WorldWideScience

Sample records for high spin resonances

  1. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  2. High-dose dosimetry using electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Takuji; Tanaka, Ryuichi

    1992-01-01

    An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs

  3. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  4. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  5. Electron spin resonance

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  6. Study of high-spin analog resonances near the N=50 neutron shell

    International Nuclear Information System (INIS)

    Gales, S.; El Hage, Y.; Schapira, J.P.; Fortier, S.; Laurent, H.; Maison, J.M.

    1979-01-01

    The 96 Zr( 3 He,d) 97 Nb and the 92 Mo( 3 He,d) 93 Tc reactions, investigated at, respectively 39.0 and 28.5 MeV incident energies, were used to selectively populate high-spin analog resonances in the 97 Nb and 93 Tc nuclei. Angular distributions were measured for the dsub(3/2), gsub(7/2) and hsub(11/2) analog states of the low-lying levels in 97 Zr. A DWBA analysis of the data for these unbound levels (using Gamov functions as form factors) was carried out and spectroscopic strengths extracted. The 96 Zr( 3 He,dp) and 92 Mo( 3 He,dp) reactions were performed, respectively, at 37.5 and 30 MeV incident energies. The angular distributions of the emitted protons were measured in coincidence using method II of Litherland and Ferguson with 0 0 detection of deuteron groups. Spins, population parameters and proton branching ratios to the ground state and excited states of the targets were determined from the analysis of the angular correlation data. The position of the neutron threshold as compared with the excitation energies of the analog states in 97 Nb and 93 Tc is found to be an important parameter in the extraction of the structure informations on core-excited components in the parent levels wave functions. Neutron particle-hole multiplets are observed for the first time in 96 Zr through the decay of the gsub(7 /2) and hsub(11/2) analog resonances. The limitation of the present method due to the neutron threshold or to the energy resolution in the proton channel is discussed and compared with the results of inelastic resonant scattering through isobaric analog resonances

  7. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  8. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  9. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2018-05-01

    Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  10. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  11. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    Science.gov (United States)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  12. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  13. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  14. Circuits and systems for CW and pulsed high-field electron spin resonance

    OpenAIRE

    David Robert, Bolton

    2006-01-01

    This thesis is concerned with the design and realisation of components for a new state of the art 94GHz Electron Spin Resonance (ESR) spectrometer capable of operating in both pulsed and CW modes. The complete spectrometer is designed to provide phase coherent 1kW peak power sub-nanosecond π/2 pulses having variable duration and repetition rate. The mm-wave response of a paramagnetic sample to these pulses is detected with a superheterodyne detector. Such a system would offer a step change in...

  15. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  16. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  17. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  18. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood...... because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103-104 K s-1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated...

  19. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  20. High Radiation Doses from Radiotherapy Measured by Electron Spin Resonance in Dental Enamel

    International Nuclear Information System (INIS)

    Pass, B.; Wood, R.E.; Liu, F.; McLean, M.; Aldrich, J.E.

    1998-01-01

    For radiotherapy, an error in the complicated treatment planning or treatment procedure is a possibility, however remote. Thus, in the present study electron spin resonance (ESR) in dental enamel was investigated for the first time as a means of retrospective dosimetry for validating applied radiotherapy doses to the head and neck regions. Total absorbed radiation doses measured by ESR in dental enamel were compared to the doses determined by treatment planning for 19 patients who received radiotherapy for intra-oral, pharyngeal or laryngeal malignancies, or total-body irradiation prior to bone marrow transplants (BMT). For the 15 tumour irradiations there was, within the framework of the tooth positions as presented, general agreement between the treatment planned and ESR dose determinations. There were, however, both significant and minor discrepancies. For the BMT patients there were major discrepancies for two of the four patients investigated. This study indicates that ESR in dental enamel may be useful as the only means of retrospective dosimetry for validating applied radiotherapy doses after treatment. However, further research must be carried out before this technique can be accepted as accurate and reliable. (author)

  1. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  2. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    eigenstates, spontaneous emission from eigenstate populations into the resonant mode can be interpreted as independent emission by individual spins, and the spins relax exponentially to thermal equilibrium if the development of resonator-induced correlations is suppressed. When the spin Hamiltonian includes a significant contribution from the homonuclear dipolar coupling, the energy eigenstates entail a correlation specific to the coupling network. Simulations of dipole-dipole coupled systems of up to five spins suggest that these systems contain weakly emitting eigenstates that can trap a fraction of the population for time periods >>100/R 0 , where R 0 is the rate constant for resonator-enhanced spontaneous emission by a single spin 1/2. Much of the polarization, however, relaxes with rates comparable to R 0 . A distribution of characteristic high-field chemical shifts tends to increase the relaxation rates of weakly emitting states, enabling transitions to states that can quickly relax to thermal equilibrium. The theoretical framework presented in this paper is illustrated with discussions of spin polarization in the contexts of force-detected nuclear-magnetic-resonance spectroscopy and magnetic-resonance force microscopy.

  3. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  4. Spin with two snakes and overlapping resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.; Zhao, X.F.

    1987-01-01

    We study the effect of multiple spin depolarization resonances on the spin of the particles with two snakes. When two resonances are well separated, the polarization can be restored in passing through these resonances provided that the snake resonances are avoided. When two resonances are overlapping, the beam particles may be depolarized depending on the spacing between these two resonances. If the spacing between these two resonances is an odd number for two snakes, the beam particles may be depolarized depending on the strength of the resonance. When the spacing becomes an even number, the spin can tolerate a much larger resonance strength without depolarization. Numerical simulations can be shown to agree well with the analytic formula. However, the spin is susceptible to the combination of an intrinsic and an imperfection resonances even in the presence of the snakes. Numerical simulation indicates that the spin can be restored after the resonances provided that imperfection strength is less than 0.1 if intrinsic strength is fixed at 0.745

  5. Direct observation of spin-quadrupolar excitations in Sr2CoGe2O7 by high-field electron spin resonance

    Science.gov (United States)

    Akaki, Mitsuru; Yoshizawa, Daichi; Okutani, Akira; Kida, Takanori; Romhányi, Judit; Penc, Karlo; Hagiwara, Masayuki

    2017-12-01

    Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be manipulated with the use of light or electric field and can be captured by means of conventional experimental techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light, but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly isotropic nature of Sr2CoGe2O7 , we identify this excitation as a purely spin-quadrupolar two-magnon mode.

  6. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  7. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  8. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  9. Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments

    Science.gov (United States)

    Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.

    2002-05-01

    This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb

  10. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS Magnetic Resonance Spectroscopy (MRS

    Directory of Open Access Journals (Sweden)

    Taylor L. Fuss

    2016-03-01

    Full Text Available According to World Health Organization (WHO estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS magnetic resonance spectroscopy (MRS has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  11. Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures

    DEFF Research Database (Denmark)

    Tuoriniemi, J.T.; Knuuttila, T.A.; Lefmann, K.

    2000-01-01

    Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polarized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution...

  12. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  13. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  14. Nuclear magnetic resonance in solids: evolution of spin temperature under multipulse irradiation and high symmetry molecular motions

    International Nuclear Information System (INIS)

    Quiroga, Luis

    1982-01-01

    In a first part, autocorrelation functions are calculated taking into account the symmetry of molecular motions by group theoretical techniques. This very general calculation method is then used to evaluate the NMR spin-lattice relaxation times T 1 and T 1 p as a function of the relative orientations of the magnetic field, the crystal and the rotation axis, in particular for cyclic, dihedral and cubic groups. Models of molecular reorientations such as jumps between a finite number of allowed orientations, rotational diffusion and superimposed reorientations are all investigated with the same formalism. In part two, the effect of the coherent excitation of spins, by multipulse sequences of the WHH-4 type, on the evolution of the heat capacity and spin temperature of the dipolar reservoir is analysed. It is shown both theoretically and experimentally that adiabatic (reversible) reduction of the dipolar Hamiltonian and its spin temperature is obtained when the amplitude of pulses (rotation angle) is slowly raised. The sudden switching on and off of the HW-8 sequence is then shown to lead to the same reversible reduction in a shorter time. It is also shown that, by this way, sensibility and selectivity of double resonance measurements of weak gyromagnetic ratio nuclei are strongly increased. This is experimentally illustrated in some cases. (author) [fr

  15. Role of high-spin hyperon resonances in the reaction of $\\gamma p \\to K^+ K^+ \\Xi^-$

    Energy Technology Data Exchange (ETDEWEB)

    J. Ka Shing Man, Yongseok Oh, K. Nakayama

    2011-05-01

    The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction of $\\gamma p \\to K^+ K^+ \\Xi^-$ are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the $\\Sigma(2030)$ hyperon having spin-7/2 and positive parity has a key role to bring the model predictions into a fair agreement with the measured data for the $K^+\\Xi^-$ invariant mass distribution.

  16. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  17. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  18. Spin-3/2 Pentaquark Resonance Signature

    International Nuclear Information System (INIS)

    Ben Lasscock; John Hedditch; Derek Leinweber; Anthony Williams; Waseem Kamleh; Wolodymyr Melnitchouk; Anthony Thomas; Ross Young; James Zanotti

    2005-01-01

    We search for the standard lattice resonance signature of attraction between the resonance constituents which leads to a bound state at quark masses near the physical regime. We study a variety of spin-1/2 interpolators and for the first time, interpolators providing access to spin-3/2 pentaquark states. In looking for evidence of binding, a precise determination of the mass splitting between the pentaquark state and its lowest-lying decay channel is performed by constructing the effective mass splitting from the various two-point correlation functions. While the binding of the pentaquark state is not a requirement, the observation of such binding would provide compelling evidence for the existence of the theta+ pentaquark resonance. Evidence of binding is observed in the isoscalar spin-3/2 positive parity channel, making it an interesting state for further research

  19. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  20. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  1. Studies on electronic spectrum and electron spin resonance of vanadium (IV) complexes with organophosphorus compounds and high molecular weight amines

    International Nuclear Information System (INIS)

    Sato, Taichi; Nakamura, Takato

    1981-01-01

    In the extraction of vanadium (IV) from aqueous solutions containing hydrochloric acid and/or a mixture of hydrochloric acid and lithium chloride by bis(2-ethylhexyl) hydrogenphosphate (DEHPA; HX), trioctylmethylammonium chloride (Aliquat-336), trioctylamine (TOA), trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), the complexes formed in the organic phases have been examined by spectrophotometry and electron spin resonance spectroscopy. It is found that in the extraction by DEHPA, the vanadium in the organic phase exists as the monomeric species, VO(X 2 H) 2 , or the polymeric one, (VOX 2 )sub(n), and that in the extractions by Aliquat-336, TOA, TOPO, and TBP, tetravalent vanadium complexes are stable in the organic phases extracted from a mixed solution of hydrochloric acid and lithium chloride, while complexes containing pentavalent vanadium and VOV 4+ ions are formed in the organic phases extracted from hydrochloric acid solutions. (author)

  2. Theory of electrically controlled resonant tunneling spin devices

    Science.gov (United States)

    Ting, David Z. -Y.; Cartoixa, Xavier

    2004-01-01

    We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.

  3. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    International Nuclear Information System (INIS)

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  4. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  5. Electron spin resonance identification of irradiated fruits

    International Nuclear Information System (INIS)

    Raffi, J.J.; Agnel, J.-P.L.

    1989-01-01

    The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)

  6. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction

    Science.gov (United States)

    Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2018-05-01

    We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

  7. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  8. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  9. Resonant Spin-Transfer-Torque Nano-Oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  10. Ferromagnetic resonance characterization of nano-FePt by electron spin resonance

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available Electron spin resonance (ESR) measurements at room temperature and X-band microwave frequency were performed on highly crystalline FePt system thin films. Fairly high DC static magnetic field absorption of about 300 mT was observed in these films...

  11. Electron spin resonance dosimetric properties of bone

    International Nuclear Information System (INIS)

    Caracelli, I.; Terrile, M.C.; Mascarenhas, S.

    1986-01-01

    The characteristics of electron spin resonance (ESR) dosimetry using bovine bone samples are described. The number of paramagnetic centers created by gamma radiation in the inorganic bone matrix was measured as a function of absorbed dose. The minimum detectable dose was 0.5 Gy for 60Co gamma rays. The response was linear up to the maximum dose studied (30 Gy) and independent of dose rate up to the maximum dose rate used (1.67 Gy min-1). For different bone samples the reproducibility was 5%. This method may be valuable for nuclear accident dosimetry

  12. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  13. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  14. Simulations of Resonant Intraband and Interband Tunneling Spin Filters

    Science.gov (United States)

    Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.

    2001-01-01

    This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).

  15. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  16. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  17. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  18. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    OpenAIRE

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain inte...

  19. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  20. Equivalence of two formalisms for calculating higher order synchrotron sideband spin resonances

    International Nuclear Information System (INIS)

    Mane, S.R.

    1988-01-01

    Synchrotron sideband resonances of a first order spin resonance are generally regarded as the most important higher order spin resonances in a high-energy storage ring. Yokoya's formula for these resonances is rederived, including some extra terms, which he neglected, but which turn out to be of comparable magnitude to the terms retained. Including these terms, Yokoya's formalism and the SMILE algorithm are shown to be equivalent to leading order in the resonance strengths. The theoretical calculations are shown to agree with certain measurements from SPEAR

  1. Quasiparticle spin resonance and coherence in superconducting aluminium.

    Science.gov (United States)

    Quay, C H L; Weideneder, M; Chiffaudel, Y; Strunk, C; Aprili, M

    2015-10-26

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  2. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  3. Attenuation of spin resonance signals in media with the multi-component system of collectivized electrons

    International Nuclear Information System (INIS)

    Vojtenko, V.A.

    1995-01-01

    Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs

  4. Phenomena at very high spins

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1980-03-01

    The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures

  5. Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers

    International Nuclear Information System (INIS)

    Tang, N.Y.

    2009-01-01

    The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.

  6. Electron Spin Resonance Measurement with Microinductor on Chip

    Directory of Open Access Journals (Sweden)

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  7. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  8. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR).

    Science.gov (United States)

    Vuichoud, Basile; Milani, Jonas; Chappuis, Quentin; Bornet, Aurélien; Bodenhausen, Geoffrey; Jannin, Sami

    2015-11-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (ΔEPolarimetrY Magnetic Resonance (SPY-MR), is illustrated for various pairs of (13)C spins (I, S) in acetate and pyruvate. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Neutron detection in the frame of spatial magnetic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, Erwin, E-mail: jericha@ati.ac.at [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Bosina, Joachim [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien (Austria); Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Geltenbort, Peter [Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Hino, Masahiro [Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494 (Japan); Mach, Wilfried [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Oda, Tatsuro [Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540 (Japan); Badurek, Gerald [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria)

    2017-02-11

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.

  11. The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2013-01-01

    On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)

  12. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  13. Strain-Induced Spin-Resonance Shifts in Silicon Devices

    Science.gov (United States)

    Pla, J. J.; Bienfait, A.; Pica, G.; Mansir, J.; Mohiyaddin, F. A.; Zeng, Z.; Niquet, Y. M.; Morello, A.; Schenkel, T.; Morton, J. J. L.; Bertet, P.

    2018-04-01

    In spin-based quantum-information-processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin linewidths, and it is therefore important to study, understand, and model such effects in order to better predict device performance. We investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminum microresonator is fabricated. The on-chip resonator provides two functions: it produces local strain in the silicon due to the larger thermal contraction of the aluminum, and it enables sensitive electron spin-resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations, we are able to reconstruct key features of our experiments, including the electron spin-resonance spectra. Our results are consistent with a recently observed mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.

  14. Broadband electron spin resonance experiments using superconducting coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, Conrad; Bogani, Lapo; Scheffler, Marc; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena in LISA+, Universitaet Tuebingen (Germany)

    2012-07-01

    In recent years superconducting coplanar devices operating at microwave/GHz frequencies are employed in more and more experimental studies. Here, we present electron spin resonance (ESR) experiments using a superconducting coplanar waveguide to provide the RF field to drive the spin flips. In contrast to conventional ESR studies this allows broadband frequency as well as magnetic field swept observation of the spin resonance. We show experimental data of the spin resonance of the organic radical NitPhoMe (2-(4'-methoxyphenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide) for frequencies in the range of 1 GHz to 40 GHz and corresponding magnetic fields up to 1.4 T (for g=2). In addition we show the temperature dependence of the ESR signals for temperatures up to 30 K, which is well above the critical temperature of the niobium superconductor.

  15. Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor

    Science.gov (United States)

    Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng

    2018-06-01

    Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.

  16. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  17. Model for decays of boson resonances with arbitrary spins

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1985-01-01

    A formula for the width of resonance with spin J decay into hadrons with arbitrary spins is derived. This width is expressed via S-channel helicity residues of Regge trajectory α J where the resonance J lies. Using the quark-gluon picture predictions for the coupling of quarks with Regge trajectories and SU(6)-classification of hadrons this formula is applied to calculate the widths of decays of resonances, which lie on the vector and tensor trajectories, into pseudoscalar and vector, two vectors and NN-bar-pair

  18. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  19. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  20. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  1. Resonant spin Hall effect in two dimensional electron gas

    Science.gov (United States)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  2. Spin-wave resonance in magnetic films in conditions of skin effect

    International Nuclear Information System (INIS)

    Nosov, R.N.; Sementsov, D.I.

    2002-01-01

    The effect of the finite depth of the high-frequency field penetration into the ferromagnetic metal on the spin-wave resonance spectrum perpendicular to the magnetized layer with different types of the spins surface fixation and by availability of attenuation in the spin system is studied. The exact numerical solution of the magnetization motion equation with an account of the skin-layer finite thickness is obtained. The change in the form of the resonance curve on the frequencies close to the frequency of the ferromagnetic resonance is identified in the case of essentially nonuniform high-frequency field distribution by the layer thickness along with widening and decreasing in the amplitude of all resonance peaks [ru

  3. AGS Fast spin resonance jump, magnets and power supplies

    International Nuclear Information System (INIS)

    Glenn, J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-01-01

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 (micro)s, hold flat for about 4 ms and fan to zero in 100 (micro)s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described

  4. Dielectric resonance in ErFeO3 in the region of spin reorientation

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1984-01-01

    In the region of spin reorientation in ErFeO 3 in the millimetre wave range a dielectric resonance has been found - excitation of electromaqnetic field natural oscillations in spherical samples. The fregurncies of dielectric resonance in samples from ErFeO 3 possess strong independence of temperature and magnetic field in the vicinity of the spin reorientation for account of a strong growth in the magnetic susceptibility. The frequencies change most considerably in the region of low-temperature spin reorientation related to antiferromagnetic rare earth ordering. Strong anisotropy of magnetic susceptibility cases various temperature and field dependences of the dielectric resonance frequencies at different orientations of the exciting electromagnetic field relative to the crystal axes. It is shown that the method of dielectric resonance permits to determine with high accuracy the temperatures of spontaneous - and crystal fields of induced phase transformations. The crystal dielectric permittivity and magnetic permeability dispersion are determined

  5. K-band single-chip electron spin resonance detector.

    Science.gov (United States)

    Anders, Jens; Angerhofer, Alexander; Boero, Giovanni

    2012-04-01

    We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  7. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    Science.gov (United States)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  8. Evaluation of toxicological effects induced by tributyltin in clam Ruditapes decussatus using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: Study of metabolic responses in heart tissue and detection of a novel metabolite

    OpenAIRE

    Hanana, H.; Simon, G.; Kervarec, N.; Cérantola, S.

    2014-01-01

    Tributyltin (TBT) is a highly toxic pollutant present in many aquatic ecosystems. Its toxicity in mollusks strongly affects their performance and survival. The main purpose of this study was to elucidate the mechanisms of TBT toxicity in clam Ruditapes decussatus by evaluating the metabolic responses of heart tissues, using high-resolution magic angle-spinning nuclear magnetic resonance (HRMAS NMR), after exposure to TBT (10−9, 10−6 and 10−4 M) during 24 h and 72 h. Results show that response...

  9. Novel Feshbach resonances in a ^40K spin-mixture

    Science.gov (United States)

    Walraven, J. T. M.; Ludewig, A.; Tiecke, T. G.

    2010-03-01

    We present experimental results on novel s-wave Feshbach resonances in ^40K spin-mixtures. Using an extended version of the Asymptotic Bound-state Model (ABM) [1] we predict Feshbach resonances with more promising characteristics than the commonly used resonances in the (|F,mF>) |9/2,-9/2>+|9/2,-7/2> and |9/2,-9/2>+|9/2,-5/2> spin mixtures. We report on an s-wave resonance in the |9/2,-5/2>+|9/2,-3/2> mixture. We have experimentally observed the corresponding loss-feature at B0˜178 G with a width of ˜10G. This resonance is promising due to its large predicted width and the absence of an overlapping p-wave resonance. We present our recent results on measurements of the resonance width and the stability of the system around this and other observed s-wave and p-wave resonances. [4pt] [1] T.G. Tiecke, et al., Phys. Rev. Lett. 104, 053202 (2010).

  10. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 1. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data. S Dev Jyoti Dhar Sharma U C Pandey S P Sud B C Chauhan. Research Articles Volume 61 Issue 1 ...

  11. Electron spin resonance dating of fault gouge from Desamangalam

    Indian Academy of Sciences (India)

    The preliminary results from the electron spin resonance (ESR) dating on the quartz grains from the fault gouge indicate that the last major faulting in this site occurred 430 ± 43 ka ago. The experiments on different grain sizes of quartz from the gouge showed consistent decrease in age to a plateau of low values, indicating ...

  12. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  13. Spin isovector giant resonances in (n,p) reactions

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1997-01-01

    The present status of the study of spin-flip isovector giant resonances, using the (n,p) charge exchange reaction, is reviewed. After a brief history of the discovery of these giant resonances, a critical appraisal of the interpretation of the data in terms of giant resonances is given, along with some of the theoretical advances that impact on the interpretation of these data. A sampling of the results obtained for typical targets is given, followed by the interpretation of these results. A brief statement is made concerning the way forward in experimental technique for nuclear structure research using charge exchange reactions

  14. Electron spin resonance for the detection of long-range spin nematic order

    Science.gov (United States)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  15. A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy barriers revealed by high-field electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Bercu, V; Martinelli, M; Massa, C A; Pardi, L A; Leporini, D

    2004-01-01

    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field electron spin resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy barriers for the rotational motion of the spin probe is unambiguously evidenced at both 240 and 270 K. The same shape for the distribution of the energy barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy barrier distribution of the spin probe is in the range of the estimates of the breadth of the PS energy barrier distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy barrier distribution agrees with the results from extreme-value statistics (Bouchaud and Mezard 1997 J. Phys. A: Math. Gen. 30 7997) and the trap model by Bouchaud and co-workers (1996 J. Phys. A: Math. Gen. 29 3847, 2001 Phys. Rev. B 64 104417). (letter to the editor)

  16. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  17. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  18. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  19. Development of high-spin isomer beams

    International Nuclear Information System (INIS)

    Zhou Xiaohong

    2000-01-01

    The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed

  20. An efficient digital phase sensitive detector for use in electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Vistnes, A.I; Wormald, D.I.; Isachsen, S.

    1983-10-01

    A digital sensitive detector for a modified Bruker electron spin resonance spectrometer, equipped with an Aspect 2000 minicomputer, is described. Magnetic field modulation is derived from a clock in the computer, which makes it possible to perform the data acquisition fully synchronously with the modulation. The resulting high phase accuracy makes it possible to compress the data to a single modulation period before the Fourier transformation. Both the in-phase and the phase-quadrature signals (of the first or second harmonic) are recorded simultaneously. The system makes the data processing, including the Fourier transformation, approximately 1000 times faster than previously reported digital phase sensitive detector systems for electron spin resonance spectrometers

  1. Effect of nonlinearity of spin interaction with electromagnetic resonance field on characteristics of polarized nuclear target

    International Nuclear Information System (INIS)

    Vertij, A.A.; Gavrilov, S.P.; Shestopalov, V.P.

    1990-01-01

    Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref

  2. Spin dipole and quadrupole resonances in 40Ca

    International Nuclear Information System (INIS)

    Baker, F.T.; Love, W.G.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Jones, K.; Nanda, S.

    1989-01-01

    Angular distributions of the double differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 40 Ca at 319 MeV. Excitation energies (ω) up to about 40 MeV have been investigated over the angular range from 3.5 degree to 12 degree in the laboratory (0.3 to 0.9 fm -1 ). Here, multipole decompositions of angular distributions of σS nn for the 40 Ca(rvec p,rvec p ') reaction at 319 MeV have been performed in order to compare ΔS=1 strength observed with sum rules. In contrast to the well-known quenching of Gamow-Teller and M1 resonances, the spin-dipole resonance has a total measured strength which is larger than that predicted by the energy-weighted sum rule. The spin-dipole strength distribution supports asymmetric widths predicted by calculations including 2p-2h mixing. The spin-quadrupole resonance is observed near ω=35 MeV and its total strength for ω<40 MeV estimated

  3. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  4. Covariant introduction of quark spin into the dual resonance model

    International Nuclear Information System (INIS)

    Iroshnikov, G.S.

    1979-01-01

    A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented

  5. Q2 dependence of the spin structure function in the resonance region

    International Nuclear Information System (INIS)

    Li, Z.; Li, Z.

    1994-01-01

    In this paper, we show what we can learn from the CEBAF experiments on spin-structure functions, and the transition from the Drell-Hearn-Gerasimov sum rule in the real photon limit to the spin-dependent sum rules in deep inelastic scattering, and how the asymmetry A 1 (x,Q 2 ) approaches the scaling limit in the resonance region. The spin structure function in the resonance region alone cannot determine the spin-dependent sum rule due to the kinematic restriction of the resonance region. The integral ∫ 0 1 {A 1 (x,Q 2 )F 2 (x,Q 2 )/2x[1+R(x,Q 2 )]}dx is estimated from Q 2 =0--2.5 GeV 2 . The result shows that there is a region where both contributions from the baryon resonances and the deep inelastic scattering are important; thus it provides important information on the high twist effects on the spin-dependent sum rule

  6. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  7. Resonant spin wave excitations in a magnonic crystal cavity

    Science.gov (United States)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  8. Spin asymmetry in resonant electron-hydrogen elastic scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Shang, Bo.

    1993-02-01

    Differential cross sections and asymmetries at 90 deg. and 30 deg are calculated for electron-hydrogen elastic scattering over the energies of the lowest 1 S and 3 P resonances using a nine-state coupled-channels calculation with and without continuum effects, which are represented by an equivalent-local polarization potential. The polarization potential improves agreement with experiment in general for the spin-averaged cross sections. It is suggested that continuum effects would be critically tested by asymmetry measurement at 30 deg over the 1 S resonance. 7 refs., 4 figs

  9. Spin injection in n-type resonant tunneling diodes.

    Science.gov (United States)

    Orsi Gordo, Vanessa; Herval, Leonilson Ks; Galeti, Helder Va; Gobato, Yara Galvão; Brasil, Maria Jsp; Marques, Gilmar E; Henini, Mohamed; Airey, Robert J

    2012-10-25

    We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two emission lines attributed to neutral (X) and negatively charged excitons (X-). We have observed a voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to -88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the accumulation layers.

  10. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  11. Local Electronic and Magnetic Structure of Ni below and above TC: A Spin-Resolved Circularly Polarized Resonant Photoemission Study

    NARCIS (Netherlands)

    Sinkovic, B.; Tjeng, L.H.; Brookes, N.B.; Goedkoop, J.B.; Hesper, R.; Pellegrin, E.; Groot, F.M.F. de; Altieri, S.; Hulbert, S.L.; Shekel, E.; Sawatzky, G.A.

    1997-01-01

    We report the measurement of the local Ni 3d spin polarization, not only below but also above the Curie temperature (TC), using the newly developed spin-resolved circularly polarized 2p (L3) resonant photoemission technique. The experiment identifies the presence of 3d8 singlets at high energies

  12. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  13. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  14. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  15. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  16. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  17. Mechanical detection of electron spin resonance beyond 1 THz

    International Nuclear Information System (INIS)

    Takahashi, Hideyuki; Ohmichi, Eiji; Ohta, Hitoshi

    2015-01-01

    We report the cantilever detection of electron spin resonance (ESR) in the terahertz (THz) region. This technique mechanically detects ESR as a change in magnetic torque that acts on the cantilever. The ESR absorption of a tiny single crystal of Co Tutton salt, Co(NH 4 ) 2 (SO 4 ) 2 ⋅6H 2 O, was observed in frequencies of up to 1.1 THz using a backward travelling wave oscillator as a THz-wave source. This is the highest frequency of mechanical detection of ESR till date. The spectral resolution was evaluated with the ratio of the peak separation to the sum of the half-width at half maximum of two absorption peaks. The highest resolution value of 8.59 ± 0.53 was achieved at 685 GHz, while 2.47 ± 0.01 at 80 GHz. This technique will not only broaden the scope of ESR spectroscopy application but also lead to high-spectral-resolution ESR imaging

  18. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  19. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  20. Electron spin resonance and its application to heat treated carbonaceous materials

    International Nuclear Information System (INIS)

    Emmerich, Francisco Guilherme

    1993-01-01

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author)

  1. Soft spin-dipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Stuhl, L; Krasznahorkay, A; Csatlós, M; Gulyás, J; Marketin, T; Litvinova, E; Adachi, T; Fujita, H; Hatanaka, K; Hirota, K; Ong, H J; Ishikawa, D; Matsubara, H; Algora, A; Estevez, E; Molina, F; Daeven, J; Guess, C; Meharchand, R; Fujita, Y

    2012-01-01

    High resolution experimental data has been obtained for the 40,42,44,48 Ca( 3 He,t)Sc charge exchange reaction at 420 MeV beam energy, which favors the spin-isospin excitations. The measured angular distributions were analyzed for each state separately, and the relative spin dipole strength has been extracted for the first time. The low-lying spin-dipole strength distribution in 40 Sc shows some interesting periodic gross feature. It resembles to a soft, damped multi-phonon vibrational band with hω= 1.8 MeV, which might be associated to pairing vibrations around 40 Ca.

  2. On the spin and parity of a single-produced resonance at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, Sara; Gao, Yanyan; Gritsan, Andrei V.; Melnikov, Kirill; Schulze, Markus; Tran, Nhan V.; Whitbeck, Andrew

    2012-11-01

    The experimental determination of the properties of the newly discovered boson at the Large Hadron Collider is currently the most crucial task in high energy physics. We show how information about the spin, parity, and, more generally, the tensor structure of the boson couplings can be obtained by studying angular and mass distributions of events in which the resonance decays to pairs of gauge bosons, $ZZ, WW$, and $\\gamma \\gamma$. A complete Monte Carlo simulation of the process $pp \\to X \\to VV \\to 4f$ is performed and verified by comparing it to an analytic calculation of the decay amplitudes $X \\to VV \\to 4f$. Our studies account for all spin correlations and include general couplings of a spin $J=0,1,2$ resonance to Standard Model particles. We also discuss how to use angular and mass distributions of the resonance decay products for optimal background rejection. It is shown that by the end of the 8 TeV run of the LHC, it might be possible to separate extreme hypotheses of the spin and parity of the new boson with a confidence level of 99% or better for a wide range of models. We briefly discuss the feasibility of testing scenarios where the resonances is not a parity eigenstate.

  3. Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker Degn; Larsen Andresen, Mogens

    of mathematical models that can predict yields, composition and rates of product (char, tar, light gases) formation from fast pyrolysis. The modeling of cross-linking and polymerization reactions in biomass pyrolysis includes the formation of free radicals and their disappearance. Knowledge about these radical...... reactions is important in order to achieve the high fuel conversion at short residence times. However, little is known about the extent of free radical reactions in pulverized biomass at fast pyrolysis conditions.The concentration and type of free radicals from the decay (termination stage) of pyrolysis...... to the less efficient catalytic effects of potassium on the bond-breaking and radical re-attachments. The high Si levels in the rice husk caused an increase in the char radical concentration compared to the wheat straw because the free radicals were trapped in a char consisting of a molten amorphous silica...

  4. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  5. 'Al' concentration on spin-dependent resonant tunnelling in InAs/Ga

    Indian Academy of Sciences (India)

    The separation between spin-up and spin-down components, barrier transparency, polarization efficiency and tunnelling lifetime were calculated using the transfer matrix approach. The separation between spin-up and spin-down resonances and tunnelling lifetime were reportedfor the first time in the case of InAs/Ga 1 − y ...

  6. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  7. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    Science.gov (United States)

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  8. Characterization of functional LB films using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Kuroda, Shin-ichi

    1995-01-01

    The role of ESR spectroscopy in the characterization of functional LB films is discussed. Unpaired electrons in LB films are associated with isolated radical molecules produced by charge transfer, paramagnetic metallic ions such as Cu 2+ , strongly interacting spins in the mixed valence states in charge-transfer salts, and so on. These spins often manifest the functions of materials. They can also act as microscopic probes in the ESR analysis devoted for the elucidation of characteristic properties of LB films. In structural studies, ESR is of particular importance in the analysis of molecular orientation of LB films. ESR can unambiguously determine the orientation of molecules through g-value anisotropy: different g value, different resonance field. Two types of new control methods of molecular orientation in LB films originated from the ESR analysis: study of in-plane orientation in dye LB films which led to the discovery of flow-orientation effect, and observation of drastic change of orientation of Cu-porphyrin in LB films using the trigger molecule, n-hexatriacontane. In the studies of electronic properties, hyperfine interactions between electron and nuclear spins provide information about molecular orbitals and local structures. Stable isotopes have been successfully applied to the stable radicals in merocyanine LB films to identify hyperfine couplings. In conducting LB films composed of charge-transfer salts, quasi-one-dimensional antiferromagnetism in semiconducting films and spin resonance of conduction electrons in metallic films are observed. Results provide microscopic evidence for the development of columnar structures of constituent molecules. Development of new functional LB films may provide more cases where ESR spectroscopy will clarify the nature of such films. (author)

  9. Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer

    Science.gov (United States)

    Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib

    2018-05-01

    In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.

  10. Four-wave neutron-resonance spin echo

    International Nuclear Information System (INIS)

    Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.

    2004-01-01

    We develop a technique of scattering from many-body systems. It is based on the principle of the neutron spin echo (SE), where a neutron wave in the magnetic field splits into two waves, which are separated in space or in time after propagation in this field. The neutron thus prepared as a probe passes through the sample to test its properties on a space R or time t scale. This separation in space or in time can be measured using coherence of these two waves as a phase shift φ between them. These two waves are collected or focused and compensated by the SE technique in order to compare their phases after interaction with the sample. In this way one studies interference between these waves and thus can directly measure the pair-correlation function in space or in time. Instead of two-wave SE we propose to realize the four-wave neutron-resonance spin-echo (NRSE). In our experiments, spin precession produced by a couple of the neutron-resonance coils in one arm is compensated by an identical couple of other NR coils in a second arm of a spin-echo machine. The neutron spin-flip probability ρ in the resonance coils is a key parameter of the NRSE arm. The limiting cases, ρ=0 and ρ=1, provide, in quantum terms, a two-level-two-wave k splitting of the neutron and result in the separation of the split waves into two different lengths in space (R 1 ,R 2 ) or in time (t 1 ,t 2 ). These two cases correspond to Larmor precession with phase φ 1 in the static magnetic fields of the NR flippers or to NRSE precession with φ 2 , respectively. The intermediate case, 0 1 ,R 2 ,R 3 ) or in time (t 1 ,t 2 ,t 3 ). The interference of each pair of waves after compensation results in three different echos with phases φ 1 , φ 2 , and φ 3 =(φ 1 +φ 2 )/2. Focusing or compensating all four waves into a single point of the phase-of-waves diagram produces quantum interference of all newly created waves. This task of focusing is experimentally performed. Different options for the

  11. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  12. Constraining new resonant physics with top spin polarisation information

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Christoph; Nordstroem, Karl [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Ferrando, James [DESY Hamburg, Hamburg (Germany)

    2017-06-15

    We provide a comprehensive analysis of the power of including top quark-polarisation information to kinematically challenging top pair resonance searches, for which ATLAS and CMS start losing sensitivity. Following the general modelling and analysis strategies pursued by the experiments, we analyse the semi-leptonic and the di-lepton channels and show that including polarisation information can lead to large improvements in the limit setting procedures with large data sets. This will allow us to set stronger limits for parameter choices where sensitivity from the invariant mass of the top pair is not sufficient. This highlights the importance of spin observables as part of a more comprehensive set of observables to gain sensitivity to BSM resonance searches. (orig.)

  13. Strong Electroweak Symmetry Breaking and Spin-0 Resonances

    International Nuclear Information System (INIS)

    Evans, Jared; Luty, Markus A.

    2009-01-01

    We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg→φ 0 or gb→tφ - . The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.

  14. FERMILAB: High energy spin effects

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-03-15

    While many physicists would agree that it is important to study interactions of different isospin states (for example comparing proton and neutron data), many of them also accept as normal data averaged or integrated over ordinary spin. However an ongoing programme at Brookhaven studying elastic scattering (where the incoming particles 'bounce' off each other) produced marked spin effects which are not well understood. Our understanding of particle interactions should not be influenced by which observables are easy to measure and which aren't, and until a clear understanding of spin effects emerges, it is important to continue and extend these studies.

  15. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  16. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  17. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, John A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized production target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments

  18. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  19. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  20. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    Science.gov (United States)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  1. Experimental status of high-spin states

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1975-09-01

    Changes occurring in high spin nuclear states are discussed. Experimental methods for studying reduction and eventual quenching of pairing interactions, changes in nuclear shapes, and alignment of individual particle angular momenta with increasing spin are reviewed. Emphasis is placed on the study of continuum gamma rays following heavy ion reactions. (12 figures)

  2. The study of very high spin states

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    Some examples are given of the study of very high spin states that decay by discrete line gamma-ray emission. States up to spin 70(h/2π) have been seen in superdeformed bands. In other bands with normal deformation the limit is near 50(h/2π). (Author)

  3. Electron spin resonance and quantum critical phenomena in VOx multiwall nanotubes

    International Nuclear Information System (INIS)

    Demishev, S.V.; Chernobrovkin, A.L.; Glushkov, V.V.; Samarin, N.A.; Sluchanko, N.E.; Semeno, A.V.; Goodilin, E.A.; Grigorieva, A.V.; Tretyakov, Yu.D.

    2008-01-01

    Basing on the high frequency (60 GHz) electron spin resonance study of the VO x multiwall nanotubes (VO x -NTs) carried out in the temperature range 4.2-200 K we report: (i) the first direct experimental evidence of the presence of the antiferromagnetic dimers in VO x -NTs and (ii) the observation of an anomalous low temperature growth of the magnetic susceptibility for quasi-free spins, which obey the power law χ(T)∝1/T α with the exponent α∼0.6 in a wide temperature range 4.2-50 K. We argue that the observed departures from the Curie-Weiss behaviour manifest the onset of the quantum critical regime and formation of the Griffiths phase as a magnetic ground state of these spin species. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    Science.gov (United States)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  5. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming

    KAUST Repository

    Abbas, Ahmed

    2014-04-19

    Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on \\'slices\\', which are one-dimensional vectors in three-dimensional spectra that correspond to certain (N, H) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx. © 2014 Springer Science+Business Media.

  6. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  7. Electron spin resonance intercomparison studies on irradiated foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (FR)

    1992-07-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories.

  8. Identification of irradiated chicken meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Chawla, S.P.; Thomas, Paul

    2004-01-01

    Studies were carried out on detection of irradiation treatment in chicken using electron spin resonance (ESR) spectroscopy. The effect of gamma- irradiation treatment on radiation induced signal in different types of chicken namely, broiler, deshi and layers was studied. Irradiation treatment induced a characteristic ESR signal that was not detected in non-irradiated samples. The shape of the signal was not affected by type of the bone. The intensity of radiation induced ESR signal was affected by factors such as absorbed radiation dose, bone type irradiation temperature, post-irradiation storage, post-irradiation cooking and age of the bird. Deep-frying resulted in the formation of a symmetric signal that had a different shape and was weaker than the radiation induced signal. This technique can be effectively used to detect irradiation treatment in bone-in chicken meat even if stored and/or subjected to various traditional cooking procedures. (author)

  9. Exploration of horizontal intrinsic spin resonances with two partial Siberian snakes

    Directory of Open Access Journals (Sweden)

    F. Lin

    2007-04-01

    Full Text Available Two partial Siberian snakes were used to avoid all the spin imperfection and vertical intrinsic resonances in the alternating gradient synchrotron (AGS at Brookhaven National Laboratory. However, the horizontal betatron motion can cause polarization loss resulting from the nonvertical stable spin direction in the presence of two partial snakes. This type of resonance, called a horizontal intrinsic spin resonance, was observed and systematically studied in the AGS. A simplified analytic model and numerical simulation have been developed to compare with experimental data. Properties of the horizontal intrinsic resonance are discussed.

  10. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  11. High PT electronuclear reactions and spin observables

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The main arguments of the following topics are reviewed: the high transverse momentum exclusive reactions, the determination of various spin observables and the production of different flavours in reactions induced by real and virtual photons

  12. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  13. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  14. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    International Nuclear Information System (INIS)

    Barber, D.P.; Vogt, M.

    2006-12-01

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  15. Electron spin resonance and its application to heat treated carbonaceous materials; A ressonancia de spin eletronico e sua aplicacao aos materiais carbonosos tratados termicamente

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, Francisco Guilherme [Espirito Santo Univ., Vitoria, ES (Brazil). Laboratorio de Materiais Carbonosos e Plasma Termico

    1994-12-31

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author) 10 refs., 3 figs.

  16. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  17. Neutron resonance spins of 159Tb from experiments with polarized neutrons and polarized nuclei

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Ivanenko, A.I.; Lason', L.; Mareev, Yu.D.; Ovchinnikov, O.N.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1976-01-01

    Spins of 27 neutron resonances of 159 Tb with energies up to 114 eV have been measured using polarized neutrons and nuclei beams in the modernized time-of-flight spectrometer of the IBR-30 pulse reator. The direct measurements of the terbium resonances spins performed using polarized neutrons reaffirm the conclusion that there are no unstationary effects in the behaviour of 159 Tb neutron resonances in the energy range

  18. Electron spin resonance in YbRh2Si2: local-moment, unlike-spin and quasiparticle descriptions.

    Science.gov (United States)

    Huber, D L

    2012-06-06

    Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ≪ 1. The connection with theoretical studies of a two-component model with like spins is also discussed.

  19. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  20. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  1. Detection of single electron spin resonance in a double quantum dota)

    Science.gov (United States)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  2. Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase

    Science.gov (United States)

    Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.

    2015-12-01

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

  3. Study of γ-irradiated lithographic polymers by electron spin resonance and electron nuclear double resonance

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1982-01-01

    The room temperature gamma irradiation degradation of the lithographic polymers, poly(methylmethacrylate) (PMMA), poly(methyl-α-chloroacrylate) (PMCA), poly(methyl-α-fluoroacrylate) (PMFA), and poly(methylacrylonitrile) (PMCN), have been studied by electron spin resonance and electron nuclear double resonance (ENDOR) to assess their molecular degradation processes of relevance to electron beam lithography. Two classes of radicals are found, chain radicals and chain scission radicals. PMMA and PMCA mainly form chain scission radicals consistent with degradation while for PMCN the resolution is poorer, and this is only probable. PMFA forms mainly chain radicals consistent with predominant crosslinking. The total radical yield is greatest in PMCA and PMCN. ENDOR is used to assess the compactness of the radiation degradation region for PMMA and PMCA and hence the potential resolution of the resist; this appears to be about the same for these methacrylate polymers

  4. Ferromagnetic resonance and spin-wave resonances in GaMnAsP films

    Science.gov (United States)

    Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.

    2018-05-01

    A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.

  5. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro

    2018-03-21

    Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.

  6. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  7. Resonant spin-flavor precession of neutrino and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Bychuk, O.V.; AN SSSR, Moscow

    1989-01-01

    Resonant amplification of spin-flavor precession of neutrinos in solar matter is considered. Some possible consequences of the process are discussed. It is shown that resonant spin-flavor neutrino precession may account for the deficit of solar neutrinos in Davis' experiment and the anticorrelation between the rate of neutrino counting and solar activity. Experiments are considered which should make it possible to distinguish between spin-flavor neutrino precession and the Mikheyev-Smirnov-Wolfenstein effect. A new restriction on the usual spin precession of solar neutrinos is derived

  8. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  9. Study by electron spin resonance of the free radicals created under irradiation in glycine

    International Nuclear Information System (INIS)

    Thomet, P.; Rassat, A.; Servoz-Gavin, P.; Choudens, H. de

    1967-01-01

    The free radicals created by different radiations in glycine are measured by electron spin resonance and their number is evaluated in function of the absorbed dose. This number decreases when the LET of the radiations increases ; in other words,high LET radiations gives less radiochemical effects; in contrary with the fact that high LET radiations creates more damage in biological materials. The decreasing with time of the number of free radicals and the speed of this decrease is a function of temperature; by the study of the kinetics of this decrease, an attempt has been made to prove the presence of three radicals. (authors) [fr

  10. Spin-analysis of s-channel diphoton resonances at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.C.; Ravindran, V. [Harish-Chandra Research Institute, Jhunsi, Allahabad (India). Regional Centre for Accelerator-Based Particle Physics; Mathews, P. [Saha Institute of Nuclear Physics, Kolkata (India); Pankov, A.A.; Tsytrinov, A.V. [Technical Univ. of Gomel (Belarus). The Abdus Salam ICTP Affiliated Centre; Paver, N. [Trieste Univ. (Italy); INFN-Trieste Section, Trieste (Italy)

    2011-08-15

    The high mass neutral quantum states envisaged by theories of physics beyond the standard model can at the hadron colliders reveal themselves through their decay into a pair of photons. Once such a peak in the diphoton invariant mass distribution is discovered, the determination of its spin through the distinctive photon angular distributions is needed in order to identify the associated nonstandard dynamics. We here discuss the discrimination of the spin-2 Randall- Sundrum graviton excitation against the hypothesis of a spin-0 exchange giving the same number of events under the peak, by means of the angular analysis applied to resonant diphoton events expected to be observed at the LHC. The spin-0 hypothesis is modelled by an effective interaction of a high mass gauge singlet scalar particle interacting with the standard model fields. The basic observable of our analysis is the symmetrically integrated angular asymmetry A{sub CE}, calculated for both graviton and scalar s-channel exchanges to next-to-leading order in QCD. (orig.)

  11. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  12. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  13. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  14. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  15. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    Science.gov (United States)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  16. Dose evaluation due to electron spin resonance method

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki

    1989-01-01

    Radiation dosimeter has been developed with free radical created in sucrose. Free radical was observed with using the electron spin resonance (ESR) equipment. The ESR absorption due to free radical in sucrose appeared at the magnetic field between the third and fourth ESR ones of Mn +2 standard sample. Sucrose as radiation dosimeter can linearly measure the dose from 5 x 10 -3 Gy to 10 5 Gy. If the new model of the ESR equipment is used and ESR observation is carried out at lower temperature such as liquid nitrogen or liquid helium temperature, the sucrose ESR dosimeter will be detectable about 5 x 10 -4 Gy or less. Fading of the free radicals in the irradiated sucrose was scarcely obtained about six months after irradiation and in the irradiated sucrose stored at 55deg C and 100deg C for one hour or more also scarcely observed. It is concluded from these radiation property that sucrose is useful for the accidental or emergency dosimeter for the inhabitants. (author)

  17. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  18. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  19. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  20. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  1. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    Science.gov (United States)

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  2. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  3. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  4. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  5. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  6. Minimization of spin-lattice relaxation time with highly viscous solvents for acquisition of natural abundance nitrogen-15 and silicon-29 nuclear magnetic resonance spectra

    International Nuclear Information System (INIS)

    Bammel, B.P.; Evilia, R.F.

    1982-01-01

    The use of high viscosity solution conditions to decrease T 1 of 15 N and 29 Si nuclei so that natural abundance NMR spectra can be acquired in reasonable times is illustrated. Significant T 1 decreases with negligible increases in peak width are observed. No spectral shifts are observed in any of the cases studied. Highly viscous solutions are produced by using glycerol as a solvent for water-soluble molecules and a mixed solvent consisting of toluene saturated with polystyrene for organic-soluble molecules. The microviscosity in the latter solvent is found to be much less than the observed macroviscosity. Hydrogen bonding of glycerol to the NH 2 of 2-aminopyridine results in a greater than predicted decrease in T 1 for this nitrogen. The technique appears to be a useful alternative to paramagnetic relaxation reagents

  7. High spin structure in 130Ba

    International Nuclear Information System (INIS)

    Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.

    2009-01-01

    Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique

  8. Evaluation of toxicological effects induced by tributyltin in clam Ruditapes decussatus using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: Study of metabolic responses in heart tissue and detection of a novel metabolite.

    Science.gov (United States)

    Hanana, H; Simon, G; Kervarec, N; Cérantola, S

    2014-01-01

    Tributyltin (TBT) is a highly toxic pollutant present in many aquatic ecosystems. Its toxicity in mollusks strongly affects their performance and survival. The main purpose of this study was to elucidate the mechanisms of TBT toxicity in clam Ruditapes decussatus by evaluating the metabolic responses of heart tissues, using high-resolution magic angle-spinning nuclear magnetic resonance (HRMAS NMR), after exposure to TBT (10 -9 , 10 -6 and 10 -4 M) during 24 h and 72 h. Results show that responses of clam heart tissue to TBT exposure are not dose dependent. Metabolic profile analyses indicated that TBT 10 -6 M, contrary to the two other doses tested, led to a significant depletion of taurine and betaine. Glycine levels decreased in all clam groups treated with the organotin. It is suggested that TBT abolished the cytoprotective effect of taurine, betaine and glycine thereby inducing cardiomyopathie. Moreover, results also showed that TBT induced increase in the level of alanine and succinate suggesting the occurrence of anaerobiosis particularly in clam group exposed to the highest dose of TBT. Taken together, these results demonstrate that TBT is a potential toxin with a variety of deleterious effects on clam and this organotin may affect different pathways depending to the used dose. The main finding of this study was the appearance of an original metabolite after TBT treatment likely N-glycine-N'-alanine. It is the first time that this molecule has been identified as a natural compound. Its exact role is unknown and remains to be elucidated. We suppose that its formation could play an important role in clam defense response by attenuating Ca 2+ dependent cell death induced by TBT. Therefore this compound could be a promising biomarker for TBT exposure.

  9. Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator

    Directory of Open Access Journals (Sweden)

    D. A. Garanin

    2011-08-01

    Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.

  10. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  11. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  12. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  13. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor

    Science.gov (United States)

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-01

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  14. High spin effects in superdense matter

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1978-04-01

    A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe

  15. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  16. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Science.gov (United States)

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed

  17. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Directory of Open Access Journals (Sweden)

    Haesung Yoon

    Full Text Available Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters.Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1 were suspicious for malignancy on mammography or ultrasound (US, 2 were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB 3 underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE and diffusion-weighted imaging (DWI and positron emission tomography-computed tomography (PET-CT, and 4 had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER, maximum standardized FDG uptake value (SUV max, apparent diffusion coefficient (ADC, and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters.In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites

  18. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  19. High-spin states in 82Sr

    International Nuclear Information System (INIS)

    Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.

    1989-01-01

    As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es

  20. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  1. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  2. Storing quantum information in spins and high-sensitivity ESR.

    Science.gov (United States)

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  3. Storing quantum information in spins and high-sensitivity ESR

    Science.gov (United States)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  4. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  5. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    International Nuclear Information System (INIS)

    Figueroa, A.I.; Baker, A.A.; Collins-McIntyre, L.J.; Hesjedal, T.; Laan, G. van der

    2016-01-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  6. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    Science.gov (United States)

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  7. Phonon-magnon resonant processes with relevance to acoustic spin pumping

    KAUST Repository

    Deymier, P. A.

    2014-12-23

    The recently described phenomenon of resonant acoustic spin pumping is due to resonant coupling between an incident elastic wave and spin waves in a ferromagnetic medium. A classical one-dimensional discrete model of a ferromagnet with two forms of magnetoelastic coupling is treated to shed light on the conditions for resonance between phonons and magnons. Nonlinear phonon-magnon interactions in the case of a coupling restricted to diagonal terms in the components of the spin degrees of freedom are analyzed within the framework of the multiple timescale perturbation theory. In that case, one-phonon-two-magnon resonances are the dominant mechanism for pumping. The effect of coupling on the dispersion relations depends on the square of the amplitude of the phonon and magnon excitations. A straightforward analysis of a linear phonon-magnon interaction in the case of a magnetoelastic coupling restricted to off-diagonal terms in the components of the spins shows a one-phonon to one-magnon resonance as the pumping mechanism. The resonant dispersion relations are independent of the amplitude of the waves. In both cases, when an elastic wave with a fixed frequency is used to stimulate magnons, application of an external magnetic field can be used to approach resonant conditions. Both resonance conditions exhibit the same type of dependency on the strength of an applied magnetic field.

  8. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    International Nuclear Information System (INIS)

    Delord, T; Nicolas, L; Schwab, L; Hétet, G

    2017-01-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects. (paper)

  9. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  10. Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens' operator expressions

    International Nuclear Information System (INIS)

    McGavin, Dennis G; Tennant, W Craighead

    2009-01-01

    In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS 3 and BS 5 . Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, 1-bar Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present.

  11. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  12. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  13. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  14. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  15. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  16. Heavy baryon chiral perturbation theory and the spin 3/2 delta resonances

    Energy Technology Data Exchange (ETDEWEB)

    Kambor, J.

    1996-12-31

    Heavy baryon chiral perturbation theory is briefly reviewed, paying particular attention to the role of the spin 3/2 delta resonances. The concept of resonance saturation for the baryonic sector is critically discussed. Starting from a relativistic formulation of the pion-nucleon-delta system, the heavy baryon chiral Lagrangian including spin 3/2 resonances is constructed by means of a 1/m-expansion. The effective theory obtained admits a systematic expansion in terms of soft momenta, the pion mass M{sub {pi}} and the delta-nucleon mass difference {Delta}. (author). 22 refs.

  17. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  18. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  19. Spin Filters as High-Performance Spin Polarimeters

    International Nuclear Information System (INIS)

    Rougemaille, N.; Lampel, G.; Peretti, J.; Drouhin, H.-J.; Lassailly, Y.; Filipe, A.; Wirth, T.; Schuhl, A.

    2003-01-01

    A spin-dependent transport experiment in which hot electrons pass through a ferromagnetic metal / semiconductor Schottky diode has been performed. A spin-polarized free-electron beam, emitted in vacuum from a GaAs photocathode, is injected into the thin metal layer with an energy between 5 and 1000 eV above to the Fermi level. The transmitted current collected in the semiconductor substrate increases with injection energy because of secondary - electron multiplication. The spin-dependent part of the transmitted current is first constant up to about 100 eV and then increases by 4 orders of magnitude. As an immediate application, the solid-state hybrid structure studied here leads to a very efficient and compact device for spin polarization detection

  20. Direct current modulation of spin-Hall-induced spin torque ferromagnetic resonance in platinum/permalloy bilayer thin films

    Science.gov (United States)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-06-01

    We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.

  1. Radiosterilization dosimetry by electron-spin resonance spectroscopy. Cefotetan

    International Nuclear Information System (INIS)

    Basly, J.P.; Longy, I.; Bernard, M.

    1998-01-01

    As an alternative to heat and gas exposure sterilization, ionizing radiation is gaining interest as a sterilization process for medicinal products. Nevertheless, essentially for economic profit, unauthorized and uncontrolled use of radiation processes may be expected. In this context, it is necessary to find methods of distinguishing between irradiated and nonirradiated pharmaceuticals. In the absence of suitable detection methods, our attention was focused on electron-spin resonance (ESR) spectrometry. A third generation cephalosporin, cefotetan, was chosen as a model; this antibiotic is a potential candidate for radiation treatment due to its thermosensitivity. While the ESR spectra of a nonirradiated sample presents no signal, a nonsymmetrical signal, dependent on the irradiation dose, is found in irradiated samples. The number of free radicals was estimated by comparing the second integral from radiosterilized samples and a diphenylpicryl hydrazyl reference. Estimation of the number of free radicals gives 7x10 17 radicals g -1 at 20kGy (1.1x10 16 radicals in 15mg). From this result, the G-value (number of radicals (100eV) -1 ) could be estimated as 0.6. Decay of radicals upon storage were modeled using a bi-exponential function. The limit of detection of free radicals after irradiation at 25kGy is up to two years. This result agrees with those obtained on other cephalosporins. Aside from qualitative detection, ESR spectrometry can be used for dose estimation. Linear regression is applicable for doses lower than 20kGy. Since the radiation dose selected must always be based upon the bioburden of the products and the degree of sterility required (EN 552 and ANSI/AAMI/ISO 11137), 25kGy could no longer be accepted as a 'routine' dose for sterilizing a pharmaceutical. Doses in the 5-20kGy range could be investigated and linear regression appeared to be the least expensive route to follow. The best results for the integration of the curves were obtained with

  2. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    Science.gov (United States)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  3. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  4. High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2014-03-03

    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.

  5. Electron spin resonance (ESR), electron nuclear double resonance (ENDOR) and general triple resonance of irradiated biocarbonates

    International Nuclear Information System (INIS)

    Schramm, D.U.; Rossi, A.M.

    1996-01-01

    Several irradiated bicarbonates were studied by magnetic resonance techniques. Seven paramagnetic species, attributed to CO 2 - , SO 2 - and SO 3 - were identified. Comparison between radiation induced defects in bioaragonites and aragonite single-crystals show that isotropic and orthorhombic CO 2 - centers with broad line spectra are not produced in the latter samples. Vibrational and rotational properties of isotropic CO 2 - centers were studied from low temperature Q-band spectras. Vibrational frequency is determined from the 13 CO 2 - hyperfine spectrum and yielded ν 1.54 x 10 13 s -1 . The correlation time for isotropic CO 2 - , τc) = 1.2 x 10 -11 s (T = 300 K0, is typical of radicals rotating in liquids. ENDOR and General Triple spectroscopy show that orthorhombic CO 2 - centres are surrounded by water molecules located in the second nearest CO 2 2- sites at 5.14, 5.35 and 6.02 A. Water molecules replacing carbonates or as liquid inclusion of growth solution in local crystal imperfections may be responsible for the variety of orthorhombic and isotropic CO 2 - species, respectively. (author)

  6. Future directions for high-spin studies

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-11-01

    Some future directions for experimental high-spin studies are discussed, concentrating mainly on the region above I -- 30h, where the γ-ray spectra are currently unresolvable. The 4π NaI balls offer a means to exploit the temperature effects recently shown to exist in such spectra. Large arrays of Compton-suppressed Ge detectors, on the other and, lead to higher effective resolution as it becomes possible to study triple and quadruple coincident events

  7. High-spin states in 60Cu

    International Nuclear Information System (INIS)

    Tsan, U.C.; Agard, M.; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1981-04-01

    The 60 Cu nucleus has been studied via the 58 Ni(α, pnγ) reaction using different in-beam γ spectroscopy techniques. As for the other odd-odd Cu, the gsub(9/2) shell plays an important role for the explanation of observed high-spin states. Some of them (in particular 6 - and 9 + states) could be interpreted as two-nucleon states in the framework of a crude shell model

  8. Spins of adsorbed molecules investigated by the detection of Kondo resonance

    Science.gov (United States)

    Komeda, Tadahiro

    2014-12-01

    Surface magnetism has been one of the platforms to explore the magnetism in low dimensions. It is also a key component for the development of quantum information processes, which utilizes the spin degree of freedom. The Kondo resonance is a phenomenon that is caused by an interaction between an isolated spin and conduction electrons. First observed in the 1930s as an anomalous increase in the low-temperature resistance of metals embedded with magnetic atoms, the Kondo physics mainly studied the effects of bulk magnetic impurities in the resistivity. In the last 15 years it has undergone a revival by a scanning tunneling microscope (STM) which enables the measurement of the Kondo resonance at surfaces using an atomic scale point contact. The detection of the Kondo resonance can be a powerful tool to explore surface magnetism. In this article, I review recent studies of the surface spin of adsorbed molecules by the detection of the Kondo resonance. Researches on metal phthalocyanine (MPc) and porphyrin molecules will be examined. In addition, the Kondo resonance for double-decker lanthanoide Pc molecules will be discussed. Some of the double-decker Pc molecules show single-molecule magnet (SMM) behavior, which attracts attention as a material for electronic devices. For both classes, the ligand plays a crucial role in determining the parameters of the Kondo resonance, such as the Kondo temperature and the change of the shape from peak to Fano-dip. In addition, the spin in delocalized molecular orbital forms the Kondo resonance, which shows significant differences from the Kondo resonance formed by the metal spins. Since molecular orbital can be tuned in a flexible manner by the design of the molecule, the Kondo resonance formed by delocalized molecular orbital might expand the knowledge of this field.

  9. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  10. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J

    2012-01-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  11. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  12. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Mukherjee, G.; Sarkar, M. Saha; Goswami, A.; Gangopadhyay, G.; Mukhopadhyay, S.; Krishichayan,; Chakraborty, A.; Ghughre, S. S.; Bhattacharjee, T.; Basu, S. K.

    2006-01-01

    The high spin states of 143 Sm have been studied by in-beam γ-spectroscopy following the reaction 130 Te( 20 Ne,7n) 143 Sm at E lab =137 MeV, using a Clover detector array. More than 50 new gamma transitions have been placed above the previously known J π =23/2 - , 30 ms isomer at 2795 keV. The level scheme of 143 Sm has been extended up to 12 MeV and spin-parity assignments have been made to most of the newly proposed level. Theoretical calculation with the relativistic mean field approach using blocked BCS method, has been performed. A sequence of levels connected by M1 transitions have been observed at an excitation energy ∼8.6 MeV. The sequence appears to be a magnetic rotational band from systematics

  13. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  14. High spin states of 141Pm

    Science.gov (United States)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  15. Spin-Orbital Excitations in Ca2RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    DEFF Research Database (Denmark)

    Das, L.; Forte, F.; Fittipaldi, R.

    2018-01-01

    The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scatt......-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.......The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x......-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band...

  16. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  17. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    Directory of Open Access Journals (Sweden)

    S. Menshawy

    2017-05-01

    Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  18. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  19. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  20. The Spin Structure of the Proton in the Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Renee H. [Univ. of Virginia, Charlottesville, VA (United States)

    2002-01-01

    Inclusive double spin asymmetries have been measured for $\\vec{p}$($\\vec{e}$,e') using the CLAS detector and a polarized 15NH3 target at Jefferson Lab in 1998. The virtual photon asymmetry A1, the longitudinal spin structure function, g1 (x, Q2), and the first moment Γ$1\\atop{p}$, have been extracted for a Q2 range of 0.15-2.0 GeV2. These results provide insight into the low Q2 evolution of spin dependent asymmetries and structure functions as well as the transition of Γ$1\\atop{p}$ from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  1. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  2. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  3. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  4. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  5. Identification of high-spin states in 235U

    International Nuclear Information System (INIS)

    Lorenz, A.; Makarenko, V.E.; Chukreev, F.E.

    1994-02-01

    The results of a 235 U high spin states study are analysed. A new way to assign newly observed gamma ray transitions is proposed. Such assignments deals with low spin parts of the level scheme without introducing high spin level states. (author)

  6. Tilted spin torque-driven ferromagnetic resonance in a perpendicular-analyzer magnetic trilayer

    International Nuclear Information System (INIS)

    Wang Rixing; He Pengbin; Liu Quanhui; Li Zaidong; Pan Anlian; Zou Bingsuo; Wang Yanguo

    2010-01-01

    A theoretical study is presented on the current-driven ferromagnetic resonance in the magnetic trilayers. On the basis of the Landau-Lifshitz-Gilbert-Slonczewski equation, we derive the output dc voltage for arbitrary anisotropy in the free and pinned layers by the linearization method. As an example, the resonance spectra of the tilted-polarizer and perpendicular-analyzer trilayer show that the equilibrium position, the resonant linewidth and the resonant location can be tuned by changing the magnitude and the direction of spin torque. The effective damping can be minimized through adjusting the current and the pinned-layer magnetization direction.

  7. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  8. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    International Nuclear Information System (INIS)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne

    2016-01-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  9. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-07-15

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  10. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  11. Spin measurements for 147Sm+n resonances: Further evidence for nonstatistical effects

    International Nuclear Information System (INIS)

    Koehler, P. E.; Ullmann, J. L.; Bredeweg, T. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.

    2007-01-01

    We have determined the spins J of resonances in the 147 Sm(n,γ) reaction by measuring multiplicities of γ-ray cascades following neutron capture. Using this technique, we were able to determine J values for all but 14 of the 141 known resonances below E n =1 keV, including 41 firm J assignments for resonances whose spins previously were either unknown or tentative. These new spin assignments, together with previously determined resonance parameters, allowed us to extract level spacings (D 0,3 =11.76±0.93 and D 0,4 =11.21±0.85 eV) and neutron strength functions (10 4 S 0,3 =4.70±0.91 and 10 4 S 0,4 =4.93±0.92) for J=3 and 4 resonances, respectively. Furthermore, cumulative numbers of resonances and cumulative reduced neutron widths as functions of resonance energy indicate that very few resonances of either spin have been missed below E n =700 eV. This conclusion is strengthened by the facts that, over this energy range, Wigner distributions calculated using these D 0 values agree with the measured nearest-neighbor level spacings to within the experimental uncertainties, and that the Δ 3 values calculated from the data also agree with the expected values. Because a nonstatistical effect recently was reported near E n =350 eV from an analysis of 147 Sm(n,α) data, we divided the data into two regions; 0 n n n 0 distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. However, we found that Γ n 0 data in the 350 n 2 distribution having ν≥2 We discuss possible explanations for these observed nonstatistical effects and their possible relation to similar effects previously observed in other nuclides

  12. Electron spin resonance of Fe4+ in amethyst quartz

    International Nuclear Information System (INIS)

    Cox, R.T.

    1975-01-01

    The ESR spectrum of Fe 4+ was looked for in amethyst quartz. Besides saturated Fe 3+ lines, ESR lines of a new paramagnetic center whose spin-lattice relaxation time is relatively short were observed. They could be attributed to Fe 4+ [fr

  13. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  14. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR).

    OpenAIRE

    Vuichoud , Basile; Milani , Jonas; Chappuis , Quentin; Bornet , Aurélien; Bodenhausen , Geoffrey; Jannin , Sami

    2015-01-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (Delta E < kT) is violated for the nuclear Zeeman interaction Delta E = gamma B(0)h/(2 pi) of most isotopes. Provided that, after rapid dissolution and transfer to an NMR or MRI system, the hyperpolarized molecules contain at least two nuclear spins I and S with a scalar coupling J(IS), the polarization of spin I (short for 'inve...

  15. Electron spin resonance studies of gamma irradiated saccharides. Etudes par resonance paramagnetique electronique de saccharides soumis a un rayonnement gamma

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Thiery, C.; Battesti, C.; Agnel, J.P.; Triolet, J.; Vincent, P. (CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes)

    1993-04-01

    The radiolysis mechanism of several saccharides was studied in order to understand the radiolysis mechanism of starches. Electron Spin Resonance first performed in powder state did not allow determination of the chemical structure of the induced radicals. The spin-trapping method combined with HPLC however, followed by ESR spectra analysis with the 'Voyons' simulation program was applied to the study of glucose, glucose oligomers and disaccharides. We were thus able to further our understanding of the radiolysis mechanism of starches. 2 tabs., 4 figs.

  16. Magnetic dipole strength in {sup 128}Xe and {sup 134}Xe in the spin-flip resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Massarczyk, R. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rusev, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwengner, R.; Doenau, F. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Bathia, C. [McMaster University, Hamilton, Ontario L8S4L8 (Canada); Gooden, M.E.; Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Tonchev, A.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Duke University, Durham, NC 27708 (United States)

    2015-07-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in {sup 128}Xe and {sup 134}Xe using quasimonoenergetic and linearly polarized γ-ray beams at the High-Intensity γ-Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with model predictions.

  17. Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4

    International Nuclear Information System (INIS)

    Kamali, J.; Walton, G.N.

    1985-01-01

    The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)

  18. Detection of irradiated fruits and vegetables by gas-chromatographic methods and electron spin-resonance

    Energy Technology Data Exchange (ETDEWEB)

    Farag, S.E.A. (National Centre for Radiation Research and Technology, Cairo (Egypt))

    1993-01-01

    Gas chromatographic methods detected some hydrocarbons esp. 17:1, 16:2, 15:0 and 14:1 in irradiated, Avocado, Papaya, Mangoes with 0.75, 1.5, 3.0 kGy and Apricot with 0.5 and 3.0 kGy. The detection of hydrocarbons was clearly at high doses but the low doses need more sensitive conditions using Liquid-Liquid-Gas chromatographic method as used here. Using Electron Spin-Resonance, produce a specific signal from irradiated onion (dried leaves) as well as apricot (hard coat of kernels) after some weeks of irradiation process but not clear with the other foodstuffs. (orig.)

  19. Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1981-01-01

    The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate

  20. Spin-Orbital Excitations in Ca_{2}RuO_{4} Revealed by Resonant Inelastic X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    L. Das

    2018-03-01

    Full Text Available The strongly correlated insulator Ca_{2}RuO_{4} is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca_{2}RuO_{4}. A set of low-energy (about 80 and 400 meV and high-energy (about 1.3 and 2.2 eV excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund’s coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca_{2}RuO_{4}.

  1. High spin spectroscopy of 34Cl

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.

    2011-01-01

    Spectroscopic information for 34 Cl is of interest for understanding the large 33 S abundance observed in nova. This nucleus has been extensively studied using proton, light ions and alpha beams but there are few experiments where heavy ions were used. In the present work, heavy ion beams are used to extract spectroscopic data for high spin states above ∼ 5 MeV, important for astrophysical scenario. Spherical shell model calculations have been done to interpret the experimental data. Several options of truncation adopted have provided useful insight into the sd - fp cross-shell calculations

  2. Physics of high spin nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)

    1992-08-01

    High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.

  3. Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules

    Science.gov (United States)

    Wen, Zhongqian; Zhou, Liping; Cheng, Jue-Fei; Li, Shu-Jin; You, Wen-Long; Wang, Xuefeng

    2018-03-01

    We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.

  4. Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances

    Science.gov (United States)

    2012-06-10

    May 25 ABSTRACT The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using... planet and assuming a zero obliquity. We find that a Mercury -like planet with a current value of orbital eccentricity (0.2056) is always captured in... Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance. Key words: celestial mechanics – planets

  5. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  6. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  7. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Stesmans, Andre [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Tol, Johan van [National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Kosynkin, D. V. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Tour, James M. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Department of Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA. (United States)

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  8. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES

    International Nuclear Information System (INIS)

    Makarov, Valeri V.

    2012-01-01

    The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056) is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23. These results are confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance.

  9. Electron Spin Resonance studies on PS, PP and PS/PP blends under gamma irradiation

    International Nuclear Information System (INIS)

    Reyes, J.; Claro, M.; Albano, C.; Venezuela Central University, Caracas; Moronta, D.

    2002-01-01

    Complete text of publication follows. Electron Spin Resonance (ESR) studies on Polystyrene (PS), Polypropylene (PP) and their mixtures at compositions of 80/20 with and without a compatibilizer (SBS in block), 7.5 wt.%, irradiated with gamma rays from a Cobalt-60 source with a dose rate of 4.8 KGy/h at integral doses of radiation of 10, 25, 50, 60, 70, 400, 800 and 1300 KGy in the presence of air and at room temperature (RT) are reported. The dependence of resonance line width, Hpp; resonance line shapes K, and radical concentration, S, with the integral dose of irradiation is investigated. The nature of the free radicals after ten days of air storage is discussed. The free radical concentration, the double integral of the resonance line, S, has been estimated at room temperature, RT, for a group of single lines, characterized by the same giromagnetic, g, value by direct numerical double integration. In the samples studied no spectrum of 0 kGy of integral dose was observed. The concentration of radicals, S, observed when the integral radiation doses was increased, presents a maximum value in the PP samples at high doses (70-1300 kGy) and minimum values in the PS samples with the same doses. This shows that the PP degrades at a faster rate than the PS, owing to the presence of the bencenic ring in the latter. In the PS/PP mixtures studied with and without compatibilizer, the values of the radical concentration is found between the observed values in the homopolymers, being closer to the PS, which might imply that the presence of PS decays the degradation process of the PP in the mixture

  10. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect

    Science.gov (United States)

    Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-04-01

    Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.

  11. Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films

    Science.gov (United States)

    Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2009-01-01

    We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.

  12. Spectroscopy study of electron spin resonance of coal oxidation of different rank

    International Nuclear Information System (INIS)

    Enciso Prieto, Hector Manuel

    1992-01-01

    The present work constitutes an initial step for the knowledge of the coal oxidation, with the purpose of preventing the adverse influences caused by this phenomenon in the physical-chemical characteristics and in the tendency to the spontaneous combustion. Since the knowledge the influence of the free radicals in this process, their relative concentration was measured by means of the use of the technique of resonance spin electron. This technique measures the absorption of electromagnetic radiation, generally in the microwaves region, for the materials that not have electrons matched up in a strong magnetic field. In the essays of oxidation three coal of different range and different characteristics of mass were used and it was studied the influence of the temperature, particle size and the range. The results showed that the coal of Guacheta (bituminous low in volatile) it presents bigger concentration of free radicals, after the reaction with the atmospheric oxygen, with regard to the coal of the Cerrejon (bituminous high in volatile B) and Amaga (bituminous high in volatile C). Although this doesn't indicate that the coal of Guacheta is that more easily is oxidized, but rather it possibly presents stabilization of radicals for resonance. It concluded that there are differences in the oxidation mechanism between coal of different rank and different agglomeration properties

  13. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    DEFF Research Database (Denmark)

    Pályi, András; Struck, P R; Rudner, Mark

    2012-01-01

    as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup......We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve...

  14. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    International Nuclear Information System (INIS)

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-01-01

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R 2 ) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R 2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR

  15. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  16. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  17. Application of electron spin resonance for evaluation of the level of ...

    Indian Academy of Sciences (India)

    Abstract. In order to identify and quantify free radicals in the tissues of patients with normal physiological and pathological states of births, we developed a method to evaluate the amount of free radicals in myometrium of subplacental area and from body of uterus, using electron spin resonance spectroscopy. Analysis of the ...

  18. Can we learn about the spin-flip giant dipole resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1982-01-01

    Data and calculations for the 40 Ca(π+-,π 0 ) reactions at 164 MeV are shown which indicate that pion scattering possesses a unique signature for separately identifying the 1 - and 2 - spin-isospin components of the giant dipole resonance

  19. A point of view about identification of irradiated foods by electron spin resonance

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1986-11-01

    Principles and conditions required for using electron spin resonance (ESR) in identifying irradiated foods are first put forth. After a literature review, examples of irradiated cereals and French prunes are described in order to derive general conclusions concerning the future of ESR in this field

  20. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  1. Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Li, Xiao-Fei, E-mail: xf.li@uestc.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Chen, Tong; Li, Quan [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

    2015-09-04

    Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are attractive in spintronics. Here, we propose GNR/CNT/GNR heterojunctions constructed by attaching zigzag-GNRs at the side-wall of CNT for spintronic devices. The thermal stability and electronic transport properties were explored using ab initio molecular dynamics simulations and nonequilibrium Green's function methods, respectively. Results demonstrate that the sp{sup 3}-hybridized contacts formed at the interface assure a good thermal stability of the system and make the CNT to be regarded as resonator. Only the electron of one spin-orientation and resonant energy is allowed to transport, resulting in the remarkable spin-selective transport behavior at the ferromagnetic state. - Highlights: • The new mechanism for spin-selective transport in molecular junction is proposed. • The two sp{sup 3} contacts formed between CNT and GNR can be regarded as electronic isolators. • The two isolators make the CNT act as a resonator. • Only the electron of one spin-orientation and resonant energy can form standing wave and transport through the whole junction.

  2. Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.

    1988-01-01

    It is shown that in the presence of matter there can occur resonant amplification of the flavor-changing neutrino spin rotation in transverse magnetic fields, which is roughly analogous to the Mikheyev-Smirnov-Wolfenstein effect in neutrino oscillations. Possible consequences for solar neutrinos are briefly discussed. (orig.)

  3. Role of phase breaking processes on resonant spin transfer torque nano-oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2018-05-01

    Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.

  4. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    Science.gov (United States)

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  5. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  6. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  7. Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated

  8. High quality-factor optical resonators

    International Nuclear Information System (INIS)

    Henriet, Rémi; Salzenstein, Patrice; Coillet, Aurélien; Saleh, Khaldoun; Chembo, Yanne K; Ristic, Davor; Ferrari, Maurizio; Mortier, Michel; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice; Cibiel, Gilles; Llopis, Olivier

    2014-01-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 10 10 . (paper)

  9. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  10. Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.

    2000-01-01

    Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru

  11. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    Science.gov (United States)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  12. Strong coupling of an NV- spin ensemble to a superconducting resonator

    International Nuclear Information System (INIS)

    Amsuess, R.

    2012-01-01

    This thesis is motivated by the idea of hybrid quantum systems, one promising approach to exploit quantum mechanics for information processing. The main challenge in this field is to counteract decoherence - an inevitable companion of every quantum system. Indeed some quantum systems are intrinsically better isolated from their environment and are therefore less prone to the loss of coherence. But it's the ambivalent nature of decoherence that these highly isolated systems are usually very difficult to interact with and coherently control. To overcome these obstacles ideas were born to combine or hybridize different quantum systems with mutually opposing properties - fast control and long coherence times - and take advantage of the prospective better behavior of the combined system. In this thesis, defects in single crystal diamond - negatively-charged nitrogen-vacancy centers (NV - centers) - are chosen as the quantum memory medium. Because an NV - center constitutes a defect in a solid, its combination with other solid-state quantum systems, as electrical circuits based on Josephson junctions, appears natural. In our work we aimed at the integration of a large number of NV - centers in a circuit quantum electrodynamics (cQED) set-up. These circuits, operating at microwave frequencies, are extremely fast and versatile quantum processors but suffer from short coherence times. Usually single microwave photons stored in a resonant circuit act as information carrier between different parts of the chip. As a main result we observe the coherent energy exchange between the NV - color centers and the electromagnetic field of a microwave resonator. We study in detail a number of important aspects of collective magnetic spin-field coupling as the characteristic scaling with the square root of the number of emitters. Additionally we measure weak coupling to 13C nuclear spins mediated by the hyperfine coupling to the NV - electron spins. The quantum memory capabilities of

  13. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  14. Microscopic properties of degradation-free capped GdN thin films studied by electron spin resonance

    International Nuclear Information System (INIS)

    Shimokawa, Tokuro; Fukuoka, Yohei; Fujisawa, Masashi; Zhang, Weimin; Okubo, Susumu; Ohta, Hitoshi; Sakurai, Takahiro; Vidyasagar, Reddithota; Yoshitomi, Hiroaki; Kitayama, Shinya; Kita, Takashi

    2015-01-01

    The microscopic magnetic properties of high-quality GdN thin films have been investigated by electron spin resonance (ESR) and ferromagnetic resonance (FMR) measurements. Detailed temperature dependence ESR measurements have shown the existence of two ferromagnetic components at lower temperatures, which was not clear from the previous magnetization measurements. The temperature, where the resonance shift occurs for the major ferromagnetic component, seems to be consistent with the Curie temperature obtained from the previous magnetization measurement. On the other hand, the divergence of line width is observed around 57 K for the minor ferromagnetic component. The magnetic anisotropies of GdN thin films have been obtained by the analysis of FMR angular dependence observed at 4.2 K. Combining the X-ray diffraction results, the correlation between the magnetic anisotropies and the lattice constants is discussed

  15. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  16. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  17. Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas

    Science.gov (United States)

    Wang, Su-Ju; Blume, D.

    2017-04-01

    Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.

  18. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    Science.gov (United States)

    Odedra, Smita; Wimperis, Stephen

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking 23 Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Yrast and high spin states in 22Ne

    International Nuclear Information System (INIS)

    Szanto, E.M.; Toledo, A.S. de

    1982-08-01

    High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt

  20. SPIN SUSCEPTIBILITY IN HIGH - TC SUPERCONDUCTIVITY

    African Journals Online (AJOL)

    USER

    2012-07-05

    Jul 5, 2012 ... remains unchanged as a result of which the oxygen site will remain deficient ... kinetic energy, a hole's spin hooks up with the random Cu moment to form a ... reach out to each other magnetically to form spin singlet pairs with ...

  1. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  2. Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)

    2014-10-01

    Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.

  3. Highly spin-polarized materials and devices for spintronics∗.

    Science.gov (United States)

    Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva

    2008-01-01

    The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel

  4. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  5. Resonant coherent quantum tunneling of the magnetization of spin-systems: Spin-parity effects

    NARCIS (Netherlands)

    Garcia-Pablos, D; Garcia, N; de Raedt, H.A.

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated to occur only for some specific resonant values of

  6. Electron spin resonance of spin-trapped radicals of amines and polyamines

    International Nuclear Information System (INIS)

    Mossoba, M.M.; Rosenthal, Ionel; Riesz, Peter

    1982-01-01

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H 2 O 2 and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ν-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the α-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H 2 O 2 in the dark. ν-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the α-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine

  7. High-spin states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Poel, C.J. van der.

    1982-01-01

    A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)

  8. Thermal and rotational effect on giant dipole resonances in rotating nuclei at high temperature

    International Nuclear Information System (INIS)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai.

    1986-01-01

    Microscopic calculations are carried out for the giant dipole resonances excited on the thermal high spin states in 162 Er and 166 Er based on the thermal linear response theory with realistic forces and large single-particle space. The dynamical strength function is compared with the experimental γ-ray absorption cross section. The general trend that the resonance energy decreases and the resonance width increases with increasing angular momentum and temperature is well reproduced by the calculations. (author)

  9. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)

    2012-07-15

    The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).

  10. Spin-flip measurements in the proton inelastic scattering on 12C and giant resonance effects

    International Nuclear Information System (INIS)

    De Leo, R.; D'Erasmo, G.; Ferrero, F.; Pantaleo, A.; Pignanelli, M.

    1975-01-01

    Differential cross sections and spin-flip probabilities (SFP) for the inelastic scattering of protons, exciting the 2 + state at 4.43 MeV in 12 C, have been measured at several incident energies between 15.9 and 37.6 MeV. The changes in the shape of the SFP angular distributions are rather limited, while the absolute values show a pronounced increase, resonant like, in two energy regions centered at about 20 and 29 MeV. The second resonance reproduces very closely the energy dependence of the E2 giant quadrupole strength found in a previous experiment. The resonance at 20 MeV should correspond to a substructure of the E1 giant dipole resonance. (Auth.)

  11. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  12. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    Science.gov (United States)

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-01

    The cold boron carbide free radical (BC X 4Σ-) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B 4Σ--X 4Σ- and E 4Π-X 4Σ- band systems of both 11BC and 10BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B 4Σ- excited state. It has been shown that λ″ expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E 4Π-X 4Σ- 0-0 and 1-0 bands of 11BC. The E-X 0-0 band of 10BC was found to be severely perturbed. The ground state main electron configuration is …3σ24σ25σ11π22π0 and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  13. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  14. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  15. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  16. Investigation of ferromagnetic resonance and magnetoresistance in anti-spin ice structures

    Science.gov (United States)

    Ribeiro, I. R. B.; Felix, J. F.; Figueiredo, L. C.; Morais, P. C.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Quindeau, A.; de Araujo, C. I. L.

    2016-11-01

    In this work, we report experimental and theoretical investigations performed in anti-spin ice structures, composed by square lattice of elongated antidots, patterned in nickel thin film. The magnetic vortex crystal state was obtained by micromagnetic simulation as the ground state magnetization, which arises due to the magnetic stray field at the antidot edges inducing chirality in the magnetization of platters among antidots. Ferromagnetic resonance (FMR) and magnetoresistance (MR) measurements were utilized to investigate the vortex crystal magnetization dynamics and magnetoelectric response. By using FMR, it was possible to detect the spin wave modes and vortex crystal resonance, in good agreement with dynamic micromagnetic simulation results. The vortex crystal magnetization configuration and its response to the external magnetic field, were used to explain the isotropic MR behaviour observed.

  17. Detection by electron spin resonance of young cock irradiated with 60 Co

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Duarte, C.L.; Mastro, N.L. del.

    1992-01-01

    The Electron Spin Resonance was used to measuring the production of free radicals induced by ionizing radiation in young cock bones on doses of 3,5 and 7,0 K Gy. It was studied the design decay by 30 days after the irradiation in environment temperature. The results show that the measures by resonance in bones can be used for detecting if the flesh sample that has bone was irradiated or not. The measures show the possibility of use post-irradiation dosimetry in food producst. (C.G.C.)

  18. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    International Nuclear Information System (INIS)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.

    2013-01-01

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems

  19. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N., E-mail: ovolkov@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-09-15

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.

  20. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  1. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia

    2015-01-01

    Roč. 117, č. 4 (2015), "045708-1"-"045708-6" ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * conduction electrons * 6H SiC * insulator-metal transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  2. Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Nikl, Martin

    2013-01-01

    Roč. 250, č. 2 (2013), s. 254-260 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805; GA AV ČR IAA100100810 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : scintillators * point defects * electron spin resonance * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.605, year: 2013

  3. Magnetic resonance findings in amyotrophic lateral sclerosis using a spin echo magnetization transfer sequence: preliminary report

    Directory of Open Access Journals (Sweden)

    ROCHA ANTÔNIO JOSÉ DA

    1999-01-01

    Full Text Available We present the magnetic resonance (MR findings of five patients with amyotrophic lateral sclerosis (ALS using a spin-echo sequence with an additional magnetization transfer (MT pulse on T1-weighted images (T1 SE/MT. These findings were absent in the control group and consisted of hyperintensity of the corticospinal tract. Moreover we discuss the principles and the use of this fast but simple MR technique in the diagnosis of ALS

  4. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  5. Potentials and Challenges for Arterial Spin Labeling in Pharmacological Magnetic Resonance Imaging

    OpenAIRE

    Wang, Danny J. J.; Chen, Yufen; Fernández-Seara, María A.; Detre, John A.

    2011-01-01

    Pharmacological magnetic resonance imaging (phMRI) is increasingly being used in drug discovery and development to speed the translation from the laboratory to the clinic. The two primary methods in phMRI include blood-oxygen-level-dependent (BOLD) contrast and arterial spin-labeled (ASL) perfusion MRI. BOLD contrast has been widely applied in existing phMRI studies. However, because of the lack of absolute quantification and poor reproducibility over time scales longer than hours or across s...

  6. Magnetic resonance cisternography using the fast spin echo method for the evaluation of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Shigeru; Yokoyama, Tetsuo; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Neuroimaging of vestibular schwannoma was performed with the fat-suppression spoiled gradient recalled acquisition in the steady state (SPGR) method and magnetic resonance (MR) cisternography, which is a fast spin echo method using a long echo train length, for the preoperative evaluation of the lateral extension of the tumor in the internal auditory canal, and the anatomical identification of the posterior semicircular canal and the nerves in the canal distal to the tumor. The SPGR method overestimated the lateral extension in eight cases, probably because of enhancement of the nerves adjacent to the tumor in the canal. The posterior semicircular canal could not be clearly identified, and the cranial nerves in the canal were shown only as a nerve bundle. In contrast, MR cisternography showed clear images of the lateral extension of the tumor and the facial and cochlear nerves adjacent to the tumor in the internal auditory canal. The anatomical location of the posterior semicircular canal was also clearly shown. These preoperative findings are very useful to plan the extent to which the internal auditory canal can be opened, and for intraoperative identification of the nerves in the canal. MR cisternography is less invasive since no contrast material or radiation is required, as with thin-slice high-resolution computed tomography (CT). MR cisternography should replace high-resolution CT for the preoperative neuroradiological evaluation of vestibular schwannoma. (author)

  7. Correlation between antioxidant activity and coffee beverage quality by Electron Spin Resonance Spectroscopic

    Directory of Open Access Journals (Sweden)

    Jeam Haroldo Oliveira Barbosa

    2013-12-01

    Full Text Available Brazil is the largest producer of coffee in the world and coffee prices are directly linked to grain quality. In this work, the antioxidant activity of coffee was related to its quality through Electron Spin Resonance Spectroscopy (ESR, as an attempt to establish a non-subjective method to classify the grain quality. For that purpose, the IC50 and temporal monitoring of its non-oxidized fraction were determined for three bean qualities: Soft (High, Hard (Medium and Rio (Low. Methanolic solution of 2,2-difenil-1-picril-hidrazila (DPPH, that has a stable radical and a JEOL FA-200 (X-Band spectrometer were used for these tests. The temporal monitoring of reaction between radical and coffee was performed. The rate of reduced or of antioxidated radicals was determined on time and for each coffee beverage quality were found different slopes of curve: Soft (0.32±0.02, Hard (0.47±0.02 and Rio (0.60±0.02. The IC50 result of Rio quality (2.7 ± 0.9 was different from the Soft (7.8 ± 1.9 and Hard (6.5 ± 1.5 values, but there was no difference between the High and Medium results due to the uncertainty associated. Therefore the results found, mainly for monitoring temporal, establish a new quantitative methodology for classifying the coffee beverage quality.

  8. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-01-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable. - Highlights: → We identified the radical components in irradiated black pepper skin and core. → The ESR spectra near g=2.005 with 3-7 lines were emerged after irradiation. → Spectra simulated basing on the content and the stability of radical from the plant constituents. → Cellulose radical component in black pepper skin was highly stable. → Single signal near g=2.005 was the most stable in black pepper core.

  9. Electron spin resonance and thermoluminescence in powder form of clear fused quartz: effects of grinding

    CERN Document Server

    Ranjbar, A H; Randle, K

    1999-01-01

    Clear fused quartz (CFQ) tubes were powdered either manually by using a mortar and pestle (for coarse production) or mechanically, using a micronising mill (for fine production). A high and multisignal electron spin resonance (ESR) background was found in the fine powder even after annealing it at 900 deg. C for 20 min. In the case of the coarse powder, the signal (ESR background) varied inversely with particle size and was quite high for particle sizes lower than 38 mu m. In a subsidiary experiment, using fine SiO sub 2 powder (99.8% pure, with the particle size of approx 0.007 mu m), manufactured by using flame hydrolysis, only a weak background signal was found. The sup 6 sup 0 Co gamma-ray irradiated powders (approx 22 Gy) were subjected to ESR analysis or thermoluminescence (TL) readout. The ESR intensity of the coarse powder varied directly with particle size. Thus, the intensity for a particle size of 20-38 mu m was very low and almost the same as the unirradiated intensity. In TL readout the results w...

  10. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  11. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Titov, I.S.; Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Vorob' evy Gory, 11999l Moscow (Russian Federation)

    2016-06-01

    Shape memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 12}Si{sub 3} is investigated with electron spin resonance (ESR) technique in a temperature range of 200–300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: T{sub c}{sup A} (271 K), T{sub M} (247 K) and T{sub c}{sup M} (212 K), where T{sub c}{sup A} is the Curie temperature of austenitic phase, T{sub M} and T{sub c}{sup M} are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200–300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations. - Highlights: • Electron spin resonance study on magnetocaloric Heusler alloy within 200–300 K. • Magnetic phase separation below and above the structural transition temperature. • Phase competing is in association with different types of lattice distortions. • Electron spin resonance results are complementary to the magnetization data.

  12. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    Science.gov (United States)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  13. Search for a high mass diphoton resonance using the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00104125; The ATLAS collaboration

    2017-01-01

    High-mass states decaying into two photons are predicted in many extensions of the Standard Model (SM). The diphoton final state provides a clean experimental signature with good invariant mass resolution and moderate backgrounds. Searches for high-mass resonances decaying into two photons for a spin-0 or spin-2 state are presented. The latest ATLAS results using p-p collision data at 13 TeV and covering a large mass range are discussed.

  14. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  15. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  16. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    Science.gov (United States)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  17. Detection of irradiation treatment in crustacea by electron spin resonance (ESR) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E.M. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Food Science; Stevenson, M.H. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Food Science]|[Department of Agriculture for Northern Ireland, Belfast (United Kingdom); Gray, R. [Department of Agriculture for Northern Ireland, Belfast (United Kingdom)

    1996-12-31

    When the Food (Control of Irradiation) Regulations 1990 came into force in the United Kingdom in January 1991 they included provision for the irradiation of Crustacea to an overall average dose of 3 kGy. The treatment of Crustacea with ionising radiation would reduce numbers of potential pathogens and spoilage organisms thus giving a microbiologically safer product with a longer shelf-life at chill temperatures. At present the process is being used in countries such as France and The Netherlands for the decontamination/shelf-life extension of shrimp. Therefore, as for other food products such as poultry, liquid whole egg and fruit, which are also treated with ionising radiation, it is desirable that a suitable test should be available to help in the control of the irradiation process. One such detection method which has been applied to irradiated Crustacea is that of electron spin resonance (ESR) spectroscopy due to the fact that the rigid exoskeleton has a relatively high dry matter so free radicals produced by ionising irradiation can be trapped and are, therefore, sufficiently stable to be detected. (author).

  18. Detection of irradiation treatment in crustacea by electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Stewart, E.M.; Gray, R.

    1996-01-01

    When the Food (Control of Irradiation) Regulations 1990 came into force in the United Kingdom in January 1991 they included provision for the irradiation of Crustacea to an overall average dose of 3 kGy. The treatment of Crustacea with ionising radiation would reduce numbers of potential pathogens and spoilage organisms thus giving a microbiologically safer product with a longer shelf-life at chill temperatures. At present the process is being used in countries such as France and The Netherlands for the decontamination/shelf-life extension of shrimp. Therefore, as for other food products such as poultry, liquid whole egg and fruit, which are also treated with ionising radiation, it is desirable that a suitable test should be available to help in the control of the irradiation process. One such detection method which has been applied to irradiated Crustacea is that of electron spin resonance (ESR) spectroscopy due to the fact that the rigid exoskeleton has a relatively high dry matter so free radicals produced by ionising irradiation can be trapped and are, therefore, sufficiently stable to be detected. (author)

  19. ESR (Electronic Spin Resonance Spectroscopy) study of irradiated paper for biomedical material wrapping

    International Nuclear Information System (INIS)

    Huarte, Monica; Rubin de Celis, Emilio; Kairiyama, Eulogia; Zapata, Miguel; Santoro, Natalia; Magnavacca, Cecilia

    2009-01-01

    Ionising radiation treatments are used for sterilization, microbiological decontamination, disinfection, insect disinfestation and food preservation. This ionising radiation generates free radicals (FR) in matter, which can be detected by Electronic Spin Resonance Spectroscopy (ESR). For this work it had analysed different kind of irradiated package papers of syringes, surgical gloves and dressings by ESR. These were irradiated with doses between 20 and 35 kGy of gamma radiation (Cobalt 60). The processed samples were measured in a Bruker ECS 106 spectrometer. The obtained results were: 1-) The irritated samples showed a central peak and two satellites induced by the applied radiation; 2-) The non-irradiated samples did not show the characteristic satellite peaks of the irritated ones; 3-) A linear relationship between the signal heights per unit mass and the applied doses was found; and 4-) The signals were highly stable, with half-time values between 240 and 370 days for 20 and 30 kGy, permitting more than one year of monitoring proceedings. In conclusion, the ESR allows the detection, quantification and time monitoring processes of this kind of irradiated materials. (author) [es

  20. Electron spin resonance characterization of trapping centers in Unibond reg-sign buried oxides

    International Nuclear Information System (INIS)

    Conley, J.F. Jr.; Lenahan, P.M.; Wallace, B.D.

    1996-01-01

    Electron spin resonance and capacitance vs. voltage measurements are used to evaluate the radiation response of Unibond buried oxides. When damaged by hole injection, it is found that Unibond reg-sign buried oxides exhibit a rough correspondence between E' centers and positive charge as well as generation of P b centers at the Unibond buried oxide/Si interface. In these respects, Unibond buried oxides qualitatively resemble thermal SiO 2 . However, a hydrogen complexed E' center known as the 74 G doublet is also detected in the Unibond buried oxides. This defect is not detectable in thermal SiO 2 under similar circumstances. Since the presence of 74 G doublet center is generally indicative of very high hydrogen content and since hydrogen is clearly a significant participant in radiation damage, this result suggests a qualitative difference between the radiation response of Unibond and thermal SiO 2 . Unibond results are also compared and contrasted with similar investigations on separation-by-implanted-oxygen (SIMOX) buried oxides. Although the charge trapping response of Unibond buried oxides may be inferior to that of radiation hardened thermal SiO 2 , it appears to be more simple and superior to that of SIMOX buried oxides

  1. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  2. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  3. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  4. High spin rotational bands in 65 Zn

    Indian Academy of Sciences (India)

    The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.

  5. High spin states in 68Zn

    International Nuclear Information System (INIS)

    Bruandet, J.-F.; Berthet, B.; Morand, C.; Gironi, A.; Longequeue, J.-P.; Tsan Ung Chan.

    1976-01-01

    Yrast levels of 68 Zn have been investigated via measurements of excitation functions and angular distributions of single γ-rays and of γ-γ coincidences. Following the 65 Cu(α,pγ) 68 Zn reaction with α particle energies between 12-21MeV. Spin up to J=8 were assigned to observed states [fr

  6. High-spin states in 66Zn

    International Nuclear Information System (INIS)

    Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.

    1975-01-01

    The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr

  7. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...

  8. Structure of Se at high spin

    Indian Academy of Sciences (India)

    the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.

  9. Evidence of a spin resonance mode in the iron-based superconductor Ba(0.6)K(0.4)Fe2As2 from scanning tunneling spectroscopy.

    Science.gov (United States)

    Shan, Lei; Gong, Jing; Wang, Yong-Lei; Shen, Bing; Hou, Xingyuan; Ren, Cong; Li, Chunhong; Yang, Huan; Wen, Hai-Hu; Li, Shiliang; Dai, Pengcheng

    2012-06-01

    We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

  10. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  11. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  12. Spin resonance in the new-structure-type iron-based superconductor CaKFe4As4

    International Nuclear Information System (INIS)

    Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira

    2017-01-01

    The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe 4 As 4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Q res = 1.17(1) Å -1 , corresponding to the (π, π) nesting wave vector in tetragonal notation, evolves below T c . The characteristic energy of the spin resonance E res = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe 4 As 4 is the s ± symmetry. (author)

  13. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  14. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  15. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  16. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  17. The fate of allogenic radiation sterilized bone grafts controlled by the electron spin resonance spectrometry

    International Nuclear Information System (INIS)

    Ostrowski, K.; Dziedzic-Goclawska, A.

    1981-01-01

    The normal fate of bone grafts is their resorption and substitution by the own host's bone tissue. This phenomenon described as creeping substitution process was controlled using biopsies from the grafted region in allogenic experimental system. Electron spin resonance (ESR) spectrometry was used for independent evaluation of resorption and substitution processes. The measurements were based on the process of induction in the hydroxyapatite (HA) crystals of bone mineral of stable paramagnetic centers which can be detected by ESR spectrometry. The loss of total amount of spins connected with the paramagnetic centers expressed in percent describes the kinetics of resorption. The changes in the concentration of spins due to the ''dilution'' of spins implanted with the graft by the nonirradiated ingrowing host's own bone describe the kinetics of the substitution process. Allogenic bone of calvaria was grafted orthotopically into rabbits after lyophilization and radiation sterilization with a dose of 3.5 Mrads. The process of graft's rebuilding was evaluated using the described ESR method. The application of the described technique in the human clinic is possible. (author)

  18. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    Science.gov (United States)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  19. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  20. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  1. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Mukherjee, G.; Mukherjee, A.; Banerjee, P.; Saha Sarkar, M.; Bhattacharya, S.; Goswami, A.; Bhattacharjee, T.; Basu, S.K.; Mukhopadhyaya, S.; Krishichayan; Chakraborty, A.; Gangopadhyay, G.

    2004-01-01

    Large amount of experimental data has been obtained in the recent past on several Nd (Z=60) and Pm (Z=61) isotopes near N=82 shell closure which exhibits an irregular yrast sequence, typical of a non-spherical shape at low spins. The nucleus 143 Sm (Z=62) with a single neutron hole in the N=82 closed shell was investigated as a part of this proposed study

  2. 'Static' octupole deformation at high spin

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1985-01-01

    Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)

  3. Observation of the Distribution of Molecular Spin States by Resonant Quantum Tunneling of the Magnetization

    Science.gov (United States)

    Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.

    1999-05-01

    Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime and we show that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measure as a function of applied field H the statistical distribution P\\(ξH\\) of magnetic energy bias ξH acting on the molecules. Tunneling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P\\(ξH\\) (around the resonant condition ξH = 0). For small initial magnetization values, the hole width shows an intrinsic broadening which may be due to nuclear spins.

  4. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress

  5. Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique

    Czech Academy of Sciences Publication Activity Database

    Fang, D.; Kurebayashi, H.; Wunderlich, Joerg; Výborný, Karel; Zarbo, Liviu; Campion, R. P.; Casiraghi, A.; Gallagher, B. L.; Jungwirth, Tomáš; Ferguson, A.J.

    2011-01-01

    Roč. 6, č. 7 (2011), s. 413-417 ISSN 1748-3387 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA AV ČR KJB100100802; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanomagnets Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 27.270, year: 2011

  6. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance.

    Science.gov (United States)

    Srivastava, Madhur; Freed, Jack H

    2017-11-16

    Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.

  7. Use of resonance ionization spectroscopy to detect DNA bands on ultrathin spin-coated gels.

    Science.gov (United States)

    Doktycz, M J; Gibson, W A; Arlinghaus, H F; Allen, R C; Jacobson, K B

    1993-01-01

    Development of alternative electrophoresis procedures are necessary for large volume sequencing and mapping studies. The use of stable isotopes as DNA labels and ultrathin gels promises to greatly increase the rate of sequencing. Spin coating is presented as an alternative method for producing ultrathin polyacrylamide gels. The technique has the potential of producing gels of micron to submicron thicknesses by varying the viscosity of the acrylamide solution and the spinning speed. Thirty micron thick 6% (weight %) gels were produced in this manner. Tin-labeled DNA oligomers were electrophoresed and detected using sputter-initiated resonance ionization spectroscopy (SIRIS). The usefulness of SIRIS and laser atomization RIS (LARIS) to sample the surface and deeper layers of 240 microns thick gels was investigated. With LARIS, whole cross-sections of the gel can be atomized, possibly allowing complete sampling of labels.

  8. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  9. Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury

    Science.gov (United States)

    Lhotka, Christoph

    2017-12-01

    We investigate the stable Cassini state 1 in the p : q spin-orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin-orbit resonances with p,q≤ 8 and p≥ q. We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.

  10. Electron spin resonance studies of iron-group impurities in beryllium fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Griscom, D L; Stapelbroek, M [Naval Research Lab., Washington, DC (USA); Weber, M J [California Univ., Livermore (USA). Lawrence Livermore National Lab.

    1980-11-01

    Electron spin resonance investigations have been carried out on unirradiated BeF/sub 2/ glasses. Two relatively intense resonances were observed in a water-free distilled glass known to contain 49 ppM Ni, 13 ppM Mn, and < 20 ppM Fe. One of these was the paramagnetic resonance spectrum of Mn/sup 2 +/. Analysis of the observed /sup 19/F superhyperfine structure demonstrated this manganese to occupy distorted octahedral sites in the glass network. The second resonance was shown by temperature and frequency dependence studies, coupled with computer line shape analysis, to be a ferromagnetic resonance signal due to precipitated ferrite phases. The data suggest that these ferrites are somewhat heterogeneous and most likely comprize magnetite-like phases similar to NiFe/sub 2/O/sub 4/. An optical extinction curve rising into the ultraviolet with an approximate lambda/sup -4/ dependence is tentatively ascribed to light scattering by ferrite particles approximately 1000 Angstroems in diameter.

  11. New Approach For Detection Of Irradiated Spices Using Electron Spin Resonance (ESR)

    International Nuclear Information System (INIS)

    FARAG, S.A.; SHAMS EL DIEEN, N.M.M.

    2010-01-01

    Black pepper and anise samples were irradiated with different doses of gamma rays (5, 10 and 20 kGy) then the irradiated samples were stored at room temperature (20 0 C, 70-75 % RH) for one year. The measurements of free radicals were carried out by electron spin resonance (ESR) at different intervals (3, 6, 9 and 12 months). A series of signals tentatively described as cellulose-like and complex radical observed at G values were 2.01027 for black pepper and 2.01019 for anise. The ESR signals of irradiated spices showed a directly proportional relationship for increasing dose with increasing intensity of signal. A relationship was noticed as polynomial regression analysis resulted between signals of ESR intensity and applied doses with significant values of correlation coefficient (R 2 ). All combination treatments of thermal and irradiation beside long storage caused significant reduction of ESR intensity of irradiated black pepper and anise. Upon using low doses as 1, 2 and 3 kGy for re-irradiation, the irradiated samples (10 and 20 kGy) increased the power of ESR intensity. The enhancement effect was markedly increased. For example, the irradiated black pepper (10 kGy) increased the ESR intensity with high percentages as 49.19%, 69.23% and 89.68% while the high dose (20 kGy) caused increase by 39.96%, 69.05% and 96.90% for irradiated black pepper samples. This approach with that technique can be used easily to overcome the main disadvantages of ESR signals fading especially at the end of storage period.

  12. Electron spin resonance and thermoluminescence in powder form of clear fused quartz: effects of grinding

    International Nuclear Information System (INIS)

    Ranjbar, A.H.; Durrani, S.A.; Randle, K.

    1999-01-01

    Clear fused quartz (CFQ) tubes were powdered either manually by using a mortar and pestle (for coarse production) or mechanically, using a micronising mill (for fine production). A high and multisignal electron spin resonance (ESR) background was found in the fine powder even after annealing it at 900 deg. C for 20 min. In the case of the coarse powder, the signal (ESR background) varied inversely with particle size and was quite high for particle sizes lower than 38 μm. In a subsidiary experiment, using fine SiO 2 powder (99.8% pure, with the particle size of ∼0.007 μm), manufactured by using flame hydrolysis, only a weak background signal was found. The 60 Co gamma-ray irradiated powders (∼22 Gy) were subjected to ESR analysis or thermoluminescence (TL) readout. The ESR intensity of the coarse powder varied directly with particle size. Thus, the intensity for a particle size of 20-38 μm was very low and almost the same as the unirradiated intensity. In TL readout the results were the opposite: the TL intensity of the coarse powder varied inversely with the particle size down to 38 μm, after which it decreased with decreasing particle size of the material. The fine powder, produced by grinding the CFQ tubes, was insensitive to gamma-rays (at least at doses of up to 50 Gy); but for the flame hydrolysis SiO 2 the situation was the opposite. The minimum detectable dose (MDD) for the CFQ in powder form using ESR was ∼2 Gy, which is ∼2 times higher than that for the bulk form, while the MDD for the powder using TL was ∼20 μGy, which is ∼2 times lower than that for the bulk form of the material

  13. Electron spin resonance and thermoluminescence in powder form of clear fused quartz: effects of grinding

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, A.H. [Physics Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Durrani, S.A. [School of Physics and Space Research, University of Birmingham, Birmingham (United Kingdom); Randle, K. [School of Chemistry, University of Birmingham, Birmingham (United Kingdom)

    1999-02-01

    Clear fused quartz (CFQ) tubes were powdered either manually by using a mortar and pestle (for coarse production) or mechanically, using a micronising mill (for fine production). A high and multisignal electron spin resonance (ESR) background was found in the fine powder even after annealing it at 900 deg. C for 20 min. In the case of the coarse powder, the signal (ESR background) varied inversely with particle size and was quite high for particle sizes lower than 38 {mu}m. In a subsidiary experiment, using fine SiO{sub 2} powder (99.8% pure, with the particle size of {approx}0.007 {mu}m), manufactured by using flame hydrolysis, only a weak background signal was found. The {sup 60}Co gamma-ray irradiated powders ({approx}22 Gy) were subjected to ESR analysis or thermoluminescence (TL) readout. The ESR intensity of the coarse powder varied directly with particle size. Thus, the intensity for a particle size of 20-38 {mu}m was very low and almost the same as the unirradiated intensity. In TL readout the results were the opposite: the TL intensity of the coarse powder varied inversely with the particle size down to 38 {mu}m, after which it decreased with decreasing particle size of the material. The fine powder, produced by grinding the CFQ tubes, was insensitive to gamma-rays (at least at doses of up to 50 Gy); but for the flame hydrolysis SiO{sub 2} the situation was the opposite. The minimum detectable dose (MDD) for the CFQ in powder form using ESR was {approx}2 Gy, which is {approx}2 times higher than that for the bulk form, while the MDD for the powder using TL was {approx}20 {mu}Gy, which is {approx}2 times lower than that for the bulk form of the material.

  14. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  15. Electron spin resonance (ESR) studies on irradiated cocoa beans and niger seeds

    International Nuclear Information System (INIS)

    Mangaonkar, S.R.; Natarajan, V.; Sastry, M.D.; Desai, S.R.P.; Kulkarni, P.R.

    1997-01-01

    Electron spin resonance (ESR) spectra of irradiated (10kGy) and unirradiated cocoa beans and niger seeds have been compared. Unirradiated cocoa beans failed to give any ESR signal, whereas after irradiation (10kGy) an ESR signal at g = 2.0042 was observed. However, ESR signals are given by both irradiated and unirradiated niger seeds. The intensity of signal was found to be dose-dependent up to 10kGy for both seeds. The signals were stable up to 180 days in both cases. The results indicate the possibility of using ESR for distinguishing between irradiated and unirradiated cocoa beans but not for niger seeds

  16. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  17. Laser-excited Fluorescence And Electron-spin Resonance Of Er3+ In Polycrystalline Alcl3

    OpenAIRE

    Ceotto G.; Pires M.A.; Sanjurjo J.A.; Rettori C.; Barberis G.E.

    1990-01-01

    The green fluorescence transitions among the levels corresponding to the 4S3/2 and 4I15/2 configurations of Er3+ diluted in AlCl3 have been measured using laser excitation. The data allow us to determine the crystalline-field splittings of these levels and, in turn, the spin-Hamiltonian parameters. The electron-paramagnetic-resonance spectrum observed at low temperatures is in good agreement with that expected from these parameters. © 1990 The American Physical Society.

  18. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    Science.gov (United States)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  19. Comparative investigation on electron spin resonance dosimetry of tooth enamel of cow and human

    International Nuclear Information System (INIS)

    Jiao Ling; Zhang Wenyi; Ding Yanqiu; Kou Mingying

    2010-01-01

    The enamel samples from cow teeth and human teeth were irradiated with 137 Cs γ ray. Their electron spin resonance (ESR) spectra pre and post-irradiation were weaker than those of human. Mass of each sample is 100 mg, the dosimetric signal intensity of cow enamel increased with the radiation dose; the averaged radiation response of cow samples was (34.4±2.0) Gy -1 , very close to the average response of human tooth samples (36.3±2.9) Gy -1 . Therefore cow teeth can be used for retrospective radiation dosimetry when human teeth are unavailable. (authors)

  20. Retrospective Dosimetry: Dose Analysis From Tooth Enamel Using Electron Spin Resonance (ESR)

    International Nuclear Information System (INIS)

    Mohd Rodzi Ali; Rahimah Abdul Rahim; Noraisyah Yusof; Syed Asraf Fahlawi Wafa Syed Mohd Ghazi; Juliana Mahamad Napiah; Yahaya Talib; Rehir Dahalan

    2014-01-01

    The radiation dose should be accurately measured in order to relate its effect to the cells. The assessment of dose usually performed using biological dosimetry techniques. However, the reduction of lymphocytes (white blood cells) after the time period results in inaccuracy of dose measurement. An alternative method used is the application of Electron Spin Resonance (ESR) using tooth enamel. In this study, tooth enamels were evaluated and used to measure the individual absorbed dose from the background. The basic tooth features that would affect dose measurement were discussed. The results show this technique is capable and effective for retrospective dose measurement and useful for the study of radiation effect to human. (author)

  1. Electron spin resonance signal from a tetra-interstitial defect in silicon

    CERN Document Server

    Mchedlidze, T

    2003-01-01

    The Si-B3 electron spin resonance (ESR) signal from agglomerates of self-interstitials was detected for the first time in hydrogen-doped float-zone-grown silicon samples subjected to annealing after electron irradiation. Previously this signal had been detected only in neutron- or proton-irradiated silicon samples. The absence of obscuring ESR peaks for the investigated samples at applied measurement conditions allowed an investigation of the hyperfine structure of the Si-B3 spectra. The analysis supports assignment of a tetra-interstitial defect as the origin of the signal.

  2. High resolution resonance studies with the (p,p) and (p,α) reactions

    International Nuclear Information System (INIS)

    Bilpuch, E.G.; Mitchell, G.E.; Brooks, W.

    1985-01-01

    Recently the authors have extended their high resolution studies to targets with spin. A series of measurements on non-zero spin targets in the 2s-1d shell is now in progress. In section b the analysis of resonance data for targets with spin is described, with emphasis on s and l mixing. In sections c and d the authors briefly summarize the published data on 27 Al and 25 Mg, while in sections e, f, and g preliminary results for 33 S, 39 K, and 23 Na are described. The relevance of the entrance channel relative phase to a class of parity mixing experiments is discussed in section h

  3. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  4. On the spin states of habitable zone exoplanets around M dwarfs: the effect of a near-resonant companion

    Science.gov (United States)

    Vinson, Alec M.; Hansen, Brad M. S.

    2017-12-01

    One long-standing problem for the potential habitability of planets within M dwarf systems is their likelihood to be tidally locked in a synchronously rotating spin state. This problem thus far has largely been addressed only by considering two objects: the star and the planet itself. However, many systems have been found to harbour multiple planets, with some in or very near to mean motion resonances. The presence of a planetary companion near a mean motion resonance can induce oscillatory variations in the mean motion of the planet, which we demonstrate can have significant effects on the spin state of an otherwise synchronously rotating planet. In particular, we find that a planetary companion near a mean motion resonance can excite the spin states of planets in the habitable zone of small, cool stars, pushing otherwise synchronously rotating planets into higher amplitude librations of the spin state, or even complete circulation resulting in effective stellar days with full surface coverage on the order of years or decades. This increase in illuminated area can have potentially dramatic influences on climate, and thus on habitability. We also find that the resultant spin state can be very sensitive to initial conditions due to the chaotic nature of the spin state at early times within certain regimes. We apply our model to two hypothetical planetary systems inspired by the K00255 and TRAPPIST-1 systems, both of which have Earth-sized planets in mean motion resonances orbiting cool stars.

  5. Study of leading strange meson resonances and spin-orbit splittings in K-p → K-π+n at 11 GeV/c

    International Nuclear Information System (INIS)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of Kπ elastic scattering in the reaction K - p → K - π + n are presented. The data for this analysis are taken from an 11-GeV/c K - p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K - π + events, a sample consisting of data for the Kπ → Kπ elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1 - K*(895), the 2 + K*(1430), and the 3 - K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4 - K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0 + kappa (1490) and propose the existence of a second scalar meson resonance, the 0 + kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables

  6. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  7. Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model

    Science.gov (United States)

    Williams, James G.; Efroimsky, Michael

    2012-12-01

    Spin-orbit coupling is often described in an approach known as " the MacDonald torque", which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467-541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald's derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257-289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1-7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a

  8. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  9. High spin states in 62Cu

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.

    1977-06-01

    The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr

  10. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides

    Science.gov (United States)

    Clauss, Conrad; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Bogani, Lapo; Scheffler, Marc; Dressel, Martin

    2013-04-01

    We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

  11. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  12. Measurement of the Proton and Deuteron Spin Structure Function g1 in the Resonance Region

    International Nuclear Information System (INIS)

    Abe, K.; Akagi, T.; Perry Anthony; Antonov, R.; Arnold, R.G.; Todd Averett; Band, H.R.; Bauer, J.M.; Borel, H.; Peter Bosted; Vincent Breton; Button-Shafer, J.; Jian-Ping Chen; T.E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; G. Court; Donald Crabb; M. Daoudi; Donal Day; F.S. Dietrich; James Dunne; H. Dutz; R. Erbacher; J. Fellbaum; Andrew Feltham; Helene Fonvieille; Emil Frlez; D. Garvey; R. Gearhart; Javier Gomez; P. Grenier; Keith Griffioen; S. Hoeibraten; Emlyn Hughes; Charles Hyde-Wright; J.R. Johnson; D. Kawall; Andreas Klein; Sebastian Kuhn; M. Kuriki; Richard Lindgren; T.J. Liu; R.M. Lombard-Nelsen; Jacques Marroncle; Tomoyuki Maruyama; X.K. Maruyama; James Mccarthy; Werner Meyer; Zein-Eddine Meziani; Ralph Minehart; Joseph Mitchell; J. Morgenstern; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; C. Prescott; R. Prepost; P. Raines; Brian Raue; D. Reyna; A. Rijllart; Yves Roblin; L. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Ingo Sick; Lee Smith; Tim Smith; M. Spengos; F. Staley; P. Steiner; S. St. Lorant; L.M. Stuart; F. Suekane; Z.M. Szalata; Huabin Tang; Y. Terrien; Tracy Usher; Dieter Walz; Frank Wesselmann; J.L. White; K. Witte; C. Young; Brad Youngman; Haruo Yuta; G. Zapalac; Benedikt Zihlmann; Zimmermann, D.

    1997-01-01

    We have measured the proton and deuteron spin structure functions g 1 p and g 1 d in the region of the nucleon resonances for W 2 2 and Q 2 ≅ 0.5 and Q 2 ≅ 1.2 GeV 2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15 NH 3 and 15 ND 3 targets. We observe significant structure in g 1 p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W 2 , to extract Γ(Q 2 ) (triple b ond) ∫ 0 1 g 1 (x,Q 2 ) dx. This is the first information on the low-Q 2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q 2 = 0

  13. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    Energy Technology Data Exchange (ETDEWEB)

    Sunahori, Fumie X. [Department of Chemistry and Physics, Franklin College, Franklin, Indiana 46131 (United States); Nagarajan, Ramya; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)

    2015-12-14

    The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  14. Observational signature of high spin at the Event Horizon Telescope

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  15. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  16. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  17. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Science.gov (United States)

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  18. Optically detected electron spin-flip resonance in CdMnTe

    International Nuclear Information System (INIS)

    Zeng, S.; Smith, L.C.; Davies, J.J.; Wolverson, D.; Bingham, S.J.; Aliev, G.N.

    2006-01-01

    We show that the spin-flip of electrons at neutral donors in a dilute magnetic semiconductor can be observed directly by means of optically-detected magnetic resonance (ODMR). Spectra obtained at 105 GHz for a bulk crystal of Cd 1-x Mn x Te with x = 0.005 showed strong signals with g -values ranging between 12 (at 4.2 K) and 35 (at 1.7 K), with magnetic resonance linewidths ranging from 0.3 Tesla to 0.1 Tesla at the lowest temperature. In energy terms, these linewidths are independent of temperature and agree with those in spin-flip Raman spectra from the same specimen. The line broadening is caused by fluctuations in the number of manganese ions that interact with a particular donor and an analysis of this leads to a value for the donor Bohr radius of 4.5 nm. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  20. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date.

  1. Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers

    Science.gov (United States)

    Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.

    2009-05-01

    We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.

  2. Electron spin resonance and electron spin echo modulation spectroscopic studies on the structure and reactivity of Pd(I) species in SAPO-11 molecular sieves

    International Nuclear Information System (INIS)

    Chul Wee Lee; Jong-Sung Yu; Kevan, L.

    1992-01-01

    This paper explores the possibility of using Pd ions in SAPO-11 by adding [Pd(NH 3 ) 4 ] 2+ during the synthesis of SAPO-11 to form PdSAPO-11, which is compared with solid-state ion exchange PdSAPO-11 and impregnation PdH-SAPO-11 in which palladium is in an extraframework position. Electron spin resonance and electron spin echo modulation spectroscopies are used to determine if the palladium position in PdSAPO-11 is located in a framework or extraframework

  3. Electron Spin Resonance in CuSO45H2O down to 100 mK

    Science.gov (United States)

    Kadowaki, Kazuo; Chiba, Yoshiaki; Kindo, Koichi; Date, Muneyuki

    1988-12-01

    Copper sulfate pentahydrate CuSO45H2O is investigated by ESR at 9, 17, 24, 35 and 50 GHz regions down to about 100 mK using a combined cryostat of 3He and adiabatic demagnetization. The temperature dependent exchange interaction JAB between inequivalent site spins A and B is found. It is about 0.11 K at room temperature and increases with decreasing temperature up to 0.24 K. Temperature dependent resonance shifts are attributed to the exchange shift coming from non-resonant dissimilar spins. Partial order effect below 1 K is discussed.

  4. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neon......Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...

  5. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  6. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    International Nuclear Information System (INIS)

    Bertaina, S; Groll, N; Chen, L; Chiorescu, I

    2011-01-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  7. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  8. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  9. SLAC workshop on high energy electroproduction and spin physics

    International Nuclear Information System (INIS)

    1992-01-01

    These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A

  10. High spin states in 162Lu

    International Nuclear Information System (INIS)

    Gupta, S.L.; Pancholi, S.C.; Juneja, P.; Mehta, D.; Kumar, A.; Bhowmik, R.K.; Muralithar, S.; Rodrigues, G.; Singh, R.P.

    1997-01-01

    An experimental investigation of the odd-odd 162 Lu nucleus, following the 148 Sm( 19 F,5n) reaction at beam energy E lab =112MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh 11/2 circle-times νi 13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe ' ∼25keV, is considerably reduced in contrast to sizable normal signature splitting Δe ' ∼125 and 60 keV observed in the yrast πh 11/2 bands of the neighboring odd-A 161,163 Lu nuclei, respectively. The signature inversion in this band occurs at spin ∼20ℎ (frequency=0.37MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i 13/2 quasineutrons, is a band based on the four-quasiparticle [πh 11/2 [523]7/2 - times νh 9/2 [521]3/2 - times(νi 13/2 ) 2 ], i.e., EABA p (B p ), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABA p (B p ). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model. copyright 1997 The American Physical Society

  11. Backbending in high spin states of 80Kr

    International Nuclear Information System (INIS)

    Kaushik, M.; Saxena, G.

    2014-01-01

    The study of high-spin states in Kr isotopes near A = 80 region has attracted a considerable interest in recent years. A variety of shapes, shape coexistence as well as backbending phenomenon have been studied in the many of Kr isotopes. In the case of 80 Kr, the high spin structure has been studied by Doring et al. rather extensively and has provided considerable insight into the structure of f-p-g shell nuclei and the competition between single-particle and collective degrees of freedom. Backbending phenomenon is reported in 80 Kr at ω = 0.5 MeV

  12. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    OpenAIRE

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-01-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...

  13. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies

    International Nuclear Information System (INIS)

    Lefevre, J.

    2008-01-01

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  14. Detection of irradiated deboned turkey meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Gray, Richard; Stevenson, M.H.

    1989-01-01

    Bone fragments were extracted from two blocks of frozen deboned turkey meat (irradiated and non-irradiated) using alcoholic KOH digestion. Electron spin resonance (ESR) spectroscopy was used to differentiate between the samples. Comparison of an alcoholic KOH digestion procedure with a freeze drying and grinding method showed that the former method gave a signal which was 78% of that obtained using the freeze drying procedure. Regression analysis of the results obtained after subjection of the original non-irradiated sample to irradiation doses of 3.0, 5.0 and 7.0 kGy gave a linear relationship between irradiation dose and ESR signal strength over this range. Using this relationship the estimated mean dose received by the irradiated block was 4.72 kGy. (author)

  15. Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions

    Directory of Open Access Journals (Sweden)

    Fen Liu

    2016-08-01

    Full Text Available Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsic properties.

  16. DETECTION OF SOME IRRADIATED NUTS BY ELECTRON SPIN RESONANCE (ESR) TECHNIQUE

    International Nuclear Information System (INIS)

    KHALLAF, M.F.; YASIN, N.M.N.; EL-NASHABY, F.M.; ALI, H.G.M.; EL-SHIEMY, S.M.

    2008-01-01

    The present investigation was carried out to establish the electron spin resonance (ESR) detection method for identifying irradiated nuts (almond and pistachio). Samples were irradiated with 2, 4 and 6 kGy and stored at room temperature (25± 2 0 C) for six months to study the possibility of detecting its previous irradiation treatments by ESR spectroscopy. Analysis was carried out just after irradiation treatment and during ambient storage period. The ESR signal intensities of irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation so, all irradiated samples under investigation could be differentiated from non-irradiated ones immediately after irradiation treatment. The decay in radicals responsible of ESR signals showed the identification of irradiated almond (shell or edible part) and pistachio (edible part) was impossible after six months of ambient storage

  17. DETECTION OF SOME IRRADIATED NUTS BY ELECTRON SPIN RESONANCE (ESR) TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    KHALLAF, M F; YASIN, N M.N. [Food Science Dept., Faculty of Agriculture, Ain Shams University, Cairo (Egypt); EL-NASHABY, F M; ALI, H G.M.; EL-SHIEMY, S M [Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    The present investigation was carried out to establish the electron spin resonance (ESR) detection method for identifying irradiated nuts (almond and pistachio). Samples were irradiated with 2, 4 and 6 kGy and stored at room temperature (25{+-} 2{sup 0}C) for six months to study the possibility of detecting its previous irradiation treatments by ESR spectroscopy. Analysis was carried out just after irradiation treatment and during ambient storage period. The ESR signal intensities of irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation so, all irradiated samples under investigation could be differentiated from non-irradiated ones immediately after irradiation treatment. The decay in radicals responsible of ESR signals showed the identification of irradiated almond (shell or edible part) and pistachio (edible part) was impossible after six months of ambient storage.

  18. Detection of organic free radicals in irradiated pepper by electron spin resonance

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Shimoyama, Yuhei

    2002-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed various free radicals in a Japanese commercially available black pepper before and after γ-irradiation. The representative ESR spectrum of the pepper is composed of a sextet centered at g=2.0, a singlet at the same g-value and a singlet at g=4.0. The first one is attributable to a signal with hyperfine interactions of Mn 2+ ion (7.4 mT). The second one is due to an organic free radical. The third one may be originated from Fe 3+ ion of the non-hem Fe in proteins. A pair of signals appeared in the black pepper after γ-irradiation. The progressive saturation behavior reconfirmed the signal identification for the radicals in the black pepper. (author)

  19. Identification of irradiated peppers by electron spin resonance, thermoluminescence and viscosity

    International Nuclear Information System (INIS)

    Polonia, I.; Esteves, M.P.; Andrade, M.E.; Laboratorio Nacional de Engenharia e Tecnologia Industrial, Sacavem; Empis, J.

    1995-01-01

    White and black pepper purchased in local retailers were analysed by electron spin resonance (ESR), thermoluminescence (TL) and viscosimetry (VISC) in order to establish a viable method for identifying possibly irradiated peppers. Samples studied were non irradiated or irradiated in a cobalt-60 plant with the absorbed doses of 3, 5, 7 and 10 kGy. Confirming the data found in the literature TL was revealed by our results the best method to identify irradiated peppers. Nevertheless, the dose received by the samples could not be estimated. The ESR signal of irradiated peppers is similar to the spectrum of cellulose radical but very short lived at ambient temperature. The study on the alteration of viscosity of heat-treated alkaline pepper suspensions indicate that VISC is a very promising method for detection of irradiated peppers. (Author)

  20. Evaluation of electron spin resonance technique for the detection of irradiated mango (Mangifera indica L.) fruits

    International Nuclear Information System (INIS)

    Bhushan, B.; Kadam, R.M.; Thomas, P.; Singh, B.B.

    1994-01-01

    The electron spin resonance (ESR) technique was examined as a method for the detection of irradiated mango fruits. A symmetric ESR signal at g = 1.988 was detected in the hard seed cover (endocarp), the dry epidermal layer (testa) surrounding the kernel, and the soft kernel portions of the seed from four mango cultivars. the amplitude of the signal in the epidermal layer and seed cover showed a dose-dependent increase over control values. Qualitatively, however, no new signal was observed following irradiation, except that line width increased by 50%. Methyl cellosolve washing greatly reduced the intensity of the endogenous and radiation (1.0 kGy)-induced ESR signals in the seed cover; results suggest phenolic substances as the source of free radicals. the similarity of naturally occurring ESR signals to that induced by irradiation seems to restrict the practical utility of this method in irradiated mangoes

  1. Electron Spin Resonance Dating of Some Animal Teeth Enamel and Shell Fossils

    International Nuclear Information System (INIS)

    Athabutra, Supakij; Siri-Upathum, Chyagrit

    2007-08-01

    Full text: Electron spin resonance (ESR) dating was conducted for some ungulate tooth enamel samples and shell fossils of the the Tham Lod rock shelter Area I (S23W10) located in Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province, Thailand. Age estimation for wave-induced breaching of the cavity and initial sand deposition (Level 19-29) was 33,200 - 18,700 years and 32,300 years for teeth enamel and the shell fossils of Nodularia scobinata sp. (Carditidae) respectively. ESR spectra showed g-factor g1 (gll, gcenter) = 2.0030 - 2.0036, g2 = 2.0040 - 2.0041 and g3 (g?) = 1.997 - 1.9988 formed by CO2- orthorhombic free radical for teeth enamel and g-factor (gcenter) = 2.0042 + 0.0003 formed by SO3- free radical for fresh shell fossils

  2. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance.

    Science.gov (United States)

    Kusar, A; Zupancic, A; Sentjurc, M; Baricevic, D

    2006-10-01

    Yellow gentian (Gentiana lutea L.) is a herbal species with a long-term use in traditional medicine due to its digestive and stomachic properties. This paper presents an investigation of the free radical scavenging activity of methanolic extracts of yellow gentian leaves and roots in two different systems using electron spin resonance (ESR) spectrometry. Assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the superoxide radicals (O2*-) generated by the xanthine/xanthine oxidase (X/XO) system. The results of gentian methanolic extracts were compared with the antioxidant capacity of synthetic antioxidant butylated hydroxyanisole (BHA). This study proves that yellow gentian leaves and roots exhibit considerable antioxidant properties, expressed either by their capability to scavenge DPPH or superoxide radicals.

  3. Study Free Radical Of Irradiated Pulasari (Alexyia reinwadrtii BI) By Using Electron Spin Resonance (ESR)

    International Nuclear Information System (INIS)

    Erizal; Chosdu, Rahayu

    2000-01-01

    In the effort to develop the application of gamma irradiation for medicinal plant preservation especially for seeds i.e. pulasari (Alyxia reinwardtii Bi), the characteristic of free radical of irradiated pulasari (water content 4-6%) at doses of 10; 20; 30 kGy after storage time ranged 0-70 days were studied by using electron spin resonance. It was found that with increasing irradiation dose, the yield of free radicals formation increase. The yield of free radical of pulasari powder more lower than in a chips state. With increasing storage time up 5 days, the yield of free radical decrease up to 60-70 %. At storage time up to 70 days, the free radical remained ranged 10-20%, relatively

  4. Electron spin resonance dating of teeth from Western Brazilian megafauna - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Angela, E-mail: angela.kinoshita@usc.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Universidade Sagrado Coracao, Rua Irma Arminda 10-50, 17011-160 Bauru - Sao Paulo (Brazil); Jose, Flavio A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Sundaram, Dharani; Paixao, Jesus da S.; Soares, Isabella R.M. [Universidade Federal de Mato Grosso, Departamento de Geologia Geral, 78090-000 Cuiaba-MT (Brazil); Figueiredo, Ana Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN), 05422-970 Sao Paulo-SP (Brazil); Baffa, Oswaldo [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil)

    2011-09-15

    Electron Spin Resonance (ESR) was applied to determine ages of Haplomastodon teeth from Western Brazilian Megafauna. The Equivalent Doses (D{sub e}) of (1.3 {+-} 0.2)kGy, (800 {+-} 100)Gy and (140 {+-} 20)Gy were found and the software ROSY ESR dating was employed to convert D{sub e} in age, using isotope concentrations determined by neutron activation analysis (NAA) and other information, resulting in (500 {+-} 100)ka, (320 {+-} 50) and (90 {+-} 10)ka considering the Combination Uptake (CU) model for Uranium uptake, set as an Early Uptake (EU) for dentine and Linear Uptake (LU) for enamel. There are scarce reports about Pleistocene Megafauna in this area. This paper presents the first dating of megafauna tooth and this study could contribute to improve the knowledge about the paleoclimate and paleoenvironment of this region and prompt more investigations in this area.

  5. Analysis of electron spin resonance spectra of irradiated gingers: Organic radical components derived from carbohydrates

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2010-01-01

    Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.

  6. The use of sugar pellets in ESR [electron spin resonance] dosimetry

    International Nuclear Information System (INIS)

    Tchen, A.; Greenstock, C.L.; Trivedi, A.

    1993-01-01

    Table sugar (sucrose) is a convenient, common, tissue-equivalent material suitable for electron spin resonance (ESR) dosimetry of ionising radiation. The simple free radical signal in irradiated sugar is stabilised if the sugar is made into pellets using an inert silicone elastomer (Dow Corning 732). Such pellets, which offer greater convenience and signal stability and reproducibility, have been prepared and tested for their radiation response, sensitivity and post-irradiation stability. Irradiated sugar is detectable at ≥0.1 Gy, the signal intensity is linear with dose, and the fading of the signal, post-irradiation, is minimal for samples kept under ambient conditions. These pellets themselves, given sufficient post-irradiation signal stability, may be useful for environmental monitoring to determine long-term exposures in remote areas or at strategic locations. (Author)

  7. Electron spin resonance insight into broadband absorption of the Cu3Bi(SeO32O2Br metamagnet

    Directory of Open Access Journals (Sweden)

    A. Zorko

    2016-05-01

    Full Text Available Metamagnets, which exhibit a transition from a low-magnetization to a high-magnetization state induced by the applied magnetic field, have recently been highlighted as promising materials for controllable broadband absorption. Here we show results of a multifrequency electron spin resonance (ESR investigation of the Cu3Bi(SeO32O2Br planar metamagnet on the kagome lattice. Its mixed antiferromagnetic/ferromagnetic phase is stabilized in a finite range of applied fields around 0.8 T at low temperatures and is characterized by enhanced microwave absorption. The absorption signal is non-resonant and its boundaries correspond to two critical fields that determine the mixed phase. With decreasing temperature these increase like the sublattice magnetization of the antiferromagnetic phase and show no frequency dependence between 100 and 480 GHz. On the contrary, we find that the critical fields depend on the magnetic-field sweeping direction. In particular, the higher critical field, which corresponds to the transition from the mixed to the ferromagnetic phase, shows a pronounced hysteresis effect, while such a hysteresis is absent for the lower critical field. The observed hysteresis is enhanced at lower temperatures, which suggests that thermal fluctuations play an important role in destabilizing the highly absorbing mixed phase.

  8. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    Science.gov (United States)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  10. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  11. Spatial profiling of degradation processes in hindered-amine-stabilized polymers by electron spin resonance imaging of nitroxides

    Czech Academy of Sciences Publication Activity Database

    Marek, Antonín; Kaprálková, Ludmila; Pfleger, Jiří; Pospíšil, Jan; Pilař, Jan

    2005-01-01

    Roč. 99, S (2005), s. 195-198 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.9.2005-22.9.2005] Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer degradation * nitroxides * electron spin resonance imaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.445, year: 2005

  12. Radiation dosimetry for residents of the Chernobyl region: a comparison of cytogenetic and electron spin resonance methods

    Energy Technology Data Exchange (ETDEWEB)

    Serezhenkov, V A; Mordvintcev, P I; Vanin, A F; Voevodskaya, N V [AN SSSR, Moscow (Russian Federation). Inst. Fizicheskoj Khimii; Domracheva, E V; Kulikov, S M; Kuznetsov, S A; Schklovsky-Kordi, N E; Vorobiev, A I [National Center for Haematology, Moscow (Russian Federation); Klevezal, G A; Sukhovskaya, L I [Russian Academy of Science, Moscow (Russian Federation). Inst. of Developmental Biology

    1992-01-01

    Persons from the Gomel region of Byelorussia who were irradiated by the Chernobyl reactor accident have been studied. Estimations of their radiation doses using electron spin resonance spectrometry of dental enamel showed good agreement with dosimetry by chromosomal analysis of blood lymphocytes. (author).

  13. High spin states in the f-p shell

    International Nuclear Information System (INIS)

    Delaunay, J.

    1975-01-01

    The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr

  14. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  15. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  16. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  17. Significance of high energy spin effects in constituent pictures

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    The spin information about high energy hadronic reactions is important for further understanding of the nature and the behavior of hadronic constituents. The usefulness of the information is discussed in the cases of dilepton production from hadronic collisions, large P/sub T/ inclusive and elastic scatterings, and small angle elastic scattering and quantum number exchanged reactions

  18. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  19. Experimental evidence for shape changes at high spin

    International Nuclear Information System (INIS)

    Twin, P.J.

    1985-01-01

    Recent experimental evidence obtained with TESSA for shape changes at high spin is presented. Continuum γ-ray spectroscopy data indicates the co-existence of both prolate and oblate shapes in N = 90 nuclei and lifetime data in 152 Dy shows that the super deformed decays are very enhanced. (orig.)

  20. 3 QP plus rotor model and high spin states

    International Nuclear Information System (INIS)

    Mathur, Tripti

    1995-01-01

    Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs

  1. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  2. Lifetimes of high-spin states in {sup 162}Yb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  3. Observation of high spin levels in Cs from Ba decay

    Indian Academy of Sciences (India)

    physics pp. 1157–1162. Observation of high spin levels in. 131. Cs from. 131. Ba decay. M SAINATH, DWARAKA RANI RAO*, K VENKATARAMANIAH and P C SOOD. Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam 515 134, India. £Permanent address: Department of Physics, ...

  4. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  5. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  6. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    Science.gov (United States)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  7. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  8. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  9. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...

  10. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  11. High precision pulsar timing and spin frequency second derivatives

    Science.gov (United States)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  12. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  13. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-03-01

    The continuum γ-ray spectrum following emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-ray is 2Nsub(γ). Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. (Author)

  14. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  15. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  16. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-01-01

    The continuum γ-ray spectrum following neutron emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-rays is 2N/sub γ/-bar. Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. 17 figures

  17. High and highest spin states in nuclei

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1977-06-01

    A study of the following phenomena in rotating nuclei is presented, namely: 1) the destruction of the pair-correlation between the protons and the neutrons as well as decoupling and orientation of the particles along the rotation axis; 2) the formation of a nucleus with axial symmetry rotating around the symmetry axis, caused by the strong centrifugal and Coriolis forces; 3) the shell effects at low angular momentum, which led in some Pb, Hg and Pt isotopes to the formation of a prolate nucleus, rotating around the symmetry axis; 4) the formation of longliving states at very high angular momenta ('Yrast-traps'). At low angular momenta the nucleus is described by the Cranking-Hartree-Fock-Bogolyubov theory (CHFB) with the pair-(P), quadrupole-(QQ) and hexade coupole force (HH) as residual interaction. (orig.) [de

  18. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance

    Science.gov (United States)

    Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.

    2018-06-01

    Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6  ×  9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.

  19. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  20. Spin-polarons and high-Tc superconductivity

    International Nuclear Information System (INIS)

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  1. 91Mo and 89Nb high-spin states

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.; Ramankulov, K.E.

    2003-01-01

    In the work the shell-model calculation for 91 Mo and 89 Nb nuclei high-spin states with several valente nucleons is worked out. The nucleons have been arranged in the {2p 1/2 1g 9 / 2 } configurations above the 88 Sr twice magic frame. Using of formalism of generalized quasi-spin with H=H 0 +H pp +H nn +H pn Hamiltonian in which H pp , H nn , H pn the residual nucleon interactions have being written through generalized quasi-spin operators. The obtained scheme well reproduces experimental data for examined nuclei up to 31/2 + , 33/2 - levels with seniority ν=3.5. Similarity of the spectroscopic structures of the nucleus levels with different protons and neutrons numbers above inert frame shows independence of nucleon-nucleon interactions from isotope spins of particles. There are analogous comparison of some negative yrast bands parity levels. The theory well transmits intensity values for electromagnet transitions between states. Besides the observed nuclei's properties does not give any indication on presence of valent nucleons collective motion in the both nuclei

  2. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    Science.gov (United States)

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    Science.gov (United States)

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  4. MICROSCOPIC FERMI-LIQUID APPROACH TO THE RESONANT EFFECTS OF SPIN-ORBIT INTERACTION IN SOLIDS

    Directory of Open Access Journals (Sweden)

    Александр КЛЮКАНОВ

    2017-08-01

    Full Text Available Kondo effect, saturation magnetization and heat capacity of ferromagnetic are calculated from the first principles in the spirit of Landau’s Fermi-liquid theory. Temperature dependence of resistivity of metal with magnetic impurity is obtained in a good agreement with existing experimental data. Resistance curves demonstrate a minimum due to the resonance character of the interaction between spins of the localized and conduction electrons. It has been demonstrated that both temperature dependence of magnetic momentum and internal energy of ferromagnetic are in a good agreement with those predicted by the Heisenberg’s model.METODA FERMI-LICHID MICROSCOPICĂ PENTRU EFECTELE DE REZONANȚĂ A INTERACȚIUNII SPIN-ORBITE ÎN SUBSTANȚELE SOLIDEEfectul Kondo, magnetizarea de saturație și căldura specifică a unui feromagnet sunt calculate folosind principiile fundamentale în spiritul teoriei Fermi-lichid Landau. Dependența de temperatură a rezistenței  metalului cu impurități magnetice este în concordanță cu experimentul. Rezistența minimă este legată de natura rezonantă a interacțiunii unui electron de conducție cu un electron localizat. Se arată că dependența de temperatură a momentului magnetic și energia interioară este în bună concordanță cu modelul Heisenberg.

  5. Electron paramagnetic resonance (EPR spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    2013-01-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.

  6. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  7. Simulation of electron spin resonance spectroscopy in diverse environments: An integrated approach

    Science.gov (United States)

    Zerbetto, Mirco; Polimeno, Antonino; Barone, Vincenzo

    2009-12-01

    We discuss in this work a new software tool, named E-SpiReS (Electron Spin Resonance Simulations), aimed at the interpretation of dynamical properties of molecules in fluids from electron spin resonance (ESR) measurements. The code implements an integrated computational approach (ICA) for the calculation of relevant molecular properties that are needed in order to obtain spectral lines. The protocol encompasses information from atomistic level (quantum mechanical) to coarse grained level (hydrodynamical), and evaluates ESR spectra for rigid or flexible single or multi-labeled paramagnetic molecules in isotropic and ordered phases, based on a numerical solution of a stochastic Liouville equation. E-SpiReS automatically interfaces all the computational methodologies scheduled in the ICA in a way completely transparent for the user, who controls the whole calculation flow via a graphical interface. Parallelized algorithms are employed in order to allow running on calculation clusters, and a web applet Java has been developed with which it is possible to work from any operating system, avoiding the problems of recompilation. E-SpiReS has been used in the study of a number of different systems and two relevant cases are reported to underline the promising applicability of the ICA to complex systems and the importance of similar software tools in handling a laborious protocol. Program summaryProgram title: E-SpiReS Catalogue identifier: AEEM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.0 No. of lines in distributed program, including test data, etc.: 311 761 No. of bytes in distributed program, including test data, etc.: 10 039 531 Distribution format: tar.gz Programming language: C (core programs) and Java (graphical interface) Computer: PC and Macintosh Operating system: Unix and Windows Has the code been vectorized or

  8. Nuclear data for the high-spin community

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R B [Lawrence Berkeley Lab., CA (United States); Singh, B [McMaster Univ., Hamilton, ON (Canada). Tandem Accelerator Lab.

    1992-08-01

    The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services.

  9. High spin states and backbending in the light tungsten isotopes

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.

    1976-09-01

    High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)

  10. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  11. pp spin correlations at high p/sub T/

    International Nuclear Information System (INIS)

    Auer, I.P.; Colton, E.; Ditzler, W.R.

    1980-01-01

    New data are presented for measurements of the spin correlation in pp reactions with longitudinally polarized beam and target. Data were obtained at 11.75 GeV/c for both elastic scattering and for π + - and π - -production at high p/sub T/ in pp reactions at 11.75 GeV/c. A comparison is made with recent predictions of quark-parton models

  12. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  13. High-mobility ultrathin semiconducting films prepared by spin coating.

    Science.gov (United States)

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  14. High-mobility ultrathin semiconducting films prepared by spin coating

    Science.gov (United States)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  15. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  16. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  17. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  18. Nuclear high-spin data for A = 174, 176 and 184

    Energy Technology Data Exchange (ETDEWEB)

    Junde, Huo [Jilin Univ. (China). Dept. of Physics

    1996-06-01

    Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.

  19. Detection of irradiated food: Electron spin resonance measurement of irradiated meat, fish and nuts. Elektronen-Spin-Resonanz-Messungen an bestrahltem Fleisch, Fisch und bestrahlten Nuessen

    Energy Technology Data Exchange (ETDEWEB)

    Linke, B [Fachgebiet Lebensmittelbestrahlung, Bundesgesundheitsamt, Berlin (Germany); Helle, N [Fachgebiet Lebensmittelbestrahlung, Bundesgesundheitsamt, Berlin (Germany); Mager, M [Fachgebiet Lebensmittelbestrahlung, Bundesgesundheitsamt, Berlin (Germany); Schreiber, G A [Fachgebiet Lebensmittelbestrahlung, Bundesgesundheitsamt, Berlin (Germany); Boegl, K W [Fachgebiet Lebensmittelbestrahlung, Bundesgesundheitsamt, Berlin (Germany)

    1993-09-01

    In an intercomparison study organized by the German Federal Health Office (BGA) the use of electron spin resonance (ESR) spectroscopy as a routine method according to paragraph 35 of the German Food Legislation (LMBG) was tested for bone containing meat, fish and nuts (shells). Each participating laboratory examined six chicken, six rainbow trout and four pistachio samples. The examinations were successful, only three samples were not identified correctly and moreover these mistakes were caused by misinterpretation of the ESR spectra. 13 out of 18 participating laboratories used a new routine ESR spectrometer and all samples were identified correctly with this instrument. (orig.)

  20. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    Science.gov (United States)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  1. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  2. X-ray detected magnetic resonance of YIG thin films in the nonlinear regime of spin waves

    Energy Technology Data Exchange (ETDEWEB)

    Goulon, J., E-mail: goulon@esrf.f [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Rogalev, A.; Wilhelm, F.; Goujon, G. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)

    2010-08-15

    We discuss the information content of element/edge resolved X-ray detected magnetic resonance (XDMR) experiments carried out on yttrium iron garnet (YIG) thin films. Starting with a phenomenological approach, it is shown that the photoionisation of deep atomic core levels by circularly polarized X-rays can be used to probe the precession dynamics of spin or orbital magnetization components in empty final states of proper symmetry. Crude estimates of the opening angle of the uniform precession mode were tentatively deduced from the ratio of the XDMR and XMCD absorption cross-sections either at the iron or yttrium absorbing sites. The implications of the most recent experimental results collected at the ESRF are analyzed, keeping in mind that: (i) the Fe K-edge XDMR signal is largely dominated by the precession of orbital magnetization components at the tetrahedral iron sites; (ii) the Y L-edges XDMR signal essentially describes the precession of induced spin magnetization involving the 4d states of yttrium. In the magnetostatic regime, we produce clear experimental evidence of collective excitations of orbital magnetization waves, especially under high pumping power. Several coupling mechanisms could explain our observations, starting with pseudo-dipolar interactions in ferromagnetic systems. In ferrimagnetic systems in which orbital degeneracy and orbital ordering make the excitation of orbitons possible, one may envisage additional modes of excitation or relaxation of orbital magnetization waves. This interpretation looks fully consistent with the results of band structure calculations carried out recently on YIG with fully relativistic LMTO-LSDA methods.

  3. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  4. Electron spin resonance of particulate soot samples from automobiles to help environmental studies

    International Nuclear Information System (INIS)

    Yamanaka, C.; Matsuda, T.; Ikeya, M.

    2005-01-01

    The application of electron spin resonance (ESR) was studied for diesel soot samples and suspended particulate matter (SPM) from automobile engines. Soot samples or diesel exhaust particles (DEP) were recovered at various points: in the exhaust pipe of a diesel engine, at the dust sampler of a highway tunnel (standard DEP), on the soundproofing wall alongside a heavy traffic road, and on the filters of a dust sampler for SPM. The diesel soot samples apparently showed two ESR spectra: one was a broad spectrum at g=2.1 with a line width of ca. 80-120mT and the other was a sharp signal of a carbon radical at g=2.003 with a line width of 0.4mT. Annealing experiments with a DEP sample at 250 deg. C revealed drastic enhancement of the sharp ESR signal, which suggested a thermal process of carbonization of remnant organics. An oximetric study by ESR showed an enhancement of the broad signal in the diesel soot sample as well as in the sharp ESR signal. Therefore, the main part of the broad ESR signal would be attributed to carbon radicals, which form a different configuration, probably closely interacting aggregates. Enhancement of the sharp ESR signal was not observed in the standard DEP sample under vacuum condition, which suggested less adsorption sites on the surface of DEP samples

  5. Electron spin resonance dating of megafauna from Lagoa dos Porcos, Piauí, Brazil.

    Science.gov (United States)

    Kinoshita, Angela; Mayer, Elver; Ribau Mendes, Vinícius; Figueiredo, Ana Maria G; Baffa, Oswaldo

    2014-06-01

    Excavations performed at Lagoa dos Porcos site revealed a vast amount of extinct mammal fossil remains, becoming one of the richest palaeontological occurrences in the Serra da Capivara National Park region, a UNESCO World Heritage. Although anatomic and taxonomic aspects of extinct Quaternary mammals are relatively well known, chronologic information for deposits is rare. In this context, electron spin resonance (ESR) dating of megafauna samples provides important information for establishing a chronological background. This work presents the ESR dating of two teeth, one of Gomphotheriidae and other of Toxodontinae. Dose-response curves of each sample were constructed using spectra acquired with a JEOL FA-200 X-Band spectrometer resulting in equivalent dose (De) of 220 ± 40 Gy and 39 ± 2 Gy for Toxodontinae and Gomphotheriidae tooth, respectively. The conversion of De in age was made using ROSY ESR dating software resulting in 26 ± 4 and 22 ± 3 ka. These results place Lagoa dos Porcos fossil assemblage within the Late Pleistocene. These dates overlap with a period of abrupt increase in rainfall in northeast Brazil, and it is possible that this environmental change is related to the formation of this deposit. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Electron spin resonance (ESR dose measurement in bone of Hiroshima A-bomb victim.

    Directory of Open Access Journals (Sweden)

    Angela Kinoshita

    Full Text Available Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR. In 1973, one of the authors of the present study (SM traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.

  7. Formation of radicals in coal pyrolysis examined by electron spin resonance

    Directory of Open Access Journals (Sweden)

    Tong Chang

    2017-09-01

    Full Text Available Electron spin resonance (ESR spectroscopy is used to study materials with unpaired electrons, such as organic radicals and metal complexes. This method can also be used to follow radical reactions during pyrolysis of carbonaceous materials. However, the temperature dependence of ESR measurement should be considered. To enable reasonable comparisons, results measured at different temperatures must be converted. In this study, we investigated the behavior of free radicals in the process of coal pyrolysis using in situ and ex situ ESR. The ESR data were collected at both pyrolysis and room temperatures, and apparent differences were analyzed. The differences were diminished when our data were converted to the same measurement temperature level based on the Boltzmann distribution law. Furthermore, we investigated the effects of process conditions on the behavior of free radicals in the solid phase of coal. We found that temperature is the most important factor determining the formation and behavior of free radicals in the solid phase, followed by the residence time. Relatively active radicals were quenched by hydrogen-donor solvents to some degree, while stable radicals remained.

  8. An electron spin resonance study of γ-ray irradiated pepper

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Hamaya, Naruki; Ichii, Akane; Abe, Aika

    2003-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed four radical species in the irradiated pepper. The representative ESR spectrum of the pepper is composed of a sextet centered at g=2.0, a singlet at the same g-value, a singlet at g=4.0 and side peaks near g=2.0. The first one is attributable to a signal with hyperfine (hf) interactions of Mn 2+ ion (hf constant=7.4 mT). The second one is due to an organic free radical that may be induced by the (γ-ray irradiation. The third one may be originated from Fe 3+ ion in the non-hem proteins. Those three signals were found in the pepper sample before irradiation. The fourth signals were found at the symmetric position of the organic free radical, i.e., the second signal. The progressive saturation method of the ESR microwave power indicated quite different relaxation behaviors of those radicals. The method reflects four independent radical species in the irradiated pepper. Relaxation time for the singlet signal centered at g=2.0 revealed that the signal is due to the typical organic free radical. (author)

  9. Electron spin resonance study on γ-ray-induced radical species in ethylene hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi

    2007-01-01

    Electron spin resonance (ESR) study on γ-irradiated synthetic ethylene hydrate was performed to investigate induced radicals and their thermal stability. ESR spectra of induced 3-butenyl radical (.CH 2 C 2 H 3 =CH 2 ,g=2.0039±0.0005,A α =2.2±0.1mTandA β =3.0±0.1mT) and induced ethyl radical (.C 2 H 5 , g=2.0044±0.0005, A α =2.2±0.1mT and A β =2.7±0.1mT) were observed in irradiated ethylene hydrate. The decay of the 3-butenyl radicals was observed above 200 K with the activation energy of 51.9±4.4kJ/mol. The obvious decay of ethyl radicals starts above 240 K that is close to the dissociation temperature of ethylene hydrate at atmospheric pressure. The activation energy of the ethyl radical decay is estimated as 63.4±8.2kJ/mol and nearly equal to the enthalpy change of ethylene hydrate into liquid water and gaseous ethylene. It is suggested that the decay of ethyl radicals would be caused by the hydrate dissociation and that ethylene hydrate dissociates into water (supercooled) and ethylene at 240-265 K.

  10. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    International Nuclear Information System (INIS)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del

    2017-01-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a "6"0Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h"-"1. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  11. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  12. Thermoluminescence and electron spin resonance studies of irradiated biological single crystals

    International Nuclear Information System (INIS)

    Cooke, D.W.

    1977-01-01

    Single crystals of x-irradiated L-alanine:Cr 3+ have been studied between 90 and 300K by electron spin resonance (ESR) and thermoluminescence (TL) techniques. Ultraviolet (uv) photobleaching of the Cr 3+ electron traps and L-alanine radical centers was also investigated. The results demonstrate that the x-ray generated radical centers can be destroyed by uv-induced electron transport activity, and this destruction follows first order kinetics. Also, the transformation of the primary neutral radical species to a secondary radical in L-alanine was found not to be induced by intermolecular electron transport. The TL glow was determined to proceed by first-order kinetics at a temperature of 160K with an activation energy of 0.3 eV and a frequency factor of 1.0 x 10 8 s -1 . The emission spectrum consisted of a broad band (FWHM approx. = 100 nm) which peaked at approximately 420 nm. Scintillation activity was observed in the ferroelectric crystals triglycine sulfate (TGS), deuterated TGS, and TGS: L-alanine. The emission spectrum of TGS:L-alanine was obtained. New observations of scintillations and current pulses from glycine, a nonferroelectric crystal, which result from heating or cooling the sample between 77 and 300K with no previous irradiation were made. The scintillations and current pulses occur approximately in coincidence. Scintillations were also observed from the potent oncogen 3-hydroxyxanthine by cooling the sample from 300 to 90K with no previous irradiation

  13. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tokiyoshi, E-mail: toki@rins.ryukoku.ac.jp; Kimura, Mutsumi [Department of Electronics and Informatics, Faculty of Science and Technology, Ryukoku University, 1-438, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194, Japan and Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194 (Japan)

    2015-03-15

    Defects in crystalline InGaZnO{sub 4} (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga{sub 2}O{sub 3} (signal observed at g = 1.969), In{sub 2}O{sub 3} (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10{sup −4} s{sup −1}; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively.

  14. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    International Nuclear Information System (INIS)

    Matsuda, Tokiyoshi; Kimura, Mutsumi

    2015-01-01

    Defects in crystalline InGaZnO 4 (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga 2 O 3 (signal observed at g = 1.969), In 2 O 3 (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10 −4 s −1 ; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively

  15. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    International Nuclear Information System (INIS)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi; Yamauchi, Jun

    2014-01-01

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N 2 atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies

  16. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device, Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan); Yamauchi, Jun [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Emeritus Professor of Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502 (Japan)

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  17. Element-specific ferromagnetic resonance in epitaxial Heusler spin valve systems

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, P; Jorge, E Arbelo; Jourdan, M; Elmers, H J [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Hoffmann, F; Woltersdorf, G; Back, C H, E-mail: elmers@uni-mainz.de [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2011-10-26

    Time-resolved x-ray magnetic circular dichroism was used to investigate epitaxial MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al/Cr/CoFe films. The precessional motion of the individual sublattice magnetization, excited by continuous microwave excitation in the range 2-10 GHz, was detected by tuning the x-ray photon energy to the L{sub 3} absorption edges of Cr, Fe and Co. The relative phase angle of the sublattice magnetization's response is smaller than the detection limit of 2{sup 0}. A weakly antiferromagnetically coupled CoFe layer causes an increase in the ferromagnetic resonance linewidth consisting of a constant offset and a component linearly increasing with frequency that we partly attribute to non-local damping due to spin pumping.

  18. Electron spin resonance study on γ-ray-induced ethyl radical in ethane hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Nango, Kouhei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi; Ito, Hironori; Okada, Michio; Kasai, Toshio

    2007-01-01

    Electron spin resonance (ESR) studies have been performed to investigate radicals induced in ethane hydrate irradiated by γ-rays at 77K. Two ESR spectra are observed and identified as the induced ethyl radical (g=2.0031±0.0005, A α sub(perpendicular)=2.2±0.1mT, A α sub(parallel)=2.5±0.1mT, A β =2.7±0.1mT) and induced atomic hydrogen (g=2.0026±0.0005, A=50.5±0.1mT). From the results of ESR analysis and gas mass spectroscopy, it is concluded that the ethyl radical decays into butane by dimerization in the first-order reaction in the temperature region of 250-265K. The activation energy of the decay reaction is 73.1±6.3kJ/mol, which is near the dissociation enthalpy change of ethane hydrate to liquid water and gaseous ethane. This finding implies that ethane hydrate does not dissociate into ice but supercooled water in the present temperature region, similar to the dissociation of methane hydrate in our previous study. (author)

  19. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  20. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    Science.gov (United States)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.