Sample records for high stimuli-responsive material

  1. Hydrophilic-oleophobic stimuli-responsive materials and surfaces (United States)

    Howarter, John A.

    Due to their high surface energy, hydrophilic surfaces are susceptible to contamination which is difficult to remove and often ruins the surface. Hydrophilic-oleophobic coatings have a diverse engineering potential including applications as self-cleaning surfaces, extended life anti-fog coatings, and environmental remediation in the selective filtration of oil-in-water mixtures. A successful design model for hydrophilic-oleophobic behavior has been developed using perfluorinated surfactants covalently bound to a surface. Within this design model, a variety of materials have been explored which the surfactants are covalently bound to a substrate; similarly, the surfactants may also be incorporated as a monomer into bulk copolymers. Surfactant based surfaces exhibited simultaneous hydrophilicity, necessary for anti-fogging, and oleophobicity, necessary for contamination resistance. The combination of these features rendered the surface as self-cleaning. Surfactant based brushes, composed of polyethylene glycol and perfluorinated constituents were grafted on to silica surfaces. The relationship between brush density and stimuli-responsiveness was determined by varying grafting conditions. The resultant surfaces were characterized with respect to chemical composition, brush thickness, and wetting behavior of water and hexadecane. Optimized surfaces exhibited stimuli-responsive behavior such that the surfaces will be wetted by water but not by oil. Surfactants were incorporated into random copolymers to create self-cleaning polymers which could be easily coated on to surfaces post-synthesis. Acrylic acid, methyl methacrylate, and hydroxyethyl methacrylate were used as comonomers; feed ratio was varied to establish compositional limits of stimuli-responsive behavior. Polymer composition dictated coating durability and self-cleaning performance as determined by water and hexadecane contact angle. The ability of select coatings to mitigate fogging was assessed in two

  2. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song


    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  3. Wood as inspiration for new stimuli-responsive structures and materials (United States)

    Jakes, Joseph E.; Plaza, Nayomi; Zelinka, Samuel L.; Stone, Donald S.; Gleber, Sophie-Charlotte; Vogt, Stefan


    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities. Here we also report that ion diffusion through wood cell walls is a stimuli-responsive phenomenon. Using the high spatial resolution and sensitivity of synchrotron-based x-ray fluorescence microscopy (XFM), metal ions deposited into individual wood cell walls were mapped. Then, using a custom-built relative humidity (RH) chamber, diffusion of the metal ions was observed in situ first at low RH and then at increasingly higher RH. We found that ions did not diffuse through wood cell walls at low RH, but diffusion occurred at high RH. We propose that both the shape memory twist effect and the moisture content threshold for ionic diffusion are controlled by the hemicelluloses passing through a moisture-dependent glass transition in the 60-80% RH range at room temperature. An advantage of wood over other stimuli-responsive polymers is that wood lacks bulk mechanical softening at the transition that controls the stimuliresponsive behavior. We demonstrate using a custom-built torque sensor that the torque generation in wood cell bundles actually continues to increase over the RH range that hemicelluloses soften. The hierarchical structure of wood provides the inspiration to engineer stimuli-responsive polymers and actuators with increased mechanical strength and higher recovery stresses.

  4. Emerging applications of stimuli-responsive polymer materials

    NARCIS (Netherlands)

    Stuart, M.A.C.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S.


    Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice

  5. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Directory of Open Access Journals (Sweden)

    Wu Li


    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  6. 1998 report on results of R and D project for industrial science and technology (R and D for technologies of producing innovative high performance material) (development of technologies for structural control material). R and D for high stimuli-responsive material; 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu (kozo seigyo zairyo gijutsu kaihatsu) kodo shigeki oto zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    A report was made on the results of 1998 R and D concerning high stimuli-responsive materials. This R and D was intended to develop technologies for producing, by copying organism, innovative new stocks and new materials which repeatedly provide functions such as separating, transmitting and moving in response to stimuli. In the R and D of polymeric high stimuli-responsive materials, studies were conducted on multi-stimuli-responsive separation materials, molecular recognition controlled separation materials, and cell adhesion/separation materials with molecular recognition function. In the R and D of composite high stimuli-responsive materials, release controlled function materials and materials for actuator were studied. The investigation and research of common basic technologies were carried out on such subjects as synthesis and functional development of multi-signal responded polymer gels, development of temperature-responsive chromatography, synthesis and characterization of novel stimuli-sensitive materials, studies on structural characterization of intelligent gels, novel thermosensitive polymers, polyelectrolytic model networks, etc. (NEDO)

  7. Dual stimuli responsive self-reporting material for chemical reservoir coating (United States)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul


    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  8. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications. (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il


    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  9. The development and characterization of stimuli-responsive systems for performance materials (United States)

    Gordon, Melissa B.

    In nature, living organisms adjust to their surroundings by responding to environmental cues, such as light, temperature or force. Stimuli-triggered processes, such as the contraction of eyes in response to bright light or wound healing in skin after a cut, motivate the design of "smart" materials which are designed to respond to environmental stimuli. Responsive materials are used as self-healing materials, shape memory polymers and responsive coatings; moreover, responsive materials may also be employed as model systems, which enhance understanding of complex behavior. The overall goal of this work is to design a material that offers self-healing functionality, which will allow for self-repair following material fatigue or failure, and increased strength in response to ballistic or puncture threats through the incorporation of colloidal particles. The target application for this material is as a protective barrier in extreme environments, such as outer space. Towards this end, the dissertation is focused on the development and characterization of each component of the protective material by (1) designing and testing novel light- and force-sensitive polymers for self-healing applications and (2) examining and characterizing long-time behavior (i.e., aging) in model thermoreversible colloidal gels and glasses. Towards the development of novel stimuli-responsive materials, a photo-responsive polymer network is developed in which a dynamic bond is incorporated into the network architecture to enable a light-triggered, secondary polymerization, which increases the modulus by two orders of magnitude while strengthening the network by over 100%. Unlike traditional two-stage polymerization systems, in which the secondary polymerization is triggered by a leachable photoinitiator, the dynamic nature is imparted by the material itself via the dissociation of its own crosslinks to become stronger in response to light. Several attributes of the photo-responsive network are

  10. Smart materials: development of new sensory experiences through stimuli responsive materials


    Esther, Lefebvre; Piselli, Agnese; Faucheu, Jenny; Delafosse, David; Del Curto, Barbara


    International audience; Smart materials are materials that change properties according to stimuli, adapting to their environment. This makes them particularly interesting, to increase the performance of a product, and to enable new functionalities and new ways to interact with users. Some smart materials can affect the perception we have of objects. Existing smart materials have an action mostly on the visual and the tactile aspects. The most popular variations are based on colour changing ma...

  11. Fiscal 1997 project on the R and D of industrial scientific technology under consignment from NEDO. Report on the results of the R and D of technologies to invent original high-functional materials (technical development of structure control materials / R and D of multi-stimuli-responsive materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu (kozo seigyo zairyo gijutsu kaihatsu) kodo shigeki oto zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    The paper described multi-stimuli-responsive materials out of the technology developments for creating original high-functional materials under the system of R and D of industrial scientific technologies. These are materials which repeatedly reproduce functions such as separation, penetration and movement in response to stimuli by imitating living organisms. In relation to polymer multi-stimuli-responsive materials, various copolymers were synthesized using N-acetyl (meta) acrylamide, of which the synthesis method was established in the previous fiscal year, as a main component, and thermal responsive polymer with upper critical solution temperature which becomes a base of separation functional materials was searched for. By immobilizing it with molecular recognition ligand, measured was thermal dependence of affinity of the immobilized matter to albumin. Also studied were molecular recognition cell adhesion/separation functional materials. Concerning composite multi-stimuli-responsive materials, with the use of silica microcapsule surface-immobilized with silane coupling agent, studied were the optimum conditions for immobilizing thermo-responsive polymer to the surface of the capsule. Using motion functional materials by ion exchange resin, obtained was motion functionality which is satisfactory at the state of practical use. 94 refs., 82 figs., 16 tabs.

  12. Wood as inspiration for new stimuli-responsive structures and materials (United States)

    Joseph E. Jakes; Nayomi Plaza; Samuel L. Zelinka; Donald S. Stone; Sophie-Charlotte Gleber; Stefan Vogt


    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities....

  13. Naphthalene based AIE active stimuli-responsive material as rewritable media for temporary communication (United States)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Kalam, Abul; Asiri, Abdullah M.


    Organic molecules having extended π-conjugated moieties is useful for creating 'dynamic' functional materials by modulating the photophysical properties and molecular packing through non-covalent interactions. Herein, we report the photoluminescence properties of a luminogen, NBA, exhibiting aggregation-induced emission (AIE) characteristics, synthesized by Knoevenagel condensation reaction between 2-Hydroxy naphthaldehyde and malononitrile. NBA emits strongly upon aggregation and in solid state with large Stokes shift whereas it is non emissive in pure solvents. The aggregation induced emission behavior of the compound was carried out in DMSO (good solvent)-water mixture (poor solvent) with water fraction (fw) ranging from 0% to 98%. The AIE property of the luminogen were further exploited for fabricating rewritable fluorescent paper substrates that found applications in security printing and data storage where the written images or letters stored on the filter paper are invisible under normal light.

  14. Stimuli-responsive smart gating membranes. (United States)

    Liu, Zhuang; Wang, Wei; Xie, Rui; Ju, Xiao-Jie; Chu, Liang-Yin


    Membranes are playing paramount roles in the sustainable development of myriad fields such as energy, environmental and resource management, and human health. However, the unalterable pore size and surface properties of traditional porous membranes restrict their efficient applications. The performances of traditional membranes will be weakened upon unavoidable membrane fouling, and they cannot be applied to cases where self-regulated permeability and selectivity are required. Inspired by natural cell membranes with stimuli-responsive channels, artificial stimuli-responsive smart gating membranes are developed by chemically/physically incorporating stimuli-responsive materials as functional gates into traditional porous membranes, to provide advanced functions and enhanced performances for breaking the bottlenecks of traditional membrane technologies. Smart gating membranes, integrating the advantages of traditional porous membrane substrates and smart functional gates, can self-regulate their permeability and selectivity via the flexible adjustment of pore sizes and surface properties based on the "open/close" switch of the smart gates in response to environmental stimuli. This tutorial review summarizes the recent developments in stimuli-responsive smart gating membranes, including the design strategies and the fabrication strategies that are based on the introduction of the stimuli-responsive gates after or during membrane formation, and the positively and negatively responsive gating models of versatile stimuli-responsive smart gating membranes, as well as the advanced applications of smart gating membranes for regulating substance concentration in reactors, controlling the release rate of drugs, separating active molecules based on size or affinity, and the self-cleaning of membrane surfaces. With self-regulated membrane performances, smart gating membranes show great power for use in global sustainable development.

  15. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. (United States)

    Tokarev, Igor; Gopishetty, Venkateshwarlu; Minko, Sergiy


    The article describes a novel polymer blend system that yields thin films with unique porous nanoscale morphologies and environmentally responsive properties. The blend consists of sodium alginate and amine end-terminated PEG, which undergoes phase separation during film deposition. The blend films can be readily converted into highly porous membranes using facile treatment with a solution containing divalent ions. The resulting membranes are primarily comprised of alginate hydrogel, whereas the PEG phase is removed from the films during exposure to the saline solution, yielding nanometer-sized pores. The alginate gel phase forms a three-dimensional nanostructure which can be best described as a filament or fibrous network. Because such network geometry is untypical of polymer blends in thin films, possible reasons for the observed phase morphology are discussed. Because of ionizable carboxyl groups, the hydrogel membranes demonstrate responsive behavior, in particular a drastic change in their porosity between a highly porous state and a state with completely closed pores in response to changes in the solution pH. The pore-size tunability can be explored in multiple applications where the regulation of material's permeability is needed.

  16. Stimuli-responsive photoluminescent liquid crystals. (United States)

    Yamane, Shogo; Tanabe, Kana; Sagara, Yoshimitsu; Kato, Takashi


    We describe mechanochromic and thermochromic photoluminescent liquid crystals. In particular, mechanochromic photoluminescent liquid crystals found recently, which are new stimuli-responsive materials are reported. For example, photoluminescent liquid crystals having bulky dendritic moieties with long alkyl chains change their photoluminescent colors by mechanical stimuli associated with isothermal phase transitions. The photoluminescent properties of molecular assemblies depend on their assembled structures. Therefore, controlling the structures of molecular assemblies with external stimuli leads to the development of stimuli-responsive luminescent materials. Mechanochromic photoluminescent properties are also observed for a photoluminescent metallomesogen and a liquid-crystalline polymer. We also show thermochromic photoluminescent liquid crystals based on origo-(p-phenylenevinylene) and anthracene moieties and a thermochromic photoluminescent metallocomplex.

  17. Stimuli-responsive cement-reinforced rubber. (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef


    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  18. Stimuli-Responsive Polymers for Actuation. (United States)

    Zhang, Qiang Matthew; Serpe, Michael J


    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Competitive coordination control of the AIE and micro states of supramolecular gel: an efficient approach for reversible dual-channel stimuli-response materials. (United States)

    Lin, Qi; Yang, Qing-Ping; Sun, Bin; Fu, Yong-Peng; Zhu, Xin; Wei, Tai-Bao; Zhang, You-Ming


    An organogelator (G2) based on multi self-assembly driving forces, fluorescent signal groups and coordination binding sites was designed and synthesized. G2 could form a stable Cd(2+)-coordinated supramolecular metallogel (CdG) accompanied by strong brilliant blue aggregation-induced fluorescence emission (AIE). By the competitive coordination of Cd(2+) with gelator and I(−), the AIE of CdG could be reversibly switched "on-off-on" under gel–gel states via alternative adding I(−) and Cd(2+) into CdG. Interestingly, because of the competitive coordination of Cd(2+) with I(−), the micro structure of the CdG xerogel carried out dramatic changes and formed lots of micro cavities. These micro cavities could absorb iodine vapour and caused the color of CdG xerogel change from white to brown. The CdG could not only act as a convenient high selective and sensitive I(-) detection test kit (detection limit for I(-) is 1.0 × 10(-7) M) but also as rewritable dual-channel security display materials.

  20. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn


    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  1. Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen


    Full Text Available Stimuli-responsive, smart, intelligent, or environmentally sensitive polymers respond to changes in external stimuli such as pH, temperature, ionic strength, surfactants, pressure, light, biomolecules, and magnetic field. These materials are developed in various network architectures such as block copolymers, crosslinked hydrogels, nanogels, inter-penetrating networks, and dendrimers. Stimuli-responsive cationic polymers and hydrogels are an interesting class of “smart” materials that respond reversibly to changes in external pH. These materials have the ability to swell extensively in solutions of acidic pH and de-swell or shrink in solutions of alkaline pH. This reversible swelling-shrinking property brought about by changes in external pH conditions makes these materials useful in a wide range of applications such as drug delivery systems and chemical sensors. This article focuses mainly on the properties of these interesting materials and their applications in drug delivery systems.

  2. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. (United States)

    Chen, Pangkuan; Li, Qiaochu; Grindy, Scott; Holten-Andersen, Niels


    We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.

  3. Stimuli-responsive dendrimers in drug delivery. (United States)

    Wang, Hui; Huang, Quan; Chang, Hong; Xiao, Jianru; Cheng, Yiyun


    Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.

  4. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles


    Ilg Patrick


    Embedding magnetic nanoparticles into soft host media offers the opportunity to externally control material properties via a magnetic field. Choosing a hydrogel as host medium allows to modify not only the elastic properties but also the degree of swelling of the gel and the shape changes of the sample. Hydrogels where magnetic nanoparticles serve as the only crosslinking reagent of the network are a promising new class of such stimuli responsive gels. The well defined magneto mechanical coup...

  5. Stimuli-responsive Hydrogels for Textile Functionalisation: A Review

    Directory of Open Access Journals (Sweden)

    Štular Danaja


    Full Text Available This article reviews hydrogels used for the functionalisation of textile materials. Hydrogels are reviewed according to their reason for incorporation, aspects of crosslinking, stimuli-responsive characteristics and particle size. A more in-depth focus on the effect of hydrogel particle size is provided, where macrogels, microgels and nanogels for textile functionalisation are considered. The advantages and disadvantages of each size group are presented. Furthermore, the correlation between synthesis conditions and the sizes of hydrogel particles is discussed, in addition to the applications of macro-, micro- and nanogels to textile materials and their intended uses.

  6. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song


    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  7. Adhesion Characteristics and Swelling Response of Stimuli-Responsive Hydrogels (United States)

    Benjamin, Chandler

    Stimuli-responsive hydrogels are a class of shape memory materials that have been successfully used in microfluidic and biomedical devices and additionally as biomaterials. These materials operate in a hydrated environment and respond with a significant volumetric reversible transformation through absorption or release of water within the polymeric network. The pH sensitive 2-hydroxyethyl methacrylate (2-dimethylamino) ethyl methacrylate, (HEMA-DMAEMA) stimuli-responsive hydrogel is used in microfluidic devices as sensors and actuators. This hydrogel responds to an acidic aqueous environment with a subsequent volume change. This actuation requires the hydrogel to be in an acidic environment to remain in its swollen state. In chapter 2 I initially characterize this hydrogel in terms of engineering properties such as the storage modulus G', the loss modulus G'' and loss tangent tan(delta). The storage modulus is analogous to the shear modulus from elasticity theory. The loss modulus is a representation of energy dissipation from applied loading. The loss tangent tan(delta) is a measure of damping in a material. In chapter 3 I develop a method of measuring the Fung parameter beta° for stimuli-responsive hydrogels using a simple tensile test. HEMA-DMAEMA stimuli-responsive hydrogels are examined using this method. The HEMA-DMAEMA is pre-conditioned in 3.0 (acidic) pH and 11.0 (basic) pH buffer solutions prior to testing to compare the theoretical results to experiment in both the swollen and unswollen states. The measured Fung parameter beta° is 0.870 +/- 0.018. In chapter 4 I examine the interfacial adhesion of HEMA-DMAEMA. Experimental observations have given indications that the adhesion of the (HEMA-DMAEMA) is effected by substrate modifications. Using a unique experimental technique coupled with concepts from fracture mechanics I measure differences in the adhesive strength of HEMA-DMAEMA on borosilicate glass substrates, both unmodified and with different

  8. A dual-stimuli-responsive fluorescent switch ultrathin film (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min


    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  9. Stimuli Responsive Ionogels for Sensing Applications—An Overview

    Directory of Open Access Journals (Sweden)

    Andrew Kavanagh


    Full Text Available This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed.

  10. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    Directory of Open Access Journals (Sweden)

    Sandra dePedro


    Full Text Available Stimuli-responsive materials undergo physicochemical, and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of Polydimethylsiloxane (PDMS-based stimuli-responsive elastomers (SRE has seldomly been presented. Here we present the structural, biological, optical, magnetic and mechanical properties of several magnetic SRE (M-SRE obtained by combining PDMS and isoparafin-based ferrofluid (FF. Independently of the FF concentration, results shown a similar aggregation level, with the nanoparticles (NP mostly isolated (>60%. In addition to the superparamagnetic behaviour, the samples show no cytotoxicity except the sample with the highest FF concentration. Spectral response shows FF concentrations where both optical readout and magnetic actuation can simultaneously be used. The Young’s modulus increases with the FF concentration until the elastomeric network is distorted. Our results demonstrate that PDMS can host up to 24.6% FF. When applied to soft microsystems, a large displacement for relatively low magnetic fields (< 0.3 T is achieved. The herein presented M-SRE characterization can be used for a large number of disciplines where magnetic actuation can be combined with optical detection, mechanical elements and biological samples.

  11. A Stimuli-Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption. (United States)

    Li, Xiang; Xie, Yujie; Song, Bo; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu


    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)


    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Stimuli-responsive cellulose-based nematogels (United States)

    Liu, Qingkun; Smalyukh, Ivan

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.

  14. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications (United States)

    Kelley, Elizabeth G.; Albert, Julie N. L.


    Stimuli-responsive polymeric materials is one of the fastest growing fields of the 21st century, with the annual number of papers published more than quadrupling in the last ten years. The responsiveness of polymer solution assemblies and surfaces to biological stimuli (e.g. pH, reduction-oxidation, enzymes, glucose) and externally applied triggers (e.g. temperature, light, solvent quality) shows particular promise for various biomedical applications including drug delivery, tissue engineering, medical diagnostics, and bioseparations. Furthermore, the integration of copolymer architectures into stimuli-responsive materials design enables exquisite control over the locations of responsive sites within self-assembled nanostructures. The combination of new synthesis techniques and well-defined copolymer self-assembly has facilitated substantial developments in stimuli-responsive materials in recent years. In this tutorial review, we discuss several methods that have been employed to synthesize self-assembling and stimuli-responsive copolymers for biomedical applications, and we identify common themes in the response mechanisms among the targeted stimuli. Additionally, we highlight parallels between the chemistries used for generating solution assemblies and those employed for creating copolymer surfaces. PMID:23403471

  15. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics (United States)

    Ehrick, Jason D.; Deo, Sapna K.; Browning, Tyler W.; Bachas, Leonidas G.; Madou, Marc J.; Daunert, Sylvia


    Certain proteins undergo a substantial conformational change in response to a given stimulus. This conformational change can manifest in different manners and result in an actuation, that is, catalytic or signalling event, movement, interaction with other proteins, and so on. In all cases, the sensing-actuation process of proteins is initiated by a recognition event that translates into a mechanical action. Thus, proteins are ideal components for designing new nanomaterials that are intelligent and can perform desired mechanical actions in response to target stimuli. A number of approaches have been undertaken to mimic nature's sensing-actuating process. We now report a new hybrid material that integrates genetically engineered proteins within hydrogels capable of producing a stimulus-responsive action mechanism. The mechanical effect is a result of an induced conformational change and binding affinities of the protein in response to a stimulus. The stimuli-responsive hydrogel exhibits three specific swelling stages in response to various ligands offering additional fine-tuned control over a conventional two-stage swelling hydrogel. The newly prepared material was used in the sensing, and subsequent gating and transport of biomolecules across a polymer network, demonstrating its potential application in microfluidics and miniaturized drug-delivery systems.

  16. External-stimuli responsive systems for cancer theranostic

    Directory of Open Access Journals (Sweden)

    Jianhui Yao


    Full Text Available The upsurge of novel nanomaterials and nanotechnologies has inspired the researchers who are striving for designing safer and more efficient drug delivery systems for cancer therapy. Stimuli responsive nanomaterial offered an alternative to design controllable drug delivery system on account of its spatiotemporally controllable properties. Additionally, external stimuli (light, magnetic field and ultrasound could develop into theranostic applications for personalized medicine use because of their unique characteristics. In this review, we give a brief overview about the significant progresses and challenges of certain external-stimuli responsive systems that have been extensively investigated in drug delivery and theranostics within the last few years.

  17. Cell microcarriers and microcapsules of stimuli-responsive polymers. (United States)

    Brun-Graeppi, Amanda K Andriola Silva; Richard, Cyrille; Bessodes, Michel; Scherman, Daniel; Merten, Otto-Wilhelm


    Cell microcarriers and microcapsules have presented a wide range of potential applications. This article overviews their role in biotechnology with focus on the progress accomplished using stimuli-responsive polymers. Key properties of cell microcarriers and microcapsules are identified, followed by a description of the chemistry and gel formation mechanism of some of the stimuli-responsive polymers used to design them. Production methods are introduced and characterization techniques for evaluating such microsystems are equally presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao


    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  19. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)


    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  20. Tuning the stimuli-responsive properties of poly(ionic liquid)s


    Tudor, Alexandru; Florea, Larisa; Diamond, Dermot


    Poly(Ionic Liquid)s (PILs) are a class of ionic liquids that feature polymerizable groups in either the cation, the anion or both. PILs can be used in various applications, including solid ion conductors or for CO2 absorption. Several PILs show the presence of a lower critical solution temperature (LCST), making them suitable precursors for the synthesis of stimuli-responsive materials that have the ability to change their conformation in response to variations in their external environment. ...

  1. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Chun-Ling Zhu


    Full Text Available To develop novel tumor cell microenvironment stimuli-responsive smart controlled-release delivery systems is one of the current common interests of materials science and clinical medicine. Meanwhile, mesoporous silica nanoparticles as a promising drug carrier have become the new area of interest in the field of biomedical application in recent years because of their unique characteristics and abilities to efficiently and specifically entrap cargo molecules. This review describes the more recent developments and achievements of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled-release systems that are able to respond to tumor cell environmental changes, such as pH, glucose, adenosine-5′-triphosphate (ATP, glutathione (GSH, and H2O2.

  2. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes (United States)

    Hess, A. E.; Capadona, J. R.; Shanmuganathan, K.; Hsu, L.; Rowan, S. J.; Weder, C.; Tyler, D. J.; Zorman, C. A.


    This paper reports the development of micromachining processes and mechanical evaluation of a stimuli-responsive, mechanically dynamic polymer nanocomposite for biomedical microsystems. This nanocomposite consists of a cellulose nanofiber network encased in a polyvinyl acetate matrix. Micromachined tensile testing structures fabricated from the nanocomposite displayed a reversible and switchable stiffness comparable to bulk samples, with a Young's modulus of 3420 MPa when dry, reducing to ~20 MPa when wet, and a stiff-to-flexible transition time of ~300 s. This mechanically dynamic behavior is particularly attractive for the development of adaptive intracortical probes that are sufficiently stiff to insert into the brain without buckling, but become highly compliant upon insertion. Along these lines, a micromachined neural probe incorporating parylene insulating/moisture barrier layers and Ti/Au electrodes was fabricated from the nanocomposite using a fabrication process designed specifically for this chemical- and temperature-sensitive material. It was found that the parylene layers only slightly increased the stiffness of the probe in the wet state in spite of its much higher Young's modulus. Furthermore, the Ti/Au electrodes exhibited impedance comparable to Au electrodes on conventional substrates. Swelling of the nanocomposite was highly anisotropic favoring the thickness dimension by a factor of 8 to 12, leading to excellent adhesion between the nanocomposite and parylene layers and no discernable deformation of the probes when deployed in deionized water.

  3. Dual-stimuli responsive i-motif/nanoflares for sensing ATP in lysosomes. (United States)

    Jin, Fen; Zheng, Jing; Liu, Changhui; Yang, Sheng; Li, Yinhui; Li, Jishan; Lian, Yan; Yang, Ronghua


    A dual-stimuli responsive i-motif/nanoflare for molecule detection in lysosomes was designed. By combining the structure-switchable i-motif sequence and high recognition ability of an adenosine triphosphate (ATP) aptamer, subcellular sensing and visualization sensing of ATP in lysosomes at the subcellular level can be achieved. This general sensing technique can be applied for a broad range of cellular communication studies to improve our understanding of subcellular signaling and function.

  4. Development of degradable renewable polymers and stimuli-responsive nanocomposites (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  5. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minghui; Qian, Junmin, E-mail:; Liu, Xuefeng; Liu, Ting; Wang, Hongjie


    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid “burst” release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)–doxorubicin (PEG–DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG–DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG–DOX prodrug were confirmed by {sup 1}H NMR analysis. The PEG–DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG–DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. - Highlights: • A novel stimuli-responsive PEGylated prodrugs is synthesized. • PEGylated prodrugs can self-assemble into spherical nanoparticles (140 nm

  6. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses

    Directory of Open Access Journals (Sweden)

    Panoraia I. Siafaka


    Full Text Available Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined.

  7. Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface. (United States)

    Parlak, Onur; Ashaduzzaman, Md; Kollipara, Suresh B; Tiwari, Ashutosh; Turner, Anthony P F


    The engineering of bionanointerfaces using stimuli-responsive polymers offers a new dimension in the design of novel bioelectronic interfaces. The integration of electrode surfaces with stimuli-responsive molecular cues provides a direct control and ability to switch and tune physical and chemical properties of bioelectronic interfaces in various biodevices. Here, we report a dual-responsive biointerface employing a positively responding dual-switchable polymer, poly(NIPAAm-co-DEAEMA)-b-HEAAm, to control and regulate enzyme-based bioelectrocatalysis. The design interface exhibits reversible activation-deactivation of bioelectrocatalytic reactions in response to change in temperature and in pH, which allows manipulation of biomolecular interactions to produce on/off switchable conditions. Using electrochemical measurements, we demonstrate that interfacial bioelectrochemical properties can be tuned over a modest range of temperature (i.e., 20-60 °C) and pH (i.e., pH 4-8) of the medium. The resulting dual-switchable interface may have important implications not only for the design of responsive biocatalysis and on-demand operation of biosensors, but also as an aid to elucidating electron-transport pathways and mechanisms in living organisms by mimicking the dynamic properties of complex biological environments and processes.

  8. Modeling drug release through stimuli responsive polymer hydrogels. (United States)

    Pareek, Aditya; Maheshwari, Shantanu; Cherlo, Sivakumar; Thavva, Rama Subba Reddy; Runkana, Venkataramana


    There is a rising interest in stimuli-responsive hydrogels to achieve controlled and self-regulated drug delivery. Stimuli responsive polymer hydrogels with their ability to swell/de-swell under varying pH conditions present themselves as a potential candidate for controlled drug delivery. It is important to develop a mechanistic understanding of the underlying phenomena that will help suggest ways to control the drug release from a polymer hydrogel. We present a mathematical model that couples Nernst-Planck, Poisson and force balance equations to incorporate diffusion of ionic species and drug along with deformation of hydrogel under osmotic pressure. The model can be used to simulate swelling behaviour of the hydrogel along with the kinetics of drug release. It has been validated with published experimental data for swelling of polyhydroxyl methacrylate-co-methacrylic acid (pHEMA-co-MA) gels and release kinetics of Phenylpropanolamine from these gels. Effect of formulation parameters such as polymer concentration and cross-linker concentration has also been evaluated. The model can be used to reduce the number of exploratory experiments required during design of a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stimuli Responsive Poly(Vinyl Caprolactam Gels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Kummara Madhusudana Rao


    Full Text Available Poly(vinyl caprolactam (PNVCL is one of the most important thermoresponsive polymers because it is similar to poly(N-isopropyl acrylamide. PNVCL precipitates from aqueous solutions in a physiological temperature range (32–34 °C. The use of PNVCL instead of PNIPAM is considered advantageous because of the assumed lower toxicity of PNVCL. PNVCL copolymer gels are sensitive to external stimuli, such as temperature and pH; which gives them a wide range of biomedical applications and consequently attracts considerable scientific interest. This review focuses on the recent studies on PNVCL-based stimuli responsive three dimensional hydrogels (macro, micro, and nano for biomedical applications. This review also covers the future outlooks of PNVCL-based gels for biomedical applications, particularly in the drug delivery field.

  10. Stimuli-Responsive Peptide-based Triblock and Star Copolymers (United States)

    Ray, Jacob; Naik, Sandeep; Johnson, Ashley; Ly, Jack; Savin, Daniel


    Stimuli-responsive copolymers demonstrate diverse aggregation behavior in aqueous solution. In general, the molecular architecture and the balance of hydrophilic and hydrophobic volumes influence morphology. This study involves polypeptide-based ABA linear triblock and AB2 star copolymer (which structurally resemble phospholipids) amphiphiles. Model systems for this study are poly(L-lysine)-b-poly(propylene oxide)-b-poly(L-lysine) (KPK) triblocks and poly(L-glutamate) (PE) based star copolymers. Extensive studies with KPK systems have resulted in morphological transitions by modifying pH, and we hypothesize that a change in individual chain conformation is the driving force for these transitions. Preliminary results for PE-based star copolymers with various hydrophobic moieties suggest polymersome (vesicle) formation. Light scattering (dynamic and static) and TEM were used to determine aggregate size and morphology as a function of pH; furthermore, circular dichroism (CD) spectroscopy was used to measure helix-to-coil transitions of the polypeptide blocks.

  11. Stimuli-Responsive Metal-Organic Frameworks with Photoswitchable Azobenzene Side Groups. (United States)

    Kanj, Anemar Bruno; Müller, Kai; Heinke, Lars


    Metal-organic frameworks (MOFs) are nanoporous, crystalline hybrid materials, which enable various functionalities by incorporating functional organic molecules. By using organic linker molecules that possess photoswitchable azobenzene side groups, the remote control over certain properties was introduced to MOFs. Different MOF materials in the form of powders and thin films have been used to demonstrate the photoswitching. The applications of these stimuli-responsive nanoporous solids range from switching the adsorption capacity of various gases over remote-controlled release of guest molecules to continuously tunable membrane separation of molecular mixtures. A particular focus of this review is the effect of the azobenzene photoswitching on the host-guest interaction, enabling smart applications of the material. Steric hindrance, which may suppress the photoswitching in some MOF structures, is also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual stimuli-responsive Fe3O4 graft poly(acrylic acid-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications

    Directory of Open Access Journals (Sweden)

    Yuan Wang


    Full Text Available Abstract Background Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. Results Dual stimuli-responsive Fe3O4 graft poly(acrylic acid-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate block copolymers (Fe3O4-g-PAA-b-PMAEFC were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core–shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species. Conclusion This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system.

  13. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang


    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery applications. Herein, a novel method was devised for modification of liposomes with small molecules, polymers or nanoparticles to afford stimuli responsive systems that release on demand and stay relatively stable in the absence of the trigger.. This dissertation discusses thermosensitive, pH sensitive, light sensitive and magnetically triggered liposomes that have been prepared for controlled drug delivery application. RAFT polymerization was utilized for the preparation of thermosensitive liposomes (Cholesterol-PNIPAm) and acid-labile liposomes (DOPE-PAA). With low Mw Cholesterol-PNIPAm, the thermosensitive liposomes proved to be effective for controlled release and decreased the cytotoxicity of PNIPAm by eliciting the polymer doses. By crosslinking the DOPE-PAA on liposome surface with acid-labile diamine linkers, DOPE-PAA liposomes were verified to be sensitive at low pH. The effects of polymer structures (linear or hyperbranched) have also been studied for the stability and release properties of liposomes. Finally, a dual-responsive Au@SPIO embedded liposome hybrid (ALHs) was prepared with light-induced “on-and-off” function by photo-thermal process (visible light) and instant release properties triggered by alternating magnetic field, respectively. The ALH system would be further applied into the cellular imaging field as MRI contrast agent.

  14. A review of stimuli-responsive polymers for smart textile applications (United States)

    Hu, Jinlian; Meng, Harper; Li, Guoqiang; Ibekwe, Samuel I.


    Stimuli-responsive polymers (SRPs) are smart materials which can show noticeable changes in their properties with environmental stimulus variations. Novel functionalities can be delivered to textiles by integrating smart SRPs into them. SRPs inclusive of thermal-responsive polymers, moisture-responsive polymers, thermal-responsive hydrogels, pH-responsive hydrogels, and light-responsive polymers have been applied in textiles to improve or achieve textile smart functionalities. The functionalities include aesthetic appeal, comfort, textile soft display, smart controlled drug release, fantasy design with color changing, wound monitoring, smart wetting properties and protection against extreme variations in environmental conditions. In this review, the applications of SRPs in the textile and clothing sector are elucidated; the associated constraints in fabrication processes for textiles and their potential applications in the near future are discussed.

  15. Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Arijit Ghosh


    Full Text Available Untethered microtools that can be precisely navigated into deep in vivo locations are important for clinical procedures pertinent to minimally invasive surgery and targeted drug delivery. In this mini-review, untethered soft grippers are discussed, with an emphasis on a class of autonomous stimuli-responsive gripping soft tools that can be used to excise tissues and release drugs in a controlled manner. The grippers are composed of polymers and hydrogels and are thus compliant to soft tissues. They can be navigated using magnetic fields and controlled by robotic path-planning strategies to carry out tasks like pick-and-place of microspheres and biological materials either with user assistance, or in a fully autonomous manner. It is envisioned that the use of these untethered soft grippers will translate from laboratory experiments to clinical scenarios and the challenges that need to be overcome to make this transition are discussed.

  16. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications. (United States)

    Ju, Xiao-Jie; Xie, Rui; Yang, Lihua; Chu, Liang-Yin


    Stimuli-responsive materials that undergo dramatic changes in physical-chemical properties in response to mild physical changes in environmental conditions are attracting increasing interest because of their potential application in biomedical fields. Biodegradable materials are highly desired for most biomedical applications in vivo, such as transient implants, drug-delivery carriers, and tissue engineering scaffolds. Biomedical systems that are both biodegradable and stimuli-responsive have therefore been studied intensively and significant progress in this field has been achieved. This review summarizes the development of biodegradable 'intelligent' materials in response to physical stimuli and their potential biomedical applications. A detailed analysis of publications and patents on such materials in recent years is presented. Although biodegradable stimuli-responsive materials are highly attractive for biomedical applications, most such materials are currently at a developmental research stage. Additionally, single stimulus-responsive property limits the practical applications of these materials. To achieve more favorable applications for these materials, further efforts are still necessary, especially for developing multi-stimuli-responsive functions of materials and improving the stimuli-responsive properties of such materials in a biological environment. Bearing in mind the great prospect of these biodegradable stimuli-responsive materials, we hope that this review will help in the future development of stimuli-responsive polymers or systems that could be reliably employed in biomedical applications.

  17. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. (United States)

    Yang, Kai; Feng, Liangzhu; Liu, Zhuang


    Nano-graphene as a class of two-dimensional sp2 carbon nanomaterial has attracted tremendous attentions in various fields in the past decade. Utilizing its unique physical and chemical properties, nano-graphene has also shown great promises in the area of biomedicine, for application in biosensing, imaging and therapy. In particular, with all atoms exposed on its surface, nano-graphene exhibits ultra-high surface area available for efficient binding/loading of various biomolecules of interests, and has been widely used as multifunctional nano-carriers for drug and gene delivery. In this review article, we will summarize the recent advances in the development of nano-graphene as stimuli-responsive nano-carriers for drug delivery, as well as the applications of these smart systems for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers (United States)


    Conspectus This Account focuses on stimuli responsive systems that function in aqueous solution using examples drawn from the work of the Isaacs group using cucurbit[n]uril (CB[n]) molecular containers as key recognition elements. Our entry into the area of stimuli responsive systems began with the preparation of glycoluril derived molecular clips that efficiently distinguish between self and nonself by H-bonds and π–π interactions even within complex mixtures and therefore undergo self-sorting. We concluded that the selectivity of a wide variety of H-bonded supramolecular assemblies was higher than previously appreciated and that self-sorting is not exceptional behavior. This lead us to examine self-sorting within the context of CB[n] host–guest chemistry in water. We discovered that CB[n] homologues (CB[7] and CB[8]) display remarkably high binding affinity (Ka up to 1017 M–1) and selectivity (ΔΔG) toward their guests, which renders CB[n]s prime components for the construction of stimuli responsive host–guest systems. The CB[7]·adamantaneammonium ion complex, which is particularly privileged (Ka = 4.2 × 1012 M–1), was introduced by us as a stimulus to trigger constitutional changes in multicomponent self-sorting systems. For example, we describe how the free energy associated with the formation of host–guest complexes of CB[n]-type receptors can drive conformational changes of included guests like triazene–arylene foldamers and cationic calix[4]arenes, as well as induced conformational changes (e.g., ammonium guest size dependent homotropic allostery, metal ion triggered folding, and heterochiral dimerization) of the hosts themselves. Many guests display large pKa shifts within their CB[n]–guest complexes, which we used to promote pH controlled guest swapping and thermal trans-to-cis isomerization of azobenzene derivatives. We also used the high affinity and selectivity of CB[7] toward its guests to outcompete an enzyme (bovine carbonic

  19. Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface. (United States)

    Alkan, Arda; Steinmetz, Christian; Landfester, Katharina; Wurm, Frederik R


    Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.

  20. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. (United States)

    Qi, Zhenhui; Schalley, Christoph A


    CONSPECTUS: Supramolecular gels are ideal candidates for soft, stimuli-responsive materials, because they combine the elastic behavior of solids with the microviscous properties of fluids. The dynamic networks of fibers in supramolecular gels are reminiscent of the cytoskeleton of a cell and provide scaffolds to implement function. When gels are made responsive to stimuli, these mechanical properties can be controlled. Gel-sol transitions also open opportunities to immobilize molecules inside the gel's cavities and to release them on demand. To establish selective responsiveness, suitable recognition sites are required influencing the properties of the fiber network depending on the presence of the stimulus. Supramolecular gels are expected to be stimuli-responsive per se, for example, to temperature, mechanical stress, or an environment that is competitive with the noncovalent interactions connecting the low-molecular weight gelators. Nevertheless, the opportunities for controlling the mechanical properties are rather limited, if one merely relies on interfering with these interactions. It would be much more promising to equip the gel with additional receptor sites that offer selectivity for a broader variety of chemical stimuli. Macrocycles often exhibit a distinct host-guest chemistry and thus are excellent candidates for this purpose. A broad variety of macrocycles differing with respect to structure, topology, solubility, or biocompatibility have been incorporated in gels and endow gels with responsiveness and function. Macrocycles can have different roles: They offer rather rigid scaffolds for the construction of structurally well-defined gelator molecules. Furthermore, their host-guest interactions can be integral to gel formation, if these interactions are required to build the gel fibers. Finally, macrocycles can also be functional groups with which gelators are equipped that would also form gels in the absence of the macrocycle. Here, the macrocycle can

  1. Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics

    NARCIS (Netherlands)

    Peng, Li; Liu, Yan; Gong, Jinghua; Zhang, Kaihuan; Ma, Jinghong


    Microfluidics appeared in the 1990s as a promising technology and has received considerable attention in developing stimuli-responsive hydrogel fibres in microscale for tissue engineering and actuation devices. In this work, thermo- and electro-responsive graphene

  2. Stimuli responsive polymeric nanoparticles for controlled release of cargo molecules


    Buratto, Rafaella Theodoro


    This work has been carried in the labs of the Department of Organic Chemistry in the Science Faculty of University of Zaragoza and Institute of Materials science of Aragon and in According to the final project requirement of the master “Nanostructured Materials for Nanotechnology Application”.

  3. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas


    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  4. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. (United States)

    Lim, Daeun; Lee, Eunsu; Kim, Haneul; Park, Sungmin; Baek, Seulgi; Yoon, Jinhwan


    Extensive research efforts have been devoted to the development of hydrogel microfibers for tissue engineering, because the vascular structure is related to the transport of nutrients and oxygen as well as the control of metabolic and mechanical functions in the human body. Even though stimuli-responsive properties would enhance the potential applicability of hydrogel microfibers for artificial tissue architectures, previous studies of their fabrication have not considered changes in the microfibers in response to external stimuli. In this work, we prepared temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) microfibers with controlled shapes and sizes by the in situ photo-polymerization of aqueous monomers loaded in calcium alginate templates generated from microcapillary devices. We found that the shape and size of the hydrogel microfibers could be controlled by adjusting the injection positions of the solutions and varying the diameters of the inner capillary, respectively. We further fabricated light-responsive materials by incorporating photothermal magnetite nanoparticles (MNPs) within the temperature-responsive PNIPAm hydrogel microfibers. Because the MNPs incorporated into the PNIPAm microfibers generated heat upon the absorption of visible light, we could demonstrate volume changes in the microfibers triggered by both visible light irradiation and temperature.

  5. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    The influence of external stimuli such as pH, temperature, and ionic strength of the swelling media on equilibrium swelling properties has been observed. Hydrogels showed a typical pH and temperature responsive behaviour such as low pH and high temperature has maximum swelling while high pH and low temperature ...

  6. Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail:; Li Jingbo; Chen Yuhang [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China); Chen Zhixin [University of Wollongong, Faculty of Engineering (Australia); Chen Chenxin; Li Yao; Cui Zhaowen; Zhang Di, E-mail: [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China)


    A thermo-responsive drug delivery system was reported based on grafting of stimuli-responsive poly(N-isopropylacrylamide) (PNIPA) on the surface of graphene oxide (GO) via atom transfer radical polymerization. The successful synthesis of PNIPA attached on GO (GO-PNIPA) was confirmed by X-ray photoelectron spectrum, X-ray diffraction, atomic force microscope, field-emission scanning electron microscopy, and transmission electron microscopy measurements. Control of drug release through the composite GO-PNIPA was performed by measuring the uptake and release of ibuprofen (IBU). It was found the delivery system demonstrated a much high IBU storage of 280 wt%, attributing to the formation of the hydrogen bonding between the polymers on the GO surface and IBU as well as the large number of internal cavities of the PNIPA chains. In vitro test of IBU release exhibited a narrow pronounced transition at around 22 Degree-Sign C, indicating an attractive thermo-sensitive release property of this delivery system. The strategy may pave the way for the use of GO in numerous applications, from drug delivery to thermally responsive micro- and nano-devices.

  7. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)


    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  8. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers. (United States)

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun


    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  9. Morphological variation of stimuli-responsive polypeptide at air–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Chang, Hyejin; Jung, Dae-Hong [Department of Chemical Education, Seoul National University, Seoul 151-741 (Korea, Republic of); Hyun, Jinho, E-mail: [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea. (Korea, Republic of)


    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.


    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester


    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  11. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L


    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  12. Synthesis and Derivatization of Stimuli Responsive Mesoporous Silica Nanoparticles and Biomedical Drug Delivery Application


    Li, Zilu


    This thesis involves synthesis, derivatization and biomedical applications of mesoporous silica nanopartilces (MSNs) and Fe3O4@SiO2 core/shell nanoparticles. Chapter 1 introduces the development of MSNs including the mesopores formation mechanism, synthesis conditions and their capability to act as stimuli responsive drug delivery platforms. In chapter 2, the synthesis optimization of different kinds of particles and their surface derivatization are introduced. Chapter 3 & 4 give specific exa...

  13. Quadruple Stimuli-Responsive Mechanized Silica Nanoparticles: A Promising Multifunctional Nanomaterial for Diverse Applications. (United States)

    Ding, ChenDi; Tong, Ling; Fu, JiaJun


    Novel quadruple stimuli-responsive mechanized silica nanoparticles were constructed by installation of supramolecular nanovalves onto the exterior surface of mesoporous silica nanoparticles. The release of cargo molecules is triggered by acid/Zn2+ /alkali/reduction potential stimuli. This has potential application in the development of drug delivery systems or construction of smart anticorrosion coatings. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stimuli-Responsive DNA-Functionalized Metal-Organic Frameworks (MOFs). (United States)

    Kahn, Jason S; Freage, Lina; Enkin, Natalie; Garcia, Miguel Angel Aleman; Willner, Itamar


    The synthesis of nucleic acid-functionalized metal-organic frameworks (MOFs) is described. The metal-organic frameworks are loaded with a dye being locked in the structures by means of stimuli-responsive nucleic acid caps. The pH and K(+) -ion-triggered release, and switchable release, are demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding


    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  16. Carbon-Dot-Coated Alginate Beads as a Smart Stimuli-Responsive Drug Delivery System. (United States)

    Majumdar, Sristi; Krishnatreya, Gargee; Gogoi, Neelam; Thakur, Debajit; Chowdhury, Devasish


    In this work, we report a smart stimuli-responsive drug delivery system (DDS) that can release drug depending upon the amount of pathogen (MRSA) present in the target. A greater amount of MRSA in the system will lead to more release of drug and vice versa. Carbon-dot-coated novel alginate beads (CA-CD) exhibiting superior stability was successfully used as smart drug delivery vehicle. Garlic extract (GE), which contains allicin, was taken as model drug system to demonstrate the phenomena. It was observed that GE loading was 19 and 78% with CA and CA-CD, respectively. CA-CD-GE shows pH-dependent controlled drug release, which results in increased therapeutic efficiency. CA-CD-GE is not only stimuli responsive but also a controlled drug release system as it releases drug according to the pathogen concentration (MRSA). All the three factors viz. drug release, MRSA concentration and pH of the medium are interdependent as when the cell divides, it produces secondary metabolites that lead to the decrease in pH of the medium. The drop in the pH value triggers drug release from the beads. And the effect of the drug is reflected by the MRSA cell death. Hence, we demonstrate a smart stimuli responsive DDS. However, such DDS will be useful in cases where increased amount of pathogen in the system will lead to reduction in pH.

  17. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. (United States)

    Feng, Qianhua; Zhang, Yuanyuan; Zhang, Wanxia; Shan, Xiaoning; Yuan, Yujie; Zhang, Hongling; Hou, Lin; Zhang, Zhenzhong


    In this work, a tumor-targeted and multi-stimuli responsive drug delivery system has been developed for combining photoacoustic tomography imaging with chemo-phototherapy. We utilized a kind of near infrared (NIR) resonant material-hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) to encapsulate doxorubicin (DOX). After that, the outer surface of HMCuS NPs was capped with multifunctional hyaluronic acid (HA) simultaneously as smart gatekeeper as well as tumor targeting moiety. Herein, HMCuS-HA could serve as a powerful contrast agent for photoacoustic tomography (PAT) to guide chemo-phototherapy by providing the identification of cancerous lesions. In vitro and in vivo studies, the nanoplatform (DOX/HMCuS-HA) pinpointed MCF-7 cells via CD44 receptor-mediated endocytosis pathway. Subsequently, intracellular enzyme-responsive controlled drug release would take place in lysosome after the HA degradation by hyaluronidase. Under near infrared (NIR) light irradiation, HMCuS NPs could not only effectively convert NIR light into heat for photothermal therapy, but also generate high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, NIR light and low pH environment could facilitate intracellular tunable drug release with spatial/temporal resolution, and thus synergistic combination of chemo-phototherapy should be simultaneously driven by an 808nm laser irradiation, which brought out an outstanding therapeutic effect. In vivo optical imaging demonstrated that HMCuS-HA significantly enhanced targeting and accumulation capacity in tumor site. Furthermore, tumor-bearing mice treated with DOX/HMCuS-HA under NIR irradiation (808nm, 2W/cm(2), 0.5min) in vivo displayed the highest inhibition ratio of about 88.9%. Taken together, our present study of the tumor-targeted and multi-stimuli responsive drug delivery system provides new insights into multimodality theranostic applications in cancer treatment. Until now, chemotherapy is still the major

  18. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  19. Fluorescent dendritic organogels based on 2-(2'-hydroxyphenyl)benzoxazole: emission enhancement and multiple stimuli-responsive properties. (United States)

    Chen, Hui; Feng, Yu; Deng, Guo-Jun; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua


    A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB-G1 with 2-(2'-hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB-G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π-π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB-G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli-responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol-gel phase transitions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aggregation Control by Multi-stimuli-Responsive Poly( N-vinylamide) Derivatives in Aqueous System (United States)

    Kawatani, Ryo; Nishiyama, Yasuhiro; Kamikubo, Hironari; Kakiuchi, Kiyomi; Ajiro, Hiroharu


    Thermal and photo responsive copolymer based on N-vinylamide backbone was designed. Methoxyethyl group and azobenzene were selected to improve hydrophilicity and photoresponsive moieties, respectively. The N-(methoxyethyl)- N-vinylformamide was synthesized and copolymerized with N-vinylformamide by free radical polymerization. In order to control the nanosized structures, poly( N-vinylformamide) derivatives bearing azobenzene at the N-position near to the vinyl polymer main chain were synthesized by polymer reaction with the poly( N-vinylformamide- co- N-(methoxyethyl)- N-vinylformamide) and azobenzene. Aggregation size of the multi-stimuli-responsive polymer was controlled by preparation of the hydrophobic interaction at around N-position.

  1. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry. (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi


    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  2. Classification of stimuli-responsive polymers as anticancer drug delivery systems. (United States)

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab


    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.

  3. A novel starch-based stimuli-responsive nanosystem for theranostic applications. (United States)

    Poorgholy, Nahid; Massoumi, Bakhshali; Jaymand, Mehdi


    The aim of this study was to synthesis and characterization of a novel stimuli-responsive polymeric nanosystem for theranostic applications. For this purpose, starch was modified by itaconic anhydride to afford an itaconat-functionalized starch macromonomer (starch-IA). This macromonomer with carboxylic functional groups was subsequently adsorbed onto the surface of iron oxide nanoparticles (Fe3O4 NPs), and then copolymerized with N-isopropylacrylamide (NIPAAm) monomer via a 'free' radical initiated polymerization technique to produce a temperature-responsive magnetic nanohydrogel (MNHG). The chemical structures of all samples as representatives were characterized by means of Fourier transform infrared (FTIR) spectroscopy. The lower critical solution temperature (LCST), thermal responsibility, morphology, elemental composition, thermal stability, and magnetic properties of the synthesized MNHG were investigated. In addition, the methotrexate (MTX)-loading capacity (∼74%) and stimuli-responsive drug release ability of the synthesized MNHG were also evaluated. As results, we envision that the synthesized starch-g-PNIPAAm/Fe3O4 MNHG may be find theranostic applications, in part due to its smart physicochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A bio-injectable algin-aminocaproic acid thixogel with tri-stimuli responsiveness. (United States)

    Chejara, Dharmesh R; Mabrouk, Mostafa; Badhe, Ravindra V; Mulla, Jameel A S; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Pillay, Viness


    In this article a novel bio-injectable algin-aminocaproic acid (Alg-ACA) tri-stimuli responsive thixogel system is reported. The designed soft thixotrophic hydrogel (thixogel) was characterized using various analytical techniques such as FT-IR, NMR, SEM, AFM and DSC. The soft thixogel system was further investigated for stress responsiveness using different rheological studies which confirmed the thixotropic nature of the gel [Thixotropic area (Ar) of Alg-ACA (1:0.5), Alg-ACA (1:1) and Alg-ACA (1:2), were 23.5%, 43.1%, and 27.59%, respectively, which were higher than that of Na-Alg (2.08%)]. The thixogel also demonstrated temperature and ultrasonication responsiveness. This tri-stimuli responsive soft thixogel system was rendered flowable (fluid) on applying the described physical stimuli and recovered its "rigid" gel structure upon removal of the applied stimuli. This approach of synthesizing a thixogels may be applicable to a broad variety of other natural polymers and has the potential for use in biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. (United States)

    Nehilla, Barrett J; Hill, John J; Srinivasan, Selvi; Chen, Yen-Chi; Schulte, Thomas H; Stayton, Patrick S; Lai, James J


    Magnetic microbeads exhibit rapid separation characteristics and are widely employed for biomolecule and cell isolations in research laboratories, clinical diagnostics assays, and cell therapy manufacturing. However, micrometer particle diameters compromise biomarker recognition, which leads to long incubation times and significant reagent demands. Here, a stimuli-responsive binary reagent system is presented that combines the nanoscale benefits of efficient biomarker recognition and the microscale benefits of rapid magnetic separation. This system comprises magnetic nanoparticles and polymer-antibody (Ab) conjugates that transition from hydrophilic nanoscale reagents to microscale aggregates in response to temperature stimuli. The binary reagent system was benchmarked against Ab-labeled Dynabeads in terms of biomarker isolation kinetics, assay speed, and reagent needs. Surface plasmon resonance (SPR) measurements showed that polymer conjugation did not significantly alter the Ab's binding affinity or kinetics. ELISA analysis showed that the unconjugated Ab, polymer-Ab conjugates, and Ab-labeled Dynabeads exhibited similar equilibrium dissociation constants (K d ), ∼2 nM. However, the binary reagent system isolated HIV p24 antigen from spiked serum specimens (150 pg/mL) much more quickly than Dynabeads, which resulted in shorter binding times by tens of minutes, or about 30-50% shorter overall assay times. The binary reagent system showed improved performance because the Ab molecules were not conjugated to large, solid microparticle surfaces. This stimuli-responsive binary reagent system illustrates the potential advantages of nanoscale reagents in molecule and cell isolations for both research and clinical applications.

  6. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system. (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed


    Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.

  7. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  8. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles

    Energy Technology Data Exchange (ETDEWEB)

    Si, Ting [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Li, Guangbin; Luo, Xisheng [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wu, Qiang; Zhu, Zhiqiang [Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Xu, Ronald X., E-mail: [Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027 (China)


    A capillary co-flow focusing process is developed to generate stimuli-responsive microbubbles (SRMs) that comprise perfluorocarbon (PFC) suspension of silver nanoparticles (SNPs) in a lipid shell. Upon continuous laser irradiation at around their surface plasmon resonance band, the SNPs effectively absorb electromagnetic energy, induce heat accumulation in SRMs, trigger PFC vaporization, and eventually lead to thermal expansion and fragmentation of the SRMs. This optical droplet vaporization (ODV) process is further simulated by a theoretical model that combines heat generation of SNPs, phase change of PFC, and thermal expansion of SRMs. The model is validated by benchtop experiments, where the ODV process is monitored by microscopic imaging. The effects of primary process parameters on behaviors of ODV are predicted by the theoretical model, indicating the technical feasibility for process control and optimization in future drug delivery applications.

  9. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field

    Directory of Open Access Journals (Sweden)

    H. Ahmad


    Full Text Available The inclusion of super paramagnetic iron oxide (Fe3O4 nanoparticles in stimuli-responsive hydrogel is expected to enhance the application potential for cellular therapy in cell labeling, separation and purification, protein immobilization, contrasting enhancement in magnetic resonance imaging (MRI, localized therapeutic hyperthermia, biosensors etc. in biomedical field. In this investigation two different magnetic and stimuli-responsive composite hydrogel particles with variable surface property were prepared by simply blending Fe3O4/SiO2 nanocomposite particles with stimuli-responsive hydrogel particles. Of the hydrogel particles prepared by free-radical precipitation polymerization poly(styrene-N-isopropylacrylamide-methyl methacrylate-polyethylene glycol methacrylate or P(S-NIPAM-MMA-PEGMA was temperature-sensitive and poly(S-NIPAM-methacrylic acid-PEGMA or P(S-NIPAM-MAA-PEGMA was both temperature- and pH-responsive. The morphological structure, size distributions and volume phase transitions of magnetic and stimuli-responsive composite hydrogel particles were analyzed. Temperature-responsive absorptions of biomolecules were observed on both magnetic and stimuli-responsive Fe3O4/SiO2/P(S-NIPAM-MMA-PEGMA and Fe3O4/SiO2/P(S-NIPAM-MAA-PEGMA composite hydrogel particles and separation of particles from the dispersion media could be achieved by applying magnetic field without time consuming centrifugation or decantation method.

  10. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. (United States)

    Zhu, Shenmin; Zhou, Zhengyang; Zhang, Di


    A site-selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli-responsive ordered SBA-15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant-template sol-gel method and control of transport through polymerization of N-isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm(3) g(-1)), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA-15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 degrees C, indicating a typical thermosensitive controlled release.

  11. Design, synthesis, and film formation of stimuli-responsive colloidal dispersions containing phospholipids (United States)

    Lestage, David Jackson

    These studies were undertaken to further understand the design of colloidal dispersions containing bio-active phospholipids (PL) as stabilizing agents and their stimuli-responsive behaviors during film formation. Methyl methacrylate (MMA) and n-butyl acrylate (nBA) dispersions were synthesized using anionic surfactants and PL, and the surface-responsiveness of coalesced films was monitored at the film-air (F-A) and film-substrate (F-S) interfaces after exposure to temperature, UV, pH, ionic strength, and enzymatic stimuli. Using spectroscopic molecular-level probes such as attenuated total reflectance (ATR) and internal reflection IR imaging (IRIRI), these studies show that structural features of PL and surfactants significantly affect stimuli-responsiveness of polymeric films. MMA/nBA homopolymer, blend, copolymer, and core-shell particle coalescence studies indicated that controlled permeability is influenced by particle composition and sodium dioctyl sulfosuccinate (SDOSS) mobility to the F-A interface is enhanced in response to temperature. Utilization of hydrogenated soybean phosphocholine (HSPC) as a co-surfactant with SDOSS resulted in bimodal p-MMA/nBA colloidal particles, and experiments showed that ionic interactions with HSPC inhibit SDOSS mobility. However, the controlled release of individual species is detected in the presence of Ca2+ ionic strength stimuli. Utilizing 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DCPC), cocklebur-shape particle morphologies were obtained and using transmission electron microscopy (TEM), self-assembled tubules were detected at particle interfaces, but not in the presence of Ca 2+. At altered concentration levels of DCPC, surface localized ionic clusters (SLICs) composed of SDOSS and DCPC form at the F-A and F-S interfaces in response to temperature and ionic strength stimuli. Micelle formation of 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) stabilizes unimodal p-MMA/nBA colloidal particles

  12. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)


    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  13. High permittivity gate dielectric materials

    CERN Document Server


    "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects."

  14. Theory of Solvation-Controlled Reactions in Stimuli-Responsive Nanoreactors

    CERN Document Server

    Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim


    Metallic nanoparticles embedded in stimuli-responsive polymers can be regarded as nanoreactors since their catalytic activity can be changed within wide limits: the physicochemical properties of the polymer network can be tuned and switched by external parameters, e.g. temperature or pH, and thus allows a selective control of reactant mobility and concentration close to the reaction site. Based on a combination of Debye's model of diffusion through an energy landscape and a two-state model for the polymer, here we develop an analytical expression for the observed reaction rate constant $k_{\\rm obs}$. Our formula shows an exponential dependence of this rate on the solvation free enthalpy change $\\Delta \\bar{G}_{\\rm sol}$, a quantity which describes the partitioning of the reactant in the network versus bulk. Thus, changes in $\\Delta \\bar{G}_{\\rm sol}$, and not in the diffusion coefficient, will be the decisive factor affecting the reaction rate in most cases. A comparison with recent experimental data on switc...

  15. Stimuli-responsive HBPS-g-PDMAEMA and its application as nanocarrier in loading hydrophobic molecules

    Directory of Open Access Journals (Sweden)

    Yongsheng Chen


    Full Text Available The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene-g-poly[2-(dimethylaminoethyl methacrylate] (HBPS-g-PDMAEMA was synthesized and characterized by 1H NMR and GPC. It was observed that the star-like HBPS-g-PDMAEMA formed aggregates in aqueous solution. The influence of polymer concentration, ionic strength and pH value on the aggregates in aqueous solution was investigated by using UV–vis spectroscopy and DLS analysis. The results showed that size of aggregates was affected by a corresponding stimulus. In addition, the loading ability of HBPS-g-PDMAEMA aggregates was investigated by using pyrene or Nile red as the model guest molecules by using UV–vis and fluorescence spectroscopy. The results showed that HBPS-g-PDMAEMA aggregates were capable to encapsulate small hydrophobic molecules. These newly prepared HBPS-g-PDMAEMA nanocarriers might be used in, e.g., medicine or catalysis.

  16. A novel multi-stimuli responsive gelator based on D-gluconic acetal and its potential applications. (United States)

    Guan, Xidong; Fan, Kaiqi; Gao, Tongyang; Ma, Anping; Zhang, Bao; Song, Jian


    We construct a simple-structured super gelator with multi-stimuli responsive properties, among which anion responsiveness follows the Hofmeister series in a non-aqueous system. Versatile applications such as being rheological and self-healing agents, waste water treatment, spilled oil recovery and flexible optical device manufacture are integrated into a single organogelator, which was rarely reported.

  17. Hierarchical self-assembly of a fluorescence emission-enhanced organogelator and its multiple stimuli-responsive behaviors. (United States)

    Ren, Yuan-Yuan; Xu, Zheng; Li, Guoqiang; Huang, Junhai; Fan, Xiaotian; Xu, Lin


    A discrete hexagonal metallacycle 1 decorated with tetraphenylethylene, amide groups and long hydrophobic alkyl chains was constructed via [3 + 3] coordination-driven self-assembly, from which the fluorescence emission-enhanced organogelator with multiple stimuli-responsiveness was successfully prepared via hierarchical self-assembly.

  18. Functionalization of cotton with poly-NiPAAm/chitosan microgel. Part I. Stimuli-responsive moisture management properties

    NARCIS (Netherlands)

    Krizman Lavric, P.; Warmoeskerken, Marinus; Jocic, D.


    Stimuli-responsive microgel, based on synthetic polymer (poly-NiPAAm) and biopolymer (chitosan), was incorporated onto cotton fabric surface by pad-dry-cure method using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker. In order to assess the moisture management properties of cotton

  19. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. High Pressure Research on Materials - Production and Measurement of High Pressures in the Laboratory. P Ch Sahu N V Chandra Shekar. General Article Volume 12 Issue 6 June 2007 pp 10-23 ...

  20. High performance soft magnetic materials

    CERN Document Server


    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...


    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester


    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar to those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions

  2. Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System


    Nash, Michael A.; Waitumbi, John N.; Hoffman, Allan S.; Yager, Paul; Stayton, Patrick S.


    There is a need for simple yet robust biomarker and antigen purification and enrichment strategies that are compatible with current rapid diagnostic modalities. Here, a stimuli-responsive nanoparticle system is presented for multiplexed magneto-enrichment and non-instrumented lateral flow strip detection of model antigens from spiked pooled plasma. The integrated reagent system allows purification and enrichment of the gold-labeled biomarker half-sandwich that can be applied directly to later...

  3. Biocatalytic Stimuli-Responsive Asymmetric Triblock Terpolymer Membranes for Localized Permeability Gating. (United States)

    Poole, Jennifer L; Donahue, Scott; Wilson, David; Li, Yuk Mun; Zhang, Qi; Gu, Yibei; Ferebee, Rachel; Lu, Zhao; Dorin, Rachel Mika; Hancock, Lawrence F; Takiff, Larry; Hakem, Ilhem F; Bockstaller, Michael R; Wiesner, Ulrich; Walker, Jeremy


    The functionalization with phosphotriesterase of poly(isoprene-b-styrene-b-4-vinylpyridine)-based nanoporous membranes fabricated by self-assembly and nonsolvent induced phase separation (SNIPS) is shown to enable dynamically responsive membranes capable of substrate-specific and localized gating response. Integration of the SNIPS process with macroporous nylon support layers yields mechanically robust textile-type films with high moisture vapor transport rates that display rapid and local order-of-magnitude modulation of permeability. The simplicity of the fabrication process that is compatible with large-area fabrication along with the versatility and efficacy of enzyme reactivity offers intriguing opportunities for engineered biomimetic materials that are tailored to respond to a complex range of external parameters, providing sensing, protection, and remediation capabilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye. (United States)

    Karthika, J S; Vishalakshi, B


    In this study, gellan gum-grafted-poly((2-dimethylamino) ethyl methacrylate) (GG-g-poly(DMAEMA)) hydrogel was made by free radical polymerization in aqueous media employing microwave irradiation technique. Ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TMEDA) were used as initiator-accelerator pair. N,N'-methylenebisacrylamide (MBA) has been used as crosslinker. The gel was characterized by FTIR, XRD, TGA, DSC and SEM techniques. The characteristic peaks at 1724, 2630, 1147, 1650 and 1535cm(-1) in the IR spectrum confirms grafting and gel formation. The TGA data reveals that synthesized gels were thermally more stable than gellan gum. The XRD studies confirm the crystalline nature of the synthesized material. Swelling behaviour of the hydrogel under different temperatures and pH conditions was investigated. The results indicated drastic changes in swelling around pH 7.0 and 50°C. The gels were evaluated as an adsorbent to remove an anionic dye, methyl orange (MO), from aqueous solution. The pH conditions for maximum adsorption were optimized, the adsorption data is observed to fit best to the Freundlich isotherm model and the maximum adsorption capacity was found to be 25.8mgg(-1). The kinetic analysis revealed a second-order adsorption process. The thermodynamic parameters showed the adsorption to be exothermic and non-spontaneous at high temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High Temperature Materials Characterization and Advanced Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. (and others)


    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division.

  6. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: [Indian Institute of Science, Department of Materials Engineering (India)


    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  7. Stimuli-Responsive Polymers and Colloids under Electric and Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Wen Ling Zhang


    Full Text Available Electrorheological (ER and magnetorheological (MR suspensions undergo a reverse phase transition from a liquid-like to solid-like state in response to an external electric or magnetic field, respectively. This paper briefly reviews various types of electro- or magneto-responsive materials from either polymeric or inorganic and hybrid composite materials. The fabrication strategies for ER/MR candidates and their ER/MR characteristics (particularly for ER fluids are also included.


    Energy Technology Data Exchange (ETDEWEB)



    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  9. Biodegradable polycarbonate-based stimuli-responsive nanosystems for intracellular drug delivery

    NARCIS (Netherlands)

    Chen, Wei


    Biodegradable nanosystems based on functional polycarbonate-based polymers have propelled the development of targeted and controlled drug and gene delivery. Functional polycarbonate-based polymers have overcome many drawbacks which limited the application of the common polyester materials in this

  10. High-temperature levitated materials

    National Research Council Canada - National Science Library

    Price, David L


    .... This can be avoided by suspending the sample through levitation. This technique also makes metastable states of matter accessible, opening up new avenues of scientific enquiry, as well as possible new materials for technological applications...

  11. Stimuli-Responsive Self-Immolative Polymer Nanofiber Membranes Formed by Coaxial Electrospinning. (United States)

    Han, Daewoo; Yu, Xinjun; Chai, Qinyuan; Ayres, Neil; Steckl, Andrew J


    The first self-immolative polymer (SIP) nanofiber membrane is demonstrated in this report, in which the immolation can be triggered by external stimulus. Electrospun SIP/polyacrylonitrile (PAN) fibers provide depolymerization that is ∼25 times quicker and more responsive (i.e., immolation) than that of a cast film in the triggering condition. Depolymerization of SIP in the SIP/PAN blended fiber membrane results in the transition of the surface properties from hydrophobic (∼110°) to hygroscopic (∼0°). Triggered release of encapsulated functional molecules was demonstrated using coaxially electrospun fiber membrane made of a SIP/PAN blend sheath and polyvinylpyrrolidone/dye core. Coaxial fibers with the SIP/PAN sheath provide minimal release of the encapsulated material in nontriggering solution, while it releases the encapsulated material instantly when the triggering condition is met. Its versatility has been strengthened compared to that of non-SIP coaxial fibers that provide no triggering reaction by external stimulus.

  12. Stimuli Responsive Polymer-Based 3D Optical Crystals for Sensing

    Directory of Open Access Journals (Sweden)

    Qiang Zhang


    Full Text Available 3D optical crystals have found their applications in sensing, actuation, optical devices, batteries, supercapacitors, etc. The 3D optical crystal devices are comprised of two main components: colloidal gels and nanoparticles. Nanoparticles self-assemble into face center cubic structures in colloidal gels. The inherent 3D optical crystal structure leads to display of structural colors on these devices following light impingement. As such, these optical properties have led to the utilization of these 3D optical crystals as self-reporting colorimetric sensors, which is the focus of this review paper. While there is extensive work done so far on these materials to exhaustively be covered in this review, we focus here in on: mechanism of color display, materials and preparation of 3D optical crystals, introduction of recent sensing examples, and combination of 3D optical crystals with molecular imprinting technology. The aim of this review is to familiarize the reader with recent developments in the area and to encourage further research in this field to overcome some of its challenges as well as to inspire creative innovations of these materials.

  13. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. (United States)

    Wang, Lin; Liu, Li; Dong, Bingyang; Zhao, Hanying; Zhang, Mingming; Chen, Wenjuan; Hong, Yanhang


    A thermoresponsive polymer-protein biodynamer was prepared via the bioconjugation of an aliphatic aldehyde-functionalized copolymer to hydrazine-modified bovine serum albumin (BSA) through reversible pyridylhydrazone linkages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) results indicated that the pyridylhydrazone linkages cleaved in an intracellular-mimicking acidic milieu, thus leading to the release of BSA. The dynamic character of the protein biodynamer was demonstrated by exchange reactions with aldehyde-containing molecules. The biodynamer self-assembled into spherical micelles at a temperature above its lower critical solution temperature (LCST). Subsequently, BSA molecules within the hydrophilic coronae of the micelles were readily cross-linked via reaction with cystamine at 45°C, and multi-stimuli-responsive nanoparticles were generated. The biohybrid nanoparticles reversibly swelled and shrank as the cores of the nanoparticles were solvated below the LCST and desolvated above the LCST. The accessible reversibility of the pyridylhydrazone bonds imparts pH-responsive and dynamic characteristics to the nanoparticles. The nanoparticles displayed glutathione (GSH) responsiveness, and the synergistic effects of pH and GSH resulted in complete disintegration of the nanoparticles under the intracellular-mimicking acidic and reductive conditions. The nanoparticles were also enzyme-responsive and disintegrated rapidly in the presence of protease. In vitro cytotoxicity and cell uptake assays demonstrated that the nanoparticles were highly biocompatible and effectively internalized by HepG2 cells, which make them interesting candidates as vehicles for drug delivery application and biomimetic platforms to investigate the biological process in nature. In this research, we report the synthesis of a temperature and pH dual-responsive polymer-protein biodynamer through reversible pyridylhydrazone formation

  14. Stimuli responsive polymer/quantum dot hybrid platforms modified at the nanoscale

    NARCIS (Netherlands)

    Tagit, O.


    Quantum dots, QDs, receive growing attention from many research disciplines owing to their advantages as fluorescent probes including their nanoscale size (similar to biomolecules), high quantum yield and molar extinction coefficients, versatility in surface modification, broad excitation spectra

  15. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    Energy Technology Data Exchange (ETDEWEB)

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C. [Institute of Polymer Chemistry and Technology (ICTP-CNR), via Campi Flegrei 34, 80078 Pozzuoli (Italy); Ambrogi, V. [Department of Chemical, Materials and Production Engineering - University of Naples Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy)


    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field.

  16. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups. (United States)

    Manhart, Jakob; Ayalur-Karunakaran, Santhosh; Radl, Simone; Oesterreicher, Andreas; Moser, Andreas; Ganser, Christian; Teichert, Christian; Pinter, Gerald; Kern, Wolfgang; Griesser, Thomas; Schlögl, Sandra


    The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the 1H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking (λ>300 nm) and UV induced cleavage (λ=254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

  17. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups

    Directory of Open Access Journals (Sweden)

    Jakob Manhart


    Full Text Available The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR networks. The present article provides the 1H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yloxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yloxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking (λ>300 nm and UV induced cleavage (λ=254 nm are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in “Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups” (Manhart et al., 2016 [1].

  18. High-Performance Polymeric Materials. (United States)


    the rigid- n;d polymer, the coplanar conformation may be f-vored by long-range conjugation effects, which are absent in benzaldehyde , the model...tetrahvdrofuran and then toluene for several days to remove soluble material ,found to be present to the extent of a few percent Strips cut from the network...The resulting networks were extracted in tetra- end-linking process. hydrofuran and toluene in the usual manner (6, 7); The present investigation

  19. Bioinspired materials: from low to high dimensional structure. (United States)

    Zhao, Ning; Wang, Zhen; Cai, Chao; Shen, Heng; Liang, Feiyue; Wang, Dong; Wang, Chunyan; Zhu, Tang; Guo, Jing; Wang, Yongxin; Liu, Xiaofang; Duan, Chunting; Wang, Hao; Mao, Yunzeng; Jia, Xin; Dong, Haixia; Zhang, Xiaoli; Xu, Jian


    The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrografting of stimuli-responsive, redox active organometallic polymers to gold from ionic liquids. (United States)

    Feng, Xueling; Sui, Xiaofeng; Hempenius, Mark A; Vancso, G Julius


    Robust, dense, redox active organometallic poly(ferrocenylsilane) (PFS) grafted films were formed within 5 min by cathodic reduction of Au substrates, immersed in a solution of imidazolium-functionalized PFS chains in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. The electrografted polymer films were employed as an electrochemical sensor, exhibiting high sensitivity, stability, and reproducibility.

  1. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. (United States)

    Li, Feng; Li, Tianyu; Cao, Wei; Wang, Lu; Xu, Huaping


    Cisplatin (CDDP) has received worldwide approval for clinical use in the past decades. However, its development in cancer chemotherapy was overshadowed by severe side effects and drug resistance. Herein, we developed a CDDP drug delivery system with high encapsulation efficiency and near-infrared light stimuli-responsive drug release properties based on the coordination of novel tellurium-containing block polymer (PEG-PUTe-PEG) and CDDP. The nanocarriers made from PEG-PUTe-PEG were loaded with CDDP and indocyanine green (ICG) simultaneously. The coordination chemistry between CDDP and tellurium guaranteed the nanocarrier a high stability in plasma and prolonged circulation time in vivo by reducing possible penetration of water molecule into the nanoparticles. Under the stimuli of a near-infrared laser, an amount of ROS can be generated by irradiation of ICG. The tellurium is easily oxidized by ROS because of the low electronegativity of tellurium. The CDDP could be rapidly released from the nanocarriers along with the oxidation of the tellurium at the tumor sites as the oxidized tellurium will weaken the coordination interaction with CDDP. In addition, the encapsulated ICG played a synergistic antitumor effect through photothermal effect with mild laser irradiation. The integrated strategy achieved higher antitumor efficacy and showed minimal side effects compared with the CDDP alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink (United States)

    Hu, Xiaochen; Liu, Yang; Duan, Yuai; Han, Jingqi; Li, Zhongfeng; Han, Tianyu


    In this study, we reported the photoluminescence (PL) behaviour of a new intramolecular charge transfer (ICT) compound, ((E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid, (HABA), which shows ICT solvent effect in aprotic solvents as confirmed by absorption and emission spectra. While in protic solvents including water and ethanol, the charge transfer (CT) band significantly reduces. Remarkable fluorescence enhancement in the blue region was also observed for HABA in polar protic solvents. We described such phenomena as ;specific solvent effect;. It can be ascribed to the hydrogen bonding formation between HABA and protic solvents, which not only causes significant reduction in the rate of internal conversion but also elevates the energy gap. Density functional theory (DFT) calculations as well as the dynamics analysis were performed to further verify the existence of hydrogen bonding complexes. Stronger emission turn-on effect was observed on HABA solid film when it is treated with water and base solution. The stimuli-responsive fluorescence of HABA enables a new green printing technique that uses water/base as the ink, affording fluorescent handwritings highly distinct from the background. Thermoanalysis of the dye suggests the nice thermostability, which is highly desired for real-world printing in a wide temperature range.

  3. Tailoring stimuli-responsive delivery system driven by metal-ligand coordination bonding. (United States)

    Liang, Hongshan; Zhou, Bin; He, Yun; Pei, Yaqiong; Li, Bin; Li, Jing


    In this study, a novel coordination bonding system based on metal-tannic acid (TA) architecture on zein/carboxymethyl chitosan (CMCS) nanoparticles (NPs) was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the "metal-TA" or "NH2-metal" coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions. The prepared metal-TA-coated zein/CMCS NPs (zein/CMCS-TA/metal NPs) could maintain particle size in cell culture medium at 37°C, demonstrating good stability compared with zein/CMCS NPs. In vitro release behavior of doxorubicin hydrochloride (DOX)-loaded metal-TA film-coated zein/CMCS NPs (DOX-zein/CMCS-TA/metal NPs) showed fine pH responsiveness tailored by the ratio of zein to CMCS as well as the metal species and feeding concentrations. The blank zein/CMCS-TA/metal NPs (NPs-TA/metal) were of low cytotoxicity, while a high cytotoxic activity of DOX-zein/CMCS-TA/metal NPs (DOX-NPs-TA/metal) against HepG2 cells was demonstrated by in vitro cell assay. Confocal laser scanning microscopy (CLSM) and flow cytometry were combined to study the uptake efficiency of DOX-NPs or DOX-NPs-TA/metal. This system showed significant potential as a highly versatile and potent platform for drug delivery.

  4. Theoretical and computer simulation insights into stimuli-responsive polymer systems (United States)

    Kisselev, Alexei M.

    The phase behavior of temperature-responsive polymers with tunable lower critical solution temperatures (LCST) and light-responsive polymers was explored using statistical mechanics and molecular dynamics (MD) simulations. The LCST in water of (ethylene oxide)/ethylene copolymers is tailored by their chemical composition, specifically by the balance of hydrophilic to hydrophobic groups in the polymer. For the first time, the general formalism of the lattice-fluid with hydrogen-bonding (LFHB) theory has been successfully applied to a water-polymer system, a type of system known to be particularly difficult from the modeling perspective. This theory, modified here to account for multiple types of hydrogen bonds, has been shown to be effective when making theoretical predictions as justified by comparison with experimental results. It has been shown that a successful implementation of the LFHB theory is contingent upon an effective numerical implementation, and a numerical algorithm has been developed that specifically targets the computational complexities associated with this model. The series of (ethylene oxide)/ethylene copolymers were studied further with the modified Flory-Huggins with hydrogen bonding (FHHB) approach. A comparative study of LFHB and FHHB theories was undertaken and their relative advantages and drawbacks were revealed. Both theoretical models were shown to be successful in describing the phase behavior of these systems, and the model parameters were found to be transferable between different homologous copolymer series. Expanding beyond temperature-responsive polymer solutions, systems that can potentially find applications in antifouling, drug delivery, and surfaces with switchable tackiness, we subsequently focused on a light-responsive polymer film systems that have applications in photolithography. Similarly to the temperatureresponsive solutions above, for photolithography light-responsive materials exposure to UV radiation triggers the

  5. Synergistic enhancement of anticancer therapeutic efficacy of HPMA copolymer doxorubicin conjugates via combination of ligand modification and stimuli-response srategies. (United States)

    Li, Lian; Zhou, Minglu; Huang, Yuan


    N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymer has been extensively studied as drug carrier for tumor therapy. Due to the Enhanced Permeability and Retention (EPR) effect, HPMA copolymer drug conjugates are able to be passively accumulated in the tumor site. Currently, efficient uptake of this polymeric system by the cancer cells remains a big challenge, as HPMA polymer is highly hydrophilic, neutrally charged, and has low affinity towards cell membrane. In this study, selective and enhanced intracellular internalization of the copolymer-drug conjugates was achieved by utilizing a hybrid strategy including ligand modification and stimuli response. This hybrid approach was rationally designed to comprise cationic HPMA copolymer backbone as drug carrier, doxorubicin (Dox) as model drug, hydrazone bond as drug spacer, FQSIYPpIK (FQS) peptide as αvβ3 targeting ligand and 2, 3-Dimethylmaleic Anhydride (DMA) as a shielded/deshielded cationic group. We demonstrated our system exhibited the "seek-and-destroy" tumor tropic behavior by sequentially undergoing the following steps: (i) tumor passive targeting mediated by EPR effect; (ii) charge reversal at tumor extracellular pH of 6.5; (iii) synergistically enhanced cell uptake via electrostatic interaction with cell membrane and FQS ligand-mediated bio-recognition; (iv) drug released in the lysosome; and v) anticancer effect exerted by the targeted delivery of the Dox. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)


    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  7. A Stimuli-Responsive Zirconium Metal-Organic Framework Based on Supermolecular Design. (United States)

    Krause, Simon; Bon, Volodymyr; Stoeck, Ulrich; Senkovska, Irena; Többens, Daniel M; Wallacher, Dirk; Kaskel, Stefan


    A flexible, yet very stable metal-organic framework (DUT-98, Zr6 O4 (OH)4 (CPCDC)4 (H2 O)4 , CPCDC=9-(4-carboxyphenyl)-9H-carbazole-3,6-dicarboxylate) was synthesized using a rational supermolecular building block approach based on molecular modelling of metal-organic chains and subsequent virtual interlinking into a 3D MOF. Structural characterization via synchrotron single-crystal X-ray diffraction (SCXRD) revealed the one-dimensional pore architecture of DUT-98, envisioned in silico. After supercritical solvent extraction, distinctive responses towards various gases stimulated reversible structural transformations, as detected using coupled synchrotron diffraction and physisorption techniques. DUT-98 shows a surprisingly low water uptake but a high selectivity for pore opening towards specific gases and vapors (N2 , CO2 , n-butane, alcohols) at characteristic pressure resulting in multiple steps in the adsorption isotherm and hysteretic behavior upon desorption. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue. (United States)

    Abbas, Yasmine; Azzazy, Hassan M E; Tammam, Salma; Lamprecht, Alf; Ali, Mohamed Ehab; Schmidt, Annette; Sollazzo, Silvio; Mathur, Sanjay


    Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted delivery of chemotherapeutics to cancer in deep lung tissue is the aim of this study. The formulation consisted of inhalable polyvinylpyrrolidone (PVP)/maltodextrin (MD)-based microparticles (MPs) encapsulating chitosan (CS) nanoparticles (NPs) loaded with either drug only or drug and magnetic nanoparticles (MNPs). Drug release from CS NPs was enhanced with the aid of MNPs by a factor of 1.7 in response to external magnetic field. Preferential toxicity by CS NPs was shown towards tumor cells (A549) in comparison to cultured fibroblasts (L929). The prepared spray freeze dried (SFD) powders for CS NPs and CS MNPs were of the same size at ∼6μm. They had a fine particle fraction (FPF≤5.2μm) of 40-42% w/w and mass median aerodynamic diameter (MMAD) of 5-6μm as determined by the Next Generation Impactor (NGI). SFD-MPs of CS MNPs possess higher MMAD due to the high density associated with encapsulated MNPs. The developed formulation demonstrates several capabilities including tissue targeting, controlled drug release, and the possible imaging and diagnostic values (due to its MNPs content) and therefore represents an improved therapeutic platform for drug delivery to cancer in deep lung tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    basic types of apparatus that are now being used throughout the world. He was awarded the Nobel Prize in Physics in 1946. The static high pressure generating devices can be divided into two categories: piston-cylinder and opposed anvil devices. These devices with their pressure capabilities are listed in Figure 4.

  10. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  11. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others


    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  12. Battery designs with high capacity anode materials and cathode materials (United States)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.


    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  13. Fluorescent polymeric assemblies as stimuli-responsive vehicles for drug controlled release and cell/tissue imaging. (United States)

    Chang, Ying; Li, Yang; Yu, Shirong; Mao, Jie; Liu, Cheng; Li, Qi; Yuan, Conghui; He, Ning; Luo, Weiang; Dai, Lizong


    Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.

  14. CdS QDs-chitosan microcapsules with stimuli-responsive property generated by gas-liquid microfluidic technique. (United States)

    Chen, Yanjun; Yao, Rongyi; Wang, Yifeng; Chen, Ming; Qiu, Tong; Zhang, Chaocan


    This article describes a straightforward gas-liquid microfluidic approach to generate uniform-sized chitosan microcapsules containing CdS quantum dots (QDs). CdS QDs are encapsulated into the liquid-core of the microcapsules. The sizes of the microcapsules can be conveniently controlled by gas flow rate. QDs-chitosan microcapsules show good fluorescent stability in water, and exhibit fluorescent responses to chemical environmental stimuli. α-Cyclodextrin (α-CD) causes the microcapsules to deform and even collapse. More interestingly, α-CD induces obvious changes on the fluorescent color of the microcapsules. However, β-cyclodextrin (β-CD) has little influence on the shape and fluorescent color of the microcapsules. Based on the results of scanning electron microscopy, the possible mechanism about the effects of α-CD on the chitosan microcapsules is analyzed. These stimuli-responsive microcapsules are low-cost and easy to be prepared by gas-liquid microfluidic technique, and can be applied as a potential micro-detector to chemicals, such as CDs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator. (United States)

    Sutar, Papri; Maji, Tapas Kumar


    The recent upsurge in research on coordination polymer gels (CPGs) stems from their synthetic modularity, nanoscale processability, and versatile functionalities. Here we report self-assembly of an amphiphilic, tripodal low-molecular weight gelator (L) that consists of 4,4',4-[1,3,5-phenyl-tri(methoxy)]-tris-benzene core and 2,2':6',2″-terpyridyl termini, with different metal ions toward the formation of CPGs that show controllable nanomorphologies, tunable emission, and stimuli-responsive behaviors. L can also act as a selective chemosensor for Zn(II) with very low limit of detection (0.18 ppm) in aqueous medium. Coordination-driven self-assembly of L with Zn(II) in H2O/MeOH solvent mixture results in a coordination polymer hydrogel (ZnL) that exhibits sheet like morphology and charge-transfer emission. On the other hand, coordination of L with Tb(III) and Eu(III) in CHCl3/tetrahydrofuran solvent mixture results in green- and red-emissive CPGs, respectively, with nanotubular morphology. Moreover, precise stoichiometric control of L/Eu(III)/Tb(III) ratio leads to the formation of bimetallic CPGs that show emissions over a broad spectral range, including white-light-emission. We also explore the multistimuli responsive properties of the white-light-emitting CPG by exploiting the dynamics of Ln(III)-tpy coordination.

  16. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy (United States)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping


    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  17. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner


    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  18. Graphene-based smart materials (United States)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan


    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  19. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release. (United States)

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin


    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System (United States)

    Nash, Michael A.; Waitumbi, John N.; Hoffman, Allan S.; Yager, Paul; Stayton, Patrick S.


    There is a need for simple yet robust biomarker and antigen purification and enrichment strategies that are compatible with current rapid diagnostic modalities. Here, a stimuli-responsive nanoparticle system is presented for multiplexed magneto-enrichment and non-instrumented lateral flow strip detection of model antigens from spiked pooled plasma. The integrated reagent system allows purification and enrichment of the gold-labeled biomarker half-sandwich that can be applied directly to lateral flow test strips. A linear diblock copolymer with a thermally-responsive poly(N-isopropylacrylamide) (pNIPAm) segment and a gold-binding block composed of NIPAm-co-N,N-dimethylaminoethylacrylamide (DMAEAm) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was used to functionalize gold nanoparticles (AuNPs), with subsequent bioconjugation to yield thermally-responsive pNIPAm-AuNPs that were co-decorated with streptavidin. These AuNPs efficiently complexed biotinylated capture antibody reagents that were bound to picomolar quantities of pan-aldolase and Plasmodium Falciparum histidine rich protein 2 (PfHRP2) in spiked pooled plasma samples. The gold-labeled biomarker half-sandwich was then purified and enriched using 10 nm thermally-responsive magnetic nanoparticles that were similarly decorated with pNIPAm. When a thermal stimulus was applied in conjunction with a magnetic field, co-aggregation of the AuNP-half-sandwiches with the pNIPAm-coated iron oxide nanoparticles created large aggregates that were efficiently magnetophoresed and separated from bulk serum. The purified biomarkers from a spiked pooled plasma sample could be concentrated 50-fold into a small volume and applied directly to a commercial multiplexed lateral flow strip to dramatically improve the signal-to-noise ratio and test sensitivity. PMID:22804625

  1. A Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers (United States)

    Nash, Michael A.; Yager, Paul; Hoffman, Allan S.; Stayton, Patrick S.


    A new diagnostic system for the enrichment and detection of protein biomarkers from human plasma is presented. Gold nanoparticles (AuNPs) were surface-modified with a diblock copolymer synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer contained a thermally-responsive poly(N-isopropylacrylamide) (pNIPAAm) block, a cationic amine-containing block, and a semi-telechelic PEG2-biotin end group. When a mixed suspension of 23 nm pNIPAAm-modified AuNPs was heated with pNIPAAm-coated 10 nm iron oxide magnetic nanoparticles (mNPs) in human plasma, the thermally-responsive pNIPAAm directed the formation of mixed AuNP/mNP aggregates that could be separated efficiently with a magnet. Model studies showed that this mixed nanoparticle system could efficiently purify and strongly enrich the model biomarker protein streptavidin in spiked human plasma. A 10 ng/mL streptavidin sample was mixed with the biotinylated and pNIPAAm modified AuNP and magnetically separated in the mixed nanoparticle system with pNIPAAm mNPs. The aggregates were concentrated into a 50-fold smaller fluid volume at room temperature where the gold nanoparticle reagent redissolved with the streptavidin target still bound. The concentrated gold-labeled streptavidin could be subsequently analyzed directly using lateral flow immunochromatography. This rapid capture and enrichment module thus utilizes the mixed stimuli-responsive nanoparticle system to achieve direct concentration of a gold-labeled biomarker that can be directly analyzed using lateral flow or other rapid diagnostic strategies. PMID:21070026

  2. Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. (United States)

    Nash, Michael A; Waitumbi, John N; Hoffman, Allan S; Yager, Paul; Stayton, Patrick S


    There is a need for simple yet robust biomarker and antigen purification and enrichment strategies that are compatible with current rapid diagnostic modalities. Here, a stimuli-responsive nanoparticle system is presented for multiplexed magneto-enrichment and non-instrumented lateral flow strip detection of model antigens from spiked pooled plasma. The integrated reagent system allows purification and enrichment of the gold-labeled biomarker half-sandwich that can be applied directly to lateral flow test strips. A linear diblock copolymer with a thermally responsive poly(N-isopropylacrylamide) (pNIPAm) segment and a gold-binding block composed of NIPAm-co-N,N-dimethylaminoethylacrylamide was prepared by reversible addition-fragmentation chain transfer polymerization. The diblock copolymer was used to functionalize gold nanoparticles (AuNPs), with subsequent bioconjugation to yield thermally responsive pNIPAm-AuNPs that were co-decorated with streptavidin. These AuNPs efficiently complexed biotinylated capture antibody reagents that were bound to picomolar quantities of pan-aldolase and Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in spiked pooled plasma samples. The gold-labeled biomarker half-sandwich was then purified and enriched using 10 nm thermally responsive magnetic nanoparticles that were similarly decorated with pNIPAm. When a thermal stimulus was applied in conjunction with a magnetic field, coaggregation of the AuNP half-sandwiches with the pNIPAm-coated iron oxide nanoparticles created large aggregates that were efficiently magnetophoresed and separated from bulk serum. The purified biomarkers from a spiked pooled plasma sample could be concentrated 50-fold into a small volume and applied directly to a commercial multiplexed lateral flow strip to dramatically improve the signal-to-noise ratio and test sensitivity.

  3. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max


    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  4. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices. (United States)

    Xu, Xiao-Yu; Lian, Xiao; Hao, Ji-Na; Zhang, Chi; Yan, Bing


    Unsafe food is a huge threat to human health and the economy, and detecting food spoilage early is an ongoing and imperative need. Herein, a simple and effective strategy combining a fluorescence sensor and one-to-two logic operation is designed for monitoring biogenic amines, indicators of food spoilage. Sensors (methyl red@lanthanide metal-organic frameworks (MR@EuMOFs)) are created by covalently modifying MR into NH2 -rich EuMOFs, which have a high quantum yield (48%). A double-stimuli-responsive fluorescence center is produced via energy transfer from the ligands to Eu(3+) and MR. Portable sensory hydrogels are obtained by dispersing and solidifying MR@EuMOFs in water-phase sodium salt of carboxy methyl cellulose (CMC-Na). The hydrogels exhibit a color transition upon "smelling" histamine (HI) vapor. This transition and shift in the MR-based emission peak are closely related to the HI concentration. Using the HI concentration as the input signal and the two fluorescence emissions as output signals, an advanced analytical device based on a one-to-two logic gate is constructed. The four output combinations, NOT (0, 1), YES (1, 0), PASS 1 (1, 1), and PASS 0 (0, 0), allow the direct analysis of HI levels, which can be used for real-time food-freshness evaluation. The novel strategy suggested here may be a new application for a molecular logic system in the sensing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  6. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)


    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  7. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)


    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  8. Irradiation test of high density Si material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Lee, Chul Yong; Yang, Seong Woo; Shim, Kyue Taek; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The feasibility of irradiation test for the high-density Si material entrusted by Guju Inc. was reviewed. The high density Si material is used for a sealing of the penetration holes of piping at the nuclear power plants. The irradiation test was performed and the density changes between before and after irradiation test were measured. The irradiation tests were performed 2 times for 1 day and 20 days at IP 4 hole of HANARO. The 3 Si specimens irradiated were without flaws and the density changes after irradiation were successfully measured. The result satisfies the requirement of the design specification.

  9. Smart and Fragrant Garment via Surface Modification of Cotton Fabric With Cinnamon Oil/Stimuli Responsive PNIPAAm/Chitosan Nano Hydrogels. (United States)

    Bashari, Azadeh; Hemmatinejad, Nahid; Pourjavadi, Ali


    This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) /chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperature/pH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β -CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles was performed via ultrasonic bath and exhaustion methods. The antibacterial activity of the treated fabrics at different temperatures demonstrated the preparing new functional bio-antibacterial fabrics with temperature responsiveness.

  10. Development of High Specific Strength Envelope Materials (United States)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  11. Materials for high performance light water reactors (United States)

    Ehrlich, K.; Konys, J.; Heikinheimo, L.


    A state-of-the-art study was performed to investigate the operational conditions for in-core and out-of-core materials in a high performance light water reactor (HPLWR) and to evaluate the potential of existing structural materials for application in fuel elements, core structures and out-of-core components. In the conventional parts of a HPLWR-plant the approved materials of supercritical fossil power plants (SCFPP) can be used for given temperatures (⩽600 °C) and pressures (≈250 bar). These are either commercial ferritic/martensitic or austenitic stainless steels. Taking the conditions of existing light water reactors (LWR) into account an assessment of potential cladding materials was made, based on existing creep-rupture data, an extensive analysis of the corrosion in conventional steam power plants and available information on material behaviour under irradiation. As a major result it is shown that for an assumed maximum temperature of 650 °C not only Ni-alloys, but also austenitic stainless steels can be used as cladding materials.

  12. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  13. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano


    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  14. Mechanical biocompatibility of highly deformable biomedical materials. (United States)

    Mazza, Edoardo; Ehret, Alexander E


    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. High-Capacity, High-Voltage Composite Oxide Cathode Materials (United States)

    Hagh, Nader M.


    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  16. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...

  17. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu


    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  18. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)


    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  19. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.


    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  20. High volume production of nanostructured materials (United States)

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerard M [Oak Ridge, TN


    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  1. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)


    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  2. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.


    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  3. High-energy, high-rate materials processing (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.


    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  4. Multi-stimuli-responsive organometallic gels based on ferrocene-linked poly(aryl ether) dendrons: reversible redox switching and Pb2+-ion sensing. (United States)

    Lakshmi, Neelakandan Vidhya; Mandal, Dipendu; Ghosh, Sundargopal; Prasad, Edamana


    We describe the design, synthesis, and "stimuli-responsive" study of ferrocene-linked Fréchet-type [poly(aryl ether)]-dendron-based organometallic gels, in which the ferrocene moiety is attached to the dendron framework through an acyl hydrazone linkage. The low-molecular-weight gelators (LMWGs) form robust gels in both polar and non-polar solvent/solvent mixtures. The organometallic gels undergo stimuli-responsive behavior through 1) thermal, 2) chemical, and 3) electrochemical methods. Among them, conditions 1 and 3 lead to seamlessly reversible with repeated cycles of identical efficiency. Results indicate that the flexible nature of the poly(aryl ether) dendron framework plays a key role in retaining the reversible electrochemical behavior of ferrocene moiety in the LMWGs. Further, the organometallic gelators have exhibited unique selectivity towards Pb(2+) ions (detection limit ≈10(-8)  M). The metal ion-sensing results in a gel-sol phase transition associated with a color change visible to the naked eye. Most importantly, decomplexing the metal ion from the system leads to the regeneration of the initial gel morphology, indicating the restoring ability of the organometallic gel. The metal-ligand binding nature has been analyzed by using (1)H NMR spectroscopy, mass spectrometry, and DFT calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.


    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  6. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)


    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  7. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)


    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Thermoelectric materials - Compromising between high efficiency and materials abundance

    Energy Technology Data Exchange (ETDEWEB)

    Homm, G.; Klar, P.J. [I. Physikalisches Institut, Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)


    In the context of CO{sub 2} neutral and regenerative energy production, the field of thermoelectrics has shifted more and more into the focus of scientific research in the last few years. Particularly a lot of research projects were started in the field of energy autarkic sensor technology and the so called energy harvesting, i.e. the recycling of otherwise lost energy. A potentially huge industrial branch for thermoelectric applications is the automotive industry with a main emphasis on generating electricity out of the waste heat of combustion engines with the help of thermoelectric generators or using Peltier cooling to replace conventional air conditioning in the passenger compartment. In addition, many niche applications are possible, e.g. as sensors for measuring the air pressure of tires etc. The applications of thermoelectric devices are very versatile. We analyse the potential of the state-of-the-art thermoelectric materials SiGe, PbTe, Bi{sub 2}Te{sub 3}, FeSi{sub 2} and potentially ZnO with respect to employment in four types of applications, classified by mobile vs stationary and specialized vs. mass application. The selection criteria comprise efficiency, materials availability, costs, environmental friendliness and toxicity. Based on these criteria, a decision matrix for choosing the appropriate material system for a specific application is defined. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. High capacity hydrogen storage nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Wellons, Matthew S.


    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about C.

  10. High capacity hydrogen storage nanocomposite materials (United States)

    Zidan, Ragaiy; Wellons, Matthew S


    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about C.

  11. Alignment of molecular materials in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Shklyarevskiy, O.I.; Boamfa, M.I.; Maan, J.C.


    The potential of using high magnetic fields to align functional molecular materials is discussed, illustrated by magnetic orientation of two different types of materials. Alignment of side chain polymer liquid crystals leads to macroscopically ordered, transparant and strongly birefringent material.

  12. An Efficient Blue-Emissive Metal-Organic Framework (MOF) for Lanthanide-Encapsulated Multicolor and Stimuli-Responsive Luminescence. (United States)

    Huang, Wei; Pan, Feifei; Liu, Yang; Huang, Shuaidan; Li, Yujie; Yong, Juan; Li, Yao; Kirillov, Alexander M; Wu, Dayu


    A novel blue-emitting Zn(II) MOF featuring parallel 2D+2D interpenetrated layers and tubelike channels was generated and shown to efficiently accommodate lanthanide(III) cations (Ln 3+ = Eu 3+ , Tb 3+ , or a mixture of Eu 3+ /Tb 3+ ), resulting in the Ln 3+ -encapsulated functional materials with a tunable emission color, including red, green, and nearly pure white light. Furthermore, the thermal-responsive luminescence was investigated for the lanthanide-codoped MOF to exhibit the chromic transition from white at room temperature to blue around liquid nitrogen temperature.

  13. Electron beam immobilization of functionalized poly(vinyl methyl ether thin films on polymer surfaces – Towards stimuli responsive coatings for biomedical purposes

    Directory of Open Access Journals (Sweden)


    Full Text Available Thin films of poly(vinyl methyl ether (PVME were immobilized on polystyrene surfaces by low energy electron beam cross-linking. Structure retention as well as the thermo-responsive swelling behavior in aqueous media were studied by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and spectroscopic ellipsometry respectively. The physical properties of the thermo-responsive coatings can be controlled in a wide range by adjusting the irradiation parameters. To allow for a variety of biomolecular functionalization strategies, the concept was extended by adding reactive sites to the system. For that purpose a mixture of PVME and the copolymer of PVME and maleic acid was applied, that possesses a similar stimuli-responsive behavior.

  14. High throughput combinatorial screening of semiconductor materials (United States)

    Mao, Samuel S.


    This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16×16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated.

  15. Synthesis and characterization of stimuli-responsive polypropylene containing N-vinylcaprolactam and N-vinylimidazole obtained by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavala-Lagunes, Edgar [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, México, D.F. 09340 (Mexico); Varca, Gustavo H.C. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP (Brazil); Bucio, Emilio, E-mail: [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F. 04510 (Mexico)


    Polypropylene films were grafted with thermo-responsive N-vinylcaprolactam and pH-responsive N-vinylimidazole polymers by means of gamma radiation using pre-irradiation and direct methods, in order to functionalize the films with thermo- and/or pH-responsiveness. The dependence of grafting yield on parameters such as co-monomer concentration, pre-irradiation dose, temperature, and reaction time was evaluated. The samples were characterized by Fourier transform infrared and X-ray photoelectron spectroscopies, differential scanning calorimetry, thermogravimetric analysis, swelling studies in different solvents, and water contact angle. The grafted copolymers presented thermo- and pH-sensitiveness, highlighting their potential as advanced biomaterials, capable of providing adequate environment for hosting and sustained release of antimicrobial drugs bearing cationic moieties, such as groups of diclofenac, while still exhibiting good cytocompatibility. - Highlights: • Development of novel and versatile thermo and/or pH responsive PP based materials • Responsive monomers were grafted by radiation methods to functionalize polypropylene. • Thermo-responsive N-vinylcaprolactam and pH-responsive N-vinylimidazole were selected. • Grafting was performed using gamma irradiation by pre-irradiation and direct methods. • Potential biomedical applications comprise smart biomaterials for drug loading.

  16. Ultra High Temperature Refractory Materials Project (United States)

    National Aeronautics and Space Administration — Legacy refractory materials that have origins dating to the original Saturn program are commonly used in current launch facilities. Although they failure to meet the...

  17. Ultra High Temperature Refractory Materials Project (United States)

    National Aeronautics and Space Administration — Legacy refractory materials that have origins dating to the original Saturn program are commonly used in current launch facilities. Although they fail to meet the...

  18. Damage Assessment in High Temperature Materials

    National Research Council Canada - National Science Library

    Newaz, Golam M


    .... The thermal wave imaging equipment was checked for its capability in assessment of damage in various materials systems which included thermal barrier coatings, adhesively bonded composites and SiC...

  19. Study of High Temperature Insulation Materials

    Directory of Open Access Journals (Sweden)

    Vaclav Mentlik


    Full Text Available One of current objectives of the electro insulating technology is the development of the material for extreme conditions. There is a need to operate some devices in extreme temperatures, for example the propulsion of the nuclear fuel bars. In these cases there is necessary to provide not just insulating property, but also the thermal endurance with the required durability of the insulating materials. Critical is the determination of the limit stress for the irreversible structure modification with relation to material property changes. For this purpose there is necessary to conduct lot of test on chosen materials to determine the limits mentioned above. Content of this article is the definition of diagnostic mode, including the definition of the exposure factors, definitions of the diagnostic system for data acquisition and first result of examinations.

  20. Nanomechanical analysis of high performance materials

    CERN Document Server


    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  1. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)


    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  2. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars. (United States)

    Holm, Regina; Weber, Benjamin; Heller, Philipp; Klinker, Kristina; Westmeier, Dana; Docter, Dominic; Stauber, Roland H; Barz, Matthias


    Star-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N-carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson-like molecular weight distributions, and low dispersities (Đ = 1.06-1.15). Star-like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 star-like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10(-3) m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson-like molecular weight distributions and low dispersities (Đ = 1.05-1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High belite cement from alternative raw materials

    Directory of Open Access Journals (Sweden)

    Ghorab, H. Y.


    Full Text Available Three high belite laboratory clinkers were prepared from traditional and alternative raw materials. Reference clinker was obtained from 77% limestone, 11% sandy clays, 11% fatty clays and 1% iron scales. The fatty clays were replaced by red brick powder in the raw meal of the second clinker and were lowered to 2% with the replacement of 10% of the limestone by egg shells in the third clinker. The SEM examination revealed clear presence of crossed striae and twinning in the rounded belite grains of the reference clinker caused by the transformation of the α´-belite to the β polymorph. Striae were weaker in the second and third clinkers indicating a probable stabilization of the α ‘-belite polymorph. Compressive strength of the respective cements were attained first after 28 days and the early strength did not improve with increasing fineness. Higher compressive strength values were found for the cement prepared from second clinker.Se han preparado tres clinkeres de laboratorio con altos contenidos en belita a partir de materias primas tradicionales y alternativas. El clinker de referencia se obtuvo a partir de una mezcla de caliza, arcillas arenosas y grasas y limaduras de hierro. Las arcillas grasas fueron sustituidas por polvo de ladrillo rojo en la preparación del segundo clinker, y en el tercero el contenido de arcilla grasa fue de solo un 2% y parte de la caliza fue sustituida por cascara de huevo. El estudio realizado por SEM muestra superficies estriadas alrededor de los granos de belita que indican una transformación del polimorfo α´ a la forma β-C₂S, durante el enfriamiento. Esas estrías son menos marcadas en el segundo y tercer clinker, indicando, una estabilización del polimorfo α´-C₂S. Los valores de resistencias a compresión de los correspondientes cementos, a 28 días de curado, no se ven incrementados por la finura de dichos cementos. Las mayores resistencias se obtuvieron en el cemento preparado a partir del cl

  4. Multi-stimuli responsive Cu2S nanocrystals as trimodal imaging and synergistic chemo-photothermal therapy agents (United States)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Nagaoka, Yutaka; Romero Aburto, Rebeca; Mitcham, Trevor; Ajayan, Pulickel M.; Bouchard, Richard R.; Sakamoto, Yasushi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.


    A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies.A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies. Electronic supplementary information (ESI) available: Methodology and additional experimental results. See DOI: 10.1039/c4nr07139e

  5. Facile preparation of magnetic metal organic frameworks core–shell nanoparticles for stimuli-responsive drug carrier (United States)

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen


    Facile synthesis of core–shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe3O4-NH2@MIL101-NH2) core–shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH2) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m2 g‑1), excellent magnetic response (20.47 emu g‑1) and large mesopore volume (22.07 cm3 g‑1) along with spherical morphologies with the diameters ranging from 140–330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe3O4-NH2@MIL101-NH2 could reach 36.02%, substantially higher than pristine MIL101-NH2. Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core–shell nanoparticles fabricated in this study on controlled drug release of DOX.

  6. Facile Preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier. (United States)

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen


    Facile synthesis of core-shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe3O4-NH2@MIL101-NH2) core-shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH2) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m2/g), excellent magnetic response (21.32 emu·g-1 ) and large mesopore volume (22.07 cm3/g) along with spherical morphologies with the diameters ranging from 140 nm to 330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe3O4-NH2@MIL101-NH2 could reach 36.02%, substantially higher than pristine MIL101-NH2. Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core-shell nanoparticles fabricated in this study on controlled drug release of DOX. . © 2017 IOP Publishing Ltd.

  7. Brittle Materials Design, High Temperature Gas Turbine (United States)


    F, J. Beebe , Washington, D.C. 20315 1 Office, Chief Research § Development, Department of the Army, ATTN: R. Ballard, Physical § Engineering...HpR^fe^ ARMY MATERIALS AND MECHANICS RESEARCH CENTER WATERTOWN, MASSACHUSETTS 02172 TECHNICAL REPORT DISTRIBUTION No. of Copies To Mr. Leslie

  8. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.


    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  9. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. (United States)

    Chen, Wei-Hai; Yu, Xu; Cecconello, Alessandro; Sohn, Yang Sung; Nechushtai, Rachel; Willner, Itamar


    A versatile approach to modify metal-organic framework nanoparticles (NMOFs) with nucleic acid tethers, using the "click chemistry" method is introduced. The nucleic acid-functionalized NMOFs are used to prepare stimuli-responsive carriers of loads (fluorescence probes or anti-cancer drugs). Two different stimuli-responsive nucleic acid-based NMOFs are presented. One system involves the preparation of pH-responsive NMOFs. The NMOFs are loaded with fluorophores or doxorubicin anti-cancer drug and locked in the NMOFs by pH-responsive DNA duplex capping units. At pH = 5.0 the capping units are unlocked, leading to the release of the loads. The AS1411 aptamer is conjugated to the locking units as the targeting unit for the nucleolin biomarker present in cancer cells. The pH-responsive doxorubicin-loaded NMOFs and, in particular, the AS1411 aptamer-modified pH-responsive NMOFs reveal selective, targeted, cytotoxicity toward MDA-MB-231 breast cancer cells. A second system involves the synthesis of NMOFs that are loaded with fluorophores or doxorubicin and capped with metal-ion-dependent DNAzyme/substrate complexes as locking units (metal ion = Mg(2+) or Pb(2+) ions). In the presence of the respective metal ions, the nucleic acid locking units are cleaved off, resulting in the release of the loads. Also, "smart" Mg(2+)-ion-dependent DNAzyme capped doxorubicin-loaded NMOFs are synthesized via the integration of the ATP aptamer sequence in the loop domain of the Mg(2+)-dependent DNAzyme. The unlocking of these NMOFs proceeds effectively only in the presence of ATP and Mg(2+) ions, acting as cooperative triggers. As ATP is over-expressed in cancer cells, the "smart" carrier provides sense-and-treat functions. The "smart" ATP/Mg(2+)-triggered doxorubicin-loaded NMOFs reveal selective cytotoxicity toward MDA-MB-231 cancer cells. Beyond the use of the metal-ion-dependent DNAzymes as ion-responsive locks of drug-loaded NMOF carriers, the DNAzyme-capped fluorophore-loaded NMOFs

  10. Development and characterization of chitosan and N-carboxybutylchitosan materials doped with biocompatible ionic liquids for application as stimuli-responsive biopolymers


    Cortez, Ana Alexandra Rebelo


    A emergente necessidade de melhorar a qualidade de vida do ser humano tem levado a indústria e a comunidade académica a desenvolver novos materiais ecológicos e de baixo custo para fins biomédicos. Este trabalho visa desenvolver e caracterizar novos polieletrólitos de estimulo-resposta baseados em polímeros eletroativos (EAPs), através da combinação de biopolímeros e líquidos iónicos derivados de amónio, com vista a obter EAPs com melhores propriedades químicas, físicas, termo-mecânicas e con...

  11. ‘Can biomimetic principles coupled with advanced fabrication technologies and stimuli-responsive materials drive revolutionary advances in wearable and implantable biochemical sensors?’


    Diamond, Dermot; Florea, Larisa; Dunne, Aishling; Tudor, Alexandru; Ben Azouz, Aymen; Coleman, Simon


    Since the initial breakthroughs in the 1960’s and 70’s that led to the development of the glucose biosensor, the oxygen electrode, ion-selective electrodes, and electrochemical/optochemical diagnostic devices, the vision of very reliable, affordable chemical sensors and bio-sensors capable of functioning autonomously for long periods of time (years), and providing access to continuous streams of real-time data remains unrealized. This is despite massive investment in research and the publicat...

  12. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.


    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach......-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials....


    Directory of Open Access Journals (Sweden)

    Rumyantsev Boris Mikhaylovich


    Heat fluxes inside aerated concrete are determined by the heat transfer driven by the filtration of the mixture of vapour and air and its convection inside cells. Products made of mineral cotton demonstrate accessible porosity; therefore, heat fluxes are determined by the properties of gas, or the air-vapour mixture under constant pressure. A convective heat flux is primarily dependent on the air permeability of the media and the characteristics (pressures and concentrations of internal and external surfaces of the material under research.

  14. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system. (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung


    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  15. Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution

    Directory of Open Access Journals (Sweden)

    Stephanie Christau


    Full Text Available The effect of brush thickness on the loading of gold nanoparticles (AuNPs within stimuli-responsive poly-(N,N-(dimethylamino ethyl methacrylate (PDMAEMA polyelectrolyte brushes is reported. Atom transfer radical polymerization (ATRP was used to grow polymer brushes via a “grafting from” approach. The brush thickness was tuned by varying the polymerization time. Using a new type of sealed reactor, thick brushes were synthesized. A systematic study was performed by varying a single parameter (brush thickness, while keeping all other parameters constant. AuNPs of 13 nm in diameter were attached by incubation. X-ray reflectivity, electron scanning microscopy and ellipsometry were used to study the particle loading, particle distribution and interpenetration of the particles within the brush matrix. A model for the structure of the brush/particle hybrids was derived. The particle number densities of attached AuNPs depend on the brush thickness, as do the optical properties of the hybrids. An increasing particle number density was found for increasing brush thickness, due to an increased surface roughness.

  16. Using hyaluronic acid-functionalized pH stimuli-responsive mesoporous silica nanoparticles for targeted delivery to CD44-overexpressing cancer cells. (United States)

    Wang, Zhihui; Tian, Yongfeng; Zhang, Hua; Qin, Yanmei; Li, Dong; Gan, Li; Wu, Fanhong

    In this study, novel hyaluronic acid-pH stimuli-responsive lipid membrane mesoporous silica nanoparticles (HA-PL-MSNs) were designed and assembled, with the chemotherapeutic agent doxorubicin (DOX) as the model drug. HA-PL-MSNs exhibited a well-defined mesostructure covered by lipid bilayer and particle size of ~150 nm. The drug loading capacity was up to ~18.2%. DOX release could be effectively retained by the lipid bilayer in pH 7.4 buffer and exhibited a pH-triggered burst release in the acidic condition. Confocal laser scanning microscopy and fluorescence-activated cell sorting showed that HA-PL-MSNs exhibited higher cellular uptake efficiency via CD44 receptor-mediated endocytosis compared with PL-MSNs in HeLa cells. In vitro cytotoxicity studies demonstrated that HA-PL-MSNs could effectively enhance the targeted delivery of DOX and restrain the growth of HeLa cells. This might provide a promising alternative for the development of a targeted anticancer drug delivery system.

  17. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration. (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N


    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  19. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials (United States)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)


    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  20. High capacity anode materials for lithium ion batteries (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject


    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  1. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu


    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  2. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)



    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. Magnetization and magnetostriction in highly magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Thoelke, Jennifer Beth [Iowa State Univ., Ames, IA (United States)


    The majority of this research has been in developing a model to describe the magnetostrictive properties of Terfenol-D, Tbsub>1-xDyxFey (x = 0.7-0.75 and y = 1.8--2.0), a rare earth-iron alloy which displays much promise for use in device applications. In the first chapter an introduction is given to the phenomena of magnetization and magnetostriction. The magnetic processes responsible for the observed magnetic properties of materials are explained. An overview is presented of the magnetic properties of rare earths, and more specifically the magnetic properties of Terfenol-D. In the second chapter, experimental results are presented on three composition of Tb< with x = 0.7, y= 1.9, 1.95, and x= 0.73, y= 1.95. The data were taken for various levels of prestress to show the effects of composition and microstructure on the magnetic and magnetostrictive properties of Terfenol-D. In the third chapter, a theoretical model is developed based on the rotation of magnetic domains. The model is used to explain the magnetic and magnetostrictive properties of Terfenol-D, including the observed negative strictions and large change in strain. The fourth chapter goes on to examine the magnetic properties of Terfenol-D along different crystallographic orientations. In the fifth chapter initial data are presented on the time dependence of magnetization in nickel.

  4. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials (United States)


    the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials Abstract Dental common problem has involved an increase in the fracture rate of the veneered zirconium oxide compared to metal-ceramic crowns potentially caused

  5. Large bandwidth, highly efficient optical gratings through high index materials

    NARCIS (Netherlands)

    Rathgen, H.; Offerhaus, Herman L.


    We analyze the diffraction characteristics of dielectric gratings that feature a high index grating layer, and devise, through rigorous numeri-cal calculations, large bandwidth, highly efficient, high dispersion dielectric gratings in reflection, transmission, and immersed transmission geometry. A

  6. High Field Pulse Magnets with New Materials (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.


    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  7. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F.


    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  8. Brittle Materials Design, High Temperature Gas Turbine (United States)


    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  9. High Temperature Electrical Insulation Materials for Space Applications Project (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  10. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini


    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  11. High Pressure Research on Materials-Experimental Techniques to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. High Pressure Research on Materials - Experimental Techniques to Study the Behaviour of Materials Under High Pressure. P Ch Sahu N V Chandra Shekar. General Article Volume 12 Issue 8 August 2007 pp 49-64 ...

  12. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong


    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  13. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus


    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented.......Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance...... and implementation of such materials in actual devices. The phenomenology and fundamental thermodynamics of magnetocaloric materials is discussed, as well as the hysteresis behavior often found in fi rst-order materials. A number of theoretical and experimental approaches and their implications are reviewed...

  14. Advanced materials for high-temperature thermoelectric energy conversion (United States)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles


    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  15. Performance of new polymeric materials with high radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.J.T.; O`Donnell, J.H.; Pomery, P.J. [Univ. of Queensland, Brisbane (Australia)


    The resistance to radiation of polymeric materials with high modulus and strength, high service temperatures, high resistance to thermal oxidation, and high chemical resistance is evaluated. Different methods of assessment are considered, which require radiation doses from 0.01 to 10 MGy.

  16. The high-throughput highway to computational materials design. (United States)

    Curtarolo, Stefano; Hart, Gus L W; Nardelli, Marco Buongiorno; Mingo, Natalio; Sanvito, Stefano; Levy, Ohad


    High-throughput computational materials design is an emerging area of materials science. By combining advanced thermodynamic and electronic-structure methods with intelligent data mining and database construction, and exploiting the power of current supercomputer architectures, scientists generate, manage and analyse enormous data repositories for the discovery of novel materials. In this Review we provide a current snapshot of this rapidly evolving field, and highlight the challenges and opportunities that lie ahead.

  17. Revolutionary Components Based on High-Performance Materials (BRIEFING CHARTS) (United States)


    χ2 materials Flexible photovoltaics Mechanical & electrical properties High efficiency NLO materials Magnetoresistive materials Tunneling/ spintronics ...08 1.0E-06 0.001 0.01 0.1 1 10 100 Damage Threshold (J/cm2) R e q u i r e d I m ( χ 3 ) , ( e s u ) 1 µs Pulse1 ns Pulse 1 ps Pulse Chalcogenide

  18. High-volume recycled materials for sustainable pavement construction. (United States)


    The main objective of this research is to evaluate the feasibility of using high-volume recycled materials for concrete production in rigid pavement. The goal was to replace 50% of the solids with recycled materials and industrial by-products. The pe...

  19. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua


    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  20. Laser Processing of High-Tech Materials at High Irradiance. (United States)


    methods of producing or driving shocks in solids, and comments on applications using those effects. The motivation for this overview 1 - 16 is to examine...The behavior of hydrogen at high pressures may be important to the study of the planets Jupiter, Saturn, and Uranus , which are constituted pri- marily

  1. Fracture in high performance fibre reinforced concrete pavement materials

    CSIR Research Space (South Africa)

    Denneman, E


    Full Text Available high performance fibre reinforced concrete pavement slab with a nominal thickness of approximately 50 mm. The material has a significant post crack stress capacity compared to plain concrete. Current design methods for UTCRCP are based on conventional...

  2. One Component Encapsulating Material Matrix as High Barrier Coating Project (United States)

    National Aeronautics and Space Administration — To address the NASA need for new flexible food packaging materials with effective high barrier against oxygen and moisture to protect food, minimize weight and...

  3. High-throughput theoretical design of lithium battery materials (United States)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen


    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  4. High-Frequency Microwave Processing of Materials Laboratory (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  5. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov


    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  6. Fiscal 1996 project on the R and D of industrial scientific technology under consignment from NEDO. Report on the results of the R and D of technologies to invent original high-functional materials; 1996 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin Energy Sangyo Gijutsu Kaihatsu Kiko itaku. Dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    Technologies were described of creating original high-functional materials. The paper presented the following two as fields of technology on which importance is to be placed for the future R and D from technological and socioeconomic points of view. In the field of new materials of living organism imitation type, remarkably high-performance/high-functional new materials are invented by imitating the precise function manifestation mechanism of the ultimate living organism in which a great variety of matters are in harmony with each other and manifest complicated and high-level functions. In the field of structural control/synthesis process technology, the paper is aimed at manifestation of newer and higher functions/performance and innovation of the synthesis process, and also at developing technology to precisely control structure and process of materials including surface and interface in correspondence with atomic/molecular to macro levels. Up to the present, conducted were an examination of autonomous response materials (the subtheme is a R and D of polymer/composite multi-stimuli-responsive materials) and a R and D of precise polymerization (control) polymer materials. 239 refs., 129 figs., 49 tabs.

  7. Plasticity In High Temperature Materials: Tantalum and Monazite (United States)


    AFRL-OSR-VA-TR-2014-0065 PLASTICITY IN HIGH TEMPERATURE MATERIALS: TANTALUM AND MONAZITE Jeffrey Kysar THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE...Agency Air Force Office of Scientific Research Title of Project Plasticity in High Temperature Materials: Tantalum and Monazite February 28, 2014...centered cu- bic tantalum , the methodology also demonstrated a relationship between dislocation mean free path length and GND density. A framework to

  8. Behavior of Rubber Materials under Exposure to High Electric Fields

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Henriksen, M,


    The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence of the inte......The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence...... of the interfaces between different layers of material. Tracking resistance tests are also performed on the rubber material. The purpose is to provide a complete study of the applicability of the rubber material in thunderstorm environments....

  9. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)


    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  10. High-Temperature Electronic Materials: Silicon Carbide and Diamond (United States)

    Willander, Magnus; Friesel, Milan; Wahab, Qamar-Ul; Straumal, Boris

    The physical and chemical properties of wide-band-gap semiconductors make these materials an ideal choice for device fabrication for applications in many different areas, e.g. light emitters, high-temperature and high-power electronics, high-power microwave devices, micro-electromechanical system (MEM) technology, and substrates for semiconductor preparation. These semiconductors have been recognized for several decades as being suitable for these applications, but until recently the low material quality has not allowed the fabrication of high-quality devices. In this chapter, we review the wide-band-gap semiconductors, silicon carbide and diamond.

  11. Method for fabricating high aspect ratio structures in perovskite material (United States)

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria


    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about K. to about K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  12. Advances in High Temperature Materials for Additive Manufacturing (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin


    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  13. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. (United States)

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J


    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  14. Phase Change Material Systems for High Temperature Heat Storage. (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia


    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  15. Behaviour of advanced materials impacted by high energy particle beams (United States)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.


    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  16. Baseline high heat flux and plasma facing materials for fusion (United States)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.


    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  17. High purity materials as targets for radioisotope production: Needs ...

    Indian Academy of Sciences (India)

    Artificial transmutation of an element employing thermal neutrons in a reactor or high energy particle accelerators (cyclotrons) are the routes of radioisotope production world over. Availability of high purity target materials, natural or enriched, are crucial for any successful radioisotope programme. Selection of stable ...

  18. New Materials for Vacuum Chambers in High Energy Physics

    CERN Document Server

    Garion, Cédric


    Vacuum chambers must fulfil ultra-high vacuum requirements while withstanding thermo-mechanical loads. This is particularly true in high energy particle accelerator where interactions of particles with matter may induce thermal load, material activation, background… The choice of the material of the vacuum chamber is crucial for the final application. Metals such as stainless steel, copper and aluminium are usually used. Even with outstanding mechanical and physical properties, beryllium is used for very specific applications because of its cost and toxicity.Ceramics such as alumina are usually used for fast magnet vacuum chambers. With the next generation of high energy physics accelerator generation such as CLIC and TLEP, the problematic of high cyclic thermal load induced by synchrotron radiation is raised. This paper aims at defining some figures of merit of different materials with respect to several load scenarios and presents briefly their vacuum compatibility.

  19. Material control and surveillance for high frequency access vaults project

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V. L. (Victoria L.); Stevens, R. S. (Rebecca S.); Martinez, B. J. (Benny J.); Butler, G. W. (Gilbert W.); Huang, J. Y. (John Y.); Pickett, C. (Chris); Younkin, J. (James); Dunnigan, Janelle; Gaby, Jane; Lawson, R. (Roger)


    The 'Material Control and Surveillance for High Frequency Access Vaults' project sponsored by United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) focuses on enhancing nuclear materials control and surveillance in vaults that are frequently accessed. The focus of this effort is to improve materials control and accountability (MC&A) while decreasing the operational impact of these activities. Los Alamos and Y-12 have developed a testbed at the Los Alamos National Laboratory for evaluating and demonstrating integrated technologies for use in enhancing materials control and accountability in active nuclear material storage vaults. An update will be provided on the new systems demonstrated in the test-bed including a 'confirmatory cart' for expediting the performance of inventory and radio-frequency actuated video that demonstrates the concept of automated data entry for materials moving between MBA's. The United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) has sponsored a project where nuclear material inventory, control and surveillance systems are evaluated, developed, and demonstrated in an effort to provide technologies that reduce risk, increase material assurance, and provide cost-efficient alternatives to manpower-intensive physical inventory and surveillance approaches for working (high-frequency-access) vaults. This Fiscal Year has been largely focused on evaluating and developing components of two sub-systems that could be used either separately in nuclear material vaults or as part of a larger integrated system for nuclear materials accountability, control and surveillance.

  20. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.


    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  1. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.


    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  2. Sealing Materials for Use in Vacuum at High Temperatures (United States)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace


    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  3. Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries

    National Research Council Canada - National Science Library

    Kim, Hansu; Lee, Eung-Ju; Sun, Yang-Kook


    ..., electric vehicles and energy storage units for renewable energy. This review focuses on high capacity Si based nanostructured anode materials composed of Si and various inactive phase materials...

  4. Processing of extraterrestrial materials by high temperature vacuum vaporization (United States)

    Grimley, R. T.; Lipschutz, M. E.


    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  5. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben


    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  6. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)


    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  7. Lubricity and Tribochemical Reactivity of Advanced Materials Under High Vacuum (United States)

    Igartua, A.; Berriozabal, E.; Zabala, B.; Pagano, F.; Minami, I.; Doerr, N.; Gabler, C.; Nevshupa, R.; Roman, E.; Pleth Nielsen, L.; Louring, S.; Muntada, L.


    The aim of this study was to develop and characterize advanced tribological materials for space applications. For this purpose a newly developed Ultra High Vacuum (UHV) tribometer CA3UHV was used to determine friction, wear and triboemission of gases and volatiles from atmospheric pressure down to high or ultrahigh vacuum. The study was focused on two classes of materials: a) advanced lubricants based on ionic liquids (ILs), b) engineered diamond-like carbon films as anti- wear and low-friction coatings. Tribochemical mechanisms were identified by analyzing gas triboemission involved in the generation of protective tribofilm layer and/or transfer film and surface chemical characterization.

  8. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin


    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  9. High performance capacitors using nano-structure multilayer materials fabrication (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.


    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  10. Dielectric characterization of high-performance spaceflight materials (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola


    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  11. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych


    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  12. High-capacity electrode materials for electrochemical energy ...

    Indian Academy of Sciences (India)


    Jun 2, 2015 ... This review summarizes the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application.

  13. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T


    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  14. Analytical challenges in characterization of high purity materials

    Indian Academy of Sciences (India)

    Quite a good number of analytical challenges with specific reference to the characterization of high purity materials of relevance to nuclear technology were addressed and methodologies were developed for trace elemental analysis of both metallic and non-metallic constituents. A brief review of these analytical challenges ...

  15. Investigations of novel high dielectric materials and new mechanisms (United States)

    Guo, Meng

    A high dielectric constant material with excellent dielectric properties is highly desirable for a wide range of applications, such as high energy density capacitors and optical limiting materials. High dielectric constant materials used for embedded capacitors require characteristics such as a high dielectric constant (>7), a low dielectric loss (quinone radical (PAQR) polymers (e.g. 14000 at 100Hz for a PAQR polymer) by Pohl and his co-workers. However, the physics underlying this polarization mechanism is not well understood so far. In addition, this polarization mechanism hasn't been explored in other organic systems, such as hyperbranched polymers and dendrimers yet. In my Ph.D investigations, I studied a novel strategy of creating a high dielectric constant material by utilizing the long-range delocalization in a controllable organic structure to produce hyperelectronic polarization. My studies initiated the investigation with the hyperbranched polyaniline and dendritic triarylamine. A remarkable enhancement in the dielectric response at higher frequency was obtained in comparison to linear polymer systems. For example, a dielectric constant ˜ 200 was obtained in hyperbranched polyaniline at 1MHz, which is 45 times that of linear polyaniline base (4.4+/-0.05). The enhancement is due to the extended delocalization over several molecular units and a result of a hyperelectronic polarization. A large dielectric response with low loss is still a major obstacle. Copper Phthalocyanine (CuPc) materials have been known for their effective high dielectric constants. However, the intrinsic dielectric properties of the hyperbranched CuPc have yet to be explored before my Ph.D studies. Therefore, three sets of hyperbranched CuPc systems were synthesized and characterized. The understanding of the polarization mechanisms was realized through a series of electronic and time-resolved femtosecond optical measurements. The key findings are: (1) an extraordinarily high

  16. Potential for Application of Retroreflective Materials instead of Highly Reflective Materials for Urban Heat Island Mitigation

    Directory of Open Access Journals (Sweden)

    Jihui Yuan


    Full Text Available Research on urban heat island (UHI mitigation has been carried out globally. Several strategies have been proposed or developed to mitigate UHI, including highly reflective (HR envelopes of buildings, green roofs, urban vegetation, shading, heat sinks, and air-conditioning efficiency. Among these techniques, HR envelopes have been extensively studied as an effective method to mitigate the UHI effect by reducing energy consumption. However, because most of HR materials are diffusive, HR envelopes applied to vertical surfaces can reflect both onto roads and nearby buildings. Additionally, HR roofs cannot reflect all incoming solar radiation to the sky if there are high buildings around it. Thus, HR materials applied as building envelopes have a limited effect against the solar contribution to the UHI. In order to solve this problem, retroreflective (RR materials, which reflect the solar radiation back towards the source, have been studied and developed to be applied as building envelopes instead of HR materials. This paper summarizes several previous researches on HR envelopes and cool roofs and summarizes several current researches on RR materials. The potential for application of RR envelopes in cities is proposed with consideration of economic and environmental factors.

  17. Achieving high aspect ratio wrinkles by modifying material network stress. (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J


    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  18. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server


    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  19. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO....... Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...

  20. Improved Materials for High-Temperature Black Liquor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.


    The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized

  1. New perspectives on potential hydrogen storage materials using high pressure. (United States)

    Song, Yang


    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  2. Refractory materials for high-temperature thermoelectric energy conversion (United States)

    Wood, C.; Emin, D.


    Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimaiation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

  3. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh


    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  4. Selection of High Temperature Organic Materials for Future Stirling Convertors (United States)

    Shin, Euy-Sik Eugene


    In the future higher temperature Stirling convertors for improved efficiency and performance, various high temperature organic materials have been demanded as essential components for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The higher temperature capabilities would also allow current state-of-the-art (SOA) convertors to be used in additional missions, particularly those that require a Venus flyby for a gravity assist. Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of comprehensive structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, o-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This paper presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.

  5. Refractory materials for high-temperature thermoelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Emin, D.


    Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. It was also shown that ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT > 1 is realizable. These materials can be divided into two classes: (i) the rare-earth chalcogenides, which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (ii) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

  6. Towards high-performance materials for road construction (United States)

    Gladkikh, V.; Korolev, E.; Smirnov, V.


    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  7. Materials for the scavanging of hydrogen at high temperatures (United States)

    Shepodd, Timothy J.; Phillip, Bradley L.


    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  8. Material Processing with High Power CO2-Lasers (United States)

    Bakowsky, Lothar


    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  9. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials (United States)


    Taylor, N. E., Jardine, A. P., Behaviour of sand during release from a shocked state, Applied Physics Letters 103, 154103 (2013); doi: 10.1063...V., and M. N. Pavlovskii (1971), Response of clay and clay shale to heavy dynamic loading, Journal of Applied Mechanics and Technical Physics , 1, 161...multiple mechanisms in simulations 15.  SUBJECT TERMS High-rate Deformation, Heterogeneous Materials, Shock Physics Standard Form 298 (Rev. 8/98

  10. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach


    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  11. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto


    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  12. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali


    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  13. Screening of High Temperature Organic Materials for Future Stirling Convertors (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.


    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  14. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik


    Different types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as possible metallic bipolar plates and construction materials. The corrosion resistance was measured under simulated conditions corresponding to the conditions in high...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  15. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang


    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  16. Instructional Materials Physics High School with Multi Representation Approach

    Directory of Open Access Journals (Sweden)

    Yuvita Widi Astuti


    Full Text Available Bahan Ajar Fisika SMA dengan Pendekatan Multi Representasi Abstract: One effort to improve understanding of concepts and problem-solving skills in learning physics is to provide instructional materials in accordance with the characteristics of the students and help students learn. The purpose of this study are: (1 developing a high school physics teaching materials especially materials Rotation Dynamics and Equilibrium Rigid objects using multiple representations approach to improve the understanding of physics concepts, (2 test the effectiveness of instructional materials development results. This research method is the development of research using Dick & Carey model tailored to the needs of research. The research instrument used in the form of feasibility questionnaire. The type of data that is obtained is quantitative data and qualitative data. Experimental results show that the result of the development of teaching materials can be categorized as very feasible. Results of field trials showed that: (1 most of the students in the experimental class above KKM obtain test results, (2 the results of the experimental class postes greater than the control class, so that teaching materials said to be effective, but not significant to improve the understanding of physics concepts. Key Words: teaching materials, multi-representation, the rotational dynamics Abstrak: Salah satu upaya untuk meningkatkan pemahaman konsep dan kemampuan memecahkan masalah dalam pembelajaran fisika adalah dengan menyediakan bahan ajar yang sesuai dengan karakteristik siswa dan memudahkan siswa dalam belajar. Tujuan dari penelitian ini adalah: (1 mengembangkan bahan ajar fisika SMA khususnya materi Dinamika Rotasi dan Kesetimbangan Benda Tegar menggunakan pendekatan multi representasi untuk meningkatkan pemahaman konsep fisika, (2 menguji efektifitas bahan ajar hasil pengembangan. Metode penelitian ini adalah penelitian pengembangan menggunakan model Dick & Carey yang

  17. Materials, structures, and devices for high-speed electronics (United States)

    Woollam, John A.; Snyder, Paul G.


    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A Singh. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 233-238 Biomaterials. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde · A Singh S S Narvi P K Dutta N D Pandey · More Details Abstract Fulltext ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Dutta. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 233-238 Biomaterials. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde · A Singh S S Narvi P K Dutta N D Pandey · More Details Abstract Fulltext ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N D Pandey. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 233-238 Biomaterials. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde · A Singh S S Narvi P K Dutta N D Pandey · More Details Abstract Fulltext ...

  1. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani


    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  2. Superconductivity in hydrogen-rich materials at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander


    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  3. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh


    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  4. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu


    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  5. Materials and Designs for High-Efficacy LED Light Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ibbetson, James [Cree, Inc., Durham, NC (United States); Gresback, Ryan [Cree, Inc., Durham, NC (United States)


    Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative to conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.

  6. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL


    the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design

  7. Methods for high volume production of nanostructured materials (United States)

    Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerald M [Oak Ridge, TN


    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  8. Designing High-Refractive Index Polymers Using Materials Informatics

    Directory of Open Access Journals (Sweden)

    Vishwesh Venkatraman


    Full Text Available A machine learning strategy is presented for the rapid discovery of new polymeric materials satisfying multiple desirable properties. Of particular interest is the design of high refractive index polymers. Our in silico approach employs a series of quantitative structure–property relationship models that facilitate rapid virtual screening of polymers based on relevant properties such as the refractive index, glass transition and thermal decomposition temperatures, and solubility in standard solvents. Exploration of the chemical space is carried out using an evolutionary algorithm that assembles synthetically tractable monomers from a database of existing fragments. Selected monomer structures that were further evaluated using density functional theory calculations agree well with model predictions.

  9. Replacing critical rare earth materials in high energy density magnets (United States)

    McCallum, R. William


    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  10. Effect of High-Humidity Testing on Material Parameters of Flexible Printed Circuit Board Materials (United States)

    Lahokallio, Sanna; Saarinen, Kirsi; Frisk, Laura


    The tendency of polymers to absorb moisture impairs especially their electrical and mechanical properties. These are important characteristics for printed circuit board (PCB) materials, which should provide mechanical support as well as electrical insulation in many different environments in order to guarantee safe operation for electrical devices. Moreover, the effects of moisture are accelerated at increased temperatures. In this study, three flexible PCB dielectric materials, namely polyimide (PI), fluorinated ethylene-propylene (FEP), and polyethylene terephthalate (PET), were aged over different periods of time in a high-humidity test, in which the temperature was 85°C and relative humidity 85%. After aging, the changes in the structure of the polymers were studied by determining different material parameters such as modulus of elasticity, glass-transition temperature, melting point, coefficient of thermal expansion, water absorption, and crystallinity, and changes in the chemical structure with several techniques including thermomechanical analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, moisture analysis, and a precision scale. The results showed that PI was extremely stable under the aging conditions and therefore an excellent choice for electrical applications under harsh conditions. Similarly, FEP proved to be relatively stable under the applied aging conditions. However, its crystallinity increased markedly during aging, and after 6000 h of aging the results indicated oxidation. PET suffered from hydrolysis during the test, leading to its embrittlement after 2000 h of aging.

  11. High Capacity Cathode Materials for Next Generation Energy Storage (United States)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of

  12. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey


    Different types of corrosion resistant stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as a possible metallic bipolar plate and construction material with respect to corrosion resistance under simulated conditions corresponding to the conditions in high temperature...... proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy...... and energy-dispersive X-ray spectroscopy. Results show that stainless steels are the most inclined to corrosion under high anodic polarization. Among alloys, Ni-based showed the highest corrosion resistance under conditions, simulating HTPEMWE. In particular, Inconel625 is the most promising alloy...

  13. Obtaining of High Cr Content Cast Iron Materials (United States)

    Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.


    We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.

  14. New high dielectric constant materials for tailoring the B1+ distribution at high magnetic fields. (United States)

    Haines, K; Smith, N B; Webb, A G


    The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, we introduce a new material with high dielectric constant, and also low background MRI signal. The material is based upon metal titanates, which can be made into a geometrically-formable suspension in de-ionized water. The material properties of the suspension are characterized from 100 to 400 MHz. Results obtained at 7 T show a significant increase in image intensity in areas such as the temporal lobe and base of the brain with the new material placed around the head, and improved performance compared to purely water-based gels. 2010 Elsevier Inc. All rights reserved.

  15. High-power CO lasers for materials processing (United States)

    Averin, A.; Erofeev, E.; Ionin, Andrei A.; Malysh, M.


    Two high-power CO laser installations for industrial applications are being developed now in Russia within the framework of the Eureka Project EU113 (`CO-Eurolaser'). The electron- beam-controlled-discharge (EBCD) method for pumping those lasers is used. The first one, EBCD 10 kW CO laser, operates in continuous wave and `gentle' repetitively pulsed (RP) (peak power 20 kW, laser pulse duration 0.5 - 1 ms, pulse repetition rate 500 - 1,000 Hz) modes. The second laser, EBCD 5 - 10 kW CO laser will operate in `tough' RP mode (peak power 0.2 - 1.0 MW, single pulse energy 100 J, pulse duration 0.1 - 0.5 ms, repetition rate 50 - 100 Hz). A detander-compressor device, the main characteristics of which are reported, will be used for cooling the laser mixture of the second CO laser. Those high-power CO laser installations are supposed to be used for investigation of different laser materials processing methods on 5 micrometers wavelength for deep penetration welding, cutting, and surface treatment and also for comparative materials processing studies on CO and CO2 laser wavelengths.

  16. Materials for the scavenging of hydrogen at high temperatures (United States)

    Shepodd, T.J.; Phillip, B.L.


    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  17. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hasan, E-mail: [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Minami, Hideto [Graduate School of Engineering, Kobe University, Kobe 657-8501 (Japan); Tauer, Klaus [Max Planck Institute of Colloid and Interfaces, Am Mühlenberg, 14476 Golm (Germany); Gafur, Mohammad Abdul [Pilot Plant and Process Development Centre, BCSIR, Dhaka 1205 (Bangladesh); Rahman, Mohammad Mahbubor [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh)


    A combination of maghemite polypyrrole (PPy/γ-Fe{sub 2}O{sub 3}) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl{sub 3} as a oxidant and p-toluene sulfonic acid ( p-TSA) as a dopant. In the reaction system FeCl{sub 3} functioned as a source of Fe(III) for the formation of γ-Fe{sub 2}O{sub 3}. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl{sub 2}. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water. - Highlights: • P(S-NIPAM-MAA-PEGMA) hydrogel particles were prepared. • P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles were prepared. • Oxidative polymerization of pyrrole and precipitation of γ-Fe{sub 2}O{sub 3

  18. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun


    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A new pozzolan for high performance cementitious materials

    Directory of Open Access Journals (Sweden)

    de Gutiérrez, R. M.


    Full Text Available This paper presents results on the physical and chemical properties of metakaolinite, MK which is prepared by dehydroxylation of high quality kaolinite. The properties of Portland cement mortars blended with MK additions up to 50% are investigated. These properties are compressive strength, pore size distribution, resistance to the penetration of water and chloride ions and corrosion performance of steels embedded in the mortar. The optimum replacement of ordinary Portland cement (OPC with MK to obtain high strength concrete is about 20%, but it is possible to use a higher percent in order to achieve the best durability properties and strength similar to the control mixture. There is a significant decrease in average pore size with an increase in MK replacement. Metakaolinite is able to bind chloride ions to produce Friedel's salt (SF, which can be considered as the main cause of the lower chloride penetration in portland cement mortars blended with MK addition. This chemical binding capacity was proved by XRD. In general, the test results indicate that the MK is a highly pozzolanic material and can be used as a supplementary cementing material in order to produce a high-performance concrete especially for use in aggressive environments. Such as, thawing salts and dew of the sea.

    Este artículo reporta los resultados de las propiedades físicas y químicas de un producto denominado metacaolín, MK; que fue preparado a partir del tratamiento térmico controlado de una caolinita de alta pureza. Se discuten las propiedades de morteros de cemento adicionados con MK en porcentajes hasta del 50%. Las propiedades investigadas corresponden a la resistencia a la compresión, la distribución del tamaño de poros, la resistencia a la penetración del agua y los iones cloruro y el comportamiento a la corrosión de barras de acero de refuerzo embebidas en este material. Se concluye que para alcanzar un hormigón de alta resistencia se requiere un

  20. High-Power Fiber Lasers Using Photonic Band Gap Materials (United States)

    DiDomenico, Leo; Dowling, Jonathan


    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  1. Radiological and material characterization of high volume fly ash concrete. (United States)

    Ignjatović, I; Sas, Z; Dragaš, J; Somlai, J; Kovács, T


    The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content (226Ra, 232Th and 40K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27-0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Adiabatic flow curves of metallic materials at high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    El-Magd, E. [Technische Hochschule Aachen (Germany); Scholles, H. [Rheinmetall Industrie GmbH, Unterluess (Germany); Weisshaupt, H. [Rheinmetall Industrie GmbH, Unterluess (Germany)


    Dynamic compression tests are carried out on Armco iron, Cr-V-steel, Ni-Cr-Mo-V-steel, an austenitic Ni-Cr-Mo-steel, tantalum, nickel and Ni{sub 3}Al and magnesium. The flow curves are analysed to determine the influence of the deformation energy which is transformed into heat on the flow behaviour and mechanical stability. Not only the material properties but also the conditions of friction between the specimen and the compresion tool are found to have a greate influence on the flow stress reduction and stability. High frictional forces promote mechanical instability of materials with low strain hardening and low strain rate sensitivity. (orig.) [Deutsch] Schlagdruckversuche werden an Armcoeisen, CrV-Stahl, NiCr-MoV-Stahl, austenitischen NiCrMo-Stahl, Tantal, Nickel, Ni{sub 3}Al und Magnesium durchgefuehrt. Die ermittelten Fliesskurven werden analysiert, um den Einfluss der in Waerme umgewandelte Verformungsarbeit auf das Fliessverhalten und die mechanische Stabilitaet zu erfassen. Nicht nur die Werkstoffeigenschaften sondern auch die Reibungsbedingungen erweisen sich als massgebliche Einflussgroessen fuer Fliessspannungsabnahme und die Stabilitaet. Hohe Reibungskraefte foerdern die Verformungslokalisierung und die mechanische Instabilitaet von Werkstoffen mit niedriger Verfestigung und niedriger Geschwindigkeitsempfindlichkeit. (orig.)

  3. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials (United States)

    Pindera, Marek-Jerzy; Arnold, Steven M.


    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  4. High sorption materials for SFL - A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Krall, Lindsay [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)


    This literature survey is part of a project called the SFL Concept Study, carried out at SKB during the years 2011 to 2013, which investigates possible repository concepts for long-lived, low and intermediate level waste. The addition of a high sorption material has been proposed as a means through which releases may be limited from the near-field. In the previous repository concept from 1999 (SFL 3-5), the transport of cationic nuclides was expected to be reduced by their adsorption to the cement, gravel, and bedrock, However, in the preliminary safety assessment of that previous concept, it was found that the key radionuclides are mainly anions. Thus, this literature survey has placed special emphasis on the adsorption of anions. Due to their high release and dose rates from the far field, Cl-36, Mo-93, C-14, and I-129 were of particular interest. Ion exchange and surface complexation are the main adsorption mechanisms. Ion exchange is theoretically reversible and involves the isomorphic substitution of either (a) cation(s) or anion(s) in a mineral structure. The ions exchanged do not need to have the same charge, but the exchange should be stoichiometric. Surface complexation is more dependent on pH, and the strength of the bond formed (and thus the reversibility of the reaction) is partially dependent on the type of complex formed. A material's adsorption mechanism and efficiency is a function of its structure and charge density, but it will also vary as a function of pH, the type and amount of competing ions, and the concentration of the solute in solution. A substantial body of work exists that investigates the application of materials that can remediate groundwater through the adsorptive removal of the contaminant(s). Application of such a function in the future SFL repository will differ from remediation applications in that the system will be more complex and heterogeneous than most of the contaminated waters studied, the adsorption processes must be

  5. Novel nano materials for high performance logic and memory devices (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  6. Material Selection and Characterization for High Gradient RF Applications

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W


    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

  7. High-Resolution Single-Grain Diffraction of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Lienert, Ulrich; Ribárik, Gábor; Ungar, Tamas


    . The microstructure usually influences the materials properties critically. It has been demonstrated that, by using high-energy synchrotron radiation, diffraction peaks off individual grains can be recorded in-situ during processing. Important information such as the orientation, average strain, and size...... of individual grains can be obtained, even if the peak shapes are commonly not analyzed. However, it is also well-known that the shape of diffraction peaks, if observed with sufficient resolution, contains significant information about the microstructure. While the intensity distribution in reciprocal space......). Conventional radial profile (line shape) analysis techniques average over many grains with possibly significantly different microstructure. Under conditions of single-grain diffraction, these limitations are overcome and the intensity distributions along all three directions of reciprocal space are accessible....

  8. Sodium pentazolate: A nitrogen rich high energy density material (United States)

    Steele, Brad A.; Oleynik, Ivan I.


    Sodium pentazolates NaN5 and Na2N5, new high energy density materials, are discovered during first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-) is stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure. The sodium azide (NaN3) precursor is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3.

  9. Deuterium accumulation in carbon materials at high fluence

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, A., E-mail: pisarev@plasma.mephi.r [Moscow Engineering and Physics Institute, Moscow, Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tanabe, T. [Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Emmoth, B. [Royal Institute of Technology, KTH, VR, 16440 Kista (Sweden); Trifonov, N. [Moscow Engineering and Physics Institute, Moscow, Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Rusinov, A., E-mail: rusinov@plasma.mephi.r [Moscow Engineering and Physics Institute, Moscow, Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Stepanov, S.; Gasparyan, Yu. [Moscow Engineering and Physics Institute, Moscow, Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Spitsyn, A.; Khripunov, B. [Russian Research Center ' Kurchatov Institute' , Pl. Kurchatova 1, 123182 Moscow (Russian Federation)


    D retention in fine grain graphite MPG-8 and carbon fiber composite NB31 after exposure to plasma was investigated by means of thermal desorption spectroscopy. It was observed, that deuterium accumulation in the two materials was similar in the region of the fluence of 10{sup 22}-4 x 10{sup 24} D{sup +}/m{sup 2}, though NB31 retains about twice as much. The retention in MPG-8 reveals no saturation at high fluences and no flux dependence in the range of (0.5-3.5) x 10{sup 20} D{sup +}/m{sup 2} s. The difference between polished and unpolished samples, as well as between samples kept in air for various times after irradiation was within the experimental uncertainty.

  10. Development of high effectiveness biomimetic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Youngchang; Lim, Younmook; Gwon, Huijeong; Park, Jongseok; Jeong, Sungin; Jo, Seonyoung


    The aims of this project is to develop the high-performance biomedical new materials. In the 1{sup st} project, we have developed the polymer matrix for drug delivery systems (DDS) for mucosa membrane. We studied on the drug release behavior such as election of drug loading method for antibiotics, propolis and adrenocortic hormone valuation of drug release behavior. The oral DDS is to cure gingival disease as well as inflammation in mouth. It is expected that a new market will be created in the field of DDS for oral mucosa. The 2{sup nd} project, we have developed the multi-functional artificial skin for substitution of animal test such as toxicity, whitening, wrinkle improvement, skin for substitution and skin sensitivity by radiation. It is expected for the above development of biocompatible artificial skin model with good physical property by using radiation technique to be useful for the future biology, cosmetics and pharmaceutical research.

  11. Improved Creep Measurements for Ultra-High Temperature Materials (United States)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.


    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  12. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.


    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  13. Evaluation of fundamental properties of filter materials at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y.; Hiramatsu, K.; Kawamoto, H. [Japan Fine Ceramics Center, Nagoya (Japan); Araki, T. [Chubu Electric Power Co., Inc., Hekinan (Japan); Yamada, M.; Iida, J. [Center For Coal Utilization Japan, Tokyo (Japan)


    In developing a dust collecting technology for high-temperature coal combustion gases for use in a next-generation system of efficient power generation, it is important to raise reliability by ascertaining the relevant physical properties and behaviors of the dust collecting filters. Accordingly, the aim of this research is to clarify the mechanical and thermal properties, and the high-temperature corrosion behaviors (oxidization, reduction), which figure among the fundamental factors restricting reliability in filter materials. In addition, since the ultimate research aim is the selection and development of filters which can be used in the actual dust collecting systems PFBC (950 C in an oxidization atmosphere) and IGCC (700 C in a reduction atmosphere), it is also necessary to conduct tests on the fundamental properties of existing filters, and to classify them for their suitability with given service atmospheres. Finally, for one particular filter selected as suitable for an oxidation atmosphere of 950 C, observations are made of mechanical properties and micro-structural changes before and after an actual dust collecting trial, and cause of damage are investigated. (orig.)

  14. Photoconductivity of high-voltage space insulating materials (United States)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.


    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  15. New Oxide Materials for an Ultra High Temperature Environment

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, John H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering


    In this project, a new oxide material, Hf6Ta2O17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf6Ta2O17 with a complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf6Ta2O17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO2 and Ta2O5 and verified the low thermal conductivity of Hf6Ta2O17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf6Ta2O17, which shows an initial parabolic oxidation kinetics.

  16. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong


    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  17. Combustion and Plasma Synthesis of High-Temperature Materials (United States)

    Munir, Z. A.; Holt, J. B.


    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  18. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. (United States)

    Gębski, M; Dems, M; Szerling, A; Motyka, M; Marona, L; Kruszka, R; Urbańczyk, D; Walczakowski, M; Pałka, N; Wójcik-Jedlińska, A; Wang, Q J; Zhang, D H; Bugajski, M; Wasiak, M; Czyszanowski, T


    In this paper we present an extensive theoretical and numerical analysis of monolithic high-index contrast grating, facilitating simple manufacture of compact mirrors for very broad spectrum of vertical-cavity surface-emitting lasers (VCSELs) emitting from ultraviolet to mid-infrared. We provide the theoretical background explaining the phenomenon of high reflectance in monolithic subwavelength gratings. In addition, by using a three-dimensional, fully vectorial optical model, verified by comparison with the experiment, we investigate the optimal parameters of high-index contrast grating enabling more than 99.99% reflectance in the diversity of photonic materials and in the broad range of wavelengths.

  19. High energy high rate pulsed power processing of materials by powder consolidation and by railgun deposition (United States)

    Persad, C.; Marcus, H. L.; Weldon, W. F.


    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other High Energy High Rate Processing. The characteristics of the High Energy High Rate (1MJ/s) powder consolidation using megampere current pulses from a Homopolar Generator, have been defined. Molybdenum Alloy TZM, A Nickel based metallic glass, Copper graphite composites, and P/M Aluminum Alloy X7091 have been investigated. The powder consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with sub second high temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time Temperature Transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Deposition experiments were conducted using an exploding foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate.

  20. Cleaning aspects of material choice for high end mask manufacturing (United States)

    Nesladek, Pavel; Osborne, Steve; Rümmelin, Stefan


    After decades of binary mask manufacturing using Cr absorber the material spectrum was extended by phase shift material in late 90's during introduction of Half Tone Phase Shift Masks (HT-PSM). This change had strong impact on manufacturing flow as well as several unit processes. A consequences of phase shifter introduction was the necessity of introducing a second level litho process, as well as introducing of dry etch processes due to poor etch properties of MoSi using wet chemistry. Less obvious and rather unremarkable was the impact of this change to clean processes, except the impact of the clean process on the phase shift. In recent years we've seen several new materials based on varying chemical composition as well as thickness of the absorber developed by various mask blank vendors namely Hoya and ShinEtsu. These materials are improving resolution, pattern fidelity and to some degree also mask lifetime. Adding the EUV mask blank materials increases further the spectrum of materials, taking into account all the absorber stacks available today on market. Thorough investigation of the clean process performance as a function of surface material shows significant variation in the critical parameters as defectivity, susceptibility to recontamination and relative cleaning efficiency. Goal of this work is to 1) Compare the already mentioned clean related properties together with feature damage and impact on the critical dimension (CD) shift for different materials. 2) Find a compromise between the technology requirements and process limitations resulting from the combination of available processes with material properties. Some aspects of the new materials such as stack height and interface between absorber and substrate are making this task easier, especially with respect to feature damage. On the other hand the most critical parameter - the cleaning efficiency, dropped due to the introduction of the new materials, mainly due to unfavorable sticking coefficients

  1. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others


    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  2. The NMR Probe of High-T$_{c}$ Materials

    CERN Document Server

    Walstedt, Russell E


    The NMR probe has yielded a vast array of data for the high-Tc materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. Over the twenty years, since the discovery of superconducting cuprates, ongoing analysis and discussion of cuprate NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are threefold. First, it reviews NMR methodology as it has been applied to the cuprate studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of cuprate NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data. Parts two and three are presented in parallel, as there are many aspects to both topics, each with its own interesting history. There is, even twenty years on, a...

  3. Thin film detection of High Energy Materials: Optical Pumping Approach

    CERN Document Server

    Barthwal, Sachin


    We present our work on High Energy Material detection based on thin film of Lithium using the phenomenon of Optical Pumping. The Li atoms present in the thin film are optically pumped to one of the ground hyperfine energy levels so that they can no more absorb light from the resonant light source. Now in presence of a RF signal, which quantifies the ambient magnetic field, this polarized atomic system is again randomized thus making it reabsorb the resonant light. This gives a quantified measurement of the magnetic field surrounding the thin film detector. This is then mapped to the presence of magnetic HEM and hence the HEM are detected. Our approach in this regard starts with verifying the stability of Lithium atoms in various solvents so as to get a suitable liquid medium to form a thin film. In this regard, various UV-visible characterization spectra are presented to finally approach a stable system for the detection. We have worked on around 10 polar and non- polar solvents to see the stability criteria....

  4. High-energy magnetodielectric effect in kagome staircase materials (United States)

    Rai, R. C.; Cao, J.; Vergara, L. I.; Brown, S.; Musfeldt, J. L.; Singh, D. J.; Lawes, G.; Rogado, N.; Cava, R. J.; Wei, X.


    We use a combination of optical spectroscopy, first-principles calculations, and energy-dependent magneto-optical measurements to investigate the high-energy magnetodielectric effect in the frustrated kagome staircase compound Co3V2O8 and develop structure-property relations in this family of materials. The optical spectra show two distinct Co on-site d to d excitations that can be assigned as deriving from spine and cross-tie sites, respectively. The energy separation between these features is substantially larger in Co3V2O8 than in quasi-isostructural Ni3V2O8 , indicating that the spine and cross-tie crystal field environments are more dissimilar in the Co compound compared with those in the Ni analog. Despite the similar appearance of the spectra, orbital correlation effects seem to dominate the optical properties of Co3V2O8 , different from Ni3V2O8 . Through the 6.2K ferromagnetic transition temperature, Co3V2O8 displays ˜2% dielectric contrast near 1.5eV , larger than that observed in the static dielectric constant. Co3V2O8 also shows a high-energy magnetodielectric contrast of ˜2% near 1.4eV at 30T , smaller than that of Ni3V2O8 ( ˜16% near 1.3eV at 30T ). We attribute this result to the lack of strong lattice coupling at the low temperature magnetic phase boundaries.

  5. Silk materials--a road to sustainable high technology. (United States)

    Tao, Hu; Kaplan, David L; Omenetto, Fiorenzo G


    This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release. (United States)

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji


    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanocellular polymer foams as promising high performance thermal insulation materials

    NARCIS (Netherlands)

    Liu, Shanqiu; Duvigneau, Joost; Vancso, Gyula J.


    Low density, nanocellular polymer nanocomposite foams are considered as a promising new class of materials with many promising applications, for example to passively enhance the energy efficiency of buildings. This paper discusses recent developments in this field of polymer materials science.

  8. High performance of low cost soft magnetic materials

    Indian Academy of Sciences (India)


    Abstract. The consistent interest in supporting research and development of magnetic materials during the last century is revealed in their steadily increasing market. In this work, the soft magnetic nanocrystalline. FINEMET alloy was prepared with commercial purity raw materials and compared for the first time with the.

  9. DNA meets synthetic polymers—highly versatile hybrid materials

    NARCIS (Netherlands)

    Alemdaroglu, Fikri E.; Herrmann, Andreas


    The combination of synthetic polymers and DNA has provided biologists, chemists and materials scientists with a fascinating new hybrid material. The challenges in preparing these molecular chimeras were overcome by different synthetic strategies that rely on coupling the nucleic acid moiety and the

  10. Solid lubricant materials for high temperatures: A review (United States)

    Sliney, Harold E.


    Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.

  11. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beyerlein, Irene Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  12. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  13. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications. (United States)

    Ju, Xiao-Jie; Xie, Rui; Yang, Lihua; Chu, Liang-Yin


    Biodegradable stimuli-responsive materials, which exhibit large and sharp physical-chemical changes in response to small physical or chemical stimuli, are attracting increasing interests because of their potential applications in biomedical fields, such as transient implants, drug delivery carriers, and tissue engineering scaffolds. Our previous review (see page 493 of issue 4) summarized those biodegradable 'intelligent' materials that respond to physical stimuli, such as temperature, ultrasound, and magnetic field. Biodegradable 'intelligent' materials that could respond to chemical stimuli, such as pH and specific molecules, have also been studied intensively and significant progress in this field has been achieved. As a single stimulus-responsive property would limit practical application, multi-stimuli-responsive materials are receiving increasing interest and considerable attention. This review summarizes the development of biodegradable 'intelligent' materials in response to chemical stimuli and to dual stimuli; their potential biomedical applications are also introduced. A detailed analysis of publications and patents on such materials in recent years is presented. Most of biodegradable stimuli-responsive materials are currently still at a developmental research stage. Further work is required to improve the responsive properties between the materials and the biological environments, so that the clinical applicability of such devices could be successful. We hope that our review will be helpful in the future development of new stimuli-responsive biodegradable polymers or polymeric systems that can be used reliably in real-life applications.

  14. Characterization of Kaolin as Nano Material for High Quality Construction

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.


    Full Text Available At the moment utilisation of nano technology in every aspect in human life were growing rapidly. In this research, a new nano material was produce from kaolin clay and compare to OPC in terms of surface analysis, particle sizing and micrograph image on new modification of kaolin clay particles. Kaolin clay was established in two processes which are before and after heat treatment. Apart from that, transformation of kaolin clay to nano material was monitor by using Field Emission Scanning Electron Microscope (FESEM and new nano materials were formed. Those images were supported by X Ray Diffraction analysis (XRD, X Ray Fluorescence (XRF and laser particle analyser to see the chemical composition and particle size for all specimens. A combination of rough, smooth and long section can be analysed. From this analysis a new develops nano materials can be achieved and can be utilised especially for construction purposes.

  15. Materials and processes for spacecraft and high reliability applications

    CERN Document Server

    D Dunn, Barrie


    The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Sp...

  16. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material (United States)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)


    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  17. Ultrasonic tomography of multilayer structures of high contrast materials (United States)

    Doyle, T. E.


    Ultrasonic tomography was investigated for the testing of alternating layers of fiber-reinforced composite and rubber bonded between two steel components. The method used nonparallel linear arrays in a crosswell configuration and an iterative reconstruction technique. A waveform and spectrum analysis method was also developed to provide greater sensitivity to material variations. The results show that these structures can be inspected with excellent spatial and material property definition using elementary tomography and signal processing approaches.

  18. Development of High Power Lasers for Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A


    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  19. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth


    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  20. High-throughput materials discovery and development: breakthroughs and challenges in the mapping of the materials genome (United States)

    Buongiorno Nardelli, Marco

    High-Throughput Quantum-Mechanics computation of materials properties by ab initio methods has become the foundation of an effective approach to materials design, discovery and characterization. This data driven approach to materials science currently presents the most promising path to the development of advanced technological materials that could solve or mitigate important social and economic challenges of the 21st century. In particular, the rapid proliferation of computational data on materials properties presents the possibility to complement and extend materials property databases where the experimental data is lacking and difficult to obtain. Enhanced repositories such as AFLOWLIB open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various properties. The practical realization of these opportunities depends almost exclusively on the the design of efficient algorithms for electronic structure simulations of realistic material systems beyond the limitations of the current standard theories. In this talk, I will review recent progress in theoretical and computational tools, and in particular, discuss the development and validation of novel functionals within Density Functional Theory and of local basis representations for effective ab-initio tight-binding schemes. Marco Buongiorno Nardelli is a pioneer in the development of computational platforms for theory/data/applications integration rooted in his profound and extensive expertise in the design of electronic structure codes and in his vision for sustainable and innovative software development for high-performance materials simulations. His research activities range from the design and discovery of novel materials for 21st century applications in renewable energy, environment, nano-electronics and devices, the development of advanced electronic structure theories and high-throughput techniques in

  1. Local enhancement of radiation dose by using high atomic number materials with high energy photon beam (United States)

    Alkhatib, Ahmad Khaled

    The goal of treatment planning in radiation therapy is to maximize the absorbed dose in abnormal cells and minimize the dose in normal cells. It is long established that the probability of pair production interactions (converting photon to electron and positron see chapter II) increases with the increase of the photon energy above a 1.02 MV threshold and with the square of the atomic number of the medium. In this work I tried to locally enhance the absorbed dose by using both a high energy photon beam and high Z material (Gold foils), to observe the effect of the secondary electrons that are produced in the high z material (gold) with high energy photons (end point energy 25MV). To observe the range of these secondary electrons, I changed the gap between two gold foils. I studied also the effect of varying the thickness of both gold foils. To verify the dependence of the atomic number (Z) I repeated the measurements with two Aluminum foils, and to observe the effect of The Higher photon energy I used a range of photon beams with end point energies 6, 10, 15, 18 and 25 MV. I used Monte Carlo code to confirm the result. The calculated dose enhancements from the simulation were in general 5% higher the measured values.

  2. Material-related issues at high-power and high-energy ion beam facilities

    CERN Document Server

    Bender, M.; Tomut, M.; Trautmann, C.


    When solids are exposed to energetic ions (MeV-GeV), their physical and chemical structure can be severely modified. The change is governed by ultrafast dynamical processes starting from the deposition of large energy densities, electronic excitation and ionization processes, and finally damage creation in the atomic lattice system. In many materials, each projectile creates a cylindrical track with a few nanometers in diameter and up to many μm in length. To study and monitor the creation of damage, the GSI irradiation facility dedicated to materials science provides different in-situ and on-line techniques such as high resolution microscopy, X-ray diffraction, optical absorption spectroscopy, thermal imaging and residual gas analysis. The irradiation experiments can be performed under various gas atmospheres and under cryogenic or elevated temperature.

  3. Preparation of Uniform-Sized and Dual Stimuli-Responsive Microspheres of Poly(N-Isopropylacrylamide/Poly(Acrylic acid with Semi-IPN Structure by One-Step Method

    Directory of Open Access Journals (Sweden)

    En-Ping Lai


    Full Text Available A novel strategy was developed to synthesize uniform semi-interpenetrating polymer network (semi-IPN microspheres by premix membrane emulsification combined with one-step polymerization. Synthesized poly(acrylic acid (PAAc polymer chains were added prior to the inner water phase, which contained N-isopropylacrylamide (NIPAM monomer, N,N′-methylene bisacrylamide (MBA cross-linker, and ammonium persulfate (APS initiator. The mixtures were pressed through a microporous membrane to form a uniform water-in-oil emulsion. By crosslinking the NIPAM in a PAAc-containing solution, microspheres with temperature- and pH-responsive properties were fabricated. The semi-IPN structure and morphology of the microspheres were confirmed by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The average diameter of the obtained microspheres was approximately 6.5 μm, with Span values of less than 1. Stimuli-responsive behaviors of the microspheres were studied by the cloud-point method. The results demonstrated that semi-IPN microspheres could respond independently to both pH and temperature changes. After storing in a PBS solution (pH 7.0 at 4 °C for 6 months, the semi-IPN microspheres remained stable without a change in morphology or particle size. This study demonstrated a promising method for controlling the synthesis of semi-IPN structure microspheres with a uniform size and multiple functionalities.

  4. Ultra high vacuum adhesion testing of NERVA engine materials (United States)


    The primary objective of this research program was to determine the effects of surface cleaning and deliberate gaseous contamination on the adhesion behavior of selected candidate materials for use in the NERVA nuclear rocket engine program. Using a torsion balance technique, the relationship between the normal compressive load applied to crossed rod samples and the resultant contact resistance was used to ascertain the extent of adhesion under each set of experimental conditions. In addition to an evaluation of the static adhesion behavior of selected materials combinations, the experimental apparatus was modified to permit a similar investigation relating to the effects of specific tangential displacements of the sample wires, i.e., their sliding friction behavior. During the course of this subcontract, the materials combinations 440 C vs. 440 C. pyrographite vs ZTA graphite, Nbc (graphite) vs. Nbc (graphite), and Electrolize Inconel 718 vs. Au electroplated 302 S/S were evaluated.

  5. High-performance green semiconductor devices: materials, designs, and fabrication (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang


    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  6. High-strain actuator materials based on dielectric elastomers

    DEFF Research Database (Denmark)

    Pelrine, R.; Kornbluh, R.; Kofod, G.


    Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patt......Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black...

  7. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang


    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  8. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS


    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is

  9. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion (United States)


    classes of materials, half-Heusler intermetallic bulk nanocomposites and bismuth -telluride based nanocomposites; • Complete structural and...measurements K. Stokes Physics/AMRI Bismuth telluride/metallic nanoparticle composites, transport measurements J. Wiley Chemistry/AMRI inclusions for nanocomposites. Here, the nanoparticles are synthesized by sol-gel chemistry using hafnium(IV) tert-butoxide and ammonium hydroxide

  10. Southeast Asian Languages - High Priority Materials Development Needs. Working Paper. (United States)

    Jones, R. B.

    The material development needs for the Southeast Asian languages are analyzed as follows: (1) both student and reference grammars must be produced; (2) student and reference English-Foreign Language dictionaries are needed; (3) research is needed in sociolinguistics, semantic analyses, linguistic surveys; (4) elementary, intermediate and advanced…

  11. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala


    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  12. Degradation of a dental filling material after high caries challenge

    Directory of Open Access Journals (Sweden)

    Márcio Antonio Paraizo


    Full Text Available New types of copolymers using monomers which form inorganic polymers network (glass-like and organic networks have been developed, known as ormocers. The aim of this work was to study how a particular dental filling material is degraded when subjected to a caries challenge by using low pH solutions. The supernadants were studied by HPLC to detect the presence of molecules from the resin, while the changes of the material surface were evaluated by contact angle. An organic modified ceromer (ormocer called Definite® (Degussa was tested. Samples were built following manufacturer's instructions. After pH cycles, solutions were injected in a HPLC. The contact angle was obtained using a goniometer after and before the cycles. HPLC results showed material degradation, only detected in acid solutions. Bis-GMA and TEGDMA were detected in Definite® residues. Means and S.D. of contact angle were (p < 0,05: baseline: 85.16° ± 3.90° and after pH cycles: 69.77° ± 7.12°. The authors concluded that an ormocer filling material degraded on a caries simulated environment.

  13. Composite smart materials using high-volume microelectronics fabrication techniques (United States)

    Winzer, Stephen R.; Shankar, Natarajan; Caldwell, Paul J.; May, Russell G.


    Smart materials, containing sensors, actuators and processing electronics, are of great potential use in defense and commercial applications from acoustic stealth to medial imaging. While 1:3 composites using PZT rods are now available commercially in limited quantities, composites with individually addressable actuator and sensor arrays are not, nor have conditioning and processing electronics been embedded in the same material. There are several technical and cost reasons for this, including the complexity of interconnections, capacitance of individual elements, thermal dissipation, and the expense of fabricating the material. We have been developing composite materials comprising arrays of miniature actuators fabricated using surface mount capacitor technology, and amenable to automated fabrication using `pick and place' techniques. Miniature actuators with up to 0.1% strain, and operating at 30 V bias and ac swing of +/- 30 V have been fabricated, and placed in 10-by- 10 actuator arrays on Kapton sheets on which circuits have been printed. The arrays were then `potted' in RTV liquid rubbers. Individual actuator motion and multiple actuator influence functions were measured as a function of applied voltage and adjacent actuator motion. These results, along with in-water performance (source level and directivity), are presented.

  14. Molecularly Imprinted Polymers and Highly Porous Materials in Sensing Applications (United States)


    83). The supercritical CO2 is then slowly vented. In the second method the monomers are polymerized with formic acid in the presence of...instance, materials might include polymers, molecularly imprinted polymers, dendrimers, porous silicon, optical fibres, nanoparticles /metallics, aptamersD...Analytes include small organic molecules, pharmaceuticals, pesticides, amino acids and peptides, nucleotide bases, steroids and sugars. Analytes

  15. Combustion and Plasma Synthesis of High Temperature Materials (United States)


    cc 0v Table 4. Characteristics of Some Refractory Materials Dolomite and Magnesite-Based Characteristics Dolomite - Magnesite- Based Based...Other routes also exist such as calcination of organo-metallic compounds with a nitriding agent. Recently, thermal plasma processes have been used for

  16. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials (United States)


    dental manufacturers and laboratories have been marketing high- translucency monolithic zirconia restorative materials with claims of good esthetics ...restorations to combine the esthetics of all-ceramic restorations with the strength properties of zirconia. The purpose of this study was to evaluate...the translucency and strength of new highly translucent monolithic zirconia ceramic materials. Four monolithic zirconium-oxide materials marketed as

  17. Development of Composite Materials with High Passive Damping Properties

    National Research Council Canada - National Science Library

    Crocker, Malcolm J


    ... structure with high damping. Composite sandwich structures have several advantages, such as their high strength-to-weight ratio, excellent thermal insulation, and good performance as water and vapor barriers...

  18. Titanium nitride as a refractory plasmonic material for high temperature applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Boltasseva, Alexandra


    The use of titanium nitride as a plasmonic material for high temperature applications such as solar/thermophotovoltaics is studied numerically and experimentally. Performance of titanium nitride is compared with widely used materials in each field. © 2014 OSA....

  19. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.


    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  20. Pseudo-stationary separation materials for highly parallel separations.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Palmer, Christopher (University of Montana, Missoula, MT)


    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  1. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation (United States)


    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  2. Low to high performance recycled cementitious materials: case studies


    Etxeberria Larrañaga, Miren


    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  3. Amorphous and Nanocrystalline High Temperature Magnetic Material for PWR (United States)


    in collaboration with Magnetics, Inc. has produced nanopowders of the HITPERM materials. The work was extended to include study of...the interfacial stresses between the substrate and coating that arises during the coating processes. Alumina , Beryllia, Forsterite and Pt were...trial was performed to evaluate the efficacy of plasma synthesized ferrite coatings. NiZn ferrites were sprayed onto Alumina substrates using the

  4. Advanced Cathode Material For High Energy Density Lithium-Batteries Project (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  5. Highly magnetic nanoporous carbon/iron-oxide hybrid materials. (United States)

    Alam, Sher; Anand, Chokkalingam; Lakhi, Kripal Singh; Choy, Jin-Ho; Cha, Wang Soo; Elzhatry, Ahmed; Al-Deyab, Salem S; Ohya, Yutaka; Vinu, Ajayan


    The preparation of size-controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non-linear magnetic properties and a magnetic moment of approximately 229 emu g(-1), which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Materials for High-Temperature Hydrogen Fluorine Environments. (United States)


    was detected). This complete phase diagram is being determined,(i) and the solid solution region extends to 57 mol % LaF3 in SrF2 with maximum melting...lanthanum chromite (LaCrQ 3 ), yttrium (Y), yttrium oxide (Y2 03 ), nickel aluminide (NiAl), Y20 3 doped Ni, magnesium oxide (MgO), aluminum oxide...with externally wound cooling coils. Figure 1 is an as-built flow diagram of the material test facility as designed by the Y’-12 Engineering Division

  7. Cracking Tendency Prediction of High-Performance Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Ke Chen


    Full Text Available The constraint ring test is widely used to assess the cracking potential for early-age cementitious materials. In this paper, the analytical expressions based on elastic mechanism are presented to estimate the residual stresses of the restrained mortar ring by considering the comprehensive effects of hydration heat, autogenous and drying shrinkage, creeping, and restraint. In the present analytical method, the stress field of the restrained ring is treated as the superposition of those caused by hydration heat, external restraint, autogenous and drying shrinkage, and creep. The factors including the properties of materials, environmental parameters such as relative humidity and temperature, the geometry effect of specimen, and the relative constraint effects of steel ring to mortar ring, are taken into account to predict the strain development with age of mortar. The temperature of the ring, the elastic modulus, the creep strain, and the split tensile strength are measured to validate the model. The age of cracking is predicted by comparing the estimated maximum tensile stress of the restrained mortar ring with the measured split tensile strength of specimen. The suitability of the present analytical method is assessed by comparing with the restraint ring test and a soundly good agreement is observed.

  8. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)


    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  9. Alternative aggregates and materials for high friction surface treatments. (United States)


    The State of Florida has used high friction surface treatments (HFSTs) since 2006 to reduce wet weather crashes on : tight curves and intersections and to maintain bridge decks; however, the Florida Department of Transportation : (FDOT) has reported ...

  10. Recent Advances in the Synthesis of High Explosive Materials (United States)


    toxic mercury fulminate (1), adopted for use in some of the first percussion primer formulations in the early 1800s [6] and later by Alfred Nobel for...high sensitivity of mercury fulminate , and its ability to lose performance under high loading pressures paved the way for lead azide (2) to replace the... mercury fulminate (1), lead azide (2) and normal lead styphnate (3) and basic lead styphnate (4). 2.2. Why “Green” Primary Explosives? Over the past two

  11. [Therapeutic contact lenses and the advantages of high Dk materials]. (United States)

    Coral-Ghanem, Cleusa; Ghanem, Vinícius Coral; Ghanem, Ramon Coral


    Therapeutic contact lenses are useful in a variety of ocular surface diseases. Their main indications are: to relieve the pain; protect ocular surface; promote corneal healing and epithelial regeneration; seal a leaking corneal wound and deliver ophthalmic drugs on the ocular surface. There are several kinds of lens designs and materials, and their choice is dependent on the specific disease to be treated, the duration of treatment and the physiologic needs of the diseased cornea. Bullous keratopathy, recurrent epithelial erosion syndrome, dry eye and postoperative epithelial defects are amongst their indications. Therapeutic contact lenses should not be indicated in the presence of active infectious keratitis or when the patient is not compliant. Corneal neovascularization, giant papillary conjunctivitis and infectious keratitis are serious complications, which can be prevented by correctly fitting and maintaining the therapeutic contact lenses. Silicon-hydrogel therapeutic contact lenses, due to their higher oxygen permeability, allow extended wear schedules, decreasing the need for frequent lens replacement.

  12. Introduction to porous spinel for refractory (high temp material

    Directory of Open Access Journals (Sweden)

    Kumar Saurav


    Full Text Available The paper examines thermal properties of materials. The transient pulse method was used for specific heat, thermal diffusivity and thermal conductivity determination. Porous MgO was synthesis by heating pellets at 1100 °C for 1 h. The resultant porous MgO was then immersed in 10 mol/L aluminum nitrate solution, dried, and reheated at 1300 °C for 2 h to convert it to spinel. The evaluation was performed with the help of mathematical apparatus used for study of fractal structures properties. The method results from generalized relations that were designed for study of physical properties of fractal structures. As it is shown these relations are in a good agreement with the equations used for the description of time responses of temperature for the pulse input of supplied heat.

  13. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A


    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  14. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring Project (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  15. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.


    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  16. Physics and Materials Science of High Temperature Superconductors (United States)


    SUPERCONDUCTIVITY OF BULK HIGH TEMPERATURE SUPERCONDUCTORS. F. M. Costa and J. M. Vieira, Departamento de Eng. Ceramica e de Vidro, Universidade de Aveiro...Lisboa, Portugal; F. Costa, Dep Eng Ceramica e do Vidro, Universidade de Aveiro, P-3800 Avaerio, Portugal; and J. M. Alves and M. M. Godinho, Dep Fisica

  17. Multimedia presentation teaching material in physics in high school

    Directory of Open Access Journals (Sweden)

    Гузель Фаниловна Михайлишина


    Full Text Available This article describes the experience of using modern information and communication technologies in creating and conducting lectures on general physics at a technical high school. Didactic requirements to multimedia lectures are formulated, and particular method of lecturing are presented. This should be considered when establishing such lectures at universities in various fields.

  18. Engineering Materials for Very High Temperatures: An ONRL Workshop (United States)


    high temperature, time-dependent strength of hot isostatically pressed (HIP’ed) Y-TZP (Swab, Katz, & Starita , 1987). In this instance a commercially...12, p-137-14 6. Swab, J, Katz, R. N. & Starita , C., (1987), unpublished research. Tracy, C. & Slavin, M. J., (1927), Presented at 89th annual meeting

  19. Materialism. (United States)

    Melnyk, Andrew


    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Energy conversion approaches and materials for high-efficiency photovoltaics (United States)

    Green, Martin A.; Bremner, Stephen P.


    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  1. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji


    Detection and quantification of microcracks due to autogenous shrinkage in high-performance concrete represents a problematic issue. Techniques based on crack impregnation typically require drying of the samples, which may introduce further cracks. Other non-destructive techniques, such as x......-ray tomography, do not allow sufficient resolution of microcracks. A new technique presented in this paper allows detection of microcracks in cement paste while avoiding artefacts induced by unwanted restraint, drying or temperature variations. The technique consists in casting small circular cylindrical samples...... of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles...

  2. Trade-Off Analysis in High-Throughput Materials Exploration. (United States)

    Volety, Kalpana K; Huyberechts, Guido P J


    This Research Article presents a strategy to identify the optimum compositions in metal alloys with certain desired properties in a high-throughput screening environment, using a multiobjective optimization approach. In addition to the identification of the optimum compositions in a primary screening, the strategy also allows pointing to regions in the compositional space where further exploration in a secondary screening could be carried out. The strategy for the primary screening is a combination of two multiobjective optimization approaches namely Pareto optimality and desirability functions. The experimental data used in the present study have been collected from over 200 different compositions belonging to four different alloy systems. The metal alloys (comprising Fe, Ti, Al, Nb, Hf, Zr) are synthesized and screened using high-throughput technologies. The advantages of such a kind of approach compared to the limitations of the traditional and comparatively simpler approaches like ranking and calculating figures of merit are discussed.

  3. Development of advanced high heat flux and plasma-facing materials (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.


    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  4. Research on the sound absorption characteristics of porous metal materials at high sound pressure levels

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang


    Full Text Available Porous metal materials are widely used in noise control with high sound pressure applications such as aircraft engine liners and combustion chambers for rocket engines due to their excellent performance of sound absorption characteristics and distinguished advantages in heat resistance, lightness, and stiffness. Understanding the effect of sound pressure on the acoustic properties of these materials is crucial when attempting to predict silencer performance. In this article, we experimentally investigate the sound absorption characteristics of porous metal materials at high sound pressure level. The effects of material parameters on the sound absorption characteristics of porous metal materials under high sound pressure level are further explored experimentally. Measurements are carried out by using a standard impedance tube that has been modified to accommodate sound pressure level of up to 150 dB. The experimental results show that with the increase in sound pressure level, the effect of sound pressure level on the sound absorption characteristics yields different variation regularities in different frequencies. The sound absorption performance of porous metal materials increases with the increase in sound pressure level in low frequency, which is reasonably consistent with the theoretical results. Under high sound pressure level, the sound absorption characteristics are significantly dependent upon the material parameters such as the metal fiber diameter, the material porosity, and the material thickness. It could provide a reliable experimental validation for the applications of porous metal materials in the area of vibration and noise control at high sound pressure levels.

  5. Biodeuterated Materials: High-Temperature Lubricants from Algae. (United States)


    methanol for lipid extrac- tion and esterification of the fatty acids did not appear to be a likely source of hydrogen substitution on the deuterocarbon...marked as Spoehr and Milner obtained in H20 media [25]. The unusually high concentration of oleic acid (18:1) obtained with Chlorella growing on an agar... esterification with a fatty acid with the same or a different number of car- bon atoms: CD 3 - (CD 2 )16 - C_ 0 LiAID4 CD3 - (CD 2)16 - CD2 - OD OGD 0 +CD3

  6. Teaching material based on biomechanical evidence: ‘high-jump hurdles’ for improving fundamental motor skills

    Directory of Open Access Journals (Sweden)

    Otsuka Mitsuo


    Full Text Available Study aim: the purpose of this study has been to develop teaching materials to help improve junior high school students’ fundamental ability to repeatedly run and jump with a high and far-reaching travelling motion and to confirm the effectiveness of a new unit using teaching materials that are experimental in comparison to a conventional unit.

  7. Improving Physics Teaching Materials on Sound for Visually Impaired Students in High School (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry


    When visually impaired students attend regular high school, additional materials are necessary to help them understand physics concepts. The time for teachers to develop teaching materials for such students is scarce. Visually impaired students in regular high school physics classes often use a braille version of the physics textbook. Previously,…

  8. Highly Luminescent Carbon-​Nanoparticle-​Based Materials: Factors Influencing Photoluminescence Quantum Yield

    NARCIS (Netherlands)

    Qu, S.; Shen, D.; Liu, X.; Jing, P.; Zhang, L.; Ji, W.; Zhao, H.; Fan, X.; Zhang, H.


    Unravelling the factors influencing photoluminescence (PL) quantum yield of the carbon nanoparticles (CNPs) is the prerequisite for prepg. highly luminescent CNP-​based materials. In this work, an easy and effective method is reported for prepg. highly luminescent CNP-​based materials. Water-​sol.

  9. High Throughput Assay for Bacterial Adhesion on Acellular Dermal Matrices and Synthetic Surgical Materials (United States)

    Nyame, Theodore T.; Lemon, Katherine P.; Kolter, Roberto; Liao, Eric C.


    Background There has been increasing use of various synthetic and biologically derived materials in surgery. Biologic surgical materials are used in many plastic surgery procedures, ranging from breast reconstruction to hernia repairs. In particular, acellular dermal matrix (ADM) material has gained popularity in these applications. There is a paucity of data on how ADM compares to other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. We have designed a high throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. Methods Clinical isolates of Staphylococcus aureus (strains SC-1 and UAMS-1) were cultured with different materials and bacterial adherence was measured using a resazurin cell vitality reporter microtiter assay. Four materials that are commonly utilized in reconstructive procedures were evaluated: prolene mesh, vicryl mesh, and two different ADM preparations (AlloDerm®, FlexHD®). We were able to develop a high throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. Results The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material, as well as synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to ADM materials (AlloDerm® vs. FlexHD®) than to the synthetic material prolene. S. aureus also adhered better to vicryl than to prolene. Strain UAMS-1 adhered better to vicryl and ADM materials than did strain SC-1. Conclusion Our results suggest that S. aureus adheres more readily to ADM material than to synthetic material. We have developed an assay to rapidly test bacterial formation on surgical materials, using two S. aureus bacterial strains. This provides a standard method to evaluate existing and new materials with regard to bacterial adherence and potential

  10. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F


    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  11. 9 Cr-- 1 Mo steel material for high temperature application (United States)

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher


    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  12. Premiere in high speed materials inter-operability

    Energy Technology Data Exchange (ETDEWEB)

    Brun, D.


    The Eurostar trains have been designed to meet the safety requirements of the Channel Tunnel. In particular, ti must be possible to remove the train from the tunnel in most fault scenarios. The train design is based upon an optimal capacity/price ratio. As far as the installation of electrical equipment is concerned (power supply, power conversion, motor units), the variety of track configurations is another consideration in addition to the questions of safety. The original solutions adopted give traction and braking performance that are satisfactory by comparison with the high-speed trains (TGV) in service on appropriate track, and the best possible for the British track. The trains are heavier and less powerful, but they are capable of getting out of the tunnel with only one motor out of three in service. (author). 6 figs.

  13. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)


    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Rare earth chalcogenides for use as high temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, Jhn [Iowa State Univ., Ames, IA (United States)


    In the first part of the thesis, the electric resistivity, Seebeck coefficient, and Hall effect were measured in Xy(Y2S3)1-y (X = Cu, B, or Al), for y = 0.05 (Cu, B) or 0.025-0.075 for Al, in order to determine their potential as high- temperature (HT)(300-1000 C) thermoelectrics. Results indicate that Cu, B, Al- doped Y2S3 are not useful as HT thermoelectrics. In the second part, phase stability of γ-cubic LaSe1.47-1.48 and NdSe1.47 was measured periodically during annealing at 800 or 1000 C for the same purpose. In the Nd selenide, β phase increased with time, while the Nd selenide showed no sign of this second phase. It is concluded that the La selenide is not promising for use as HT thermoelectric due to the γ-to-β transformation, whereas the Nd selenide is promising.

  15. Enabling Technologies for High-Throughput Screening of Nano-Porous Materials: Collaboration with the Nanoporous Materials Genome Center

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jordan [Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemistry


    The overarching goal of this research was to develop new methodologies to enable the accurate and efficient modeling of complex materials using computer simulations. Using inter-molecular interaction energies calculated via an accurate but computationally expensive approach (symmetry-adapted perturbation theory), we parameterized efficient next-generation “force fields” to utilize in subsequent simulations. Since the resulting force fields incorporate much of the relevant physics of inter-molecular interactions, they consequently exhibit high transferability from one material to another. This transferability enables the modeling of a wide range of novel materials without additional computational cost. While this approach is quite general, a particular emphasis of this research involved applications to so-called “metal-organic framework”(MOF) materials relevant to energy-intensive gas separations. We focused specifically on CO2/N2 selectivity, which is a key metric for post combustion CO2 capture efforts at coal-fired power plants. The gas adsorption capacities and selectivity of the MOFs can be tailored via careful functionalization. We have demonstrated that our force fields exhibit predictive accuracy for a wide variety of functionalized MOFs, thus opening the door for the computational design of “tailored” materials for particular separations. Finally, we have also demonstrated the importance of accounting for the presence of reactive contaminant species when evaluating the performance of MOFs in practical applications.

  16. Segmentation of low‐cost high efficiency oxide‐based thermoelectric materials

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Linderoth, Søren


    Thermoelectric (TE) oxide materials have attracted great interest in advanced renewable energy research owing to the fact that they consist of abundant elements, can be manufactured by low-cost processing, sustain high temperatures, be robust and provide long lifetime. However, the low conversion...... efficiency of TE oxides has been a major drawback limiting these materials to broaden applications. In this work, theoretical calculations are used to predict how segmentation of oxide and semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, high temperature...... oxide-based segmented legs. The materials for segmentation are selected by their compatibility factors and their conversion efficiency versus material cost, i.e., “efficiency ratio”. Numerical modelling results showed that conversion efficiency could reach values of more than 10% for unicouples using...

  17. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang


    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  18. Application and Prospects of High-strength Lightweight Materials used in Coal mine (United States)

    He, Pan


    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  19. High mobility high efficiency organic films based on pure organic materials (United States)

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI


    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  20. Effect of High Speed Sintering on the Properties of Zirconia Oxide Materials (United States)


    12. REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Effect of High-Speed Sintering on the Properties ofZirconia-Oxide Materials 6. AUTHOR(S...zirconia materials typically requires several hours of sintering. A new sintering furnace is available that reportedly sinters zirconia in...zirconia were also compared to a lithium- disilicate material , IPS e.max CAD (lvoclar Vivadent). IPS e.max CAD beams were crystallized in the CEREC

  1. High-throughput assay for bacterial adhesion on acellular dermal matrices and synthetic surgical materials. (United States)

    Nyame, Theodore T; Lemon, Katherine P; Kolter, Roberto; Liao, Eric C


    There has been increasing use of synthetic and acellular dermal matrix materials in surgery, ranging from breast reconstruction to hernia repairs. There is a paucity of data on how acellular dermal matrix compares with other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. The authors have designed a high-throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. Clinical isolates of S. aureus (strains SC-1 and UAMS-1) were cultured with different materials, and bacterial adherence was measured using a resazurin cell vitality assay. Four materials that are commonly used in surgery were evaluated: Prolene mesh, Vicryl mesh, and two different acellular dermal matrix preparations (AlloDerm and FlexHD). The authors were able to develop a high-throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material and synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to acellular dermal matrix materials (AlloDerm versus FlexHD) than to the synthetic material Prolene. S. aureus also adhered better to Vicryl than to Prolene. Strain UAMS-1 adhered better to Vicryl and acellular dermal matrix materials than did strain SC-1. The results show that S. aureus adheres more readily to acellular dermal matrix material than to synthetic material. The resazurin assay provides a standard method for evaluating surgical materials with regard to bacterial adherence and potential propensity for biofilm development.

  2. Hydrogen storage materials discovery via high throughput ball milling and gas sorption. (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S


    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  3. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials (United States)

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.


    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  4. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva


    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  5. Summary of U. S. LMFBR programs on high temperature structural design and associated materials testing

    Energy Technology Data Exchange (ETDEWEB)


    This document was prepared at the request of the Division of Reactor Development and Demonstration (DRDD), U.S. Energy Research and Development Administration. Four general areas of research and development are included: high-temperature structural design; irradiation effects--mechanical properties of structural materials; sodium environmental effects--influence of sodium on mechanical properties; and general material qualification.

  6. Improving the Effectiveness of Organic Chemistry Experiments through Multimedia Teaching Materials for Junior High School Students (United States)

    Lou, Shi-Jer; Lin, Hui-Chen; Shih, Ru-Chu; Tseng, Kuo-Hung


    The purpose of the study aimed to explore the effects of three different forms of the multimedia teaching materials on the achievements and attitudes of junior high school students in a chemistry laboratory context. The three forms of the multimedia teaching materials, static pictures, video, and animation, were employed to teach chemistry…

  7. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)



    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.


    Directory of Open Access Journals (Sweden)

    S. C. LIM


    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  9. Measurements of Electrical and Electron Emission Properties of Highly Insulating Materials (United States)

    Dennison, J. R.; Brunson, Jerilyn; Hoffman, Ryan; Abbott, Jonathon; Thomson, Clint; Sim, Alec


    Highly insulating materials often acquire significant charges when subjected to fluxes of electrons, ions, or photons. This charge can significantly modify the materials properties of the materials and have profound effects on the functionality of the materials in a variety of applications. These include charging of spacecraft materials due to interactions with the severe space environment, enhanced contamination due to charging in Lunar of Martian environments, high power arching of cables and sources, modification of tethers and ion thrusters for propulsion, and scanning electron microscopy, to name but a few examples. This paper describes new techniques and measurements of the electron emission properties and resistivity of highly insulating materials. Electron yields are a measure of the number of electrons emitted from a material per incident particle (electron, ion or photon). Electron yields depend on incident species, energy and angle, and on the material. They determine the net charge acquired by a material subject to a give incident flu. New pulsed-beam techniques will be described that allow accurate measurement of the yields for uncharged insulators and measurements of how the yields are modified as charge builds up in the insulator. A key parameter in modeling charge dissipation is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across an insulator, as well as the time scale for charge transport and dissipation. Comparison of new long term constant-voltage methods and charge storage methods for measuring resistivity of highly insulating materials will be compared to more commonly used, but less accurate methods.

  10. Brittle materials at high-loading rates: an open area of research (United States)

    Forquin, Pascal


    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, Arvid [ORNL


    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  12. Ultra-high performance concrete for Michigan bridges, material performance : phase I. (United States)


    One of the latest advancements in concrete technology is Ultra-High Performance Concrete (UHPC). UHPC is : defined as concretes attaining compressive strengths exceeding 25 ksi (175 MPa). It is a fiber-reinforced, denselypacked : concrete material wh...

  13. A Decentralized Control Strategy for High Density Material Flow Systems with Automated Guided Vehicles


    Schwab, Melanie


    This work presents a universal decentralized control strategy for grid-based high-density material flow systems with automated guided vehicles and gives insights into the system behavior as well as the solution quality.

  14. A New Class of High Z Nanocrystalline and Textured Oxide-Based Thermoelectric Material Project (United States)

    National Aeronautics and Space Administration — We propose to develop high figure of merit (ZT) oxide-based thermoelectric materials. This will be accomplished by engineering a novel microstructure that will lead...

  15. Fracture Analysis of Rubber Sealing Material for High Pressure Hydrogen Vessel

    National Research Council Canada - National Science Library

    YAMABE, Junichiro; FUJIWARA, Hirotada; NISHIMURA, Shin


    In order to clarify the influence of high pressure hydrogen gas on mechanical damage in a rubber O-ring, the fracture analysis of the O-ring used for a sealing material of a pressure hydrogen vessel was conducted...

  16. High-throughput search for caloric materials: the CaloriCool approach (United States)

    Zarkevich, N. A.; Johnson, D. D.; Pecharsky, V. K.


    The high-throughput search paradigm adopted by the newly established caloric materials consortium—CaloriCool®—with the goal to substantially accelerate discovery and design of novel caloric materials is briefly discussed. We begin with describing material selection criteria based on known properties, which are then followed by heuristic fast estimates, ab initio calculations, all of which has been implemented in a set of automated computational tools and measurements. We also demonstrate how theoretical and computational methods serve as a guide for experimental efforts by considering a representative example from the field of magnetocaloric materials.

  17. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović


    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  18. Ignition Resistance of Polymeric Materials to Particle Impact in High-Pressure Oxygen (United States)

    Forsyth, Elliot T.; Stolzfus, Joel M.; Fries, Joseph (Technical Monitor)


    Particle impact ignition has been the primary cause of numerous fires in oxygen systems. This ignition phenomenon is known to occur where particles are present in high-velocity gas, and where impact occurs on a flammable material. The particle impact ignition behavior of many metals has been widely studied, but the particle impact ignition behavior of polymeric materials is relatively unknown. Particle impact ignition in polymeric materials is a concern as these materials are commonly used in component seat and seal applications, where high-velocity particle impacts can occur. This study evaluates several polymeric materials and compares the minimum temperature required for ignition (threshold temperature) of these materials: Kel-F 81 (CTFE), Teflon (PTFE), PEEK, Vespel SP-21, and Nylon 6/6. The materials were configured as targets in the White Sands Test Facility high-velocity particle impact test system. Gaseous oxygen was flowed at 4000 psi and sonic velocity, and the targets were impacted with 2000-micron aluminum 2017 particles. This paper discusses the results of these tests and ranks the materials according to their threshold temperatures at these conditions.

  19. Mechanical material behaviour in highly dynamic load conditions. Mechanisches Werkstoffverhalten unter hochdynamischen Belastungsbedingugen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, F.J. (Fraunhofer-Inst., IFAM, Bremen (Germany))


    The numerical simulation of complex component stresses and structure deformations make it possible to estimate or describe the component behaviour during the design phase in many cases. The quality of the simulation calculation is determined by the possibility of access to suitably well-designed material databanks. Characterisation of the material in nearly realistic load conditions forms the basis of every databank of this kind. Numerical simulation, characterisation of the material and component behaviour supplement one another in the description and interpretation of deformation processes in partly extreme external load conditions. The load conditions have a direct effect on the mechanical material behaviour. The effect of the speed of stressing on the deformation and strength behaviour was shown from two examples from differed groups of materials (deep drawn sheet St 14 and CFK). It is true for both examined materials that they reach higher strengths under high dynamic loads, without any sacrifice of the deformation ability. (orig.).

  20. Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation (United States)

    Potyrailo, Radislav A.; Mirsky, Vladimir M.

    New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.

  1. Accelerating the design of solar thermal fuel materials through high throughput simulations. (United States)

    Liu, Yun; Grossman, Jeffrey C


    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  2. [Effect of high-temperature phase change material on the performance of infrared decoy]. (United States)

    Wu, Ting-Ting; Chen, Xin; Han, Ai-Jun; Ye, Ming-Quan; Zhao, Min-Chun


    The impact of the high-temperature phase change material on conventional infrared decoy's combustion performance and infrared radiation characteristics was studied. The selected high-temperature phase change materials did not reduce infrared radiation in the 3-5 microm or 8-14 microm band of infrared decoy, while extended the burning time, and reduced the burning rate of the grain, thus prolonged the effective interference time of IR decoy. The results show the phase change material is effective infrared decoy functional additives.

  3. A Simplified Method for Upscaling Composite Materials with High Contrast of the Conductivity

    KAUST Repository

    Ewing, R.


    A large class of industrial composite materials, such as metal foams, fibrous glass materials, mineral wools, and the like, are widely used in insulation and advanced heat exchangers. These materials are characterized by a substantial difference between the thermal properties of the highly conductive materials (glass or metal) and the insulator (air) as well as low volume fractions and complex network-like structures of the highly conductive components. In this paper we address the important issue for the engineering practice of developing fast, reliable, and accurate methods for computing the macroscopic (upscaled) thermal conductivities of such materials. We assume that the materials have constant macroscopic thermal conductivity tensors, which can be obtained by upscaling techniques based on the postprocessing of a number of linearly independent solutions of the steady-state heat equation on representative elementary volumes (REVs). We propose, theoretically justify, and computationally study a numerical method for computing the effective conductivities of materials for which the ratio δ of low and high conductivities satisfies δ ≪ 1. We show that in this case one needs to solve the heat equation in the region occupied by the highly conductive media only. Further, we prove that under certain conditions on the microscale geometry the proposed method gives an approximation that is O(δ)-close to the upscaled conductivity. Finally, we illustrate the accuracy and the limitations of the method on a number of numerical examples. © 2009 Society for Industrial and Applied Mathematics.

  4. Improving physics teaching materials on sound for visually impaired students in high school (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry


    When visually impaired students attend regular high school, additional materials are necessary to help them understand physics concepts. The time for teachers to develop teaching materials for such students is scarce. Visually impaired students in regular high school physics classes often use a braille version of the physics textbook. Previously, we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. In this research we evaluate the use of a revised braille textbook, relief drawings and 3D models. The research focussed on the topic of sound in grade 10.

  5. Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries. (United States)

    Myung, Seung-Taek; Noh, Hyung-Joo; Yoon, Sung-June; Lee, Eung-Ju; Sun, Yang-Kook


    High-energy-density rechargeable batteries are needed to fulfill various demands such as self-monitoring analysis and reporting technology (SMART) devices, energy storage systems, and (hybrid) electric vehicles. As a result, high-energy electrode materials enabling a long cycle life and reliable safety need to be developed. To ensure these requirements, new material chemistries can be derived from combinations of at least two compounds in a secondary particle with varying chemical composition and primary particle morphologies having a core-shell structure and spherical cathode-active materials, specifically a nanoparticle core and shell, nanoparticle core and nanorod shell, and nanorod core and shell. To this end, several layer core-shell cathode materials were developed to ensure high capacity, reliability, and safety.

  6. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures......σT/κ , where S, σ, T and κ are the Seebeck coefficient, electrical conductivity, absolute temperature and thermal conductivity, respectively). We have fabricated high-quality oxide TE materials based on Ca3Co4O9 by optimizing the method for synthesis, modifying the compositions...... and by nanostructuring. This report will focus on the high temperature TE properties of heavy ions doping nanostrcutred Ca3Co4O9 oxides, which exhibit promising ZT, implying suitable polycrystalline oxide TE materials for power generation from waste heat....

  7. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics. (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu


    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  8. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements. (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O


    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  9. Translucency and strength of high-translucency monolithic zirconium oxide materials. (United States)

    Church, Todd D; Jessup, Jeffrey P; Guillory, Villa L; Vandewalle, Kraig S


    The purpose of this study was to evaluate the translucency and strength of highly translucent monolithic zirconia ceramic materials recently introduced to the market. Four monolithic zirconium oxide materials promoted as having high translucency (BruxZir Shaded 16, BruxZir HT, Lava Plus, and inCoris TZI C) were compared to a high-translucency, lithium disilicate monolithic glass-ceramic material (IPS e.max CAD HT). To evaluate translucency, the materials were sectioned into 0.5-, 1.0-, 1.5-, and 2.0-mm-thick specimens; all were sintered and polished. Translucency parameters were calculated with a spectrophotometer. To evaluate flexural strength and modulus, the ceramic materials were sectioned to create beams and fractured in a universal testing machine. The lithium disilicate had significantly greater translucency than the zirconia materials at each thickness. In general, the translucencies of the zirconia materials were similar at each thickness. However, at the manufacturers' recommended minimal thicknesses, 0.5-mm specimens of BruxZir Shaded 16, inCoris TZI C, and Lava Plus were more translucent than the 1.0-mm-thick specimens of IPS e.max CAD HT. Translucency significantly decreased for each material at each increase in thickness. The flexural strengths of the zirconia materials were similar to each other and significantly greater than that of IPS e.max CAD HT. Flexural moduli were more variable. Of the zirconia materials, BruxZir Shaded 16 had an overall better combination of translucency, strength, and modulus.

  10. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai


    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  11. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding


    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  12. Developing Teaching Materials PISA-Based for Mathematics and Science of Junior High School (United States)

    Somakim; Suharman, Andi; Madang, Kodri; Taufiq


    This research aims to develop valid and practical teaching materials for mathematics and science lesson PISA-based for junior high school students and to determine potential effects on students in scientific activity. Subjects of this study were students of Junior High School 9 Palembang (SMP Negeri 9 Palembang). The method used in this study is…

  13. Localized Electron Trap Modification as a Result of Space Weather Exposure in Highly Disordered Insulating Materials (United States)


    Chemistry that Drives Them) Due to Exposure to High Energy GEO-like Electrons Conference Proceeding Advanced Maui Optical and Space Surveillance...distribution is unlimited. 28 References 1. Awaja, F., et al., Surface molecular degradation of selected high performance polymer composites under low...6 2.3. Material Chemistry

  14. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.


    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found b...

  15. High strain rate characterization of low-density low-strength materials (United States)

    Sawas, O.; Brar, N. S.; Brockman, R. A.


    The Conventional Split Hopkinson Bar (CSHB) is a reliable experimental technique for measuring high strain rate properties of high-strength materials. Attempts to use the CSHB for similar measurements in more compliant materials, such as plastics and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both low noise-to-signal ratio data and a longer input pulse for higher maximum strain. Data reduction procedures for APSHB that account for the viscoelastic behavior of the pressure bars are presented. Comparing the high strain rate response of 1100 Al obtained from CSHB and APSHB validates these procedures. Stress-strain data at strain rates of 500-2000/s for polycarbonate, polyurethane foam, and styrofoam are presented.

  16. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong


    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  17. Stochastic clustering of material surface under high-heat plasma load (United States)

    Budaev, Viacheslav P.


    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  18. Development of highly effective neutron shielding material made of phenol-novolac type epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Jeong, Myeong Soo; Hong, Sun Seok; Lee, Won Kyoung; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy; Oh, Seok Jin


    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various material properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. Especially we developed phenol-novolac type epoxy resin based neutron shielding materials and their characteristics were also evaluated. (author). 22 refs., 11 tabs., 21 figs

  19. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian


    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  20. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)


    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  1. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)


    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  2. A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices (United States)

    Chin, Hui Shun; Cheong, Kuan Yew; Ismail, Ahmad Badri


    Recently, high-temperature power devices have become a popular discussion topic because of their various potential applications in the automotive, down-hole oil and gas industries for well logging, aircraft, space exploration, nuclear environments, and radars. Devices for these applications are fabricated on silicon carbide-based semiconductor material. For these devices to perform effectively, an appropriate die attach material with specific requirements must be selected and employed correctly. This article presents a review of this topic, with a focus on the die attach materials operating at temperatures higher than 623 K (350 °C). Future challenges and prospects related to high-temperature die attach materials also are proposed at the end of this article.

  3. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini


    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among......A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materials...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...

  4. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi


    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  5. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin


    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  6. Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors


    Gnanvo, K; Benson, B.; Bittner, W.; Costa, F.; Grasso, L.; Hohlmann, M.; Locke, J. B.; Martoiu, S.; Muller, H.; Staib, M.; Tarazona, A.; Toledo, J.


    Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\\times 2 \\times 2 mm^3$ voxels with a minimal muon to...

  7. High-order finite elements for material and geometric nonlinear finite strain problems


    Heisserer, Ulrich


    For the simulation of geometric and material nonlinear problems implicit high-order (p-version) displacement-based finite elements are applied. Besides hyperelastic materials a finite strain viscoplasticity model with internal variables is considered. We apply the combination of Backward-Euler integration and Multilevel-Newton algorithm to solve the system of differential-algebraic equations resulting from the space-discretized weak form. For an efficient modeling of the cold isostatic pressi...

  8. Silicon oxide based high capacity anode materials for lithium ion batteries (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet


    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  9. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    Energy Technology Data Exchange (ETDEWEB)

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P. [BMW AG Muenchen (Germany)


    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  10. Analysis of Textbooks and Teaching Materials about Teaching Unit of Evolution in High School Biology


    佐藤, 崇之; 大鹿, 聖公


    There are few studies to discuss the contents comprehensively and to develop teaching materials for experiments and observations for studying evolution. In this study, we investigated the contents of teaching unit of evolution in Japanese high school biology textbooks and the papers concerned with the development of teaching materials for studying evolution in Japanese, UK and USA biology educational journals. We discussed the features and trends in teaching of evolution by the point at exper...


    Directory of Open Access Journals (Sweden)

    Roman Koleňák


    Full Text Available The effect of both common and extreme parameters of AISI 321stainless steel high-temperature brazing using the NI 102 brazing alloy upon material brazeability indicators. The ascertainment of the wetting angle, the area over which Ni brazing alloy spreads, the width of AISI 321 steel's dissolubility band, and the width of Ni brazing alloy’s diffusion band into the basic material.

  12. High temperature properties of dispersion strengthened Al-Al4C3 materials

    Energy Technology Data Exchange (ETDEWEB)

    Besterci, M.; Slesar, M.; Miskovicova, M.; Pelikan, K.


    One of the most important properties of dispersion strengthened materials is their strength stability at high temperatures. The strength and plasticity of the material Al + 5 vol. pct Al4C3, tested in the temperature range from 100 to 400 C, are analyzed. On the basis of the experiments the functions for the temperature dependence of the strength and plasticity are described, the deformation process is evaluated, and the fracture mechanisms are quantified. 17 references.

  13. The influence of high temperatures on the tribological properties of automotive friction materials (United States)

    Savage, Luke

    Temperatures of over 800C can be generated at the frictional interface within the brake systems of large vehicles, such high temperatures result in severe wear at the frictional interface, and can also lead to a very dangerous condition known as brake fade, characterised by a sharp fall in the coefficient of friction between the pad and disc, resulting in a catastrophic loss of braking efficiency. Common friction materials are very specialised composites often containing up to 15 components bound together within a phenolic resin matrix. The high temperature behaviour of the various constituents of friction materials were investigated using thermogravimetric analysis, focusing in particular on the thermal decomposition of the phenolic resin matrix material, where it has been firmly established that the thermal decomposition products of phenolic resin are the primary cause of brake fade. This has lead to the development of a novel approach for reducing fade in conventional resin based friction materials, involving a partial carbonisation to 400C. The high temperature wear characteristics of both modified and conventional friction materials were examined using standard dynamometer tests, as well as a 'continuous drag' type test machine, equipped with a heating facility. During this study a number of factors were identified as the main influences on the overall wear behaviour of friction materials. These included test temperature, sample test history, and the various effects of friction films, which were the subject of a detailed analysis. The formation of friction films was found to be an important facet of a successful friction material, producing a reduction in wear at the frictional interface. Films were examined and analysed using EDX, SEM, and X-ray diffraction techniques, which revealed the presence of a high proportion of magnetite (Fe3O4), containing iron which originated from the disc surface. It was established that the incorporation of iron in friction

  14. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.


    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  15. Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides. (United States)

    Lin, Haizhu; Deng, Chunhui


    In this work, we first immobilized tin(IV) ion on polydopamine-coated magnetic graphene (magG@PDA) to synthesize Sn(4+) -immobilized magG@PDA (magG@PDA-Sn(4+) ) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3 O4 , good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn(4+) and phosphopeptides. The enrichment performance of magG@PDA-Sn(4+) toward phosphopeptides from digested β-casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA-Ti(4+) . The results showed high selectivity and sensitivity of the Sn(4+) -IMAC material toward phosphopeptides, as good as the Ti(4+) -IMAC material. Finally, magG@PDA-Sn(4+) was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI-TOF MS and nano-LC-ESI-MS/MS. The results indicated that the as-synthesized Sn(4+) -IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti(4+) -IMAC material and expand the phosphopeptide coverage enriched by the single Ti(4+) -IMAC material, demonstrating the broad application prospects of magG@PDA-Sn(4+) in phosphoproteome research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New nitrogen-containing materials for hydrogen storage and their characterization by high-pressure microbalance

    DEFF Research Database (Denmark)

    Vestbø, Andreas Peter

    or liquid form, technologies that are well developed and usable, but not energy efficient. Certain metals and alloys are able to contain hydrogen within practical pressure and temperature ranges very efficient volume-wise, but they are too heavy for use in cars. Recently, attention has turned to the so......-called complex hydrides, which contain hydrogen bound covalently often in very light materials involving elements such as lithium, sodium, nitrogen and aluminum. While these materials typically have high decomposition temperatures, the combination with other compounds helps to destabilize the material resulting...

  17. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. (United States)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji


    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  18. Preparation and application of highly porous aerogel-based bioactive materials in dentistry (United States)

    Kuttor, Andrea; Szalóki, Melinda; Rente, Tünde; Kerényi, Farkas; Bakó, József; Fábián, István; Lázár, István; Jenei, Attila; Hegedüs, Csaba


    In this study, the possibility of preparation and application of highly porous silica aerogel-based bioactive materials are presented. The aerogel was combined with hydroxyapatite and β-tricalcium phosphate as bioactive and osteoinductive agents. The porosity of aerogels was in the mesoporous region with a maximum pore diameter of 7.4 and 12.7 nm for the composite materials. The newly developed bioactive materials were characterized by scanning electron microscopy. The in vitro biological effect of these modified surfaces was also tested on SAOS-2 osteogenic sarcoma cells by confocal laser scanning microscopy.

  19. Damage thresholds of thin film materials and high reflectors at 248 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.


    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings.

  20. Three-dimensional Hierarchical Metal oxide-Carbon Electrode Material for High Efficient Microbial Electrosynthesis

    DEFF Research Database (Denmark)

    Cui, Mengmeng; Nie, Huarong; Zhang, Tian


    pore structure in a microwave oven is demonstrated. Microwave pyrolysis of ferrocene using carbon felt as a microwave absorber, a method that is rapid (tens of seconds), does not require harsh conditions nor costly equipment is utilized, and can be readily scaled up. The produced material has a high......The production of hierarchical hybrid conductive materials that are mesoporous, with pores spanning from sub-micron to microns in size, is important for large-area electrode applications. Here, a simple one-step, low-cost method to fabricate a metal oxide-carbon hybrid materials with a hierarchical...

  1. Maintaining the structure of templated porous materials for reactive and high-temperature applications. (United States)

    Rudisill, Stephen G; Wang, Zhiyong; Stein, Andreas


    Nanoporous and nanostructured materials are becoming increasingly important for advanced applications involving, for example, bioactive materials, catalytic materials, energy storage and conversion materials, photonic crystals, membranes, and more. As such, they are exposed to a variety of harsh environments and often experience detrimental morphological changes as a result. This article highlights material limitations and recent advances in porous materials--three-dimensionally ordered macroporous (3DOM) materials in particular--under reactive or high-temperature conditions. Examples include systems where morphological changes are desired and systems that require an increased retention of structure, surface area, and overall material integrity during synthesis and processing. Structural modifications, changes in composition, and alternate synthesis routes are explored and discussed. Improvements in thermal or structural stability have been achieved by the isolation of nanoparticles in porous structures through spatial separation, by confinement in a more thermally stable host, by the application of a protective surface or an adhesive interlayer, by alloy or solid solution formation, and by doping to induce solute drag.

  2. Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment. (United States)

    Magennis, E P; Hook, A L; Davies, M C; Alexander, C; Williams, P; Alexander, M R


    Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years. This opinion article on high throughput screening methods reflects one aspect of how the field of biomaterials research has developed and progressed. The piece takes the reader through key developments in biomaterials discovery, particularly focusing on need to reduce bacterial colonisation of surfaces. Such bacterial resistant surfaces are increasingly required in this age of antibiotic resistance. The influence and origin of high-throughput methods are discussed with insights into the future of biomaterials development where computational methods may drive materials development into new fertile areas of discovery. New biomaterials will exhibit responsiveness to adapt to the biological environment and promote better integration and reduced rejection or infection. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok


    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  4. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. (United States)

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey


    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Remote detection of radioactive material using high-power pulsed electromagnetic radiation. (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi


    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  6. Remote detection of radioactive material using high-power pulsed electromagnetic radiation (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi


    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438

  7. Remote detection of radioactive material using high-power pulsed electromagnetic radiation (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, Eunmi


    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  8. Advanced Electrode Materials for High Energy Next Generation Li ion Batteries (United States)

    Hayner, Cary Michael

    Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few

  9. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design (United States)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.


    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  10. Dynamic characterization of anisotropy effects in 3-D printed materials for high-G survivability (United States)

    Joshi, Vasant; Qualters, Colin; Chen, Ezra; Santiago, Jaime


    The behavior of dedicated 3-D printed structures for survivability of encapsulated electronic components subject to high-G impact is currently being investigated. Understanding the material characteristics, based on printing layout and build orientation is especially important when considering structural application of 3-D printed parts. While 3 D printing allows fabrication of intricate geometries not amenable to traditional machining or molding methods, prediction of its damping characteristics becomes impossible without modeling and simulations. Accurate modeling parameters need both static and dynamic characterization of 3-D printed materials. A combination of experiments conducted for characterization of Vero White Plus (acrylic), Tango Black (rubber) and mixtures of these (Vero rich and Tango rich) materials used conventional tensile and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance test with spectrum analysis method of obtaining high frequency data. In this paper, experimental results of parent materials and their mixtures in context of 3-D printing orientation and print build direction (layers) of the material and their influence of modeling parameter generation are presented.

  11. An Augmented Common Weight Data Envelopment Analysis for Material Selection in High-tech Industries

    Directory of Open Access Journals (Sweden)

    Iman Shokr


    Full Text Available Material selection is a challenging issue in manufacturing processes while the inappropriate selected material may lead to fail the manufacturing process or end user experience especially in high-tech industries such as aircraft and shipping. Every material has different quantitative and qualitative criteria which should be considered simultaneously when assessing and selecting the right material. A weighted linear optimization method (WLOM in the class of data envelopment analysis which exists in literature is adopted to address material selection problem while accounting for both qualitative and quantitative criteria. However, it is demonstrated the adopted WLOM method is not able to produce a full ranking vector for the material selection problems borrowed from the literature. Thus, an augmented common weight data envelopment analysis model (ACWDEA is developed in this paper with the aim of eliminating deficiencies of WLOM model. The proposed ACWDEA is able to produce full ranking vector in decision making problems with less computational complexities in superior to the WLOM. Two material selection problems are solved and results are compared with WLOM and previous methods. Finally, the robustness and effectiveness of the proposed ACWDEA method are evaluated through Spearman’s correlation tests.

  12. Stress fields in soft material induced by injection of highly-focused microjets (United States)

    Miyazaki, Yuta; Endo, Nanami; Kawamoto, Sennosuke; Kiyama, Akihito; Tagawa, Yoshiyuki


    Needle-free drug injection systems using high-speed microjets are of great importance for medical innovations since they can solve problems of the conventional needle injection systems. However, the mechanical stress acting on the skin/muscle of patients during the penetration of liquid-drug microjets had not been clarified. In this study we investigate the stress caused by the penetration of microjets into soft materials, which is compared with the stress induced by the penetration of needles. In order to capture high-speed temporal evolution of the stress field inside the material, we utilized a high-speed polarized camera and gelatin that resembles human skin. Remarkably we find clear differences in the stress fields induced by microjets and needles. On one hand, high shear stress induced by the microjets is attenuated immediately after the injection, even though the liquid stays inside the soft material. On the other hand, high-shear stress induced by the needles stays and never decays unless the needles are entirely removed from the material. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  13. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))


    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  14. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography (United States)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.


    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  15. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. (United States)

    Ai, Wei; Xie, Linghai; Du, Zhuzhu; Zeng, Zhiyuan; Liu, Juqing; Zhang, Hua; Huang, Yunhui; Huang, Wei; Yu, Ting


    We report a simple and efficient approach for fabrication of novel graphene-polysulfide (GPS) anode materials, which consists of conducting graphene network and homogeneously distributed polysulfide in between and chemically bonded with graphene sheets. Such unique architecture not only possesses fast electron transport channels, shortens the Li-ion diffusion length but also provides very efficient Li-ion reservoirs. As a consequence, the GPS materials exhibit an ultrahigh reversible capacity, excellent rate capability and superior long-term cycling performance in terms of 1600, 550, 380 mAh g(-1) after 500, 1300, 1900 cycles with a rate of 1, 5 and 10 A g(-1) respectively. This novel and simple strategy is believed to work broadly for other carbon-based materials. Additionally, the competitive cost and low environment impact may promise such materials and technique a promising future for the development of high-performance energy storage devices for diverse applications.

  16. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li


    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  17. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang


    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  18. Computational screening of new inorganic materials for highly efficient solar energy conversion

    DEFF Research Database (Denmark)

    Kuhar, Korina


    materials. In this work a high-throughput computational search for suitable absorbers for PV and PC applications is presented. A set of descriptors has been developed, such that each descriptor targets an important property or issue of a good solar energy conversion material. The screening study......, and has revealed some interesting trends within the class, resulting in several interesting candidate materials. A few of these have already been extensively investigated by others....... in solar cells convert solar energy into electricity, and PC uses harvested energy to conduct chemical reactions, such as splitting water into oxygen and, more importantly, hydrogen, also known as the fuel of the future. Further progress in both PV and PC fields is mostly limited by the flaws in materials...

  19. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F


    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  20. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda


    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  1. Survey of matrix materials for solidified radioactive high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gurwell, W.E.


    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made.

  2. Time-resolved products observed from high pressure deflagrating energetic materials using femtosecond IR spectroscopy (United States)

    Zaug, J. M.; Glascoe, E. A.; Crowhurst, J. C.; Fried, L. E.; Armstrong, M. R.; Grant, C. D.


    What transient chemical species occur on the nanosecond to microsecond time-scale after an energetic material begins to deflagrate under Chapman-Jouguet conditions? What are the molecular lifetimes of transient species under similar conditions? Using ultrafast infrared spectroscopy to study the transient chemical phenomena of materials encapsulated in high-pressure diamond anvils cells (DACs), these and related questions can be addressed. Here we present a broadband time-resolved IR (TRIR) absorption technique applied to high-pressure deflagrating energetic materials. A 10 nanosecond laser pulse is introduced onto the surface of a high-pressure energetic material. After an induction period of approximately one microsecond the energetic material begins to deflagrate (1500+K) at subsonic velocities radially away from the laser ignited region. A mid-IR femtosecond laser pulse (pulse-gated, 2-10 micron tunable range) is transmitted through the deflagration front. The single-shot mid-IR absorbance is used to detect transient species. Our measurements provide a rigorous test of computational chemistry models.

  3. Laser processes and analytics for high power 3D battery materials (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.


    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  4. High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. (United States)

    Li, Tian; Zhang, Jie; Wang, Huiping; Hu, Zhongnan; Yu, Yingfeng


    Packaging materials have a great impact on the performance and reliability of light-emitting diodes (LEDs). In this study, we have prepared high performance LED devices through encapsulating LEDs by epoxy materials incorporated with filler powders. A set of evaluation methods have also been established to characterize the reliability of LED devices. No delamination or internal cracking between packaging materials and lead frames has been found for the encapsulated high performance LED devices after the package saturation with moisture and subsequent exposure to high-temperature solder reflow and thermal cycling. Four kinds of inorganic silica fillers, namely, quartz, fused silica, cristobalite, and spherical silica, and one kind of organic filler, that is, spherical silicone powder, were incorporated into the epoxy packaging materials to compare their effects on performance of LED devices. The properties of epoxy packaging materials and LED devices were studied by differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), dynamic mechanical analysis (DMA), thermomechanical analyzer (TMA), ultravioletvisible spectrophotometer (UV-vis), scanning acoustic microscopy (SAM), and scanning electron microscopy (SEM). Except the spherical silicone powder filled epoxy materials, all the other filled systems showed lower equilibrium water sorption content and smaller water diffusion coefficient in both water sorption and moisture sorption tests. The coefficient of thermal expansion (CTE) values were also decreased with the addition of fillers, and the systems filled with quartz, fused, and filled with spherical silica gave the best performance, which exhibited the reduced CTE values both below and above Tg. The results of TGA essentially showed no difference between filled and unfilled systems. The glass transition temperature changed little for all the filled systems, except the one incorporated with spherical silicone. The modulus at room temperature

  5. High-volume use of self-cementing spray dry absorber material for structural applications (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  6. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials (United States)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.


    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  7. The European Expression Of Interest For High Purity U-233 Materials

    Energy Technology Data Exchange (ETDEWEB)

    Giaquinto, Joseph M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Younkin, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The purpose of this letter report is to document the response for an Expression of Interest (EOI) sent to the European Safeguards and research and development (R&D) scientific communities for the distribution of small amounts of high purity 233U materials for use in safeguards, nonproliferation, and basic R&D in the nuclear disciplines. The intent for the EOI was to gauge the level of international interest for these materials from government and research institutions with programmatic missions in the nuclear security or nuclear R&D arena. The information contained herein is intended to provide information to assist key decision makers in DOE as to the ultimate disposition path for the high purity materials currently being recovered at Oak Ridge National Laboratory (ORNL) and only those items for which there is no United States (U.S.) sponsor identified.

  8. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I


    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  9. The Capabilities of Electrodischarge Microdrilling of High Aspect Ratio Holes in Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Skoczypiec Sebastian


    Full Text Available In the first part of the article the review of ceramic materials drilling possibilities was presented. Among the described methods special attention is paid to electrodischarge drilling. This process have especially been predicted for machining difficult-to-cut electrically conductive materials. The second part consist of the results analysis of electrodischarge microdrilling of siliconized silicon carbide. The experiment involves the impact of current amplitude, discharge voltage and pulse time on the hole depth, side gap, linear tool wear and mean drilling speed. The results shows that electrodischarge drilling is a good alternative when machining inhomogeneous ceramic materials and gives possibility to drill high aspect ratio holes with relatively high efficiency (the drilling speed >2 mm/min.

  10. Beyond Conventional Patterns: New Electrochemical Lithography with High Precision for Patterned Film Materials and Wearable Sensors. (United States)

    Zhang, Xiaowei; Guo, Shaojun; Han, Yanchao; Li, Jing; Wang, Erkang


    We report a simple, low-cost, and brand-new electrochemical lithography technique for replicating the template pattern with high resolution at ∼2 μm. The developed method is that the electroactive material is first deposited on the patterned conductive template by the electrochemical technique and then peeled by an adhesive tape/material. The resulting film with the precise pattern shows excellent mechanical and electronic properties and promises high prospect in designing flexible electronics. This interesting approach can be performed at ambient conditions and easily generalized to pattern various electroactive materials covering metal, alloy, nonmetal, salt, oxide, and composite on different types of substrates in several seconds to a few minutes, making the mass production of flexible/rigid/stretchable patterned thin films quite possible.

  11. Achieving low-emissivity materials with high transmission for broadband radio-frequency signals. (United States)

    Liu, Liu; Chang, Huiting; Xu, Tao; Song, Yanan; Zhang, Chi; Hang, Zhi Hong; Hu, Xinhua


    The use of low-emissivity (low-e) materials in modern buildings is an extremely efficient way to save energy. However, such materials are coated by metallic films, which can strongly block radio-frequency signals and prevent indoor-outdoor wireless communication. Here, we demonstrate that, when specially-designed metallic metasurfaces are covered on them, the low-e materials can remain low emissivity for thermal radiation and allow very high transmission for a broad band of radio-frequency signals. It is found that the application of air-connected metasurfaces with subwavelength periods is critical to the observed high transmission. Such effects disappear if periods are comparable to wavelengths or metal-connected structures are utilized. The conclusion is supported by both simulations and experiments. Advantages such as easy to process, low cost, large-area fabrication and design versatility of the metasurface make it a promising candidate to solve the indoor outdoor communication problem.

  12. Natural radionuclide and radiological assessment of building materials in high background radiation areas of Ramsar, Iran. (United States)

    Bavarnegin, Elham; Moghaddam, Masoud Vahabi; Fathabadi, Nasrin


    Building materials, collected from different sites in Ramsar, a northern coastal city in Iran, were analyzed for their natural radionuclide contents. The measurements were carried out using a high resolution high purity Germanium (HPGe) gamma-ray spectrometer system. The activity concentration of (226)Ra, (232)Th, and (40)K content varied from below the minimum detection limit up to 86,400 Bqkg(-1), 187 Bqkg(-1), and 1350 Bqkg(-1), respectively. The radiological hazards incurred from the use of these building materials were estimated through various radiation hazard indices. The result of this survey shows that values obtained for some samples are more than the internationally accepted maximum limits and as such, the use of them as a building material pose significant radiation hazard to individuals.

  13. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.


    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  14. Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithium-Ion Batteries. (United States)

    Mei, Peng; Pramanik, Malay; Lee, Jaewoo; Ide, Yusuke; Alothman, Zeid Abdullah; Kim, Jung Ho; Yamauchi, Yusuke


    Highly ordered mesostructured vanadium phosphonates (VP) have been synthesized in the presence of cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. Nitrilotris(methylene)triphosphonic acid (NMPA) and (ammonium/sodium) metavanadate (NH4 VO3 /NaVO3 ) have been used for the construction of pore walls. The CTAB templates are removed from the materials by an extraction process without destroying the parent mesostructure. The formation mechanism for the ordered mesoporous structure and its impact on electrochemical application in lithium ion batteries (LIBs) are explained by considering the structural and electrochemical stability of the framework. The results demonstrate that the counter cations (NH4+ /Na+ ) of the metavanadate precursors have a crucial role in stabilizing the mesoporous structure of the mesoporous VP materials. Mesoporous VP materials with highly ordered structure have great applicability as high-performance electrode materials in LIBs due to the advantages of their large contact area with electrolyte and short transport paths for lithium ions. Mesoporous VP electrodes exhibit high reversible specific capacity with superb cycling stability (100 cycles) and excellent retention of capacity (92 %). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Material Derivative Measurements in High-Speed Flows by Four-Pulse Tomographic PIV

    NARCIS (Netherlands)

    Lynch, K.; Scarano, F.


    A tomographic PIV system is introduced for the instantaneous measurement of the material derivative of velocity (VMD). The system is able to operate with very short temporal separation and is therefore suitable for applications in high-speed flows. The method of operation consists of the imaging of

  16. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P


    Full Text Available The development of high temperature thermal storage systems is required to increase the solar share of solar-hybrid gas turbine cycles. This paper proposes a pressurised packed bed of Encapsulated Phase Change Materials (EPCM) as a thermal storage...

  17. Considerations on using SU-8 as a construction material for high aspect ratio structures

    NARCIS (Netherlands)

    Melai, J.; Salm, Cora; Smits, Sander M.; Blanco Carballo, V.M.; Schmitz, Jurriaan; Hageluken, Ben


    This paper discusses two material aspects of SU-8 that have up till now been insufficiently documented. We present initial results on the outgassing behavior and a study on the dielectric properties of SU-8 at high bias voltage. The dielectric strength is determined to be at least 2 MV/cm. These

  18. Effect of turning frequency and season on composting materials from swine high-rise facilities (United States)

    Composting of swine manure has several advantages, liquid slurries are converted to solid, the total volume of material is reduced and the stabilized product is more easily transported off-site. Despite this, swine waste is generally stored, treated and applied in its liquid form. The high-rise fini...

  19. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.


    This paper investigates (digital) materiality through an analysis of the "sociomaterial configuration" (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  20. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.C.


    This paper investigates (digital) materiality through an analysis of the “sociomaterial configuration” (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing