been observed that compressive strength increases steeply as the yield strength increases up to a certain level. Plastic viscosity, however, shows optimum value for maximum compressive strength.

  16. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  17. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  18. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  19. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  20. Influence of upper limb disability, manual dexterity and fine motor skill on general self-efficacy in institutionalized elderly with osteoarthritis.

    Science.gov (United States)

    Pérez-Mármol, Jose Manuel; Ortega-Valdivieso, María Azucena; Cano-Deltell, Enrique Elías; Peralta-Ramírez, María Isabel; García-Ríos, M Carmen; Aguilar-Ferrándiz, María Encarnación

    2016-01-01

    Descriptive, cross-sectional. The impact of upper limb (UL) disability, dexterity and fine motor skill on self-efficacy in older adults with osteoarthritis (OA) is not well known yet. To evaluate the self-efficacy and its relationship with UL function/disability in institutionalized OA. Institutionalized adults (n = 45) over the age of 65 years with OA were evaluated in a single session, to determine pinch strength, active range of motion of the hand and UL disability and functionality. They were classified as self-efficacious or not based on their general self-efficacy level. The influence on self-efficacy on upper limb function was statistically analyzed using bivariate and multivariate regression analyses. Self-effective older adults showed significantly lower scores in disability and higher scores in pinch strength, dexterity and motion of thumb than those who were classified as non-self-effective. Self-efficacy was associated with pinch strength (p ≤ 0.038), disability (p efficacy. Older adults classified as non-self-effective have higher UL disability and less pinch strength, manual dexterity and thumb motion than those who are self-effective, suggesting a relationship between impairment and perceived ability. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  1. Control System Design of the YWZ Multi-Fingered Dexterous Hand

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2012-07-01

    Full Text Available The manipulation abilities of a multi-fingered dexterous hand, such as motion in real-time, flexibility, grasp stability etc., are largely dependent on its control system. This paper developed a control system for the YWZ dexterous hand, which had five fingers and twenty degrees of freedom (DOFs. All of the finger joints of the YWZ dexterous handwere active joints driven by twenty micro-stepper motors respectively. The main contribution of this paper was that we were able to use stepper motor control to actuate the hand's fingers, thus, increasing the hands feasibility. Based the actuators of the YWZ dexterous hand, we firstly developed an integrated circuit board (ICB, which was the communication hardware between the personal computer (PC and the YWZ dexterous hand. The ICB included a centre controller, twenty driver chips, a USB port and other electrical parts. Then, a communication procedure between the PC and the ICB was developed to send the control commands to actuate the YWZ dexterous hand. Experiment results showed that under this control system, the motion of the YWZ dexterous hand was real-time; both the motion accuracy and the motion stability of the YWZ dexterous hand were reliable. Compared with other types of actuators related to dexterous hands, such as pneumatic servo cylinder, DC servo motor, shape memory alloy etc., experiment results verified that the stepper motors as actuators for the dexterous handswere effective, economical, controllable and stable.

  2. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  3. Longitudinal differences of the PMSE strength at high Arctic latitudes

    Science.gov (United States)

    Latteck, Ralph; Singer, Werner; Swarnalingam, Nimalan; Maik Wissing, Jan; Meek, Chris; Manson, Allan H.; Drummond, James; Hocking, Wayne K.

    2010-05-01

    Observations of Polar Mesosphere Summer Echoes (PMSE) obtained by the ALWIN VHF radar, located in Andenes, Norway (69°N, 16°E) and by the Resolute Bay VHF radar, located in Nunavut, Canada (75°N, 95°W), are characterized by differences in occurrence rate and PMSE strengths, with generally lower levels at Resolute Bay. Even though both radars are well calibrated, the effect of the different radar hardware, especially the antenna systems, on the observations still causes concerns if comparisons of results from both sites are presented. Now, PMSE observations with identical radar hardware and identical analysis software are possible using the recently installed SKiYMET meteor radar at Eureka (80°N, 86°W) and the SKiYMET meteor radar at Andenes. Eureka is located in the same longitudinal sector as Resolute Bay, but 5 degrees north of the site, the Andenes SKiYMET radar is co-located with the ALWIN VHF radar. Both SKiYMET radars are calibrated using cosmic sky noise variations. A 4-week measurement campaign was performed during July in 2008, with both the Andenes and Eureka meteor radars running in a special mode designed for PMSE studies. Lower levels of PMSE strength were found at Eureka, confirming the earlier observations at Resolute Bay obtained by VHF radar. The observations are discussed in relation to dynamics, thermal conditions, and ionization. Strong indications exist that the observed differences of PMSE strength are related to the different levels of ionisation due to precipitating particles in the auroral oval and inside the polar cap. Global maps of precipitating energetic electrons (energy band: 6.5 keV-9.46 keV) and energetic protons (energy band 80 keV-240 keV) derived from POES satellites clearly indicate that Eureka and Resolute Bay are always inside the polar cap where, under geomagnetically quiet conditions, ionisation due to particle precipitation is missing.

  4. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  5. Navy High-Strength Steel Corrosion-Fatigue Modeling Program

    Science.gov (United States)

    2006-10-01

    For elastic-plastic materials additional coefficients can be formula- based: the yield strength, the Ramberg - Osgood parameters, etc. The formulae...analysis codes having three different solution techniques (h-version finite element analy- sis in ABAQUS , p-version finite element analysis in StressCheck...inches] St re ss C on ce nt ra tio n Fa ct or ABAQUS BEASY StressCheck D=0.0625” D=0.25” D=1.0” Figure 5.2.5-1. Analysis Results of Various

  6. A constitutive model for the anelastic behavior of Advanced High Strength Steels

    NARCIS (Netherlands)

    Torkabadi, Ali; van Liempt, P.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2015-01-01

    In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good

  7. High strength fibre reinforced concrete : Static and fatigue behaviour in bending

    NARCIS (Netherlands)

    Lappa, E.S.

    2007-01-01

    Recently, a number of high strength and ultra high strength steel fibre concretes have been developed. Since these materials seem very suitable for structures that might be prone to fatigue failure, such as bridge decks, the understanding of the static and fatigue bending behaviour is vital. In

  8. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    dental manufacturers and laboratories have been marketing high- translucency monolithic zirconia restorative materials with claims of good esthetics ...restorations to combine the esthetics of all-ceramic restorations with the strength properties of zirconia. The purpose of this study was to evaluate...the translucency and strength of new highly translucent monolithic zirconia ceramic materials. Four monolithic zirconium-oxide materials marketed as

  9. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  10. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  11. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  12. The research on delayed fracture behavior of high-strength bolts in steel structure

    Science.gov (United States)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  13. Experimental Study of Confined Low-, Medium- and High-Strength Concrete Subjected to Concentric Compression

    Directory of Open Access Journals (Sweden)

    Antonius

    2012-11-01

    Full Text Available An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects of these parameters on the strength and ductility of square-confined concrete were evaluated. Of the specimens tested in this study, the columns made with higher-strength concrete produced less strength enhancement and ductility than those with lower-strength concrete. The steel configurations were found to have an important role in governing the strength and ductility of the confined high-strength concrete. Moreover, several models of strength enhancement for confined concrete available in the literature turned out to be quite accurate in predicting the experimental results.

  14. Tactile Sensing for Dexterous Robotic Hands

    Science.gov (United States)

    Martin, Toby B.

    2000-01-01

    Robotic systems will be used as precursors to human exploration to explore the solar system and expand our knowledge of planetary surfaces. Robotic systems will also be used to build habitats and infrastructure required for human presence in space and on other planetary surfaces . Such robots will require a high level of intelligence and automation. The ability to flexibly manipulate their physical environment is one characteristic that makes humans so effective at these building and exploring tasks . The development of a generic autonomous grasp ing capability will greatly enhance the efficiency and ability of robotics to build, maintain and explore. To tele-operate a robot over vast distances of space, with long communication delays, has proven to be troublesome. Having an autonomous grasping capability that can react in real-time to disturbances or adapt to generic objects, without operator intervention, will reduce the probability of mishandled tools and samples and reduce the number of re-grasp attempts due to dropping. One aspect that separates humans from machines is a rich sensor set. We have the ability to feel objects and respond to forces and textures. The development of touch or tactile sensors for use on a robot that emulates human skin and nerves is the basis for this discussion. We will discuss the use of new piezo-electric and resistive materials that have emerged on the market with the intention of developing a touch sensitive sensor. With viable tacti le sensors we will be one step closer to developing an autonomous grasping capability.

  15. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  16. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  17. Laser-Assisted Sheet Metal Working of High Strength Steels in Serial Production

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing need to save energy and a responsible use of natural resources. The high strength and the low ductility restricts using state of art technology to sheer, bend, emboss or deep draw parts with the needed complexity and quality. The Fraunhofer IPT developed a combination of laser-assisted preheating and conventional punching to a new hybrid technology which allows to shear, bend, emboss and draw high strength materials with a high quality and complexity in a serial production.

  18. Fractal dynamics in dexterous tool use: the case of hammering behavior of bead craftsmen.

    Science.gov (United States)

    Nonaka, Tetsushi; Bril, Blandine

    2014-02-01

    Dexterous behavior exhibits exquisite context sensitivity, implying the efficacy of exploration to detect the task-relevant information. Inspired by the recent finding that fractal scaling of exploratory movements predicts how well the movements sample available perceptual information, we investigate the possibility that dexterity of craftsmen would be characterized by fractal (long-range) temporal correlation properties of fluctuations in their movement wielding a tool. A reanalysis of hammering behavior involved in stone beads production in India (Nonaka & Bril, 2012) revealed the presence of long-range, power-law correlations, as part of multiplicative cascades operating over a wide range of time scales. In the unfamiliar condition using unusual material, the wielding behavior of highly skilled experts displayed a significant increase of long-range temporal correlations, whereas that of less experts exhibited a significant loss of long-range correlations and reduced heterogeneity of scaling properties over time, which robustly discriminated the groups with different skill levels. Alterations in long-range correlation properties of movement fluctuations are apparently associated with changes in the situation differently depending on the level of expertise. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of leg length on ROM, VJ and leg dexterity in dance.

    Science.gov (United States)

    Wyon, M A; Nevill, A M; Dekker, K; Brown, D D; Clarke, F; Pelly, J; Koutedakis, Y

    2010-09-01

    We investigated the associations between leg length and specific ballet movements in different skill groups. Volunteers were from an undergraduate dance programme (n=18), a pre-professional school (n=43) and from an elite classical ballet company (n=45). Individual data were collected for anthropometry, vertical jump, leg dexterity, and leg active and passive ROM. ANCOVA identified both main effects as significant with regard to vertical jump (gender Pgender, skill or leg length. Active and passive range of motion noted gender (P=0.001) and skill (P<0.001) differences. Leg length was found to be negatively associated with both active and passive ROM (P=0.002). In conclusion, the present data highlight the diverse and conflicting effects of leg length on fundamental ballet skills. The longer legs that benefit vertical jump have a negative influence on range of motion and leg dexterity except for highly skilled dancers, who through skill, seem to have overcome the effects of some of these dichotomies. Georg Thieme Verlag KG Stuttgart . New York.

  1. Design of multi-degrees-of-freedom dexterous modular arm instruments for minimally invasive surgery.

    Science.gov (United States)

    Cepolina, Francesco E; Zoppi, Matteo

    2012-11-01

    In robot-assisted minimally invasive laparoscopic surgery, dexterity has a high relevance. Ideally, the surgeon should feel like in open surgery with the robotic instrument able to perform all tool motions in a suitably wide workspace. The avoidance of the surrounding organs and the adaptation of the motion of the instrument to the space available in the patient should be carried out by the robot and should not interest the surgeon. The dexterity is improved by increasing the number of degrees of freedom available in the portion of the surgical instrument inside the patient. The trend has been to date to actuate the joints in the instrument using actuators located outside the patient and tendons or other transmissions to reach the joints. This approach presents intrinsic limitations that can be overcome only with a change of the architecture. The article presents a design of surgical arm made of modules joined together in a chain. Each module embeds its actuation and sensing. The arm architecture can be selected to be optimal for a specific patient and surgery. The major criticality of this architectural rethink is if small actuators could provide enough torque to move the chain and apply sufficient surgical forces. Preliminary experiments are presented proving that embedded actuation can be strong and powerful enough. The designs of a variety of modules are carefully described.

  2. Dexterity test data contribute to proper glovebox over-glove use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory; Costigan, Stephen A [Los Alamos National Laboratory; Apel, D M [Los Alamos National Laboratory; Neal, G E [Los Alamos National Laboratory; Castro, J M [Los Alamos National Laboratory; Michelotti, R A [Los Alamos National Laboratory

    2010-01-21

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). The glovebox gloves are the weakest part of this engineering control. The Glovebox Glove Integrity Program, which controls glovebox gloves from procurement to disposal at TA-55, manages this vulnerability. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Proper selection of over-gloves is one of these measures. Line management owning glovebox processes have the responsibility to approve the appropriate personal protective equipment/glovebox glove/over-glove combination. As low as reasonably achievable (ALARA) considerations to prevent unplanned glovebox glove openings must be balanced with glove durability and worker dexterity, both of which affect the final overall risk to the worker. In this study, the causes of unplanned glovebox glove openings, the benefits of over-glove features, the effect of over-gloves on task performance using standard dexterity tests, the pollution prevention benefits, and the recommended over-gloves for a task are presented.

  3. Composites in a Dexter-Based Hypermedia Framwork

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1994-01-01

    This paper discusses the design and use of a generic composite mechanism in the object oriented DEVISE Hypermedia (DHM) development framework. The DHM development framework is based on the Dexter Hypertext Reference Model, which introduces a notion of composite to model editors with complex...... with links to other components as in the classical systems such as NoteCards, Intermedia, and KMS. It is also shown how the powerful generic classes can be used to implement a variety of useful hypermedia concepts such as: hierarchy by inclusion, hierarchy by reference, virtual and computed browsers, Table...

  4. Telepresence Master Glove Controller For Dexterous Robotic End-Effectors

    Science.gov (United States)

    Fowler, A. M.; Joyce, R. R.; Britt, J. P.

    1987-03-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computerin real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  5. Fatigue experiments on very high strength steel base material and transverse butt welds

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.

    2009-01-01

    Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes.

  6. A Feasibility Study of High-Strength Bi-2223 Conductor for High-Field Solenoids.

    Science.gov (United States)

    Godeke, A; Abraimov, D V; Arroyo, E; Barret, N; Bird, M D; Francis, A; Jaroszynski, J; Kurteva, D V; Markiewicz, W D; Marks, E L; Marshall, W S; McRae, D M; Noyes, P D; Pereira, R C P; Viouchkov, Y L; Walsh, R P; White, J M

    2017-03-01

    We performed a feasibility study on a high-strength Bi2-x Pb x Sr2Ca2Cu3O10-x (Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries (SEI). It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥ 0.92% (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  7. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bars...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  8. Research and Development of Micro-Alloying High-Strength Shipbuilding Plate

    Science.gov (United States)

    Chen, Zhenye

    Based on the technological requirements and market demand, Nb micro-alloying D36 grade high strength shipbuilding plate has been successfully developed in HBIS. In this papers, the rational chemical compositions design, smelting and rolling process of Nb micro-alloying D36 grade high strength shipbuilding plate were introduced. Its various performance figures not only comply with the rules of nine classification societies of CCS, LR, ABS NK, DNV, BV, GL, KR and RINA but meet users' requirements. It indicates that HBIS have capacity producing Nb micro-alloying D36 grade high strength shipbuilding plate.

  9. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  10. HIGH-STRENGTH POLY(METH)ACRYLAMIDE COPOLYMER HYDROGELS

    NARCIS (Netherlands)

    WIERSMA, JA; SOS, M; PENNINGS, AJ

    1994-01-01

    The hydrogels described here are copolymers of acrylamide and methacrylamide highly cross-linked with piperazine diacrylamide or 4,7,10-trioxa-1,13-tridecanediamine diacrylamide by radical polymerisation in highly concentrated aqueous and aqueous gelatin solutions. The hydrogels were characterised

  11. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  12. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    Science.gov (United States)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  13. Impact of laparoscopic experience on virtual robotic simulator dexterity

    Directory of Open Access Journals (Sweden)

    Byung Eun Yoo

    2015-01-01

    Full Text Available Background: Different skills are required for robotic surgery and laparoscopic surgery. We hypothesized that the laparoscopic experience would not affect the performance with the da Vinci; system. A virtual robotic simulator was used to estimate the operator′s robotic dexterity. Materials and Methods: The performance of 11 surgical fellows with laparoscopic experience and 14 medical students were compared using the dV-trainer; . Each subject completed three virtual endo-wrist modules ("Pick and Place," "Peg Board," and "Match Board". Performance was recorded using a built-in scoring algorithm. Results: In the Peg Board module, the performance of surgical fellows was better in terms of the number of instrument collisions and number of drops (P < 0.05. However, no significant differences were found in the percentage scores of the three endo-wrist modules between the groups. Conclusion: Robotic dexterity was not significantly affected by laparoscopic experience in this study. Laparoscopic experience is not an important factor for learning robotic skills.

  14. Lightweight, High Strength Nano-Composite Magnesium for Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Terves will develop processing routes to produce high thermal conductivity magnesium composites for use in heat transfer applications such as...

  15. Properties of stainless high-strength chrome steels for bearings

    Science.gov (United States)

    Talyzin, V. M.; Burkin, V. S.; Doronin, V. M.

    1981-10-01

    Steel 40Kh11M3F-Sh has fairly high resistance to contact fatigue stresses at elevated temperatures and can be recommended for bearings operating in aggressive media at such temperatures, including large bearings.

  16. Corrosion Assessment Guidance for High Strength Steels (Phase 1)

    Science.gov (United States)

    2009-08-01

    The continuing worldwide demand for natural gas presents major challenges to pipeline operators. There is increasing need to construct long distance, high capacity transmission pipelines, particularly in the more remote areas of Arctic North America,...

  17. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  18. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z...... DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...... zone from the experimental pullout curve is presented. The method is used to separate the areas under the pullout curve corresponding to debonding and friction. The predictions are compared to other methods in the literature. The proposed method seems to provide less variations in the results. The high-strength...

  19. Application technologies for effective utilization of advanced high strength steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Suehiro, Masayoshi, E-mail: suehiro.kp5.masayoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511 (Japan)

    2013-12-16

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  20. Influence of granule characteristics on fabrication of translucent alumina ceramics with high strength and reliability

    National Research Council Canada - National Science Library

    TANAKA, Satoshi; GOI, Shota; KATO, Zenji

    2016-01-01

      Translucent alumina ceramics with high strength and reliability were fabricated through dry pressing of industry-grade granules and subsequent vacuum-sintering prior to hot isostatic pressing (HIP...

  1. The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire

    Directory of Open Access Journals (Sweden)

    Mohd Ali Ahmad Zurisman

    2016-01-01

    Full Text Available Concrete structures were designed to withstand various types of environment conditions from mild to very severe conditions. Fire represents one of the most severe environmental conditions to which concrete structures may be subjected especially in close conduct structure like tunnel. This paper focuses on the spalling of geopolymer high strength concrete exposed to hydrocarbon fire for minimum 2 hours. From the fire test, geopolymer concrete can be classified as a good fire resistance construction materials based on spalling performance of high strength concrete when exposed to hydrocarbon fire. A maximum of 1% (excluding water moisture loss of spalling recorded for high strength geopolymer concrete wall panel. No explosive spallings were observed for high strength geopolymer concrete.

  2. STRUCTURAL ASPECTS OF PLASTICITY LOWERING OF HIGH-STRENGTH WIRE AT BIG CUMULATIVE COMPRESSIONS

    Directory of Open Access Journals (Sweden)

    V. P. Fetisov

    2012-01-01

    Full Text Available It is shown that decrease of plasticity of high-strength wire at big total cobbings is connected with reduction of mobility of dislocations in the substructure formed at loss of perlite lamellar structure.

  3. Spinnability Investigation of High Strength Steel in Draw-spinning and Flow-spinning

    Science.gov (United States)

    Shi, L.; Xiao, H.; Xu, D. K.

    2017-09-01

    High strength steels are difficult to process in spinning due to their high yield and tensile strength, poor ductility and large springback. In this paper, formability of dual phase steel has been investigated on the basis of spinnability evaluation in draw-spinning and flow-spinning processes. The influences of key process parameters such as feed ratio and wheel fillet radius on forming limit coefficient in draw-spinning and maximum thinning ratio in flow-spinning are studied in detail.

  4. Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel (Briefing Charts)

    Science.gov (United States)

    2014-11-19

    Chrome -Free Paint Primer for Zn/Ni Plated High- Strength Steel 11-19-14 Presentation at ASETSDefense 2014 George Zafiris Team: Mark Jaworowski, Mike...AND SUBTITLE Chrome -Free Paint Primer for Zn/Ni Plated High-Strength Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... Chrome -free Primer TCP LHE= Low Hydrogen Embrittlement CCC= Chromate (Cr6+) Conversion Coating TCP= Trivalent (Cr3+) Chromium Process  Regulatory EHS

  5. Laser-Assisted Sheet Metal Working of High Strength Steels in Serial Production

    OpenAIRE

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2011-01-01

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing need to save energy and a responsible use of natural resources. The high strength and the low ductility restricts using state of art technology to sheer, bend, emboss or deep draw parts with the needed complexity and quality. The Fraunhofer IPT developed a combination of laser-assisted preheating and conventional punching to a new hybrid technology which allo...

  6. Experimental and numerical analysis of hydrogen interaction with plastic strain in a high strength steel

    OpenAIRE

    Vucko, Flavien; Bosch, Cédric; Delafosse, David

    2012-01-01

    8 pages; International audience; Cyclic loading tests were performed on micro-notched samples of high-strength steel S690QT in air and under cathodic polarisation in a saline solution. These specimens were modelled and their behaviour simulated by finite elements calculations with a combined nonlinear isotropic-kinematic hardening constitutive law. This model can simulate cyclic softening and ratcheting effect of the high-strength steel. Stress and strain fields in the vicinity of the notch-t...

  7. equatorial electrojet strength in the african sector during high and ...

    African Journals Online (AJOL)

    Preferred Customer

    current system magnifying the solar quiet daily variations (Sq), the lunar quiet day variations and solar flare effects. This high concentration of electric current flowing from west to east in a narrow belt flanking the dip equator on the sunward hemisphere has been termed the equatorial electrojet. The overhead current system.

  8. Development of High Strength and High Toughness Steels for Reactor Vessel and Surgeline Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kim, M. C.; Yoon, J. H.; Kim, K. B.; Choi, K. J.; Cho, H. D.

    2010-07-15

    In addition to evaluating the effects of alloying elements, heat treatment conditions, weldability and neutron irradiation behavior were evaluated with 15 types of SA508 Gr.4N model alloys for reactor pressure vessel. The maximum yield strength of 630MPa were obtained by controlling chemical compositions and heat treatment conditions. Model alloys also showed excellent impact toughness and fracture toughness. The microstructure and mechanical properties of weld heat affected zone were evaluated by using simulated specimens and the effects of post weld heat treatment conditions were also investigated. Neutron irradiation behavior at high fluence level were characterized and then compared with commercial reactor pressure vessel steel. The value of transition temperature shift(TTS) was 22 .deg. C at 6.4x10{sup 19} n/cm{sup 2} which is similar to commercial RPV steel. However, its toughness after irradiation is much better than that of unirradiated commercial RPV steel due to the superior initial toughness. Leak-before-break(LBB) properties of type 316 stainless steel model alloys and their welds for surge line were evaluated as well as microstructure and mechanical properties. Tensile tests and J-R fracture resistance tests were carried out at RT and 316 .deg. C. The model alloys showed good tensile strength over standard value, except type 316L which has lower C/N. In the LBB safety analysis result, all of type 316 model alloys have higher allowable load than that of OPR1000 surge line

  9. The Effects of Steel Fibre on the Mechanical Strength and Durability of Steel Fibre Reinforced High Strength Concrete (SFRHSC Subjected to Normal and Hygrothermal Curing

    Directory of Open Access Journals (Sweden)

    Velayutham G.

    2014-03-01

    Full Text Available This paper presents the experimental investigation into the mechanical strength and durability of steel fibre high strength concrete (SFHSC. In the experimental investigation, the properties of the steel fibre high strength concrete were assessed through two types of curing regimes, the normal water curing and the hygrothermal curing treatment, with the results of the tests being taken at 7 days and 7 days + 24 hours. The steel fibres were added at volume fractions of 0.5%, 1.0%, 1.5%, 2.0% and 3.0%. The tests that were performed for the mechanical strength and durability were the compressive and flexural strength test, the modulus of elasticity test, the ultrasonic pulse velocity test, the water absorption test, the air permeability test and the porosity test. The compressive and flexural strength of the steel fibre high strength concrete reached their maximum of 70.7 MPa and 11.45 MPa, respectively during normal curing for the 3.0% volume fraction of steel fibre. The experimental results of this study indicate that the inclusion of steel fibres enhances the mechanical strength of high strength concrete cured in normal water curing as compared to the hygrothermal curing treatment.

  10. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    Science.gov (United States)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  11. Critical factors in displacement ductility assessment of high-strength concrete columns

    Science.gov (United States)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-12-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  12. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    Background/Aims: The aim of this controlled study was to investigate the effect of high-load strength training on glucose tolerance in patients undergoing dialysis. Methods: 23 patients treated by dialysis underwent a 16-week control period followed by 16 weeks of strength training three times....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...... glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...

  13. Critical factors in displacement ductility assessment of high-strength concrete columns

    Science.gov (United States)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-09-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  14. STIR: Tailored Interfaces for High Strength Composites Across Strain Rates

    Science.gov (United States)

    2013-09-02

    the aramid class of fibers (Kevlar®, Twaron®) because the highly crystalline structure offers one of the highest specific toughness ratios and specific...1. Structure of an aramid (Kevlar®) fiber , showing stable aromatic carbon rings attached to backbone chains and hydrogen bonding among the chains...surface groups of the aramid fiber have been attempted with limited success. Most of these chemical enhancements focused on the attachment of

  15. Assisted Perception, Planning and Control for Remote Mobility and Dexterous Manipulation

    Science.gov (United States)

    2017-04-01

    ASSISTED PERCEPTION , PLANNING AND CONTROL FOR REMOTE MOBILITY AND DEXTEROUS MANIPULATION MASSACHUSETTS INSTITUTE OF TECHNOLOGY APRIL 2017 FINAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...DATES COVERED (From - To) SEP 2012 – AUG 2016 4. TITLE AND SUBTITLE ASSISTED PERCEPTION , PLANNING AND CONTROL FOR REMOTE MOBILITY AND DEXTEROUS

  16. Influence of medical students' past experiences and innate dexterity on suturing performance.

    Science.gov (United States)

    Hughes, David T; Forest, Stephen J; Foitl, Rosangela; Chao, Edward

    2014-08-01

    Medical students often cite their ability to excel at technical tasks as justification for choosing surgery as a career path. We sought to investigate how medical students' dexterity skills and past experiences correlated with suturing performance. Sixty-four 3rd-year medical students were surveyed about previous experiences that involved manual dexterity. Technical skills were then measured using a validated test of manual dexterity and subcuticular closure of a pig's foot incision. Spearman's rank correlation coefficients determined correlation between variables. Previous experiences, self-assessment of dexterity, prior suturing, and current interest in surgery did not significantly correlate with manual dexterity or suturing skill scores. Innate manual dexterity score was the only significant correlating factor to suture skill score (Spearman's rank correlation coefficient = .336; P = .007). Innate manual dexterity skills are predictive of initial surgical suturing performance regardless of past student experiences. Interventions aimed at improving early surgical technique should be optimally focused on dexterity training. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  18. Microscopic description of the low lying and high lying electric dipole strength in stable Ca isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tertychny, G. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Tselyaev, V. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics St. Petersburg University (Russian Federation); Kamerdzhiev, S. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Gruemmer, F. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Krewald, S. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Speth, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany) and Institute of Nuclear Physics, PAN, PL-31-342 Cracow (Poland)]. E-mail: j.speth@fz-juelich.de; Avdeenkov, A. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation); Litvinova, E. [Institute of Physics and Power Engineering, 249020 Obninsk (Russian Federation)

    2007-04-05

    The properties of the low lying and high lying electric dipole strength in the stable {sup 40}Ca, {sup 44}Ca and {sup 48}Ca isotopes have been calculated within the Extended Theory of Finite Fermi Systems (ETFFS). This approach is based on the random phase approximation (RPA) and includes the single particle continuum as well as the coupling to low lying collective states which are considered in a consistent microscopic way. For {sup 44}Ca we also include pairing correlations. We obtain good agreement with the existing experimental data for the gross properties of the low lying and high lying strength. It is demonstrated that the recently measured A-dependence of the electric dipole strength below 10 MeV is well understood in our model: due to the phonon coupling some of the strength in {sup 48}Ca is simply shifted beyond 10 MeV. The predicted fragmentation of the strength can be investigated in (e,e{sup '}) and ({gamma},{gamma}{sup '}) experiments. The isovector dipole strength below 10 MeV is small in all Ca isotopes. Surprisingly, the proton and neutron transition densities of these low lying electric dipole states are in phase, which indicate isoscalar structure. We conclude that for the detailed understanding of the structure of excited nuclei e.g. the low lying and high lying electric dipole strength an approach like the present one is absolutely necessary.

  19. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation.

    Science.gov (United States)

    Dosen, Strahinja; Cipriani, Christian; Kostić, Milos; Controzzi, Marco; Carrozza, Maria C; Popović, Dejan B

    2010-08-23

    Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This flexibility allows implementation of many different grasping strategies, but also requires new control algorithms that can exploit the many degrees of freedom available. The current study presents and tests the operation of a new control method for dexterous prosthetic hands. The central component of the proposed method is an autonomous controller comprising a vision system with rule-based reasoning mounted on a dexterous hand (CyberHand). The controller, termed cognitive vision system (CVS), mimics biological control and generates commands for prehension. The CVS was integrated into a hierarchical control structure: 1) the user triggers the system and controls the orientation of the hand; 2) a high-level controller automatically selects the grasp type and size; and 3) an embedded hand controller implements the selected grasp using closed-loop position/force control. The operation of the control system was tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects placed at two different distances. The system correctly estimated grasp type and size (nine commands in total) in about 84% of the trials. In an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still good enough for the grasp to be successful. If the control task was simplified by decreasing the number of possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only). The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis (i.e., determining object properties) and autonomous decision making (i.e., selecting the grasp type and size). The automatic control eases the burden from the user

  20. Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation

    Directory of Open Access Journals (Sweden)

    Došen Strahinja

    2010-08-01

    Full Text Available Abstract Background Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This flexibility allows implementation of many different grasping strategies, but also requires new control algorithms that can exploit the many degrees of freedom available. The current study presents and tests the operation of a new control method for dexterous prosthetic hands. Methods The central component of the proposed method is an autonomous controller comprising a vision system with rule-based reasoning mounted on a dexterous hand (CyberHand. The controller, termed cognitive vision system (CVS, mimics biological control and generates commands for prehension. The CVS was integrated into a hierarchical control structure: 1 the user triggers the system and controls the orientation of the hand; 2 a high-level controller automatically selects the grasp type and size; and 3 an embedded hand controller implements the selected grasp using closed-loop position/force control. The operation of the control system was tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects placed at two different distances. Results The system correctly estimated grasp type and size (nine commands in total in about 84% of the trials. In an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still good enough for the grasp to be successful. If the control task was simplified by decreasing the number of possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only. Conclusions The original outcome of this research is a novel controller empowered by vision and reasoning and capable of high-level analysis (i.e., determining object properties and autonomous decision making (i.e., selecting the grasp type and

  1. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani

    2009-01-01

    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  2. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  3. Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU

    Science.gov (United States)

    Tan, Qin; Li, Qiang

    2017-01-01

    The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.

  4. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  5. High strength nickel base alloy, WAZ-16, for applications up to 2200 F

    Science.gov (United States)

    Waters, W. J.; Freche, J. C.

    1974-01-01

    Alloy product is high strength, high temperature nickel base material with higher incipient melting temperature than all known nickel base alloys. It is microstructurally stable and has high impact resistance both before and after prolonged thermal exposure. It contains relatively few alloying constitutents and low content of expensive and rare metals.

  6. Prediction of fire spalling in fibre-reinforced high strength concrete

    Directory of Open Access Journals (Sweden)

    Mugume R.B.

    2013-09-01

    Full Text Available This paper presents results of a study which investigates spalling in small scale specimens of fibre-reinforced high strength concrete exposed to elevated temperatures. A relationship to predict relative maximum pressures was developed, which takes into account parameters such as concrete strength, fibre type and fibre geometry. Also, a blowtorch spalling test method was utilized to investigate spalling in small scale specimens, and a clear relationship between relative maximum pore pressures and spalling was observed.

  7. High strength oil palm shell concrete beams reinforced with steel fibres

    OpenAIRE

    Poh-Yap, S.; Johnson-Alengaram, U.; Hung-Mo, K.; Zamin-Jumaat, M.

    2017-01-01

    The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC) has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC). The experiment...

  8. The impact of different lightweight aggregates on properties of high strength concrete

    OpenAIRE

    Šubic, Nika

    2014-01-01

    High strength concrete is known for its many favorable qualities. However it also has some negative characteristics like autogenous shrinkage which can be reduced by adding saturated lightweight aggregate to the concrete mix. The effect of using different types of lightweight aggregate on compressive strength and shrinkage of concrete is discussed in this graduation thesis. Factors influencing the success of internal curing with prewetted lightweight aggregate are described in theoretic...

  9. Development of system technology for radiation cancer therapy with the dexterous auto lesions tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Jeong, Kyungmin; Jung, Seungho; Lee, Namho; and others

    2013-01-15

    The project objectives are to establish the fundamental core technologies for precise auto lesions tracking radiation cancer therapy and developing related system technology as well. Radiation cancer therapy apparatus should be domestically produced to reduce medical expenses, hence advanced technologies are suggested and developed to make cost down medical expenses and save expenditure for importing 10 million dollars/set from overseas. To achieve these targets, we have carried out reviewing of domestic and foreign technology trend. Based on review of state-of-the-art technology, radiation sensory system is studied. 3m high precise image processing technique and intelligent therapy planning software are developed. Also precedent study on the redundant robot for dexterous motion control system has been performed for developing of radiation cancel therapy robot system.

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment.

    Science.gov (United States)

    Choe, Deokyeong; Kim, Young Min; Nam, Jae Eun; Nam, Keonwook; Shin, Chul Soo; Roh, Young Hoon

    2018-01-15

    Developing hydrogels with enhanced mechanical strength is desirable for bio-related applications. For such applications, cellulose is a notable biopolymer for hydrogel synthesis due to its inherent strength and stiffness. Here, we report the viscosity-adjusted synthesis of a high-strength hydrogel through the physical entanglement of microcrystalline cellulose (MCC) in a solvent mixture of tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO). MCC was strategically dissolved with TBAF in DMSO at a controlled ratio to induce the formation of a liquid crystalline phase (LCP), which was closely related to the viscosity of the cellulose solution. The highest viscosity was obtained at 2.5% MCC and 3.5% TBAF, leading to the strongest high-strength MCC hydrogel (strongest HS-MCC hydrogel). The resulting hydrogel exhibited a high compressive strength of 0.38MPa and a densely packed structure. Consequently, a positive linear correlation was determined between the viscosity of the cellulose solution and the mechanical strength of the HS-MCC hydrogel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development and Performance Evaluation of Very High Early Strength Geopolymer for Rapid Road Repair

    Directory of Open Access Journals (Sweden)

    Abideng Hawa

    2013-01-01

    Full Text Available High early strength is the most important property of pavement repair materials to allow quick reopening to traffic. With this in mind, we have experimentally investigated geopolymers using low cost raw materials available in Thailand. The geopolymer mortar was metakaolin (MK, mixed with parawood ash (PWA, rubberwood ash or oil palm ash (OPA as binder agent. Rubberwood is often used as raw material for biomass power plants in Thailand, especially at latex glove factories and seafood factories, and burning rubberwood generates PWA. Both PWA and OPA are therefore low cost residual waste, locally available in mass quantities. The geopolymer samples were characterized for compressive strength, drying shrinkage, and bond strength to Portland cement mortar with slant shear test. The experimental design varied the contents of PWA and OPA and the heat curing time (1, 2 and 4 h after hot mixture process. The hot mixture process resulted in very high early strength. In addition, we achieved high compressive strengths, low drying shrinkage, and very significant bond strength enhancement by use of the ashes.

  13. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  14. Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments

    Science.gov (United States)

    Ravi, S.; Balasubramanian, V.; Nasser, S. Nemat

    2004-12-01

    Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.

  15. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  16. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  17. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    In the present investigation, the fatigue life of offshore steel structures in high-strength steel is studied. The material used has a yield stress of 800-1000 MPa, and high weldability and toughness properties. Of special interest is the fatigue life under a realistic stochastic loading....... In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  18. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    The fatigue life of offshore steel structures in high-strength steel is studied. The material used has a yield stress of 800-1000 MPa and high weldability and toughness properties. Of special interest is the fatigue life under a realistic stochastic loading. In the experimental part...... of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  19. Test for Design Equation of Development Length on High - Strength Reinforcement in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sang Jun; Lee, Byung Soo; Bang, Chang Joon [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    In Korea, NPP (Nuclear Power Plant) structures are constructed with Gr. 60 rebars. The use of high strength rebars with higher grade (Gr. 80) offers advantages: reducing the required amount of rebar materials and area; and improving the construct ability and economics of NPP reinforced concrete structures by increasing rebar spacing. This research studied the ACI 349-13 design codes and conducted bending member tests with high strength rebars, to compare and analyze use and non-use of development length calculation formulas.This test analyzed the impact of development length on the bond stress when using high strength rebars. It was found that the use of Gr. 80 increased the development length (or length of lap splice), resulting in the ACI 349-13 design formula overestimating the bond stress. Therefore, the use of high strength rebar with transverse reinforcement can allow application of the ACI 349-13 design formula without using the safety factor of 1.2. Furthermore, to propose the proper calculation methods of development length for high strength rebar, more tests should be conducted in the future, taking account of the impact of transverse reinforcement.

  20. Experimental Analysis of the Feasibility of Shaving Process Applied for High-Strength Steel Sheets

    Directory of Open Access Journals (Sweden)

    Wiriyakorn Phanitwong

    2016-01-01

    Full Text Available In recent years, the engineered materials were developed to improve their mechanical properties. A high-strength steel sheet is one of them, developed to serve the requirement of reducing weight of vehicles. Therefore, as a new material, many researches have been carried out to examine the use of sheet metal forming process applied for high-strength steel sheet. However, the feasibility of shaving process applied for it has not been investigated yet. In the present study, this feasibility was revealed by using experiments on two types of high-strength steel sheets: SAPH 440 and SPFH 590Y (JIS. The relationship between shaved surface feature and shearing clearance of high-strength steel sheets corresponded well with those of their conventional metal sheets. However, due to the high ultimate strength of these materials, it was revealed in this present study that there were not any suitable conditions of shaving process that could be applied to achieve the requirements of smooth cut surface overall material thickness.

  1. Development and application of super heavy gauge high-strength structural steel for high-rise buildings

    Science.gov (United States)

    Gu, Linhao Gu; Lu, Shiping; Liu, Chunming; Liu, Jingang; Zhang, Suyuan; Chu, Rensheng; Ma, Changwen

    2017-09-01

    This paper presents development of 130mm S460G1-Z35 by using low carbon Nb-Ni-Mo-V-Ti micro-alloying design and two-stage rolling, quenching and tempering process. For the super heavy gauge high-strength structural steel, the yield strength is higher than 450MPa, the tensile strength is higher than 550MPa, the elongation is greater than 20%, the low temperature(-40) impact energy value is not less than 250J, the z-direction section shrinkage is more than 65%, and the welding performance is good. The plate are successfully applied to the engineering construction of the city of dreams in Macau.

  2. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-02

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  3. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  4. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    Science.gov (United States)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  5. Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high boron

    Energy Technology Data Exchange (ETDEWEB)

    Semba, H.; Abe, F. [National Institute for Materials Science (NIMS), Ibaraki (Japan)

    2006-07-01

    In the R and D project of NIMS for advanced ferritic heat resistant steels for 650 C-USC plants, it has been revealed that the addition of boron more than 0.01mass% to the 0.08C-9Cr-3W-3Co-VNb-<0.003N steel remarkably improves long-term creep strength. The boron enriched in M{sub 23}C{sub 6} carbides near prior-austenite grain boundaries suppresses coarsening of these carbides during creep deformation, leading to excellent microstructural stability and creep strength. Further improvement of creep strength is achieved by the addition of appropriate amount of nitrogen which enhances precipitation of fine MX. Excess addition of nitrogen to the high-boron containing steel reduces creep rupture lives and ductility. This degradation of creep strength is due to a decrease in the amount of effective boron, which is dissolved in M{sub 23}C{sub 6} and suppresses its coarsening, resulting from the formation of coarse BN at normalizing temperature. The highest creep strength is obtained with the 0.08C-9Cr-3W-3Co-0.2V-0.05Nb-0.008N-0.014B (mass%) steel, resulting in excellent creep strength in comparison with that of P92. The 105 hours extrapolated creep rupture strength at 650.C is about 100MPa. This steel also shows good creep ductility even in the long term. It is, therefore, concluded that this high-boron bearing 9Cr-3W-3Co-VNb steel with the addition of nitrogen in the order of 0.008mass% is the promising candidate which shows superior creep strength without impairing creep ductility for thick section components in the 650 C-USC plants. (orig.)

  6. The behavior of high-strength unidirectional composites under tension with superposed hydrostatic pressure

    NARCIS (Netherlands)

    Zinoviev, P.A.; Tsvetkov, S.V.; Kulish, G.G.; Berg, van den R.W.; Schepdael, van L.J.M.M.

    2001-01-01

    Three types of high-strength unidirectional composite materials were studied under longitudinal tension with superposed high hydrostatic pressure. Reinforcing fibers were T1000G carbon, S2 glass and Zylon PBO fibers; the Ciba 5052 epoxy resin was used as matrix. The composites were tested under

  7. Application of high strength plate bolts in friction grip joints | Monda ...

    African Journals Online (AJOL)

    High Tension Bolts (HTB) are known to exert a significant influence on the strength characteristics of connections and have a significant influence on the ductility and behaviour of the joint. Normally HTB failure occurs in the shape resultant high stress concentration neck and thread areas resulting in relatively low ductility ...

  8. A review in high early strength concrete and local materials potential

    Science.gov (United States)

    Yasin, A. K.; Bayuaji, R.; Susanto, T. E.

    2017-11-01

    High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

  9. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  10. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

  11. Dexterity test data contribute to reduction in leaded glovebox gloves use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory; Costigan, Stephen A [Los Alamos National Laboratory; Schreiber, Stephen [Los Alamos National Laboratory

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (T A-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon(reg.) were the primary glove for programmatic operations at TA55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented.

  12. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit.

    Science.gov (United States)

    Wu, Fu-Fa; Chan, K C; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-06-16

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19' phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties.

  13. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing......This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel....... The processes investigated are: burr grinding, TIG dressing and ultrasonic impact treatment. The focus of this investigation is on the so-called medium cycle area, i.e. 10 000-500 000 cycles and very high stress ranges. In this area of fatigue design, the use of very high strength steel becomes necessary, since...

  14. Toward a Dexter-based model for open hypermedia: Unifying embedded references and link objects

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Trigg, Randall Hagner

    1996-01-01

    Nominated for the Doug Engelbart best paper award. This paper discusses experiences and lessons learned from the design of an open hypermedia system, one that integrates applications and data not ''owned'' by the hypermedia. The Dexter Hypertext Reference Model was used as the basis for the design....... Though our experiences were generally positive, we found the model constraining in certain ways and underdeveloped in others. For instance, Dexter argues against dangling links, but we found several situations where permitting and supporting dangling links was advisable. In Dexter, the data objects...

  15. Lower extremity dexterity is associated with agility in adolescent soccer athletes.

    Science.gov (United States)

    Lyle, M A; Valero-Cuevas, F J; Gregor, R J; Powers, C M

    2015-02-01

    Agility is important for sport performance and potentially injury risk; however, factors affecting this motor skill remain unclear. Here, we evaluated the extent to which lower extremity dexterity (LED) and muscle performance were associated with agility. Fourteen male and 14 female soccer athletes participated. Agility was evaluated using a hopping sequence separately with both limbs and with the dominant limb only. The LED test evaluated the athletes' ability to dynamically regulate foot-ground interactions by compressing a spring prone to buckling with the lower limb. Muscle performance included hip and knee isometric strength and vertical jump height. Correlation analyses were used to assess the associations between muscle performance, LED, and agility. Multiple regression models were used to determine whether linear associations differed between sexes. On average, the female athletes took longer to complete the agility tasks than the male athletes. This difference could not be explained by muscle performance. Conversely, LED was found to be the primary determinant of agility (double limb: R(2) = 0.61, P agility in soccer athletes. We propose that LED may have implications for sport performance, injury risk, and rehabilitation. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  17. [The effect of 24 weeks of moderate-to-high intensity strength training on the elderly].

    Science.gov (United States)

    Solà Serrabou, Marta; López del Amo, José Luis; Valero, Oliver

    2014-01-01

    Strength programs have been seen to be useful in minimizing the effects of sarcopenia, although intervention protocols may vary in their content and characteristics. The aim of this study was to demonstrate the influence of a particular strength protocol for the elderly. A total of 35 individuals took part in the study, with 18 in the exercise group (4 men and 14 women), and 17 in the control group (4 men and 13 women). The average age was 73. The exercise group carried out a strength training program at moderate to high intensity over 24 weeks. Strength was evaluated using the chair stand test, 2-minute step and 2 vertical jumps-squat jump (SJ), and countermovement jump (CMJ). Falls in both groups were also compared before and after the intervention, as well as their relationship with the chair stand variable. A tendency towards improvement was observed in all tests, with the exception of CMJ; while the control group showed a tendency in the opposite direction. Contrast between the two groups at the end of the intervention was notable in all the tests. An inverse relationship between the chair stand strength variable and the number of falls was evident. According to the results achieved, the training was perceived to exercise a positive influence on both the strength of the elderly people and a reduction of the number of falls. The gap between the two groups widened towards the end of the intervention. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  18. Correlation of high-speed tensile strength with collagen content in control and lathyritic rat skin.

    Science.gov (United States)

    Dombi, G W; Haut, R C; Sullivan, W G

    1993-01-01

    Severity of lacerative skin injury depends on the applied load and the resistance of the tissue. At low (static) rates of loading there is a high degree of correlation between skin tensile strength and the degree of collagen crosslinking, with little added strength due to collagen interactions with the glycosaminoglycan matrix. We examined the effects of high (ballistic) rates of loading in order to determine the contributions to strength made by both the degree of collagen crosslinking and the collagen-matrix interaction. Tensile failure experiments were conducted using the dorsal skin of rats 1.5-6 months of age. Test specimen orientations were cut parallel and transverse to the body axis at cephalad and caudad locations on the dorsum. Tensile strength was measured at nominal strain rates of 30%/sec (low speed) and 6000%/sec (high speed) using both control and lathyrogen fed rats. Biochemical analyses were conducted to determine the amount of total and crosslinked (insoluble) collagen. In low-speed tests, there was a significant correlation (r > or = 0.900) between collagen content and skin tensile strength measured both transverse and parallel to the spine. The degree of correlation was higher with insoluble (r = 0.973) collagen content than with total (r = 0.901) collagen. The effect of a lathyrogen diet produced a significant (P collagen content (r > or = 0.858).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. High strength, low carbon, dual phase steel rods and wires and process for making same

    Science.gov (United States)

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  20. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  1. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  2. Fabrication of High-Strength Gray Cast Iron Using Permanent Magnet Scrap

    Directory of Open Access Journals (Sweden)

    Park Seung-Yeon

    2017-06-01

    Full Text Available In this study, we have developed the manufacturing technology for high strength gray cast irons by using the spent permanent magnet scraps. The cast specimen inoculated by using a spent magnet scraps showed the excellent tensile strength up to 306MPa. This tensile strength value is 50MPa higher than that of the specimen cast without inoculation, and is similar to that of the specimen inoculated by using the expensive misch-metal. These superior mechanical properties are attributed to complex sulfides created during solidification that promote the formation and growth of Type-A graphite. It is therefore concluded that spent magnets scrap can provide an efficient and cost-effective inoculation agent for the fabrication of high-performance gray cast iron.

  3. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  4. Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.

    Science.gov (United States)

    Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S

    2017-08-01

    Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.

  5. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    Science.gov (United States)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  6. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  7. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  8. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  9. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    Energy Technology Data Exchange (ETDEWEB)

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E. [Army Armament RD and E Center, Watervliet, NY (United States). Benet Labs.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  10. Effects of Dexterity Level and Hand Anthropometric Dimensions on Smartphone Users’ Satisfaction

    Directory of Open Access Journals (Sweden)

    N. Firat Ozkan

    2015-01-01

    Full Text Available The usage of smartphones instead of simple mobile phones increases sharply in our era, especially among young people, because they do multiple tasks with single equipment. This study mainly focuses on smartphone satisfaction by combining hand measurements, smartphone users’ survey results, and hand dexterity levels of corresponding users acquired from Minnesota Manual Dexterity Test (MMDT. Structural Equation Modelling (SEM is used as a statistical tool to discover the potential direct and indirect relations among user satisfaction, hand dimensions, and dexterity scores. Results indicates that thumb length, hand length, and dexterity level of the users have notable effects on users’ satisfaction with smartphones. Based on the results, a new approach that includes both gross motor skills and physical measurements is suggested to see hidden indirect relations with satisfaction.

  11. A smartphone-based system to quantify dexterity in Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Somayeh Aghanavesi

    2017-01-01

    Conclusions: Quantifying PD motor symptoms via instrumented, dexterity tests employed in a smartphone is feasible and data from such tests can also be used for measuring treatment-related changes in patients.

  12. EMG signal classification for myoelectric teleoperating a dexterous robot hand.

    Science.gov (United States)

    Wang, J Z; Wang, R C; Li, F; Jiang, M W; Jin, D W

    2005-01-01

    This paper details a strategy of discriminating finger motions using surface electromyography (EMG) signals, which could be applied to teleoperating a dexterous robot hand or controlling the advanced multi-fingered myoelectric prosthesis for hand amputees. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG signal classification system was established based on the surface EMG signals from the subject's forearm. Four pairs of electrodes were attached on the subjects to acquire the signals during six types of finger motions, i.e. thumb extension, thumb flexion, index finger extension, index finger flexion, middle finger extension, and middle finger flexion. In order to distinguish these finger motions. A combination of autoregressive (AR) model and an Artificial Neural Network (ANN) was used in the system. The discrimination procedure consists of two steps. Firstly, the AR model is used to preprocess the surface EMG signals to reduce the scale of the data. These data will be imported into the myoelectric pattern classifier. Secondly the coefficients of AR model are imported into the ANN to identify the finger motions. The experimental results show that the discrimination system works with satisfaction.

  13. Design of a Variable Stiffness Soft Dexterous Gripper

    Science.gov (United States)

    Nefti-Meziani, Samia; Davis, Steve

    2017-01-01

    Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630

  14. Analysis of the weld strength of the High Density Polyethylene (HDPE)

    African Journals Online (AJOL)

    An analysis was carried out to determine the strength of welded joints in High Density Polyethylene (HDPE) dam liners. Samples were collected of welded joints and subjected to tensile tests and creep test. It was observed that the welded joints from field welded samples were much weaker and had a very low straining ...

  15. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  16. Experimental Investigation of the Fracture Behaviour of Reinforced Ultra High Strength Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Aarup, B.

    the structural behaviour of a very high strength cement based material with and without steel fibres is investigated. A simple structural geometry has been tested, namely a beam subjected to three point bending. The results shows that the increase of ductility of the material also gives a more ductile behaviour...

  17. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...

  18. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  20. The Effect of Cathodic Protection on Stress Corrosion Cracking of High-Strength Pipeline Steels, #350

    Science.gov (United States)

    2009-12-02

    The objective of this study was to establish the effect of cathodic protection (CP) to produce hydrogen that can cause cracking and in-service failures of high-strength pipeline steels, from X-70 to X-120, and to establish the effectiveness of cathod...

  1. Application of a criterion for cold cracking to casting high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging

  2. In-situ high field strength testing using a transportable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2008-01-01

    A reverberation chamber can create very high field strength with moderate input power. Existing chambers are making use of a paddle wheel to change the resonant modes in the chamber. In the case of a stepper motor, the field is stable for some time, and this type of reverberation chamber is called

  3. High strength reinforcing steel bars : low-cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  4. High strength reinforcing steel bars : low cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  5. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  6. Assessment of high early strength limestone blended cement for next generation transportation structures : final report.

    Science.gov (United States)

    2016-12-01

    This research on Type IL cements for high early strength concretes demonstrated that Type IL cements satisfying AASHTO M 240 specifications may be used in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transpo...

  7. Research on testing method of resin sand high temperature compressive strength

    Directory of Open Access Journals (Sweden)

    Peng Wan

    2016-09-01

    Full Text Available High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperature compressive strength, a self-developed instrument was used to carry out experiments, and the sample shape and size were designed and studied. The results show that a hollow cylinder sample can reflect the strength difference of different resin sands better than a solid cylinder sample, and its data is stable. The experiments selected フ20/5】30 mm as the size of the hollow cylinder samples. The high temperature compressive strengths of phenol-formaldehyde resin coated sand, furan resin self-setting sand, and TEA resin sand were each tested. For the resin sand used for cast steel and cast iron, 1,000 ìC was selected as the test temperature; for the resin sand used for cast non-ferrous alloy, 800 ìC was selected as the test temperature; and for all the resin sand samples, 1 min was selected as the holding time. This testing method can truthfully reflect the high temperature performance of three kinds of resin sand; it is reproducible, and the variation coefficients of test values are under 10%.

  8. Relationship of Muscular Strength on Work Performance in High School Students with Mental Retardation

    Science.gov (United States)

    Smail, Karen M.; Horvat, Michael

    2006-01-01

    The relationship of muscular strength on work performance measures in high school students with mild mental retardation was investigated. Ten students from a self contained Special Education class were matched according to age, gender, height, and weight then randomly assigned to either the treatment group or control group. The treatment group…

  9. Development of a GA-fuzzy-immune PID controller with incomplete derivation for robot dexterous hand.

    Science.gov (United States)

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal.

  10. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    Directory of Open Access Journals (Sweden)

    Xin-hua Liu

    2014-01-01

    Full Text Available In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters’ optimization. Finally, a simulation example was provided and the designed controller was proved ideal.

  11. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    Science.gov (United States)

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  12. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects

    OpenAIRE

    Kent, Benjamin A; Karnati, Nareen; Engeberg, Erik D.

    2014-01-01

    Background Due to their limited dexterity, it is currently not possible to use a commercially available prosthetic hand to unscrew or screw objects without using elbow and shoulder movements. For these tasks, prosthetic hands function like a wrench, which is unnatural and limits their use in tight working environments. Results from timed rotational tasks with human subjects demonstrate the clinical need for increased dexterity of prosthetic hands, and a clinically viable solution to this prob...

  13. Cold weld cracking susceptibility of high strength low alloyed (HSLA steel NIONIKRAL 70

    Directory of Open Access Journals (Sweden)

    A. S. Tawengi

    2014-10-01

    Full Text Available In view of the importance of high strength low alloy (HSLA steels, particularly for critical applications such as offshore plat forms, pipeline and pressure vessels, this paper reports on an investigation of how to weld this type of steel without cold cracking. Using manual metal arc welding process and Tekken test (Y - Grove test has been carried out both to observe the cold cracking phenome non, and to investigate the influencing factors, such as preheating temperature and energy input, as well as electrode strength and diameter. How ever the results of the experiments show that there is a risk of cold cracking.

  14. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  15. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  16. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    Science.gov (United States)

    2005-07-01

    to the log da/dt vs. l/T data. Speidel reported simple Arrhenius behavior for lower strength Nimonic 105 (Cyys = 825 MPa) for 0°C < T < 100°C (Speidel...HYDROGEN ASSISTED CRACKING OF HIGH STRENGTH ALLOYS Richard P. Gangloff August. 2003 Page 115 of 194 L (a) R250 nm 250 nm SL (b) R Figure 43: Matching...34Hydrogen in Metals", Eds., I.M. Bernstein and A.W. Thompson, ASM International, Materials Park, OH, 1974, pp. 115 -147. W.W. Gerberich, Y.T. Chen and C

  17. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  18. Aspects of flexural behavior of high strength concrete elements with or without steel fibers

    Directory of Open Access Journals (Sweden)

    Gheorghe-Alexandru Bărbos

    2013-06-01

    Full Text Available Steel fiber reinforced high strength concrete (SFRHSC is concrete made of hydraulic cements containing fine or fine and coarse aggregate and discontinuous discrete steel fibers. In tension, SFRHSC fails only after the steel fiber breaks or is pulled out of the cement matrix. A more general and current approach to the mechanics of fiber reinforcing assumes a crack arrest mechanism based on fracture mechanics. In this model, the energy to extend a crack and debond the fibers in the matrix relates to the properties of the composite. The designers may best view SFRHSC as a concrete with increased strain capacity, impact resistance, energy absorption, fatigue endurance and tensile strength.

  19. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    OpenAIRE

    Chen Yuan-Yuan; Yang Chien-Jou

    2017-01-01

    This paper applied the densified mixture design algorithm(DMDA) method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II) to design high strength concrete (HSC) mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30), and silica fume (5%) was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to meas...

  20. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Mehrali, Mohammad

    2016-01-01

    As a ceramic-like material, geopolymers show a high quasi-brittle behavior and relatively low fracture energy. To overcome this, the addition of fibers to a brittle matrix is a well-known method to improve the flexural strength. Moreover, the success of the reinforcements is dependent on the fiber...... of 56 days. Test results confirmed that MSF additions could significantly improve both ultimate flexural capacity and ductility of fly ash based geopolymer, especially at early ages without an adverse effect on ultimate compressive strength....

  1. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  2. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Kurihara, I.; Sasaki, T.; Koyama, Y.; Tanaka, Y. [The Japan Steel Works, Ltd. (Japan)

    1999-07-01

    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached limit of size from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength which brings reduction of pressure vessel thickness and weight. The Japan Steel Works, Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620MPa for steam generator (SG) pressure vessel, and has made confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness weldability including under clad cracking (UCC) sensitivity and metallurgical factors which influence on such material properties. (orig.)

  3. Application of high strength MnMoNi steel to pressure vessels for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. E-mail: koumei_suzuki@jsw.co.jp; Kurihara, I.; Sasaki, T.; Koyoma, Y.; Tanaka, Y

    2001-06-01

    Recent increase in output of nuclear power plant has been attained by enlargement of major components such as pressure vessels. Such large components have almost reached a size limit from the points of manufacturing capacity and cost in both forgemasters and fabricaters. In order to solve this problem, it must be beneficial to apply design by use of material of higher strength, which brings reduction of pressure vessel thickness and weight. The Japan Steel Works Ltd. (JSW) has many manufacturing experiences of large integrated forgings made from high strength MnMoNi steel with tensile strength level of 620 MPa for steam generator (SG) pressure vessel, and has performed confirmation tests of its material properties. This paper describes the confirmation test results such as tensile and impact properties, nil-ductility transition temperature (NDT-T), static and dynamic fracture toughness, weldability including under-clad cracking (UCC) sensitivity, as well as metallurgical factors which influence on such material properties.

  4. Ion exchange on mixed ionic forms of montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W. J.; Shiao, S. Y.; Meyer, R. E.; Westmoreland, C. G.; Lietzke, M. H.

    1979-01-01

    This paper summarizes studies of the distribution of sodium and calcium ions between a common clay, montmorillonite, as well as several other clays, and a series of solutions of constant total ionic strength (I) with varying ionic strength fraction of sodium. Distribution coefficients D for Na(I) and Ca(II) were determined by batch equilibrations using isotope dilutions with radioactive tracers. Equilibrium quotients (K/GAMMA) for the exchange of sodium and calcium were then calculated and the effects of solution composition, of solution phase activity coefficients, of ionic strength, of degree of purification, and of source of clay were investigated. Equilibrium quotients with adjustment for solution-phase activity coefficients did not vary greatly with I, except at low loading of sodium on the calcium form of montmorillonite, where D/sub Na/ became anomalously high. Values of K/GAMMA for illite and attapulgite were within an order of magnitude of those for montmorillonite.

  5. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    Science.gov (United States)

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Behavior of bonded and unbonded prestressed normal and high strength concrete beams

    Directory of Open Access Journals (Sweden)

    O.F. Hussien

    2012-12-01

    This paper presents an experimental program conducted to study the behavior of bonded and unbounded prestressed normal strength (NSC and high strength concrete (HSC beams. The program consists of a total of nine beams; two specimens were reinforced with non-prestressed reinforcement, four specimens were reinforced with bonded tendons, and the remaining three specimens were reinforced with unbonded tendons. The overall dimensions of the beams are 160 × 340 × 4400-mm. The beams were tested under cyclic loading up to failure to examine its flexural behavior. The main variables in this experimental program are nominal concrete compressive strength (43, 72 and 97 MPa, bonded and unbonded tendons and prestressing index (0%, 70% and 100%. Theoretical analysis using rational approach was also carried out to predict the flexural behavior of the specimens. Evaluation of the analytical work is introduced and compared to the results of the experimental work.

  7. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  8. Prospective high strength steel utilizing TRIP effect; Hentai yuki sosei koka wo riyoshita jisedai kokyodo usukoban

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Y.; Kimura, N.; Itami, a.; Hiwatashi, S.; Kawano, O.; Sakata, K. [Nippon Steel Corp., Tokyo (Japan)

    1994-11-29

    The transformation induced plasticity (TRIP) means the large extension of chemically unstable austenitic {gamma} phase when it is transformed into martensite by the addition of dynamic energy. The application of TRIP effect is promising to the auto-body use steel plate because thin stainless steel plates excelling in bulging properties are producible. The present paper explained the enlarging mechanism of elongation, principle of production, examples of production on the actual line, formability, weldability and fatigue durability. Than that of the different conventional steel plates, a better combination of both strength and elongation was recorded through the actual line trial production of cold and hot rolled steel plates which were 590 to 980N/mm{sup 2} in tensile strength. Their apparent superiority in bulging properties was confirmed in the vicinity of plain strain, while their deep drawability was also known to be good through a TZP test. The presently developed steel excelled the conventional high-strength steel in strength at spot welding, while its fatigue strength was higher even than that of the dual-phase steel so far regarded as the best in it. 13 refs., 12 figs., 4 tabs.

  9. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    Liulei Lu

    2017-07-01

    Full Text Available In this work, the effect of graphene oxide nanosheet (GONS additives on the properties of cement mortar and ultra-high strength concrete (UHSC is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement. Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  10. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong

    2017-07-20

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  11. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  12. Benzodiazepines, benzodiazepine-like drugs, and typical antipsychotics impair manual dexterity in patients with schizophrenia.

    Science.gov (United States)

    Sasayama, Daimei; Hori, Hiroaki; Teraishi, Toshiya; Hattori, Kotaro; Ota, Miho; Matsuo, Junko; Kinoshita, Yukiko; Okazaki, Mitsutoshi; Arima, Kunimasa; Amano, Naoji; Higuchi, Teruhiko; Kunugi, Hiroshi

    2014-02-01

    Impaired dexterity is a major psychomotor deficit reported in patients with schizophrenia. In the present study, the Purdue pegboard test was used to compare the manual dexterity in patients with schizophrenia and healthy controls. We also examined the influence of antipsychotics, benzodiazepines, and benzodiazepine-like drugs on manual dexterity. Subjects were 93 patients with schizophrenia and 93 healthy controls, matched for sex and age distributions. Control subjects scored significantly higher on all scores of Purdue pegboard than patients with schizophrenia. Age, PANSS negative symptom scale, typical antipsychotic dose, and use of benzodiazepines and/or benzodiazepine-like drugs were negatively correlated with the pegboard scores in patients with schizophrenia. The present results indicate that patients with schizophrenia have impaired gross and fine fingertip dexterity compared to healthy controls. The use of typical antipsychotics and benzodiazepines and/or benzodiazepine-like drugs, but not atypical antipsychotics, had significant negative impact on dexterity in patients with schizophrenia. Psychiatrists should be aware that some psychotropic medications may enhance the disability caused by the impairment of dexterity in patients with schizophrenia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  14. Assessment and optimization of thermal and fluidity properties of high strength concrete via genetic algorithm

    Directory of Open Access Journals (Sweden)

    Barış Şimşek

    2016-12-01

    Full Text Available This paper proposes a Response Surface Methodology (RSM based Genetic Algorithm (GA using MATLAB® to assess and optimize the thermal and fluidity of high strength concrete (HSC. The overall heat transfer coefficient, slump-spread flow and T50 time was defined as thermal and fluidity properties of high strength concrete. In addition to above mentioned properties, a 28-day compressive strength of HSC was also determined. Water to binder ratio, fine aggregate to total aggregate ratio and the percentage of super-plasticizer content was determined as effective factors on thermal and fluidity properties of HSC. GA based multi-objective optimization method was carried out by obtaining quadratic models using RSM. Having excessive or low ratio of water to binder provides lower overall heat transfer coefficient. Moreover, T50 time of high strength concrete decreased with the increasing of water to binder ratio and the percentage of superplasticizer content. Results show that RSM based GA is effective in determining optimal mixture ratios of HSC.

  15. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  16. Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics

    Science.gov (United States)

    Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko

    2003-08-01

    Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.

  17. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  18. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  19. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  20. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics.

    Science.gov (United States)

    Blatz, M B; Vonderheide, M; Conejo, J

    2018-02-01

    Digital manufacturing, all-ceramics, and adhesive dentistry are currently the trendiest topics in clinical restorative dentistry. Tooth- and implant-supported fixed restorations from computer-aided design (CAD)/computer-aided manufacturing (CAM)-fabricated high-strength ceramics-namely, alumina and zirconia-are widely accepted as reliable alternatives to traditional metal-ceramic restorations. Most recent developments have focused on high-translucent monolithic full-contour zirconia restorations, which have become extremely popular in a short period of time, due to physical strength, CAD/CAM fabrication, and low cost. However, questions about proper resin bonding protocols have emerged, as they are critical for clinical success of brittle ceramics and treatment options that rely on adhesive bonds, specifically resin-bonded fixed dental prostheses or partial-coverage restorations such as inlays/onlays and veneers. Resin bonding has long been the gold standard for retention and reinforcement of low- to medium-strength silica-based ceramics but requires multiple pretreatment steps of the bonding surfaces, increasing complexity, and technique sensitivity compared to conventional cementation. Here, we critically review and discuss the evidence on resin bonding related to long-term clinical outcomes of tooth- and implant-supported high-strength ceramic restorations. Based on a targeted literature search, clinical long-term studies indicate that porcelain-veneered alumina or zirconia full-coverage crowns and fixed dental prostheses have high long-term survival rates when inserted with conventional cements. However, most of the selected studies recommend resin bonding and suggest even greater success with composite resins or self-adhesive resin cements, especially for implant-supported restorations. High-strength ceramic resin-bonded fixed dental prostheses have high long-term clinical success rates, especially when designed as a cantilever with only 1 retainer. Proper

  1. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    Science.gov (United States)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  2. High temperature strength and inelastic behavior of plate-fin structures for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, F. [Mitsubishi Heavy Industries, Ltd., Fukahori-machi 5-717-1, 851-0392 Nagasaki (Japan)]. E-mail: fumiko_kawashima@mhi.co.jp; Igari, T. [Mitsubishi Heavy Industries, Ltd., Fukahori-machi 5-717-1, 851-0392 Nagasaki (Japan); Miyoshi, Y. [Mitsubishi Heavy Industries, Ltd., Fukahori-machi 5-717-1, 851-0392 Nagasaki (Japan); Kamito, Y. [Mitsubishi Heavy Industries, Ltd., Fukahori-machi 5-717-1, 851-0392 Nagasaki (Japan); Tanihira, M. [Mitsubishi Heavy Industries, Ltd., Fukahori-machi 5-717-1, 851-0392 Nagasaki (Japan)

    2007-03-15

    In this paper, both high temperature strength and inelastic behavior of plate-fin structures were discussed for applying these structures to the compact heat exchangers such as recuperative and intermediate heat exchangers for high-temperature gas-cooled reactors (HTGR). Firstly tensile, creep and fatigue tests of the brazed plate-fin model of small size were carried out to obtain the rupture strength and inelastic behavior. The influence of the braze filler metal thickness on the tensile strength was experimentally studied and a possibility of predicting both the tensile and creep strength was discussed using the data of base material of plates and fins. Secondly, we demonstrated the fabrication of large-size core with a dimension of 1000 mm, and also demonstrated that the bonding ratio in this core was improved up to almost 100% by adopting the pressurized tank system in the brazing process. Finally, we proposed the stress analysis method of plate-fin structures on the basis of the equivalent-homogeneous-solid concept, and carried out the elastic-plastic analysis of recuperative heat exchanger for HTGR. Characteristics of stress-strain behavior were discussed together with a possibility of predicting the fatigue life of the structure.

  3. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  4. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  5. Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids.

    Science.gov (United States)

    Sun, Feifei; Lin, Meiqin; Dong, Zhaoxia; Zhang, Juan; Wang, Cheng; Wang, Shuanglong; Song, Feifei

    2015-11-15

    Nano-silica was introduced to enhance the mechanical strength of polymer hydrogels obtained via the crosslinking of polyacrylamide (PAM) and chromium acetate. Rheological properties, compression strength and compressive stress-strain of both nanocomposite and normal hydrogels without nano-silica were investigated by HAKKE rheometer, compression strength test device and electronic universal material testing machine. Moreover, environmental scanning electronic microscopic (ESEM) was adopted to observe the three-dimension network structure of nanocomposite and normal hydrogel, as well as the distribution of nano-silica. The results demonstrated that elastic moduli (G') and viscous moduli (G″) of nanocomposite hydrogel were both improved with increasing nano-silica concentration. Especially when silica content reached 10wt%, G' and G″ of nanocomposite hydrogel increased over one hundred times higher than those of normal hydrogel. The original compression strength of hydrogel was 70.8kPam(-1), while the resulting strength of nanocomposite was enhanced to be 196.64kPam(-1). When the hydrogel were sheared, the normal hydrogel was fractured under low strain, whereas nanocomposite hydrogel was not broken under high strain, and it quickly recovered its original shape after the release of load. In addition, the ESEM images indicated that a large quantity of silica particles aggregated and attached around the polymer chains, and others aggregated to fill into the three-dimension network of hydrogel, which induced the compaction of the space between the network layers and reduced the flowing of free water wrapped in the network, therefore the mechanical strength of hydrogel was enhanced. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of laser cutting on the fatigue limit of two high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, Antonio; Fargas, Gemma; Calvo, Jessica; Roa, Joan Josep [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering

    2015-02-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steel sheets are produced. However, the roughness of cut edges produced by laser differs from that obtained by other methods, such as mechanical blanking, and this fact influences the fatigue performance. In the present investigation, specimens of two grades of high strength austenitic steels, i.e. AISI 301LN and TWIP17Mn, were cut by laser and tested in the high cycle fatigue regime to determine their corresponding fatigue limits. A series of fatigue specimens were tested without polishing and other series after a careful polishing of the cut edges, in order to assess the influence of the cut edges condition. Results indicate a significant influence of the edge roughness, more distinctive for AISI 301LN than for TWIP steel.

  7. Fabrication of cellulose self-assemblies and high-strength ordered cellulose films.

    Science.gov (United States)

    Yuan, Zaiwu; Zhang, Jingjing; Jiang, Anning; Lv, Wenting; Wang, Yuewen; Geng, Hongjuan; Wang, Jin; Qin, Menghua

    2015-03-06

    Based on the formation of cellulose hydrogels in NaOH/urea aqueous solvent media, cellulose self-assembly precursor is acquired. It is proved that the water uptake capability of the cellulose hydrogels depends highly on the cross-link degree (CLD) of cellulose. With varying CLD and concentration of cellulose, a variety of morphologies of cellulose self-assemblies, including sheets with perfect morphology, high-aspect-ratio fibers, and disorganized segments and network, are formed through evaporation. Furthermore, cellulose films are fabricated by diecasting and evaporating the cellulose hydrogels, resulting in a 3D-ordered structure of closely stacking of cellulose sheets. The mechanical test indicates both tensile strength and flexibility of the cellulose films are greatly improved, which is attributed to the formation of the orderly stacking of cellulose sheets. The study is expected to lay an important foundation on the preparation of ordered and high-strength cellulose materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Rock Strength Anisotropy in High Stress Conditions: A Case Study for Application to Shaft Stability Assessments

    Directory of Open Access Journals (Sweden)

    Watson Julian Matthew

    2015-03-01

    Full Text Available Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM, which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.

  9. Dentin bond strength after ablation using a CO2 laser operating at high pulse repetition rates

    Science.gov (United States)

    Hedayatollahnajafi, Saba; Staninec, Michal; Watanabe, Larry; Lee, Chulsung; Fried, Daniel

    2009-02-01

    Pulsed CO2 lasers show great promise for the rapid and efficient ablation of dental hard tissues. Our objective was to demonstrate that CO2 lasers operated at high repetition rates can be used for the rapid removal of dentin without excessive thermal damage and without compromising adhesion to restorative materials. Human dentin samples (3x3mm2) were rapidly ablated with a pulsed CO2 laser operating at a wavelength of 9.3-µm, pulse repetition rate of 300-Hz and an irradiation intensity of 18-J/cm2. The bond strength to composite was determined by the modified single plane shear test. There were 8 test groups each containing 10 blocks: negative control (non-irradiated non-etched), positive control (non-irradiated acid-etched), and six laser treated groups (three etched and three non-etched sets). The first and second etched and non-etched sets were ablated at a speed of 25 mm/sec and 50 mm/sec with water, respectively. The third set was also ablated at 50 mm/sec without application of water during laser irradiation. Minimal thermal damage was observed on the dentin surfaces for which water cooling was applied. Bond strengths exceeded 20 MPa for laser treated surfaces that were acid-etched after ablation (25-mm/sec: 29.9-MPa, 50-mm/sec: 21.3-MPa). The water-cooled etched laser groups all produced significantly stronger bonds than the negative control (pbond strength than the positive control (pbond strength than the acid-etched control samples is clinically significant where durability of these bonded restoration supersedes high bond strength.

  10. Sleep monitoring of a six-day microcycle in strength and high-intensity training.

    Science.gov (United States)

    Kölling, Sarah; Wiewelhove, Thimo; Raeder, Christian; Endler, Stefan; Ferrauti, Alexander; Meyer, Tim; Kellmann, Michael

    2016-08-01

    This study examined the effect of microcycles in eccentric strength and high-intensity interval training (HIT) on sleep parameters and subjective ratings. Forty-two well-trained athletes (mean age 23.2 ± 2.4 years) were either assigned to the strength (n = 21; mean age 23.6 ± 2.1 years) or HIT (n = 21; mean age 22.8 ± 2.6 years) protocol. Sleep monitoring was conducted with multi-sensor actigraphy (SenseWear Armband™, Bodymedia, Pittsburg, PA, USA) and sleep log for 14 days. After a five-day baseline phase, participants completed either eccentric accented strength or high-intensity interval training for six days, with two training sessions per day. This training phase was divided into two halves (part 1 and 2) for statistical analyses. A three-day post phase concluded the monitoring. The Recovery-Stress Questionnaire for Athletes was applied at baseline, end of part 2, and at the last post-day. Mood ratings were decreased during training, but returned to baseline values afterwards in both groups. Sleep parameters in the strength group remained constant over the entire process. The HIT group showed trends of unfavourable sleep during the training phase (e.g., objective sleep efficiency at part 2: mean = 83.6 ± 7.8%, F3,60 = 2.57, P = 0.06, [Formula: see text] = 0.114) and subjective improvements during the post phase for awakenings (F3,60 = 2.96, P = 0.04, [Formula: see text] = 0.129) and restfulness of sleep (F3,60 = 9.21, P < 0.001, [Formula: see text] = 0.315). Thus, the HIT protocol seems to increase higher recovery demands than strength training, and sufficient sleep time should be emphasised and monitored.

  11. Analysis of local warm forming of high strength steel using near infrared ray energy

    Science.gov (United States)

    Yang, W. H.; Lee, K.; Lee, E. H.; Yang, D. Y.

    2013-12-01

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  12. Mechanical Behavior of DP980 High Strength Steel Under Dynamic Tensile Tests

    Directory of Open Access Journals (Sweden)

    TIAN Wen-yang

    2017-03-01

    Full Text Available The mechanical behavior and fracture modes of DP980 high strength steels were studied by comparing the results of dynamic tensile tests at strain rates from 10-3s-1 to 103s-1. The results show that the strength of DP980 steel remains almost unchanged and the plasticity decreases by 7.5% as the strain rate increasing from quasi-static(10-3s-1 to 100s-1. When the strain rate increases from 100s-1 to 103s-1, the strength keeps increasing, while the plasticity increases by 14% at the strain rate ranging from 100s-1 to 102s-1, but then follows by a decrease of 24.7% in the range of 102s-1 to 103s-1. The strain rate sensitivity coefficient m increases with the increasing of the strain rate. During the plastic deformation, the multiplication reinforcement of dislocation and the motion resistance due to the acceleration of dislocation in ferrite matrix are the main reasons for the strength enhancement. The plastic deformation concentrates in the ferrite, and the microvoids and cracks propagate along the martensite-ferrite interface. In the thickness direction of specimen, the macrographs of fracture are "V" shape cups when strain rate is lower than 101s-1, but the pure sheer shape with 45° to the tensile direction when strain rate is over 101s-1.

  13. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  14. Research on the Optimal Layout of High-strength Steel in the Transmission Tower

    Science.gov (United States)

    Chunming, W. EI.; Tingting, S. U.; Bin, M. A.; Jing, Gong

    In order to research on the arrangement way of high-strength steel in ultrahigh voltage transmission towers, the integrated structure and material multi-objective optimization model of ultrahigh voltage transmission towers was established, and the optimization model is solved by using fast non-dominated sorting genetic algorithm (NSGA-II). Sectional areas and materials of each bar were regarded as the design variables, the structural min-cost was considered as the objective of the economic optimization, and the min-displacement of the control point was regarded as the objective of structural optimization. Based on the software MATLAB, relevant optimization program was programmed to solve the optimization model. The results show, the optimal results can satisfy the structural requirements and reduce the cost of projects, making the arrangement way of high-strength steel way in ultrahigh voltage transmission towers more reasonable and more economical.

  15. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    Science.gov (United States)

    2014-01-13

    University of California - Los Angeles Office of Contract and Grant Administration 11000 Kinross Avenue, Suite 102 Los Angeles, CA 90095 -1406...Wollersheim, and R. Wurschum. Acta Mater. 49, 737 (2001). 2. Y. Champion, C. Langlois, S. Guerin -Mailly, P. Langlois, J.-L. Bonnentien, and M.J. Hytch...Angeles, Los Angeles, CA 90095 Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

  17. Improving uv resistance of high strength fibers used in large scientific balloons

    Science.gov (United States)

    Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.

    For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran, Spectra, Kevlar and, PBO (Zylon). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strenthg, breaking elongation, modulus, etc) of untreated, unexposed to UV fibers

  18. The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire

    OpenAIRE

    Mohd Ali Ahmad Zurisman; Sanjayan Jay

    2016-01-01

    Concrete structures were designed to withstand various types of environment conditions from mild to very severe conditions. Fire represents one of the most severe environmental conditions to which concrete structures may be subjected especially in close conduct structure like tunnel. This paper focuses on the spalling of geopolymer high strength concrete exposed to hydrocarbon fire for minimum 2 hours. From the fire test, geopolymer concrete can be classified as a good fire resistance constru...

  19. Experimental Studies of a Series of High Strength Friction Grip Bolted Joints

    OpenAIRE

    M. Budescu; I. Ciongradi; Victor-Octavian Roşca

    2005-01-01

    The performed tests intended to establish the necessary conditions for surfaces of the assemblage elements in contact with the KB, so as, by connecting them using the HSFG (High Strength Friction Grip) bolts, to ensure the necessary frictional resistance. The tests have performed using 2.5mm thickness KB250 thin – walled profiles. This minimum thickness is often used for structural elements in this constructive system. The KONTIBEAM system is primarily made of two galvanized sheet profiles so...

  20. The influence of granulation on lightweight aggregate on early autogenous shrinkage of high strength concrete

    OpenAIRE

    Maleš, Dijana

    2013-01-01

    Early autogenous shrinkage of high strength concretes is relatively large. It can be reduced by using internal water reservoirs. Lightweight aggregate was used for internal water reservoir. 12% of aggregate was replaced with pre-soaked lightweight aggregate in the concrete mixture. On the basis of experiments in the graduation thesis we studied the influence of granulation of lightweight aggregate on early autogenous shrinkage. The shrinkage was measured electronically during the first day. I...

  1. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    OpenAIRE

    Yuanqing Wang; Zhongxing Wang

    2016-01-01

    Experiments of 17 high strength aluminum alloy (7A04) specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM) to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinem...

  2. Sound velocity of high-strength polymer with negative thermal expansion coefficient

    Science.gov (United States)

    Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.

    2003-05-01

    Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.

  3. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  4. Low flux submerged membrane bioreactor treating high strength leachate from a solid waste transfer station.

    Science.gov (United States)

    Thanh, Bui Xuan; Dan, Nguyen Phuoc; Visvanathan, Chettiyappan

    2013-08-01

    A submerged membrane bioreactor was employed to treat high strength leachate generating from a solid waste transfer station. The reactor was operated at low fluxes of 1.2; 2.4; 3.8 and 5.1 LMH. The organic loading rate (OLR) ranged from 2 to 10 kg COD/m(3)day. Results show that 97% removal efficiency of COD at flux of 2.4 LMH. The highest removal of ammonia nitrogen and total nitrogen was 92.0 ± 1.5% and 88.0 ± 2.0% respectively at flux of 3.8 LMH. Fouling rates were observed to be 0.075; 0.121; 3.186 and 6.374 kPa/day for the fluxes of 1.2; 2.4; 3.8 and 5.1 LMH, respectively. Membrane fouled very slowly at low flux operation. The sustainable flux was identified to be less than 2.4 LMH for treating high strength leachate. It reveals less fouling was able to achieve for high strength wastewater by reducing the membrane flux. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The variability and controls of rock strength along rocky coasts of central Spitsbergen, High Arctic

    Science.gov (United States)

    Strzelecki, Mateusz Czesław

    2017-09-01

    This paper presents the results of the Schmidt Hammer Rock Tests (SHRTs) across a range of rocky coastal landforms. Northern Billefjorden (central Spitsbergen), represents typical High Arctic microtidal fjord environment. Sheltered location and prolonged sea-ice conditions limit wave action. Coastal cliffs, shore platforms and skerries are developed in various rock types including limestone, sandstone, anhydrite/gypsum, dolomite and metamorphic outcrops. SHRT demonstrated a broad variety of relationships between rock strength and distance from shoreline, presence of sediment cover, distribution of snow patches and icefoot, and accumulations of seaweed and driftwood. In general, rock cliff surfaces were the most resistant in their lower and middle zones, that are thermally insulated by thick winter snowdrifts. More exposed cliff tops were fractured and weathered. The differences in rock strength observed along the shore platforms were highly dependent on thickness of sediment cover and shoreline configuration promoting stronger rock surfaces in areas exposed to the longest wave fetch and washed from gravel deposits. Rock strength of skerry islands is influenced by tidal action controlling the duration of tide inundation and movement of sea-ice scratching boulder surfaces. The results presented in this paper emphasize the richness of rock coast geomorphology and processes operating in High Arctic settings.

  6. Investigation on Friction and Wear of Cold Rolled High Strength Steel against an AISI52100 Counterpart

    Directory of Open Access Journals (Sweden)

    Jiwon Hur

    2017-03-01

    Full Text Available This article investigates the friction and wear of cold rolled high strength steel at various displacement amplitudes. Reciprocal sliding tests are carried out using a ball-on-flat testing apparatus. The tangential force occurring at the contact surface between a high strength steel specimen and an AISI52100 ball is measured during the tests. After each test, the worn surface profile on the steel specimen is determined. Experimental results show that the ratio of the maximum tangential to the normal force remains at 0.7 after an initial rapid increase, and the ratio does not greatly change according to the imposed displacement amplitudes (in the range of 0.05 mm and 0.3 mm. The wear volume loss on the steel specimen increases according to the number of cycles. It is determined that the wear rate of the specimen changes with respect to the imposed displacement amplitude. That is, the wear rate rapidly increases within the displacement amplitude range of 0.05 mm to 0.09 mm, while the wear rate gradually increases when the displacement amplitude is greater than 0.2 mm. The obtained results provide the friction and wear behaviors of cold rolled high strength steel in fretting and reciprocal sliding regimes.

  7. Fatigue Properties of the Ultra-High Strength Steel TM210A.

    Science.gov (United States)

    Yin, Guang-Qiang; Kang, Xia; Zhao, Gui-Ping

    2017-09-09

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = -1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 10⁷ cycles. A double weighted least square method was then used to fit the stress-life (S-N) curve. The S-N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69.

  8. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  9. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  10. Fe I Oscillator Strengths for Transitions from High-lying Odd-parity Levels

    Science.gov (United States)

    Belmonte, M. T.; Pickering, J. C.; Ruffoni, M. P.; Den Hartog, E. A.; Lawler, J. E.; Guzman, A.; Heiter, U.

    2017-10-01

    We report new experimental Fe I oscillator strengths obtained by combining measurements of branching fractions measured with a Fourier Transform spectrometer and time-resolved, laser-induced fluorescence lifetimes. This study covers the spectral region ranging from 213 to 1033 nm. A total of 120 experimental {log}({gf})-values coming from 15 odd-parity energy levels are provided, 22 of which have not been reported previously and 63 of which have values with lower uncertainty than the existing data. The radiative lifetimes for 60 upper energy levels are presented, 39 of which have no previous measurements.

  11. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  12. High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance

    Directory of Open Access Journals (Sweden)

    Valéria Leme Gonçalves Panissa

    2016-03-01

    Full Text Available PRUPOSE: To investigate the effects of a 5-km high-intensity interval exercise (HIIE on heart rate variability (HRV and subsequent strength performance. METHODS: nine trained males performed a control session composed of a half-squat strength exercise (4 x 80% of one repetition maximum – 1RM in isolation and 30-min, 1-, 4-, 8- and 24-h after an HIIE (1-min at the velocity peak:1-min passive recovery. All experimental sessions were performed on different days. The maximum number of repetitions and total weight lifted during the strength exercise were registered in all conditions; in addition, prior to each session, HRV were assessed [beat-to-beat intervals (RR and log-transformed of root means square of successive differences in the normal-to-normal intervals (lnRMSSD]. RESULTS: Performance in the strength exercise dropped at 30-min (31% and 1-h (19% post-HIIE concomitantly with lower values of RR (781±79 ms; 799±134 ms, respectively in the same recovery intervals compared to the control (1015±197 ms. Inferential analysis did not detect any effect of condition on lnRMSSD, however, values were lower after 30-min (3.5±0.4 ms and 1-h (3.3±0.5 ms with moderate and large effect sizes (0.9 and 1.2, respectively compared with the control condition (3.9±0.4 ms. CONCLUSION: Both RR and lnRMSSD seem to be associated with deleterious effects on strength performance, although further studies should be conducted to clarify this association.

  13. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  14. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  15. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  16. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  17. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Science.gov (United States)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  18. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  19. Translucency and strength of high-translucency monolithic zirconium oxide materials.

    Science.gov (United States)

    Church, Todd D; Jessup, Jeffrey P; Guillory, Villa L; Vandewalle, Kraig S

    2017-01-01

    The purpose of this study was to evaluate the translucency and strength of highly translucent monolithic zirconia ceramic materials recently introduced to the market. Four monolithic zirconium oxide materials promoted as having high translucency (BruxZir Shaded 16, BruxZir HT, Lava Plus, and inCoris TZI C) were compared to a high-translucency, lithium disilicate monolithic glass-ceramic material (IPS e.max CAD HT). To evaluate translucency, the materials were sectioned into 0.5-, 1.0-, 1.5-, and 2.0-mm-thick specimens; all were sintered and polished. Translucency parameters were calculated with a spectrophotometer. To evaluate flexural strength and modulus, the ceramic materials were sectioned to create beams and fractured in a universal testing machine. The lithium disilicate had significantly greater translucency than the zirconia materials at each thickness. In general, the translucencies of the zirconia materials were similar at each thickness. However, at the manufacturers' recommended minimal thicknesses, 0.5-mm specimens of BruxZir Shaded 16, inCoris TZI C, and Lava Plus were more translucent than the 1.0-mm-thick specimens of IPS e.max CAD HT. Translucency significantly decreased for each material at each increase in thickness. The flexural strengths of the zirconia materials were similar to each other and significantly greater than that of IPS e.max CAD HT. Flexural moduli were more variable. Of the zirconia materials, BruxZir Shaded 16 had an overall better combination of translucency, strength, and modulus.

  20. Production of high strength hollow shafts using tool hardening and Q-P process

    Directory of Open Access Journals (Sweden)

    Masek Bohuslav

    2015-01-01

    Full Text Available Innovation opens new opportunities in the field of processing hollow semi-products, as it offers the potential for manufacturing complex-shaped structural parts with enhanced properties. This introduces a manufacturing route comprising the following steps: internal high pressure forming, hot stamping and thermomechanical Q&P processing. In this manufacturing route, the demonstration product, a tube–shaped stock, is first austenitized. It is then expanded in a closed die by internal pressure of nitrogen until the material touches the die wall. As a result, it cools down quickly and martensite begins to form. At a temperature above the Mf, the cooling is interrupted and the workpiece is transferred to a furnace and tempered. The furnace temperature is below the Ms temperature. Within several minutes, a mixed microstructure forms, consisting of martensite and stabilized retained austenite. Thanks to this microstructure, the material exhibits a favourable combination of high strength and adequate ductility. Martensite imparts sufficient strength to the material whereas the retained austenite provides ductility. At a carbon level of approximately 0.4 % and with a simple Si-Mn-Cr-based chemistry, strengths of 2000 MPa and A5 mm elongations of 15% can be achieved.

  1. AN INVESTIGATION OF METALLURGICAL FACTORS WHICH AFFECT THE FRACTURE TOUGHNESS OF ULTRA HIGH STRENGTH STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, William E.; Parker, Earl R.; Zackay, Victor F.

    1973-05-01

    The relationship between microstructure, heat treatment and room temperature fracture toughness has been determined for the low alloy ultra-high strength steels 4130, 4330, 4340, 4140 and 300-M. Optical metallography, microprobe analysis, and scanning electron microscopy were used to characterize the structure and morphology, while both Charpy V-notch impact tests and plane strain fracture toughness tests were used to determine the fracture properties. The normal commercial heat treatment resulted in the formation of some bainite in all the alloys. MnS inclusions on prior austenite grain boundaries were found to initiate cracks during loading. By increasing the austenitizing temperature to l200 C, the fracture toughness could be increased by at least 60%. For some alloys increasing the severity of the quench in conjunction with the higher austenitizing temperatures resulted in further increases in the fracture toughness, and the elimination of any observable upper bainite. There was no correlation between the Charpy impact test results and the fracture toughness results. The alloys 4130, 4140, 4340 all showed a severe intergranular embrittlement when austenitized at high temperatures and tempered above 200 C, while the alloys 4330 and 300-M exhibited no drop in toughness for the same heat treatment conditions. The as-quenched tensile specimens had a very low 'micro' yield strength which rapidly increased to the level of the 'macro' yield strength when tempered.

  2. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete

    Science.gov (United States)

    Tandiroglu, Ahmet

    2010-06-01

    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  3. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    Science.gov (United States)

    Yan, Changwang; Jia, Jinqing

    2010-09-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  4. Development and Application of High Strength TMCP Plate for Coal Mining Machinery

    Science.gov (United States)

    Yongqing, Zhang; Aimin, Guo; Liandeng, Yao

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  5. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  6. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S., E-mail: BONGSL@kaeri.re.k [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of); Kim, M.C.; Yoon, J.H.; Hong, J.H. [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of)

    2010-01-15

    The reactor pressure vessels of PWRs have mostly been made of SA508 Grade 3 (Class 1) low alloy steels which have revealed moderate mechanical properties and a moderate radiation resistance for a 40 or 60 year operation. The specified minimum yield strength of the material is 345 MPa with a ductile-brittle transition temperature of about 0 deg. C. While other materials, most of which are non-ferrous alloys or high alloyed steels for a higher temperature application, are being developed for the Generation-4 reactors, low alloy steels with a higher strength and toughness can help to increase the safety and economy of the advanced PWR systems which will be launched in the near future. The ASME specification for SA508 Grade 4N provides a way to increase both the strength and toughness by a chemistry modification, especially by increasing the Ni and Cr contents. However, a higher strength steel has a deficiency due to a lack of operating data for nuclear power plants. In this study, experimental heats of SA508 Grade 4N steels with different chemical compositions were characterized mechanically. The preliminary results for an irradiation embrittlement and the HAZ properties are discussed in addition to their superior baseline properties.

  7. High Strength of Mg-9%Al-1%Zn Alloys Achieved by Severe Working

    Science.gov (United States)

    Okayasu, Mitsuhiro; Muranaga, Takuya

    2017-10-01

    To obtain the excellent mechanical properties of AZ91 magnesium alloy (Mg-8.9%Al-0.6%Zn-0.2%Mn), the microstructural characteristics of AZ91 alloys are modified by various forging and heating processes. High tensile properties (ultimate tensile strength σ UTS = 420 MPa and fracture strain ɛ f = 3%) are obtained for the alloy made by the following process: solution treatment (ST) at 410 °C for 24 h plus water quenching, multidirectional forging (MDF) with 5% strain applied in 15 forgings at room temperature, and warm unidirectional forging (WUF) at a forging rate of 75% at 225 °C. The high tensile strength is a reflection of improved microstructural characteristics, namely a fine α-Mg phase and a high dislocation density. Moreover, brittle β-phase is significantly attributed to the mechanical properties of AZ91 alloy. Because of the severe deformation undergone by the alloy during the MDF process, the solution treatment is important to achieve high ductility with low internal strain, i.e., normalization. In fact, the ɛ f value for the ST sample is as high as 10%, leading to severe work hardening during the tensile test, with deformation twins and slips. The WUF process is conducted immediately after the sample has been heated to 225 °C, for less than 5 min, to avoid material softening. A relatively high tensile strength ( σ UTS = 305 MPa) is also achieved using the WUF process (with a forging rate of 75% at 200 °C) after the ST and aging process (200 °C for 12 h) although low ductility is found ( ɛ f = 0.7%), with hard and brittle β-phases being precipitated around the grain boundaries.

  8. Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, II

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Leung, Andrew; Simon, Scott

    2010-01-01

    Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant alphaLbeta2 immobilized on microspheres and beta2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels......-out and outside-in signaling in neutrophils on the lifetimes and mechanical strengths of ICAM-1 bonds to beta2 integrin on the cell surface. Even though ICAM-1 bonds to recombinant alphaLbeta2 on microspheres in Mg2+ or Mn2+ can live for long periods of time under slow pulling, here we show that stimulation...... with activation in solutions of divalent cations and shift dramatically upward to hyperactivated states with cell signaling. Taking advantage of very rare events, we used repeated measurements of bond lifetimes under steady ramps of force to achieve a direct assay for the off-rates of ICAM-1 from beta2 integrin...

  9. Experimental Analysis of Concrete Strength at High Temperatures and after Cooling

    Directory of Open Access Journals (Sweden)

    E. Klingsch

    2009-01-01

    Full Text Available In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC. This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I, a portland limestone cement (CEM II-A-LL and a new, supersulfated slag cement (SSC. The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 

  10. Development of advanced high strength tantalum base alloys. Part 2: Scale-up investigation

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1970-01-01

    Three experimental tantalum alloy compositions containing 14-16% W, 1% Re, 0.7% Hf, 0.025% C or 0.015% C and 0.015% N were prepared as two inch diameter ingots by consumable electrode vacuum arc melting. The as-cast ingots were processed by extrusion and swaging to one inch and 0.4 inch diameter rod and evaluated. Excellent high temperature forging behavior was exhibited by all three compositions. Creep strength at 2000 F to 2400 F was enhanced by higher tungsten additions as well as substitution of nitrogen for carbon. Weldability of all three compositions was determined to be adequate. Room temperature ductility was retained in the advanced tantalum alloy compositions as well as a notched/unnotched strength ratio of 1.4 for a notched bar having a K sub t = 2.9.

  11. Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys.

    Science.gov (United States)

    Guo, Weibing; Leng, Xuesong; Luan, Tianmin; Yan, Jiuchun; He, Jingshan

    2017-05-01

    High strength aluminum alloys are extremely sensitive to the thermal cycle of welding. An ultrasonic-promoted rapid TLP bonding with an interlayer of pure Zn was developed to join fine-grained 7034 aluminum alloys at the temperature of lower 400°C. The oxide film could be successfully removed with the ultrasonic vibration, and the Al-Zn eutectic liquid phase generated once Al and Zn contacted with each other. Longer ultrasonic time can promote the diffusion of Zn into the base metal, which would shorten the holding time to complete isothermal solidification. The joints with the full solid solution of α-Al can be realized with the ultrasonic action time of 60s and holding time of only 3min at 400°C, and the shear strength of joints could reach 223MPa. The joint formation mechanism and effects of ultrasounds were discussed in details. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dissimilar ultrasonic spot welding of Mg-Al and Mg-high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    V.K. Patel

    2014-01-01

    Full Text Available Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW, which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg-Al and Mg-high strength low alloy (HSLA steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg-Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.

  13. Very high breakdown field strength for dielectric elastomer actuators quenched in dielectric liquid bath

    Science.gov (United States)

    La, Thanh-Giang; Lau, Gih-Keong

    2013-04-01

    Dielectric elastomer actuators (DEAs) are prone to failure by pull-in instability. However, this work showed that DEAs, which were immersed in a silicone oil bath (Dow Corning Fluid 200 50cSt), can survive the pull-instability and operates beyond the pull-in voltage. Membrane DEAs (VHB 4905), which were pre-stretched bi-axially at 200% strain and immersed in the oil bath, survived a very high eld strength (>800 MV/m) and demonstrated areal strains up to 140%. The dielectric strength, achieved in the immersion, is approximately two times larger than that in the air (450 MV/m). This is achieved because the dielectric liquid bath helps to quench the localized electrical breakdown, which would have discharged sparks and burnt the dielectric lm in the air.

  14. Biological effects of high strength electric fields. Second interim progress report, September 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-05-01

    This report describes progress made on the Project during the period of September 9, 1976 to March 31, 1977 towards the determination of the biological effects of high strength electric fields on small laboratory animals. The efforts to date can be divided into five categories: (1) the design, construction, and testing of a prototype and special studies exposure system; (2) the design and construction of exposure systems for rats and mice; (3) dosimetry; (4) experiments to determine the maximum field strength which does not produce corona discharge, ozone formation, shocks to the animal, hair stimulation, or a behavioral preference by rats to avoid exposure to the field; and (5) preparations for the biological screening experiments.

  15. Hip extensor muscle strength in elite female field hockey players ...

    African Journals Online (AJOL)

    With regard to the gross motor development, deficits were found with regard to running speed and agility, bilateral coordination and strength. Fine motor deficits were found in upper limb speed and dexterity, response speed and visual motor control. The neuromotor development of street children also showed deficits, ...

  16. Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting

    Science.gov (United States)

    Casati, Riccardo; Lemke, Jannis Nicolas; Alarcon, Adrianni Zanatta; Vedani, Maurizio

    2017-02-01

    High Si-bearing Al alloys are commonly used in additive manufacturing, but they have moderate mechanical properties. New high-strength compositions are necessary to spread the use of additively manufactured Al parts for heavy-duty structural applications. This work focuses on the microstructure, mechanical behavior, and aging response of an Al alloy 2618 processed by selective laser melting. Calorimetric analysis, electron microscopy, and compression tests were performed in order to correlate the mechanical properties with the peculiar microstructure induced by laser melting and thermal treatments

  17. High-tip-speed fiber composite compressor blades: Vibration and strength analysis

    Science.gov (United States)

    Chamis, C. C.; Lynch, J. E.

    1974-01-01

    An analytical procedure is described which couples composite mechanics computer codes with NASTRAN. This procedure was used to perform a detailed analysis of a high-tip-speed fiber composite compressor fan blade. The results indicate that the various vibration modes of this blade are highly coupled. Mechanical load ply stresses are well below the corresponding room temperature strengths. Lamination residual stresses are likely to cause transply cracks and interply delamination. Transply cracks and relaxation of root fixity decrease the vibrational frequencies whereas centrifugal stiffening increases them. Comparisons of results for various parameters are presented in tabular and graphical form.

  18. The Kinetic Determinants of Reactive Strength in Highly Trained Sprint Athletes.

    Science.gov (United States)

    Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike

    2017-09-11

    The purpose of this study was to determine the braking and propulsive phase kinetic variables underpinning reactive strength in highly trained sprint athletes in comparison to a non-sprint trained control group. Twelve highly trained sprint athletes and twelve non-sprint trained participants performed drop jumps (DJs) from 0.25m, 0.50m and 0.75m onto a force plate. One familiarization session was followed by an experimental testing session within the same week. Reactive strength index (RSI), contact time, flight time, and leg stiffness were determined. Kinetic variables including force, power and impulse were assessed within the braking and propulsive phases. Sprint trained athletes demonstrated higher RSI versus non-sprint trained participants across all drop heights (3.02 vs 2.02; ES [±90% CL]: 3.11 ±0.86). This difference was primarily attained by briefer contact times (0.16 vs 0.22 s; ES: -1.49 ±0.53) with smaller differences observed for flight time (0.50 vs 0.46 s; ES: 0.53 ±0.58). Leg stiffness, braking and propulsive phase force and power were higher in sprint trained athletes. Very large differences were observed in mean braking force (51 vs 38 Nkg; ES: 2.57 ±0.73) which was closely associated with contact time (r ±90% CL: -0.93 ±0.05). Sprint trained athletes exhibited superior reactive strength than non-sprint trained participants. This was due to the ability to strike the ground with a stiffer leg spring, an enhanced expression of braking force, and possibly an increased utilization of elastic structures. The DJ kinetic analysis provides additional insight into the determinants of reactive strength which may inform subsequent testing and training.

  19. Fe I OSCILLATOR STRENGTHS FOR TRANSITIONS FROM HIGH-LYING EVEN-PARITY LEVELS

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E. A.; Lawler, J. E.; Brewer, N. R. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Ruffoni, M. P.; Pickering, J. C. [Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Lind, K., E-mail: eadenhar@wisc.edu [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-01-01

    New radiative lifetimes, measured to ±5% accuracy, are reported for 31 even-parity levels of Fe I ranging from 45061 cm{sup –1} to 56842 cm{sup –1}. These lifetimes have been measured using single-step and two-step time-resolved laser-induced fluorescence on a slow atomic beam of iron atoms. Branching fractions have been attempted for all of these levels, and completed for 20 levels. This set of levels represents an extension of the collaborative work reported in Ruffoni et al. The radiative lifetimes combined with the branching fractions yields new oscillator strengths for 203 lines of Fe I. Utilizing a 1D-LTE model of the solar photosphere, spectral syntheses for a subset of these lines which are unblended in the solar spectrum yields a mean iron abundance of (log[ε(Fe)]) = 7.45 ± 0.06.

  20. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    OpenAIRE

    Wei Wang; Yan Ma; Muxin Yang; Ping Jiang; Fuping Yuan; Xiaolei Wu

    2017-01-01

    The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS) with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been ...

  1. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  2. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  3. Cor triatriatum dexter: A rare cause of cyanosis during neonatal period.

    Science.gov (United States)

    Alghamdi, Mohammed Hussien

    2016-01-01

    Cor-triatriatum dexter is an extremely rare congenital heart defect in which there is complete persistence of the right valve of embryonic sinus venosus that results in partitioning of the right atrium into a smooth and trabeculated portion. The smooth portion receives venous blood from inferior vena cava, superior vena cava, and coronary sinus while the trabeculated portion contains the right atrial appendage and the opening of tricuspid valve. We report a 1-week-old child who presented with intermittent episodes of central cyanosis. Echocardiography, established, and bubble contrast study confirmed the diagnosis of an isolated cor-triatriatum dexter. The baby initially underwent an intervention by cardiac catheterization, which was unsuccessful in disrupting the membrane and re-direct the systemic venous flow to the right heart chambers. She subsequently had the cor-triatriatum dexter membrane resected via an uncomplicated open-heart surgery.

  4. Water-induced finger wrinkles do not affect touch acuity or dexterity in handling wet objects.

    Directory of Open Access Journals (Sweden)

    Julia Haseleu

    Full Text Available Human non-hairy (glabrous skin of the fingers, palms and soles wrinkles after prolonged exposure to water. Wrinkling is a sympathetic nervous system-dependent process but little is known about the physiology and potential functions of water-induced skin wrinkling. Here we investigated the idea that wrinkling might improve handling of wet objects by measuring the performance of a large cohort of human subjects (n = 40 in a manual dexterity task. We also tested the idea that skin wrinkling has an impact on tactile acuity or vibrotactile sensation using two independent sensory tasks. We found that skin wrinkling did not improve dexterity in handling wet objects nor did it affect any aspect of touch sensitivity measured. Thus water-induced wrinkling appears to have no significant impact on tactile driven performance or dexterity in handling wet or dry objects.

  5. Water-induced finger wrinkles do not affect touch acuity or dexterity in handling wet objects.

    Science.gov (United States)

    Haseleu, Julia; Omerbašić, Damir; Frenzel, Henning; Gross, Manfred; Lewin, Gary R

    2014-01-01

    Human non-hairy (glabrous) skin of the fingers, palms and soles wrinkles after prolonged exposure to water. Wrinkling is a sympathetic nervous system-dependent process but little is known about the physiology and potential functions of water-induced skin wrinkling. Here we investigated the idea that wrinkling might improve handling of wet objects by measuring the performance of a large cohort of human subjects (n = 40) in a manual dexterity task. We also tested the idea that skin wrinkling has an impact on tactile acuity or vibrotactile sensation using two independent sensory tasks. We found that skin wrinkling did not improve dexterity in handling wet objects nor did it affect any aspect of touch sensitivity measured. Thus water-induced wrinkling appears to have no significant impact on tactile driven performance or dexterity in handling wet or dry objects.

  6. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    Directory of Open Access Journals (Sweden)

    Chen Yuan-Yuan

    2017-01-01

    Full Text Available This paper applied the densified mixture design algorithm(DMDA method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II to design high strength concrete (HSC mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30, and silica fume (5% was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to measure the conductivity, and rapid chloride ion penetrability tests (ASTM C1202 were assessed the anti-corrosion. The life cycle inventory of LEED suggested by the PCA indicated the green options for cementitious materials. Results showed that mix I and II indicated cement used, CO2 reduction, raw materials and energy consumption all decreased more 50% than mix III, and mix IV was 5% less. The compressive strength and anti-corrosion levels showed that mix I and II were better than mix III and IV, and with ternary pozzolans could enhance the long-term durability (92 days due to a resistivity greater 20 KΩ-cm and a charge passed lower than 2000 Coulombs. HSC with an appropriate design could reduce the carbon footprint and improve the durability.

  7. Effect of magnetic water on strength and workability of high performance concrete

    Directory of Open Access Journals (Sweden)

    Moosa Mazloom

    2016-09-01

    Full Text Available Nowadays, concrete is one of the most important and widely used human product. Improving concrete characteristics have always been one of the fundamental subjects for engineers. Improve the physical properties of water, as one of the main elements of concrete, is one way to improve the characteristics of the concrete. When water passes through the magnetic field, its physical quality has changed, it is called Magnetic water. This study examines the effect of the use of magnetized water (MW with a solenoid current-carrying, on the compressive strength and workability of high performance concrete. The variables of this study were the intensity of magnetic field, the silica fume replacement level and water to cement ratio in different mixes. The results show that using MW increases the workability of concrete about 36% in average.MW in combination with superplasticizer is more effective than MW on workability and compressive strength of concrete. MW had more positive effects on the samples without silica fume. Increasing the intensity of magnetic field improved the workability, 28 and 90 days compressive strength concrete.

  8. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Ming Kun Yew

    2014-01-01

    Full Text Available The objective of this study was to investigate the effects of different species of oil palm shell (OPS coarse aggregates on the properties of high strength lightweight concrete (HSLWC. Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera, in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old. The results showed that the workability and dry density of the oil palm shell concrete (OPSC increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV results showed that the OPS HSLWC attain good condition at the age of 3 days.

  9. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete.

    Science.gov (United States)

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.

  10. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-01-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  11. Corrosion of Steel in High-Strength Self-Compacting Concrete Exposed to Saline Environment

    Directory of Open Access Journals (Sweden)

    Hana A. Yousif

    2014-01-01

    Full Text Available A research work was carried out to investigate the effectiveness of high-strength self-compacting concrete (SF-R in controlling corrosion of embedded steel. Reinforced concrete cylinders and plain cubes were subjected to 5% NaCl solution. Slump flow, J-ring, V-funnel, compressive strength, electrical resistance, and electrochemical tests were conducted. Corrosion resisting characteristics of steel were examined by monitoring corrosion potential, polarization resistance, corrosion currents, and Tafel plots. The relationship between corrosion current density and corrosion potential was established. Results were compared with characteristics of a grade 40 MPa reference concrete (R and grade 70 MPa conventional self-compacting concrete (SP. Results indicated that at 270 days of exposure, the corrosion currents for steel in SF-R were 63- and 16-fold lower compared to those of steel in R and SP concretes, respectively. This concrete showed a considerable increase in electrical resistance and compressive strength of 96 MPa at 28 days of exposure. Relying on corrosion risk classification based on corrosion current densities and corrosion potentials, the steel in SF-R concrete is definitely in the passive condition. The splendid durability performance of steel in SF-R concrete linked to adorable self-compacting features could furnish numerous opportunities for future structural applications in severe environmental conditions.

  12. Fresh properties and compressive strength of high calcium alkali activated fly ash mortar

    Directory of Open Access Journals (Sweden)

    Eslam Gomaa

    2017-10-01

    Full Text Available This paper reports the fresh properties and compressive strength of high calcium alkali-activated fly ash (AAFA mortar. Two different sources of class C fly ash, with different chemical compositions were used to prepare alkali-activated mortar mixtures. Four different sodium silicate to sodium hydroxide (SS/SH ratios of 0.5, 1.0, 1.5, and 2.5 were used as alkaline activators with a constant sodium hydroxide concentration of 10 M. Two curing regimes were also applied, oven curing at 70 °C for 24 h, and ambient curing at 23 ± 2 °C. The rest time, i.e., the time between casting the mortar cubes and starting the oven curing was 2 h. The results revealed that the setting time, and workability of mortar decreased with increasing the alkali to fly ash ratio, and decreasing the water to fly ash ratio. The optimum sodium silicate to sodium hydroxide ratio was 1.0, which showed the highest compressive strength and setting time. An increase of sodium silicate to sodium hydroxide ratio to 2.5 led to a significant reduction in the setting time, and workability of mortar. The 7-day compressive strength of the mortar approached 20.80 MPa for ambient cured regime and 41.10 for oven cured regime.

  13. Hydroformability of 980MPa and 1180MPa ultra-high strength ERW steel tubes

    Science.gov (United States)

    Hashimoto, Yuji; Katsumura, Tatsuro; Aratani, Masatoshi; Sonobe, Osamu; Kato, Yasushi

    2013-12-01

    High strength steel tubes have attracted attention as materials for reducing auto body weight. However, there have been few reports on hydroforming using materials with nominal tensile strengths exceeding 980MPa. Therefore, free bulge forming tests and rectangular section bulge forming tests were carried out with electric resistance welded (ERW) tubes having nominal tensile strengths of 980MPa and 1180MPa. These steels are dual-phase steels consisting of martensite and ferrite. In the free bulge forming tests, the limiting bulging ratio (LBR) under axial feeding was 17% for the 980MPa material and 5% for the 1180MPa material. In the rectangular section bulge tests with a bulging ratio of 4%, it was possible to avoid rupture of the 1180MPa material at the heat-affected zone (HAZ) by applying axial feed loading or selecting the proper welded seam position. Under the same rectangular section bulging test conditions, forming of the 980MPa material without defects was possible regardless of the axial feeding condition and selection of the welded seam position.

  14. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    Science.gov (United States)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  15. Modeling seismic performance of high-strength steel–ultra-high-performance concrete piers with modified Kent–Park model using fiber elements

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-02-01

    Full Text Available The seismic performance of ultra-high-performance concrete–high-strength steel pier was studied using fiber elements, which are capable to model accurately elastic–plastic behavior of members with fibers of different material constitutive relations. For high-strength steel–ultra-high-performance concrete piers, the modified Kent–Park model was utilized to describe the compressive stress–strain relations of ultra-high-performance concrete and high-strength steel-confined ultra-high-performance concrete, respectively, by determining four key parameters. A finite element model was established to simulate the hysteretic response; conduct parameter analysis including axial load ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio; and assess the maximum ground acceleration capacity based on inelastic response spectra for high-strength steel–ultra-high-performance concrete piers. The conclusions are summarized that modified Kent–Park model is proved to be effective due to experimental data. The calculated hysteretic curves of high-strength steel–ultra-high-performance concrete piers show good agreement with the experimental results. Three parameters have evident effects on seismic performance of high-strength steel–ultra-high-performance concrete piers, which indicates that various seismic demands can be achieved by reasonable parameter settings. Compared to nonlinear dynamic analysis based on finite element model, the results provided by inelastic response spectra are less conservative for short high-strength steel–ultra-high-performance concrete piers under high axial load ratio.

  16. Sofrimento psíquico na perversão: o caso dexter El sufrimiento psíquico en la perversión: el caso dexter Psychic suffering in perversion: the dexter affair

    Directory of Open Access Journals (Sweden)

    Fábio Roberto Rodrigues Belo

    2012-09-01

    Full Text Available A análise do personagem fictício Dexter permite construir hipóteses metapsicológicas sobre as origens da perversão. A posição perversa nesse caso deve-se à presença maciça de violência nas origens do sujeito psíquico. Dexter expressa o abandono sofrido pela atuação pulsional, os assassinatos em série, tentando inverter o estado de passividade no qual se encontra. Sua angústia pode ser organizada de duas formas distintas: a primeira é consciente, fornecida por seu pai, Harry, que o ensina a não deixar vestígios dos seus crimes. A segunda maneira é inconsciente, e traduz o desejo de submeter o outro à dor, fazendo com que, por meio do mecanismo de identificação projetiva, o perverso desfrute deste sofrimento que provoca, sendo remetido, então, às suas vivências originárias de submissão. Conclui-se que na perversão a angústia não apenas está presente, como também é constitutiva da escolha do sujeito de operar pela via da violência.El análisis del personaje ficticio Dexter permite la construcción de hipótesis metapsicológicas sobre los orígenes de la perversión. La posición perversa en este caso se debe a la presencia masiva de la violencia en los orígenes del sujeto psíquico. Dexter expresa el abandono sufrido a través de una actuación pulsional, los asesinatos en serie, intentando invertir el estado de pasividad en el que se encuentra. Su angustia puede ser organizada de dos maneras distintas: la primera es consciente, proporcionada por su padre, Harry, quien le enseña a no dejar rastros de sus crímenes. La segunda es inconsciente, y traduce el deseo de someter al otro al dolor, haciendo con que, a través del mecanismo de la identificación proyectiva, el perverso disfrute del sufrimiento que provoca, siendo remitido, así, a sus experiencias originarias de sumisión. Concluimos que, en la perversión, la angustia no sólo está presente, sino que es constitutiva de la elección del sujeto de operar

  17. Cold habituation does not improve manual dexterity during rest and exercise in 5 °C

    Science.gov (United States)

    Muller, Matthew D.; Seo, Yongsuk; Kim, Chul-Ho; Ryan, Edward J.; Pollock, Brandon S.; Burns, Keith J.; Glickman, Ellen L.

    2014-04-01

    When exposed to a cold environment, a barehanded person experiences pain, cold sensation, and reduced manual dexterity. Both acute (e.g. exercise) and chronic (e.g. cold acclimatization or habituation) processes might lessen these negative effects. The purpose of this experiment was to determine the effect of cold habituation on physiology, perception, and manual dexterity during rest, exercise, and recovery in 5 °C. Six cold weather athletes (CWA) and eight non habituated men (NON) volunteered to participate in a repeated measures cross-over design. The protocol was conducted in 5 °C and was 90 min of resting cold exposure, 30 min of cycle ergometry exercise (50 % VO2 peak), and 60 min of seated recovery. Core and finger skin temperature, metabolic rate, Purdue Pegboard dexterity performance, hand pain, thermal sensation, and mood were quantified. Exercise-induced finger rewarming (EIFRW) was calculated for each hand. During 90 min of resting exposure to 5 °C, the CWA had a smaller reduction in finger temperature, a lower metabolic rate, less hand pain, and less negative mood. Despite this cold habituation, dexterity performance was not different between groups. In response to cycle ergometry, EIFRW was greater in CWA (~12 versus 7 °C) and occurred at lower core temperatures (37.02 versus 37.31 °C) relative to NON but dexterity was not greater during post-exercise recovery. The current data indicate that cold habituated men (i.e., CWA) do not perform better on the Purdue Pegboard during acute cold exposure. Furthermore, despite augmented EIFRW in CWA, dexterity during post-exercise recovery was similar between groups.

  18. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    Energy Technology Data Exchange (ETDEWEB)

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  19. ACCELERATED CARBONATION OF STEEL SLAG COMPACTS: DEVELOPMENT OF HIGH STRENGTH CONSTRUCTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur

    2015-12-01

    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  20. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    Science.gov (United States)

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  1. Systematic review of high-intensity progressive resistance strength training of the lower limb compared with other intensities of strength training in older adults.

    Science.gov (United States)

    Raymond, Melissa J; Bramley-Tzerefos, Rebecca E; Jeffs, Kimberley J; Winter, Adele; Holland, Anne E

    2013-08-01

    To examine the effect of high-intensity progressive resistance strength training (HIPRST) on strength, function, mood, quality of life, and adverse events compared with other intensities in older adults. Online databases were searched from their inception to July 2012. Randomized controlled trials of HIPRST of the lower limb compared with other intensities of progressive resistance strength training (PRST) in older adults (mean age ≥ 65y) were identified. Two reviewers independently completed quality assessment using the Physiotherapy Evidence Database (PEDro) scale and data extraction using a prepared checklist. Twenty-one trials were included. Study quality was fair to moderate (PEDro scale range, 3-7). Studies had small sample sizes (18-84), and participants were generally healthy. Meta-analyses revealed HIPRST improved lower-limb strength greater than moderate- and low-intensity PRST (standardized mean difference [SMD]=.79; 95% confidence interval [CI], .40 to 1.17 and SMD=.83; 95% CI, -.02 to 1.68, respectively). Studies where groups performed equivalent training volumes resulted in similar improvements in leg strength, regardless of training intensity. Similar improvements were found across intensities for functional performance and disability. The effect of intensity of PRST on mood was inconsistent across studies. Adverse events were poorly reported, however, no correlation was found between training intensity and severity of adverse events. HIPRST improves lower-limb strength more than lesser training intensities, although it may not be required to improve functional performance. Training volume is also an important variable. HIPRST appears to be a safe mode of exercise in older adults. Further research into its effects on older adults with chronic health conditions across the care continuum is required. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Improving the Transparency of Ultra-Drawn Melt-Crystallized Polyethylenes: Toward High-Modulus/High-Strength Window Application.

    Science.gov (United States)

    Shen, Lihua; Nickmans, Koen; Severn, John; Bastiaansen, Cees W M

    2016-07-13

    Highly transparent, ultradrawn high-density polyethylene (HDPE) films were successfully prepared using compression molding and solid-state drawing techniques. The low optical transmittance (HDPE films can be drastically improved (>90%) by incorporating a small amount (>1 wt %/wt) of specific additives to HDPE materials prior to drawing. It is shown that additives with relatively high refractive index result in an increased optical transmittance in the visible light wavelength which illustrates that the improvement in optical characteristics probably originates from refractive index matching between the crystalline and noncrystalline regions in the drawn films. Moreover, the optically transparent drawn HDPE films containing additives maintain their physical and mechanical properties, especially their high modulus and high strength, which make these films potentially useful in a variety of applications, such as high-impact windows.

  3. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  4. High strain rate characterization of low-density low-strength materials

    Science.gov (United States)

    Sawas, O.; Brar, N. S.; Brockman, R. A.

    1998-07-01

    The Conventional Split Hopkinson Bar (CSHB) is a reliable experimental technique for measuring high strain rate properties of high-strength materials. Attempts to use the CSHB for similar measurements in more compliant materials, such as plastics and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both low noise-to-signal ratio data and a longer input pulse for higher maximum strain. Data reduction procedures for APSHB that account for the viscoelastic behavior of the pressure bars are presented. Comparing the high strain rate response of 1100 Al obtained from CSHB and APSHB validates these procedures. Stress-strain data at strain rates of 500-2000/s for polycarbonate, polyurethane foam, and styrofoam are presented.

  5. The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

    Directory of Open Access Journals (Sweden)

    Korsun Vladimyr Ivanovych

    2014-03-01

    Full Text Available The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

  6. Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants

    OpenAIRE

    Kukurugya, Frantisek; Bergmans, Jef; Snellings, Ruben; Spooren, Jeroen

    2017-01-01

    Chemical-looping combustion (CLC) technology can play a significant role in decreasing costs for CO2 capturing in the future. The technology relies on the use of an oxygen carrier (OC) material, which becomes a solid waste material after it is deactivated. The aim of this study was to verify the possibility to produce high-strength ceramic proppants from a spent Cu-based OC, consisting mainly of α-Al2O3 and a minor content of CuAl2O4. Experiments were carried out with both pure α-Al2O3 and a ...

  7. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...

  8. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...

  9. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

    OpenAIRE

    Lu, Liulei; Ouyang, Dong

    2017-01-01

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% ...

  10. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...... the experimental work carried out in order to establish the models. The constitutive equations represent the materials properties mathematically and define the relationships between load, deformation, lifetime cycles, crack growth rates and stress intensities....

  11. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data...... indicate that the interwire movement due to transverse deformations is highest at the neutral axis of the monostrand. The results showthat the midspan and the anchorage of the monostrand are the two locationswhere the combination of tensile strains and the interwire friction is the most unfavorable...

  12. Springback Prediction and Compensation for a High Strength Steel Side Impact Beam

    Science.gov (United States)

    Dutton, Trevor; Edwards, Richard; Blowey, Andrew

    2005-08-01

    Prediction of formability for sheet metal pressings has advanced to a high state of confidence in recent years. The major challenge is now to predict springback and, moreover, to assist in the design of tooling to correctly compensate for springback. This is particularly the case for materials now being routinely considered for automotive production, such as aluminium and ultra high strength steels, which are prone to greater degrees of springback than traditional mild steels. This paper presents a case study based on the tool design for an ultra high strength steel side impact beam. The forming and springback simulations, carried out using eta/DYNAFORM (based on the LS-DYNA solver), are reported and compared to measurements from the prototype panels. The analysis parameters used in the simulation are presented, and the sensitivity of the results to variation in physical properties is also reviewed. The process of compensating the tools based on the analysis prediction is described; finally, an automated springback compensation method is also applied and the results compared with the final tool design.

  13. Anxiety (Low Ago Strength) And Intelligence Among Students Of High School Mathematics

    Science.gov (United States)

    Naderi, Habibollah

    2008-01-01

    The aim of this study was to investigate the relationship between anxiety (low ago strength) and intelligence among student's mathematics. All the effects of anxiety were studied within the sample of 112 subjects (boys). 56 of them were regular of students (RS) and 56 were intelligent of students (IS) of high schools. Mean age was (17.1 years), SD (.454) and range age was 16-18 years in 3 classes of regular of high school mathematics was for regular students. For the IS, mean age was (16.75 years), SD (.436) and range age was l6-17 years in 4 classes of students exceptional talent for high school mathematics. The sampling method in this study was the simple randomization method. In this studied, for analysis of method used both descriptive and inference of research, which for description of analysis used Average and analysis of covariance and Variance, also for inference of analysis, used with t-test between two the groups of students. The Cattell of Anxiety Test (1958) (CTAT) has been used in a number of studies for measurement trait anxiety in Iran. In general, the findings were found not statistical significant between the RS and the IS of students in that factorial of low of ago strength (C-). Further research is needed to investigate whether the current findings hold for student populations by others anxiety tests.

  14. Latest Development and Application of Nb-Bearing High Strength Pipeline Steels

    Science.gov (United States)

    Zhang, Yongqing; Shang, Chengjia; Guo, Aimin; Zheng, Lei; Niu, Tao; Han, Xiulin

    In order to solve the pollution problem emerging in China recently, China's central government is making great efforts to raise the percentage of natural gas consumption in the China's primary energy mix, which needs to construct big pipelines to transport natural gas from the nation's resource-rich western regions to the energy-starved east, as well as import from the Central Asia and Russia. With this mainstream trend, high strength, high toughness, heavy gauge, and large diameter pipeline steels are needed to improve the transportation efficiency. This paper describes the latest progresses in Nb-bearing high strength pipeline steels with regard to metallurgical design, development and application, including X80 coil with a thickness up to 22.0mm, X80 plate with a diameter as much as 1422mm, X80 plate with low-temperature requirements and low-Mn sour service X65 for harsh sour service environments. Moreover, based on widely accepted TMCP and HTP practices with low carbon and Nb micro-alloying design, this paper also investigated some new metallurgical phenomena based on powerful rolling mills and heavy ACC equipment.

  15. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  16. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  17. NDT response of spectral analysis of surface wave method to multi-layer thin high-strength concrete structures.

    Science.gov (United States)

    Cho, Young S

    2002-05-01

    This study presents the results of the non-destructive testing using spectral analysis of surface waves (SASW) based on high-strength concrete materials. This SASW method was used to evaluate the compressive strength of single-layer high-strength concrete slabs through a correlation with the surface wave velocities. This paper also presents the relationship between the theoretical and experimental compact dispersion curves when the SASW test is applied to multi-layer thin high-strength concrete slab systems with a finite thickness. The test results show that the surface wave velocity profile obtained from the theoretical dispersion curve has lower values than the profile obtained from the experimental compact dispersion curve under the condition of a finite thickness due to different boundary conditions and reflections from the boundaries. Based on the measured response, an experimental study was conducted to examine if the dispersive characteristics of Rayleigh wave exist in the multi-layer high-strength concrete slab systems. This study can be utilized in examining structural elements of high-strength concrete structures and can also be applied in the integrity analysis of high-strength concrete structures with a finite thickness.

  18. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  19. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis...

  20. High strength domestic wastewater treatment with submerged forward osmosis membrane bioreactor.

    Science.gov (United States)

    Aftab, Bilal; Khan, Sher Jamal; Maqbool, Tahir; Hankins, Nicholas P

    2015-01-01

    Forward osmosis membranes are less prone to fouling with high rejection of salts, and the osmotic membrane bioreactor (OMBR) can be considered as an innovative membrane technology for wastewater treatment. In this study, a submerged OMBR having a cellulose triacetate membrane, with the active layer facing the feed solution configuration, was operated at different organic loading rates (OLRs), i.e., 0.4, 1.2 and 2.0 kg-COD/(m(3)·d) with chemical oxygen demand (COD) concentrations of 200 mg/L, 600 mg/L and 1,000 mg/L, respectively, to evaluate the performance on varying wastewater strengths. High organic content with sufficient amount of nutrients enhanced the biomass growth. High OLR caused more extrapolymeric substances production and less dewaterability. However, no significant differences in fouling trends and flux rates were observed among different OLR operational conditions.

  1. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates

    Science.gov (United States)

    Datta, R.; Mukerjee, D.; Jha, S.; Narasimhan, K.; Veeraraghavan, R.

    2002-02-01

    High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ˜0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at -40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that

  2. Inhibition of hyaluronan hydrolysis catalysed by hyaluronidase at high substrate concentration and low ionic strength.

    Science.gov (United States)

    Astériou, Trias; Vincent, Jean-Claude; Tranchepain, Frédéric; Deschrevel, Brigitte

    2006-04-01

    Hyaluronidase and high levels of hyaluronan are found together in tumours. It is highly likely that hyaluronidase activity controls the balance between high molecular mass hyaluronan and oligosaccharides, and thus plays an important role in cancer development. The hyaluronan hydrolysis catalysed by bovine testicular hyaluronidase was studied as a model. The kinetics was investigated at pH 5 and 37 degrees C using the colorimetric N-acetyl-d-glucosamine reducing end assay method. While the substrate dependence obtained in the presence of 0.15 mol L(-1) ionic strength exhibited a Michaelis-Menten behaviour, an atypical behaviour was observed under low ionic strength: for increasing hyaluronan concentrations, the initial reaction rate increased, reached a maximum and then decreased to a very low level, close to zero at high substrate concentrations. One of the various hypotheses examined to explain this atypical behaviour is the formation of non-specific complexes between hyaluronan and hyaluronidase based on electrostatic interactions. This hypothesis is the only one that can explain all the experimental results including the variation of the reaction medium turbidity as a function of time and the influence on the initial reaction rate of the hyaluronan concentration over hyaluronidase concentration. However, phenomena such as the high viscosity of highly concentrated hyaluronan solutions or the steric exclusion of hyaluronidase from hyaluronan solutions may contribute to the atypical behaviour. Finally, the biological implications of the non-linear and non-monotonous shape of the hyaluronan-hyaluronidase substrate dependence in the regulation of the hyaluronan chain molecular mass are discussed, in particular in the case of cancer development.

  3. EXPERIMENTAL STUDY ABOUT THE APPLICATIONS OF REINFORCED CONCRETE BRIDGE PIERS WITH HIGH-STRENGTH-STEEL LONGITUDINAL AND HOOP REINFORCEMENT

    Science.gov (United States)

    Sogabe, Naoki; Kitsugi, Katsuhiko; Ibuki, Kazuyuki; Moriyama, Yoichi; Ishiyama, Kazuyuki; Yamanobe, Shinichi; Suda, Kumiko; Watanabe, Yoshimitsu

    The cross-sectional area of reinforced concrete bridge piers and the number of longitudinal reinforcing bars required for bridge piers can be reduced by usin g high-strength reinforcing steel with a yield strength of 685 N/mm2. Reduction in the quantity of materials for bridge pier structures is effective in enhancing constructibility and reducing construction cost because pier foundations can be made smaller. As an example of use of high-strength reinforcing steel in reinforced concrete bridge piers, high-strength blast furnace steel has been used to reinforce tall (about 60 to 120 m) bridge piers made with concrete with a design strength of 50 N/mm2. In this study, verification was made, through a series of structural experiments, with respect to the structural characteristics of concrete piers reinforced with high-strength electric furnace steel. This paper re ports the findings that may help promote the use of high-strength reinforcing steel in reinforced concrete piers.

  4. Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds

    Directory of Open Access Journals (Sweden)

    Thibaut Huin

    2016-05-01

    Full Text Available Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lower than expected. This study aims at understanding these fracture mechanisms and focuses on two common steel grades joined by Resistance Spot Welding (RSW: DP600 (a dual phase steel and Usibor®1500 (a martensitic steel. The parameters affecting the failure modes and load bearing capacity are investigated during two common types of tests: the Cross Tension and Tensile Shear tests. The positive effects of heterogeneous welding with respect to the corresponding homogeneous configurations are discussed, as well as the consequences of a so-called Dome failure occurring at the weld nugget boundary.

  5. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    Directory of Open Access Journals (Sweden)

    Hamák I.

    2010-06-01

    Full Text Available Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  6. Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, I

    DEFF Research Database (Denmark)

    Evans, Evan; Kinoshita, Koji; Simon, Scott

    2010-01-01

    Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant alphaLbeta2 immobilized on microspheres and beta2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels with inte......Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant alphaLbeta2 immobilized on microspheres and beta2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels...... with integrin activation in solutions of divalent cations and shift dramatically upward to hyperactivated states with cell signaling in leukocytes. Taking advantage of very rare events, we used repeated measurements of bond lifetimes under steady ramps of force to achieve a direct assay for the off......-rates of ICAM-1 from beta2 integrin in each experiment. Of fundamental importance, the assay for off-rates does not depend on how the force is applied over time, and remains valid when the rates of dissociation change with different levels of force. In this first article, we present results from tests...

  7. Friction role in deformation behaviors of high-strength TA18 tubes in numerical control bending

    Science.gov (United States)

    Fang, Jun; Liang, Chuang; Lu, Shiqiang; Wang, Kelu; Zheng, Deliang

    2017-09-01

    In order to reveal the friction role in deformation behaviors of high-strength TA18 tubes in numerical control (NC) bending, a three dimensional (3D) elastic-plastic finite element (FE) model of high-strength TA18 tubes for whole process in NC bending was established based on ABAQUS code, and its reliability was validated by the experimental results in literature. Then, the bending deformation behaviors under different friction coefficients between tube and various dies were studied with respect to multiple defects such as wall thinning, wall thickening and cross section deformation. The results show that the wall thinning ratio and cross section deformation ratio increase with the increase of the friction coefficient between mandrel and tube f m or decrease of the friction coefficient between pressure die and tube f p, while the friction coefficient between bending die and tube f b has no obvious effect on these. The wall thickening ratio decreases with the increase of f b, f m or decrease of f p.

  8. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    Science.gov (United States)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  9. Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels

    Science.gov (United States)

    Hong, Youshi; Zhao, Aiguo; Qian, Guian; Zhou, Chengen

    2012-08-01

    The fatigue strength and crack initiation mechanisms of very-high-cycle fatigue (VHCF) for two low alloy steels were investigated. Rotary bending tests at 52.5 Hz with hour-glass type specimens were carried out to obtain the fatigue propensity of the test steels, for which the failure occurred up to the VHCF regime of 108 cycles with the S-N curves of stepwise tendency. Fractography observations show that the crack initiation of VHCF is at subsurface inclusion with "fish-eye" pattern. The fish-eye is of equiaxed shape and tends to tangent the specimen surface. The size of the fish-eye becomes large with the increasing depth of related inclusion from the surface. The fish-eye crack grows faster outward to the specimen surface than inward. The values of the stress intensity factor ( K I ) at different regions of fracture surface were calculated, indicating that the K I value of fish-eye crack is close to the value of relevant fatigue threshold (Δ K th ). A new parameter was proposed to interpret the competition mechanism of fatigue crack initiation at the specimen surface or at the subsurface. The simulation results indicate that large inclusion size, small grain size, and high strength of material will promote fatigue crack initiation at the specimen subsurface, which are in agreement with experimental observations.

  10. High strength sewage treatment in a UASB reactor and an integrated UASB-digester system.

    Science.gov (United States)

    Mahmoud, Nidal

    2008-11-01

    The treatment of high strength sewage was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-digester system. The one-stage UASB reactor was operated in Palestine at a hydraulic retention time (HRT) of 10h and at ambient air temperature for a period of more than a year in order to asses the system response to the Mediterranean climatic seasonal temperature fluctuation. Afterwards, the one-stage UASB reactor was modified to a UASB-digester system by incorporating a digester operated at 35 degrees C. The achieved removal efficiencies in the one-stage UASB reactor for total, suspended, colloidal, dissolved and VFA COD were 54, 71, 34, 23%, and -7%, respectively during the first warm six months of the year, and achieved only 32% removal efficiency for COD total over the following cold six months of the year. The modification of the one-stage UASB reactor to a UASB-digester system had remarkably improved the UASB reactor performance as the UASB-digester achieved removal efficiencies for total, suspended, colloidal, dissolved and VFA COD of 72, 74, 74, 62 and 70%. Therefore, the anaerobic treatment of high strength sewage during the hot period in Palestine in a UASB-digester system is very promising.

  11. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W

    2017-12-01

    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  12. TENSILE DEFORMATION OF HIGH-STRENGTH AND HIGH MODULUS POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    VANDERWERFF, H; PENNINGS, AJ

    The influence of tensile deformation on gel-spun and hot-drawn ultrahigh molecular weight polyethylene fibers has been investigated. In high modulus polyethylene fibers no deformation energy is used to break chemical bonds during deformation, and flow is predominantly present next to elastic

  13. the effect of heterosexual contact on libido and mating dexterity in ...

    African Journals Online (AJOL)

    stages of sexual development on adult behaviour are avail- able. Consequently. the present experiment was executed to determine the effects of total isolation as well as that of heterosexual contact during the pre· -and post-puberal phase on libido, mating dexterity and the occurrence of homosexuality in Karakul rams.

  14. Design and control of three fingers motion for dexterous assembly of ...

    African Journals Online (AJOL)

    user

    hand (Salisbury et al, 1982), the Belgrade/USC hand (Bekey et al, 1999), the Utah/MIT Dexterous hand (Jacobsen, 2001) and the. LMS hand (Gazeau, 2001). However, significant efforts have still to be made to find designs simple enough to be easily built and controlled, in order to obtain practical systems (Bicchi, 2000).

  15. Reliability of the box and block test of manual dexterity for use with patients with fibromyalgia

    National Research Council Canada - National Science Library

    Canny, Mark L; Thompson, Jeffrey M; Wheeler, Mikel J

    2009-01-01

    The aim of this study was to determine the reliability of the Box and Block (B&B) Test of Manual Dexterity for upper-extremity function in patients with fibromyalgia and to compare their results with those of healthy control participants...

  16. Robotics and Mechanisms Laboratory develops a low cost, dexterous robotic hand operated by compressed air

    OpenAIRE

    Mackay, Steven D.

    2009-01-01

    The Robotics and Mechanisms Laboratory (RoMeLa) of the College of Engineering at Virginia Tech has developed a unique robotic hand that can firmly hold objects as heavy as a can of food or as delicate as a raw egg, while dexterous enough to gesture for sign language.

  17. A Subcortical Oscillatory Network Contributes to Recovery of Hand Dexterity after Spinal Cord Injury

    Science.gov (United States)

    Nishimura, Yukio; Morichika, Yosuke; Isa, Tadashi

    2009-01-01

    Recent studies have shown that after partial spinal-cord lesion at the mid-cervical segment, the remaining pathways compensate for restoring finger dexterity; however, how they control hand/arm muscles has remained unclear. To elucidate the changes in dynamic properties of neural circuits connecting the motor cortex and hand/arm muscles, we…

  18. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  19. Investigating the influence of nanoadhesion on strength properties of high-strength organic fibres and organoplastics based on them

    Directory of Open Access Journals (Sweden)

    А. I. Burya

    2009-01-01

    Full Text Available The tensile, thermophysical and tribotechnical characteristics of organoplastics based on thermosetting matrix chaotically reinforced with discrete highly tensile organic fiber have been investigated, and the efficiency of nano-additions introduced both into the polymer matrix and as fibre finish is shown in this paper.

  20. Development of a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets

    OpenAIRE

    Rethmeier, Michael; Suwala, Hubert

    2014-01-01

    In this study a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets was investigated. The development of a suitable test procedure is based on the External-Loaded Hot Crack Test (PVC-Test). The test modification for resistance spot welding contains a constant tensile force load. The test method for determining the cracking susceptibility was experimentally verified for a high strength steel, a transformation induced plasticity steel (TR...

  1. Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments

    Science.gov (United States)

    Chen, X.; Reches, Z.; Elwood Madden, A. S.

    2015-12-01

    The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip-distance (left) and slip-velocity (right). Resuslts of both stepped-velocity and constant

  2. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  3. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.

    Science.gov (United States)

    Lee, Jaegeun; Kim, Teawon; Jung, Yeonsu; Jung, Kihoon; Park, Junbeom; Lee, Dong-Myeong; Jeong, Hyeon Su; Hwang, Jun Yeon; Park, Chong Rae; Lee, Kun-Hong; Kim, Seung Min

    2016-12-07

    In this study, we have developed an efficient and scalable method for improving the mechanical properties of carbon nanotube (CNT) fibers. The mechanical properties of as-synthesized CNT fibers are primarily limited by their porous structures and the weak bonding between adjacent CNTs. These result in inefficient load transfer, leading to low tensile strength and modulus. In order to overcome these limitations, we have adopted chemical vapor infiltration (CVI) to efficiently fill the internal voids of the CNT fibers with carbon species which are thermally decomposed from gas phase hydrocarbon. Through the optimization of the processing time, temperature, and gas flow velocity, we have confirmed that carbon species formed by the thermal decomposition of acetylene (C2H2) gas successfully infiltrated into porous CNT fibers and densified them at relatively low temperatures (650-750 °C). As a result, after CVI processing of the as-synthesized CNT fibers under optimum conditions, the tensile strength and modulus increased from 0.6 GPa to 1.7 GPa and from 25 GPa to 127 GPa, respectively. The CVI technique, combined with the direct spinning of CNT fibers, can open up a route to the fast and scalable fabrication of high performance CNT/C composite fibers. In addition, the CVI technique is a platform technology that can be easily adapted into other nano-carbon based yarn-like fibers such as graphene fibers.

  4. A High Strength Self-Healable Antibacterial and Anti-Inflammatory Supramolecular Polymer Hydrogel.

    Science.gov (United States)

    Wang, Hongbo; Zhu, Hui; Fu, Weigui; Zhang, Yinyu; Xu, Bing; Gao, Fei; Cao, Zhiqiang; Liu, Wenguang

    2017-05-01

    There is a significant cost to mitigate the infection and inflammation associated with the implantable medical devices. The development of effective antibacterial and anti-inflammatory biomaterials with novel mechanism of action has become an urgent task. In this study, a supramolecular polymer hydrogel is synthesized by the copolymerization of N-acryloyl glycinamide and 1-vinyl-1,2,4-triazole in the absence of any chemical crosslinker. The hydrogel network is crosslinked through the hydrogen bond interactions between dual amide motifs in the side chain of N-acryloyl glycinamide. The prepared hydrogels demonstrate excellent mechanical properties-high tensile strength (≈1.2 MPa), large stretchability (≈1300%), and outstanding compressive strength (≈11 MPa) at swelling equilibrium state. A simulation study elaborates the changes of hydrogen bond interactions when 1-vinyl-1,2,4-triazole is introduced into the gel network. It is demonstrated that the introduction of 1-vinyl-1,2,4-triazole endowes the supramolecular hydrogels with self-repairability, thermoplasticity, and reprocessability over a lower temperature range for 3D printing of different shapes and patterns under simplified thermomelting extrusion condition. In addition, these hydrogels exhibit antimicrobial and anti-inflammatory activities, and in vitro cytotoxicity assay and histological staining following in vivo implantation confirm the biocompatibility of the hydrogel. These hydrogels with integrated multifunctions hold promising potential as an injectable biomaterial for treating degenerated soft supporting tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks

    Science.gov (United States)

    Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa

    2015-03-01

    Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity.

  6. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadhassani, Mohammad, E-mail: mmh356@yahoo.com [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Jumaat, Mohd Zamin; Jameel, Mohammed [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Badiee, Hamid [Department of Civil Engineering, University of Kerman (Iran, Islamic Republic of); Arumugam, Arul M.S. [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ductility decreased with increase in tensile reinforcement ratio. Black-Right-Pointing-Pointer The width of the load point and the support point influences premature failure. Black-Right-Pointing-Pointer Load-deflection relationship is linear till 85% of the ultimate load. Black-Right-Pointing-Pointer The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load-deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  7. Deformation behavior of a high strength multiphase steel at macro- and micro-scales

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Calderón, I. de, E-mail: irenedediego.calderon@imdea.org [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain); Santofimia, M.J. [Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Molina-Aldareguia, J.M.; Monclús, M.A.; Sabirov, I. [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain)

    2014-08-12

    Advanced high strength steels via quenching and partitioning (Q and P) process are a mainstream trend in modern steel research. This work contributes to a better understanding of their local mechanical properties and local deformation behavior at the micro-scale in relation to their local microstructure. A low alloyed steel was subjected to Q and P heat treatments leading to the formation of complex multiphase microstructures. Nanoindentation tests were performed to measure nanohardness of individual phases and to generate 2D maps showing nanohardness distribution on the surface of the material. To study local in-plane plastic strain distribution during deformation, in situ tensile tests were carried out using the digital image correlation technique. Significant partitioning of plastic strain between phase microconstituents during tensile deformation is shown. The effect of the microstructure on the mechanical behavior of the Q and P processed steel is analyzed. The local plastic deformation behavior of individual phases is discussed with respect to their strength and their spatial orientation.

  8. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  9. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes.

    Science.gov (United States)

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A Erman

    2016-03-25

    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified.

  10. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  11. Unilateral eccentric contraction of the plantarflexors leads to bilateral alterations in leg dexterity

    Directory of Open Access Journals (Sweden)

    Akira Nagamori

    2016-11-01

    Full Text Available Eccentric contractions can affect musculotendon mechanical properties and disrupt muscle proprioception, but their behavioral consequences are poorly understood. We tested whether repeated eccentric contractions of plantarflexor muscles of one leg affected the dexterity of either leg. Twenty healthy male subjects (27.3+/-4.0 yrs compressed a compliant and slender spring prone to buckling with each isolated leg. The maximal instability they could control (i.e., the maximal average sustained compression force, or lower extremity dexterity force, LEDForce quantified the dexterity of each leg. We found that eccentric contractions did not affect LEDForce, but reduced force variability (LEDSD. Surprisingly, LEDForce increased in the non-exposed, contralateral leg. These effects were specific to exposure to eccentric contractions because an effort-matched exposure to walking did not affect leg dexterity. In the exposed leg, eccentric contractions (i reduced voluntary error corrections during spring compressions (i.e., reduced 0.5-4 Hz power of LEDForce; (ii did not change spinal excitability (i.e., unaffected H-reflexes; and (iii changed the structure of the neural drive to the alpha-motoneuron pool (i.e., reduced EMG power within the 4-8 Hz physiological tremor band. These results suggest that repeated eccentric contractions alter the feedback control for dexterity in the exposed leg by reducing muscle spindle sensitivity. Moreover, the unexpected improvement in LEDForce in the non-exposed contralateral leg was likely a consequence of crossed-effects on its spinal and supraspinal feedback control. We discuss the implications of these bilateral effects of unilateral eccentric contractions, their effect on spinal and supraspinal control of dynamic foot-ground interactions, and their potential to facilitate rehabilitation from musculoskeletal and neuromotor impairments.

  12. High-power, high-fracture-strength, eye-safe Er:glass laser

    Science.gov (United States)

    Tilleman, Michael M.; Jackel, Steven M.; Moshe, Innon

    1998-09-01

    We develop a high-power Er:strengthened-glass laser emitting at the eye-safe 1.535 micrometers wavelength. To maximize the output parameters of an Er:glass laser, whose power supply must also be used with Nd:YAG, a two-lamp laser head with parallel power forming networks that could be fired with an internal delay is used. The system operates at a slope efficiency of 0.45%, yielding a maximum pulse energy of 330 mJ. Thermal effects are measured, indicating strong thermal lensing, of 16 diopter/kW and mild birefringence induced depolarization of 5% at 200 W electrical power. From this data we determine the radial-tangential average and birefringence elasto-optical coefficients, Cr,(phi ) equals 0.075 +/- 0.002 and CB equals 0.0094, respectively. A TEM00 beam is achieved for a hemispherical resonator configuration. Based on the measurements, a design is presented for improved high-power TEM00 performance using principles based on dynamic compensation of thermal focusing and birefringence correction using a reentrant resonator.

  13. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  14. Investigation on synthesis of a low cost no-bake furan resin system with a high strength

    Directory of Open Access Journals (Sweden)

    Liu Weihua

    2014-09-01

    Full Text Available The synthesis of a low cost no-bake furan resin with a high strength was researched in this paper. Through the analysis of main factors influencing the strength of furan resin, an orthogonal experiment was conducted to optimize synthesis of urea-formaldehyde furan resin with 3% nitrogen. The critical factors and their optimal levels were confirmed, and high strength property was obtained. Subsequently, some active substitute materials, including polyols A agent, methyl alcohol, mother liquid of xylitol, polyols B agent and ethanol, were used for partly substitution of furfural alcohol, the main material component of furan resin. A good combination of the substitute materials was determined to achieve a high strength, and the overall proportion of substitute materials to the resin is 20%. In this study, the substitution mechanism on furan resin was also characterized and analyzed by IR.

  15. Finite element modelling of chain-die forming for ultra-high strength steel

    Science.gov (United States)

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2017-10-01

    There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.

  16. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    Science.gov (United States)

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-04-15

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of

  17. Development of high-strength and high-RRR aluminum-stabilized superconductor for the ATLAS thin solenoid

    CERN Document Server

    Wada, K; Sakamoto, H; Shimada, T; Nagasu, Y; Inoue, I H; Tsunoda, K; Endo, S; Yamamoto, A; Makida, Y; Tanaka, K; Doi, Y; Kondo, T

    2000-01-01

    The ATLAS central solenoid magnet is being constructed to provide a magnetic field of 2 Tesla in the central tracking part of the ATLAS detector at the LHC. Since the solenoid coil is placed in front of the liquid-argon electromagnetic calorimeter, the solenoid coil must be as thin (and transparent) as possible. The high-strength and high- RRR aluminum-stabilized superconductor is a key technology for the solenoid to be thinnest while keeping its stability. This has been developed with an alloy of 0.1 wt% nickel addition to 5N pure aluminum and with the subsequent mechanical cold working of 21% in area reduction. A yield strength of 110 MPa at 4.2 K has been realized keeping a residual resistivity ratio (RRR) of 590, after a heat treatment corresponding to coil curing at 130 degrees C for 15 hrs. This paper describes the optimization of the fabrication process and characteristics of the developed conductor. (8 refs).

  18. Preparation and evaluation of a high-strength biocompatible glass-ionomer cement for improved dental restoratives

    Energy Technology Data Exchange (ETDEWEB)

    Xie, D; Zhao, J; Park, J; Chu, T M [Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202 (United States); Yang, Y; Zhang, J T [Department of Phamacology, School of Medicine, Indiana University, Indianapolis, IN 46202 (United States)], E-mail: dxie@iupui.edu

    2008-06-01

    We have developed a high-strength light-cured glass-ionomer cement (LCGIC). The polymer in the cement was composed of the 6-arm star-shape poly(acrylic acid) (PAA), which was synthesized using atom-transfer radical polymerization. The polymer was used to formulate with water and Fuji II LC filler to form LCGIC. Compressive strength (CS) was used as a screening tool for evaluation. Commercial glass-ionomer cement Fuji II LC was used as control. The results show that the 6-arm PAA polymer exhibited a lower viscosity in water as compared to its linear counterpart that was synthesized via conventional free-radical polymerization. This new LCGIC system was 48% in CS, 77% in diametral tensile strength, 95% in flexural strength and 59% in fracture toughness higher but 93.6% in shrinkage lower than Fuji II LC. An increasing polymer content significantly increased CS, whereas an increasing glass filler content increased neither yield strength nor ultimate CS except for modulus. During aging, the experimental cement showed a significant and continuous increase in yield strength, modulus and ultimate CS, but Fuji II LC only showed a significant increase in strength within 24 h. The experimental cement was very biocompatible in vivo to bone and showed little in vitro cytotoxicity. It appears that this novel LCGIC cement will be a better dental restorative because it demonstrated significantly improved mechanical strengths and better in vitro and in vivo biocompatibilities as compared to the current commercial LCGIC system.

  19. Slice accelerated diffusion-weighted imaging at ultra-high field strength.

    Science.gov (United States)

    Eichner, Cornelius; Setsompop, Kawin; Koopmans, Peter J; Lützkendorf, Ralf; Norris, David G; Turner, Robert; Wald, Lawrence L; Heidemann, Robin M

    2014-04-01

    Diffusion magnetic resonance imaging (dMRI) data with very high isotropic resolution can be obtained at 7T. However, for extensive brain coverage, a large number of slices is required, resulting in long acquisition times (TAs). Recording multiple slices simultaneously (SMS) promises to reduce the TA. A combination of zoomed and parallel imaging is used to achieve high isotropic resolution dMRI data with a low level of distortions at 7T. The blipped-CAIPI (controlled aliasing in parallel imaging) approach is used to acquire several slices simultaneously. Due to their high radiofrequency (RF) power deposition and ensuing specific absorption rate (SAR) constraints, the commonly used multiband (MB) RF pulses for SMS imaging are inefficient at 7T and entail long repetition times, counteracting the usefulness of SMS acquisitions. To address this issue, low SAR multislice Power Independent of Number of Slices RF pulses are employed. In vivo dMRI results with and without SMS acceleration are presented at different isotropic spatial resolutions at ultra high field strength. The datasets are recorded at a high angular resolution to detect fiber crossings. From the results and compared with earlier studies at these resolutions, it can be seen that scan time is significantly reduced, while image quality is preserved. Copyright © 2013 Wiley Periodicals, Inc.

  20. The strengths and weaknesses of the written English of black high school pupils

    Directory of Open Access Journals (Sweden)

    Erna Alant

    2013-02-01

    Full Text Available This study attempts to identify some of the strengths and weaknesses of the English of black high school pupils. A random sample of pupils from three classes in each of two schools was selected and given a battery of tests consisting of essay writing, spelling, word usage and punctuation. The method of evaluation of the test battery is described. The results of the tests are outlined and suggestions for the development of an intervention programme are given. Hierdie artikel poog om sommige van die swakhede sowel as die sterk punte van die Engels van swart hoerskoolleerlinge te identifiseer. 'n Ewekansige steekproef van leerlinge van drie klasse in twee afsonderlike skole is gekies en 'n reeks toetse bestaande uit opstel skryf, spel, woordgebruik en punktuasie is gegee. Die skryfster beskryf die metode van evaluasie van die toetsreeks, skets die uitslae van die toets en gee voorstelle vir die ontwikkeling van 'n intervensie-program.

  1. Development of Advanced High Strength Steel for Improved Vehicle Safety, Fuel Efficiency and CO2 Emission

    Science.gov (United States)

    Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar

    2016-10-01

    Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.

  2. Anisotropic Hardening Behaviour and Springback of Advanced High-Strength Steels

    Directory of Open Access Journals (Sweden)

    Jaebong Jung

    2017-11-01

    Full Text Available Advanced high-strength steels (AHSSs exhibit large, and sometimes anisotropic, springback recovery after forming. Accurate description of the anisotropic elasto-plastic behaviour of sheet metals is critical for predicting their anisotropic springback behaviour. For some materials, the initial anisotropy is maintained while hardening progresses. However, for other materials, anisotropy changes with hardening. In this work, to account for the evolution of anisotropy of a dual-phase steel, an elastoplastic material constitutive model is developed. In particular, the combined isotropic–kinematic hardening model was modified. Tensile loading–unloading, uniaxial and biaxial tension, and tension–compression tests were conducted along the rolling, diagonal, and transverse directions to measure the anisotropic properties, and the parameters of the proposed constitutive model were determined. For validation, the proposed model was applied to a U-bending process, and the measured springback angles were compared to the predicted ones.

  3. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...... tests of tensile specimens consisting of reinforcing bars embedded in Densit Joint Cast ®. The objective of these fatigue tests is to show that the system / connection can presumably also be used in structures subjected to dominant time- varying loads and thus for example in earthquake regions....

  4. Load carrying capacity of keyed joints reinforced with high strength wire rope loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Hoang, Linh Cao

    2015-01-01

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  5. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so......-called wire boxes which are embedded in the precast wall elements. Once the joint is grouted with mortar, the boxes will function as shear keys and the overlapping wire loops will function as transverse reinforcement that replaces the U-bars. This paper presents a rigid-plastic upper bound model to determine...

  6. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  7. Crystallization of high-strength fine-sized leucite glass-ceramics.

    Science.gov (United States)

    Chen, X; Chadwick, T C; Wilson, R M; Hill, R; Cattell, M J

    2010-12-01

    Manufacturing of leucite glass-ceramics often leads to materials with inhomogeneous microstructures. Crystal-glass thermal mismatches which produce microcracking around larger crystals-agglomerates are associated with reduced mechanical properties. The hypotheses were that fine (ceramics were characterized by XRD, SEM, and Dilatometry. Experimental (A, M1A and M2A) and commercial glass-ceramics were tested by the BFS test. Experimental glass-ceramics showed an increased leucite crystal number and decreased crystal size with glass particle size reduction. Leucite glass-ceramics (ceramics M1A and M2A had higher mean BFS and characteristic strength than the IPS Empress Esthetic glass-ceramic (p translucent leucite glass-ceramics were synthesized and produced high mean BFS.

  8. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...... simulated numerically and together with the material carbon equivalent, austenization temperatures and the thermal history the simulations were used to estimate the resulting post weld hardness using the commercial FE code SORPAS. The hardness of the welds of dissimilar materials was estimated...

  9. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...... show that the dry lubricant provides better lubrication and generates less galling than the rust protection oil. Also, the nitrogen alloyed PM steel grade shows a significantly higher galling resistance as compared with the conventional steel grade and can, in combination with a dry lubricant......The increasing use of high strength steels in a variety of mechanical engineering applications has illuminated problems associated with galling in sheet metal forming operations. Galling is a tribological phenomenon associated with transfer of material from the steel sheet to the tool surface...

  10. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  11. Experimental and Numerical Determination of Hot Forming Limit Curve of Advanced High-Strength Steel

    Science.gov (United States)

    Ma, B. L.; Wan, M.; Liu, Z. G.; Li, X. J.; Wu, X. D.; Diao, K. S.

    2017-07-01

    This paper studied the hot formability of the advanced high-strength steel B1500HS. The hot Nakazima tests were conducted to obtain the forming limit curve (FLC), and the sheet temperatures were recorded to analyze temperature distributions during deformation. Meanwhile, the numerical simulations of hot Nakazima tests were performed to compare with the experimental ones. By utilizing the commercial software, Abaqus, the punch force-displacement curve, sheet temperature distribution at the time of the maximum punch load and temperature path of the necked element were investigated from both of experiments and numerical simulations. The FLCs from experiment and numerical simulation showed a good agreement. The temperature path of the necked element on each FLC specimen was different due to the numerical stretching time and stress state. This study demonstrated the predictive capability of finite element simulation on hot stamping.

  12. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  13. Thermal strain of pipes composed with high strength polyethylene fiber reinforced plastics at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kashima, Toshihiro; Yamanaka, Atsuhiko [Toyobo Co., Ltd., Shiga (Japan); Okada, Toichi [Osaka Univ. (Japan)] [and others

    1997-06-01

    High strength polyethylene fiber(Dyneema{reg_sign} fiber; herein after abbreviated to DF) has a large negative thermal expansion coefficient. Several kinds of pipes were prepared by means of filament winding or sheet winding method. The thermal strain or residual stress of those pipes were measured at liquid nitrogen temperature. The thermal strain was also calculated and was compared with the measured values. The circumferential thermal strain of the inner surface was found to be much different from that of outer surface. The circumferential strain changed with the ratio of inner diameter to thickness of pipes. The mean thermal strain of inner and outer surface was found to agree well with that of calculated value. It was confirmed that the negative thermal expansion can be realized even in the pipes. The design methodology of the pipes with negative thermal expansion was discussed.

  14. Advanced technologies for manufacturing high strength sour grade UOE line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Omura, Tomohiko; Takahashi, Nobuaki; Minato, Izuru; Yamamoto, Akio [Sumitomo Metal Industries, Ltd., Kashima, (Japan)

    2010-07-01

    A new kind of high strength pipeline has been manufactured for sour service in offshore pipelines. This paper first presents a review of developments in manufacturing technology to improve sour resistance. This was particularly the case with Grade UOE line pipe. The improvement was achieved by optimizing the continuous casting process, monitoring the shape of inclusions (such as MnS, CaS, Al2O3, CaO-Al2O3) and decreasing coarse precipitates (Nb(C,N), TiN). The study then used the HIC evaluation method to determine hydrogen induced cracking (HIC) resistance of the material and HAZ test for sulfide stress cracking (SSC) resistance. The evaluation of the NACE TM0284 solution A showed that these pipelines are able to resist severe sour conditions because of good HIC and SSC resistance. Optimizing others components like alloying elements and the ACC process would improve sour resistance in future applications.

  15. DETERMINATION OF HYDROGEN DESORBED THROUGH THERMAL CALORIMETRY IN A HIGH STRENGTH STEEL

    Directory of Open Access Journals (Sweden)

    Carolina A. Asmus

    2014-03-01

    Full Text Available The following study aims to quantify the release activation energy (Ea of hydrogen (H from lattice sites, reversible or irreversible, where the H can be trapped. Moreover, enthalpy changes associated with the main hydrogen (H trapping sites can be analyzed by means of differential scanning calorimetry (DSC. In this technique, the peak temperature measurement is determined at two different heating rates, 3ºC/min y 5ºC/min, from ambient temperature to 500°C. In order to simulate severe conditions of hydrogen income into resulfurized high strength steel, electrolytic permeation tests were performed on test tubes suitable for fatigue tests. Sometimes during charging, H promoters were aggregated to electrolytic solution. Subsequently, the test tubes were subjected to flow cycle fatigue tests. Finally, irreversible trap which anchor more strongly H atoms are MnS inclusions. Its role on hydrogen embrittlement during fatigue tests is conclusive.

  16. Modeling of nonlinear elastoplastic behavior after stress reversal for high strength steel

    Science.gov (United States)

    Sumikawa, S.; Ishiwatari, A.; Hiramoto, J.

    2017-09-01

    Material characteristics have significant impact on simulation of sheet metal forming. The accuracy of springback prediction depends on the estimation of strain recovery after die release. It is well known that the experimentally obtained unloading behavior for steel sheets is nonlinear stress-strain relationship, and the response during unloading and reloading shows a hysteresis loop. This behavior should be modeled by a material model and considered in FE-simulations for accurate predictions. In this study, the in-plane stress reversal tests for high strength steel were carried out to observe the elastoplastic behaviors after stress reversal. A material model that considers the nonlinear behavior was newly developed and implemented into the FEM software. The accuracy of springback prediction with the developed material model was validated by the draw bending tests and its springback simulations. The simulations with the developed material model show better agreement with the experimentally measured springback profile as compared to the other material models.

  17. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  18. Fracture Toughness and Impact Strength of High-Volume Class-F Fly Ash Concrete Reinforced with Natural San Fibres

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2008-06-01

    Full Text Available Results of experimental investigation carried out to study the effects of addition of natural san fibres on the fracture toughness and impact strength of high-volume fly ash concrete are presented in this paper. San fibres belong to the category of ‘Natural Bast Fibres’, also known as ‘Sunn Hemp’. Its scientific (botanical name is Crotalaria Juncea. It is mostly grown in the Indian Sub-Continent, Brazil, Eastern and Southern Africa, and in some parts of the U.S.A. Initially, a control mixture without fly ash was designed. Then, cement was replaced with three percentages (30, 40 and 50% of low-calcium (Class F fly ash. Three percentages of san fibres (0.30, 0.60 and 0.90%, having 25 mm length, were used. Tests were performed for compressive strength, fracture toughness, and impact strength at the ages of 28 and 91 days.The test results indicated that the replacement of cement with fly ash decreased the compressive strength and fracture toughness, and had no significant effect on the impact strength of plain (control concrete. Addition of san fibres did not affect significantly the compressive strength, increased the fracture toughness and impact strength of high-volume fly ash concrete as the percentage of fibres increased.

  19. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    Science.gov (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Suppression of drinking by exposure to a high-strength static magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Cassell, Jennifer A; Riccardi, Christina; Kwon, Bumsup; Smith, James C

    2007-01-30

    High-strength static magnetic fields of 7 T and above have been shown to have both immediate and delayed effects on rodents, such as the induction of locomotor circling and the acquisition of conditioned taste aversions. In this study, the acute effects of magnet field exposure on drinking were examined. Exposure to a 14.1-T magnetic field for as little as 5 min significantly decreased the amount of a glucose and saccharin solution (G+S) consumed by water-deprived rats over 10 min. The decreased intake could be accounted for largely, but not entirely, by an increase in the latency of magnet-exposed rats to initiate drinking. When intake was measured for 10-60 min after the initiation of drinking, thus controlling for increased latency, magnet-exposed rats still consumed less G+S than sham-exposed rats. The increased latency was not due simply to an inability of magnet-exposed rats to reach the elevated sipper tube of the G+S bottle, providing rats with long tubes that could be reached without raising their heads normalized intake but latency was still increased. The increased latency and decreased intake appeared to be secondary to somatic effects of magnet exposure, however, because during intraoral infusions magnet-exposed rats consumed the same amount of G+S with the same latency to reject as sham-exposed rats. The suppression of drinking by magnetic field exposure is consistent with the acute effects of other aversive stimuli, such as whole-body rotation, on short-term ingestion. These results add to the evidence that high-static strength magnetic fields can have behavioral effects on rodents.