WorldWideScience

Sample records for high spin baryons

  1. High Spin Baryons in Quantum Mechanical Chromodynamics

    Science.gov (United States)

    Kirchbach, M.; Compean, C. B.

    2009-04-01

    A framework of quantum mechanical chromodynamics (QMCD) is developed with the aim to place the description of the nucleon on a comparable footing with Schrödinger's quantum mechanical treatment of the hydrogen atom. Such indeed turns out to be possible upon replacing the (e--p) by a (q-qq) system, on the one hand, and the Coulomb potential by the recently reported by us exactly solvable trigonometric extension of the Cornell (TEC) potential, on the other. The TEC potential translates the inverse distance potential in ordinary flat space to a space of constant positive curvature, the 3D hypersphere, a reason for which both potentials have the SO(4) and SO(2, 1) symmetries in common. In effect, the nucleon spectrum, inclusive its Δ branch, acquire the degeneracy patterns of the electron excitations with spin in 1H without copying them, however. There are two essential differences between the N(Δ) and H atom spectra. The first concerns the parity of the states which can be unnatural for the N and Δ excitations due to compositeness of the diquark, the second refers to the level splittings in the baryon spectra which contain besides the Balmer term also its inverse of opposite sign. Our scheme reproduces the complete number of states (except the hybrid Δ(1600)), predicts a total of 33 new resonances, and explains the splittings of the N and Δ levels containing high-spin resonances. It also describes accurately the proton electric charge form factor. We here calculate the potential in momentum space (instantaneous effective gluon propagator) as a Fourier transform of the TEC potential and show that the concept of curvature allows to avoid the integral divergences suffered by schemes based on power potentials. We find a propagator that is finite at origin, likely to produce confinement. The advocated new potential picture allows for deconfinement too as effect of space flattening in the limit of infinite radius of the 3D hypersphere. The potential's SO(4)/SO(2, 1

  2. Spin self-analysis of photoproduced meson and baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Kloet, W.M. (Department of Physics and Astronomy, Rutgers University, New Jersey (United States)); Wen-Tai Chiang; Tabakin, F. (Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh (United States))

    1998-11-01

    Spin-1 mesons are self analyzing with respect to their tensor polarization, and spin-2 mesons are self-analyzing with respect to their rank-2 and their rank-4 polarization. Also spin-3/2 baryons are self-analyzing with respect to their rank-2 polarization. These properties make, for example, spin-correlations involving the vector-meson's vector polarization inaccessible directly with present experimental techniques. (author)

  3. Spin Self-Analysis of Photoproduced Meson and Baryon Resonances

    Science.gov (United States)

    Kloet, W. M.; Chiang, Wen-Tai; Tabakin, Frank

    1998-11-01

    Spin-1 mesons are self-analyzing with respect to their tensor polarization, and spin-2 mesons are self-analyzing with respect to their rank-2 and their rank-4 polarization. Also spin-3/2 baryons are self-analyzing with respect to their rank-2 polarization. These properties make, for example, spin-correlations involving the vector-meson's vector polarization inaccessible directly with present experimental techniques.

  4. High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A

    2010-01-19

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.

  5. High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting

  6. Erratum to: Quadrupole moments of low-lying baryons with spin ...

    Indian Academy of Sciences (India)

    physics pp. 1083. Erratum to: Quadrupole moments of low-lying baryons with spin-. 1. 2. +. , spin-. 3. 2. +. , and spin-. 3. 2. +. → 1. 2. + transitions. NEETIKA SHARMA and HARLEEN DAHIYA. ∗. Department of Physics, Dr. B.R. Ambedkar National Institute of Technology,. Jalandhar 144 011, India. ∗. Corresponding author.

  7. Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos

    Science.gov (United States)

    Liu, L. L.

    2016-05-01

    Using cosmological hydrodynamic simulations, we investigate the alignments between velocity shear, vorticity, and the spin of dark matter halos, and study the correlation between baryonic and dark matter. We find that (1) mis-alignment between vorticity of baryonic and dark matter would develop on scales filaments are sensitive to the identification of cosmic web, simulation box size, and resolution. These factors might complicate the connection between the spins of dark matter halos and galaxies, and affect the correlation signal of the alignments of galaxy spin with nearby large-scale structures.

  8. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  9. Heavy-quark spin symmetry for charmed and strange baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Romanets, Olena, E-mail: o.romanets@rug.nl [Theory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); García-Recio, Carmen [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Nieves, Juan [Instituto de Física Corpuscular (centro mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Salcedo, Lorenzo Luis [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Timmermans, Rob [Theory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands)

    2013-09-20

    We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon–meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg–Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2{sup +} and 3/2{sup +} baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as well as with other theoretical models, whereas others do not have a straightforward identification and require the compilation of more data and also a refinement of the model.

  10. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    ... spin − 3 2 + → 1 2 + transitions. Neetika Sharma Harleen Dahiya. Research Articles Volume 80 Issue 2 February 2013 pp 237-249 ... GP parameters pertaining to the two- and three-quark contributions. It is found that the CQM is successful in giving a quantitative and qualitative description of the quadrupole moments.

  11. Quadrupole moments of low-lying baryons with spin- , spin- , and ...

    Indian Academy of Sciences (India)

    2013-02-03

    . 3. (. 4α2 + 3β2 + 2ζ2). + C (−3(d + 2s) + 5(d+ + 2s+)). −. B (9s + 3s+) + C (−9s + 15s+). −4B − 2C + (B + 5C )a. 3. (. 3α2 + 4β2 + 2ζ2). Table 3. Quadrupole moments of the spin-3. 2. +. → 1. 2. + transitions in NQM and χCQM.

  12. High spin states in Cu

    Indian Academy of Sciences (India)

    up of high-spin configurations outlined above, a detailed and careful study of the medium spin, near yrast states in this nucleus is important for reliable assignments of spins and parities to states in superdeformed bands [1,6] in mass region 60. Also, the observation of direct proton decay from excited states in Cu nuclei [14] ...

  13. Summary of the 9th international symposium on high energy spin-physics

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.Y.

    1990-11-01

    Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p {perpendicular} production, transverse polarization and asymmetries from transversely polarized targets in high p {perpendicular} scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops.

  14. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  15. Plans for the Study of the Spin Properties of the $\\Lb$ Baryon Using the Decay Channel $\\Lb \\ra \\jpsi(\\mumu) \\Lambda(p\\pi^{-})$

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    This note summarizes the results of a study of the feasibility of measuring certain spin properties of $\\Lb$ baryon in the ATLAS experiment. We present an assessment of approaches for extracting the inclusive $\\Lb$ polarization and the parity violating $\\alpha_{\\Lb}$ parameter for the decay $\\Lb \\ra \\jpsi(\\mumu)\\Lambda(p\\pi^{-})$ from the reconstructed four final state charged particles. As a key test, we generated Monte Carlo samples of $\\Lb$ events of fixed polarization in the ATLAS detector and evaluated our ability to precisely extract the input polarization from the reconstructed events. The physics motivation for the planned measurements in ATLAS include the search for an explanation of the anomalous spin effects in hyperon inclusive production observed at lower energies, tests of various decay models based on HQET, tests of CP in an area not yet directly explored, and the development of $\\Lb$ polarimetry as a possible tool for spin analysis in future SUSY and other studies.

  16. High-spin nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  17. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  18. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  19. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Andre Walker-Loud, Will Detmold, William Detmold, Aaron Torok, Konstantinos Orginos, Silas Beane, Tom Luu, Martin Savage, Assumpta Parreno

    2009-10-01

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{\\Xi^0\\Xi^0n}= 3877.9\\pm 6.9\\pm 9.2\\pm3.3 MeV corresponding to an energy-shift due to interactions of \\delta E_{\\Xi^0\\Xi^0n}=E_{\\Xi^0\\Xi^0n}-2M_{\\Xi^0} -M_n=4.6\\pm 5.0\\pm 7.9\\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  20. Baryonic dark matter

    CERN Document Server

    Rebolo, R

    2002-01-01

    Recent determinations of baryonic density using the angular power spectrum of the Cosmic Microwave Background are very close to the classical estimate from Big Bang Nucleosynthesis. This reinforces the case for dark baryons in the Universe and for a large component of exotic cold dark matter. Present-day baryons can be hidden in substellar objects, stellar remnants, cold gas clouds, hot diffuse ionized gas in various astrophysical environments. Direct detection searches and microlensing experiments provide estimates of the Galactic mass budget in massive compact objects concluding that the bulk of the dark matter in the halo of the Galaxy cannot be associated to MACHOs. Baryons in high redshift Lyman-alpha systems can account for the cosmic baryonic density. However, the dominant form of present-day baryons and, in particular, the nature of the halo dark matter remains a mystery.

  1. A high-temperature quantum spin liquid with polaron spins

    Science.gov (United States)

    Klanjšek, Martin; Zorko, Andrej; Žitko, Rok; Mravlje, Jernej; Jagličić, Zvonko; Biswas, Pabitra Kumar; Prelovšek, Peter; Mihailovic, Dragan; Arčon, Denis

    2017-11-01

    The existence of a quantum spin liquid (QSL) in which quantum fluctuations of spins are sufficiently strong to preclude spin ordering down to zero temperature was originally proposed theoretically more than 40 years ago, but its experimental realization turned out to be very elusive. Here we report on an almost ideal spin liquid state that appears to be realized by atomic-cluster spins on the triangular lattice of a charge-density wave state of 1T-TaS2. In this system, the charge excitations have a well-defined gap of ~0.3 eV, while nuclear quadrupole resonance and muon-spin-relaxation experiments reveal that the spins show gapless QSL dynamics and no long-range magnetic order at least down to 70 mK. Canonical T2 power-law temperature dependence of the spin relaxation dynamics characteristic of a QSL is observed from 200 K to Tf = 55 K. Below this temperature, we observe a new gapless state with reduced density of spin excitations and high degree of local disorder signifying new quantum spin order emerging from the QSL.

  2. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  3. High spin properties of Ba

    Indian Academy of Sciences (India)

    Abstract. The 124Ba nucleus is investigated on the basis of the method of statistical mechanics by assuming the nucleons to move in triaxially deformed Nilsson potential. The variation in the Fermi energies of protons and neutrons is studied as a function of spin and temperature. The Fermi energies determined as a function ...

  4. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  5. Spinnability Investigation of High Strength Steel in Draw-spinning and Flow-spinning

    Science.gov (United States)

    Shi, L.; Xiao, H.; Xu, D. K.

    2017-09-01

    High strength steels are difficult to process in spinning due to their high yield and tensile strength, poor ductility and large springback. In this paper, formability of dual phase steel has been investigated on the basis of spinnability evaluation in draw-spinning and flow-spinning processes. The influences of key process parameters such as feed ratio and wheel fillet radius on forming limit coefficient in draw-spinning and maximum thinning ratio in flow-spinning are studied in detail.

  6. Spin structure in high energy processes

    Science.gov (United States)

    Deporcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers of the following topics: Spin, Mass, and Symmetry; physics with polarized Z(sup 0)s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ((sup 3)HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b yields sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  7. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  8. Broken symmetries at high temperatures and the problem of baryon excess of the universe

    CERN Document Server

    Mohapatra, Rabindra N

    1979-01-01

    We discuss a class of gauge theories, where spontan- eously broken symmetries, instead of being restored, persist as the temperature is increased. Applying these ideas to the specific case of the soft CP- viola tion in grand unified theories, we discuss a mechanism to generate the baryon to entropy ratio of the universe.

  9. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    Science.gov (United States)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE Japan Society for the Promotion of Science.

  10. High spin spectroscopy of 139 Pr

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 57; Issue 1. High spin spectroscopy of 139Pr. S Chanda Sarmishtha Bhattacharyya Tumpa Bhattacharjee S S Ghugre Swapan Kumar Basu S Muralithar R P Singh B Mukherjee R K Bhowmik S N Ray. Contributed Papers : Nuclear spectroscopy Volume 57 Issue 1 July ...

  11. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    July 2001 physics pp. 181–184. High spin rotational bands in. 65. Zn. B MUKHERJEE, S MURALITHAR, R P SINGH, R KUMAR, K RANI and. R K BHOWMIK. Nuclear Science Centre, Aruna Asaf Ali Marg, P.B. No. .... resolved due to poor resolution of the detectors used. The measured DCO ratios for the 835,. 988, 1074 ...

  12. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    However, nuclear structure at high spin and excitation energies (∼ 6 MeV) would require a coupling of excited 1p–1h with 208Pb core. The coupling between single- particle orbitals and collective vibrations of core complicates the simple shell model picture. With increasing neutron number, Ra isotopes show an abrupt ...

  13. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  14. 1/Nc Countings in Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Jose Goity

    2004-05-01

    The 1/N{sub c} power countings for baryon decays and configuration mixings are determined by means of a non-relativistic quark picture. Such countings are expected to be robust as the quark masses are decreased towards the chiral limit. It is shown that excited baryons have natural widths of {Omicron}(N{sub c}{sup 0}). These dominant widths are due to the decays that proceed directly to the ground state baryons, with cascade decays being suppressed to {Omicron}(1/N{sub c}). Configuration mixings, defined as mixings between states belonging to different O(3) x SU(2N{sub f}) multiplets, are shown to be sub-leading in an expansion in 1/{radical}N{sub c}, except for certain mixings between excited multiplets belonging to the mixed-symmetric spin-flavor representation and different O(3) representations, where the mixings are of zeroth order in 1/N{sub c}.

  15. Strontium Oxide Tunnel Barriers for High Quality Spin Transport and Large Spin Accumulation in Graphene.

    Science.gov (United States)

    Singh, Simranjeet; Katoch, Jyoti; Zhu, Tiancong; Wu, Ryan J; Ahmed, Adam S; Amamou, Walid; Wang, Dongying; Mkhoyan, K Andre; Kawakami, Roland K

    2017-11-16

    The quality of the tunnel barrier at the ferromagnet/graphene interface plays a pivotal role in graphene spin valves by circumventing the impedance mismatch problem, decreasing interfacial spin dephasing mechanisms and decreasing spin absorption back into the ferromagnet. It is thus crucial to integrate superior tunnel barriers to enhance spin transport and spin accumulation in graphene. Here, we employ a novel tunnel barrier, strontium oxide (SrO), onto graphene to realize high quality spin transport as evidenced by room-temperature spin relaxation times exceeding a nanosecond in graphene on silicon dioxide substrates. Furthermore, the smooth and pinhole-free SrO tunnel barrier grown by molecular beam epitaxy (MBE), which can withstand large charge injection current densities, allows us to experimentally realize large spin accumulation in graphene at room temperature. This work puts graphene on the path to achieve efficient manipulation of nanomagnet magnetization using spin currents in graphene for logic and memory applications.

  16. High spin ↔ low spin ultrafast excitation and relaxation of an isolated iron(II complex.

    Directory of Open Access Journals (Sweden)

    Létard J.F.

    2013-03-01

    Full Text Available Picosecond and femtosecond time resolved pump-probe experiments make it possible to study both the low spin (LS to high spin (HS and high spin to low spin excitation and relaxation processes in the same isolated iron(II complex. We demonstrate that both LS → HS and HS → LS can be recorded by changing the pump wavelength and occur on the same time scale.

  17. Baryonic popcorn

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    2012-11-01

    In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.

  18. High-spin structure in 40K

    Science.gov (United States)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Gadea, A.; Lenzi, S. M.; Poves, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Cederwall, B.; Charles, L.; Chavas, J.; Colosimo, S.; Crespi, F. C. L.; Cullen, D. M.; de Angelis, G.; Désesquelles, P.; Dosme, N.; Duchêne, G.; Eberth, J.; Farnea, E.; Filmer, F.; Görgen, A.; Gottardo, A.; Grębosz, J.; Gulmini, M.; Hess, H.; Hughes, T. A.; Jaworski, G.; Jolie, J.; Joshi, P.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Karolak, M.; Kempley, R. S.; Khaplanov, A.; Korten, W.; Ljungvall, J.; Lunardi, S.; Maj, A.; Maron, G.; Męczyński, W.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Nolan, P. J.; Norman, M.; Obertelli, A.; Podolyak, Zs.; Pullia, A.; Quintana, B.; Redon, N.; Regan, P. H.; Reiter, P.; Robinson, A. P.; Şahin, E.; Simpson, J.; Salsac, M. D.; Smith, J. F.; Stézowski, O.; Theisen, Ch.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Wiens, A.

    2012-11-01

    High-spin states of 40K have been populated in the fusion-evaporation reaction 12C(30Si,np)40K and studied by means of γ-ray spectroscopy techniques using one triple-cluster detector of the Advanced Gamma Tracking Array at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. Several states with excitation energy up to 8 MeV and spin up to 10- have been discovered. These states are discussed in terms of J=3 and T=0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.

  19. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  20. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex.

    Science.gov (United States)

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  1. BARYONIC DARK MATTER ?

    OpenAIRE

    Rees, M J

    1986-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  2. High spins in gamma-soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leander, G.A.; Frauendorf, S.; May, F.R.

    1982-01-01

    Nuclei which are soft with respect to the ..gamma.. shape degree of freedom are expected to have many different structures coexisting in the near-yrast regime. In particular, the lowest rotational quasi-particle in a high-j shell exerts a strong polarizing effect on ..gamma... The ..gamma.. to which it drives is found to vary smoothly over a 180/sup 0/ range as the position of the Fermi level varies. This simple rule is seen to have a direct connection with the energy staggering of alternate spin states in rotational bands. A diagram is presented which provides a general theoretical reference for experimental tests of the relation between ..gamma.., spin staggering, configuration, and nucleon number. In a quasicontinuum spectrum, the coexistence of different structures are expected to make several unrelated features appear within any one slice of sum energy and multiplicity. However, it is also seen that the in-band moment of inertia may be similar for many bands of different ..gamma...

  3. Spectroscopy of charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2014-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $\\otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  4. Spectroscopy of charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)

    2015-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  5. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)

    2016-07-07

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  6. BASE - The Baryon Antibaryon Symmetry Experiment

    CERN Document Server

    Smorra, C.; Bojtar, L.; Borchert, M.; Franke, K.A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2015-11-23

    The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton $g$-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of $\\delta g/g$ 10$^{-9}$ can be achieved. The successful application of this method to the antiproton will represent a factor 1000 improvement in the frac...

  7. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  8. Baryons and baryon resonances in nuclear matter

    Science.gov (United States)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  9. High spin properties of 124 Ba

    Indian Academy of Sciences (India)

    The 124Ba nucleus is investigated on the basis of the method of statistical mechanics by assuming the nucleons to move in triaxially deformed Nilsson potential. The variation in the Fermi energies of protons and neutrons is studied as a function of spin and temperature. The Fermi energies determined as a function of ...

  10. Charge radii of octet and decuplet baryons in chiral constituent ...

    Indian Academy of Sciences (India)

    The charge radii of the spin- 1 2 + octet and spin- 3 2 + decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological ...

  11. Observational Signature of High Spin at the Event Horizon Telescope

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-01-01

    We analytically compute the observational appearance of an isotropically emitting point source orbiting near a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a "smoking gun" for a high spin black hole in nature.

  12. Heavy Flavor Baryons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Thomas

    2011-09-01

    The Tevatron experiments CDF and D0 have filled many empty spots in the spectrum of heavy baryons over the last few years. The most recent results are described in this article: The first direct observation of the {Xi}{sub b}{sup 0}, improved measurements of {Sigma}{sub b} properties, a new measurement of the {Lambda}{sub b} {yields} J/{psi}{Lambda} branching ratio, and a high-statistics study of charm baryons.

  13. Static potential in baryon

    OpenAIRE

    Kuzmenko, D. S.

    2003-01-01

    The baryon static potential is calculated in the framework of field correlator method and is shown to match the recent lattice results. The effects of the nonzero value of the gluon correlation length are emphasized.

  14. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  15. Very narrow excited Ωc baryons

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L.

    2017-06-01

    Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.

  16. High-spin rotational bands in 123I

    Science.gov (United States)

    Singh, Purnima; Singh, A. K.; Wilson, A. N.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Carpenter, M. P.; Chmel, S.; Fallon, P.; Hagemann, G. B.; Herskind, B.; Ha, Hoa; Janssens, R. V. F.; Juhász, K.; Kardan, A.; Khoo, T. L.; Kondev, G.; Korichi, A.; Lauritsen, T.; Nyakó, B. M.; Rogers, J.; Sletten, G.; Timár, J.; Zhu, S.

    2012-12-01

    High-spin states in 123I were populated in the reaction 80Se(48Ca,p4n)123I at a beam energy of 207 MeV and γ-ray coincidence events were measured using the Gammasphere spectrometer. Three weakly populated, high-spin rotational bands have been discovered with characteristics similar to those of the long collective bands recently observed in other nuclei of this mass region. Configuration assignments are proposed based on calculations within the framework of the cranked Nilsson-Strutinsky approach.

  17. High-power 95 GHz pulsed electron spin resonance spectrometer

    Science.gov (United States)

    Hofbauer, W.; Earle, K. A.; Dunnam, C. R.; Moscicki, J. K.; Freed, J. H.

    2004-05-01

    High-field/high-frequency electron spin resonance (ESR) offers improved sensitivity and resolution compared to ESR at conventional fields and frequencies. However, most high-field/high-frequency ESR spectrometers suffer from limited mm-wave power, thereby requiring long mm-wave pulses. This precludes their use when relaxation times are short, e.g., in fluid samples. Low mm-wave power is also a major factor limiting the achievable spectral coverage and thereby the multiplex advantage of Fourier transform ESR (FTESR) experiments. High-power pulses are needed to perform two-dimensional (2D) FTESR experiments, which can unravel the dynamics of a spin system in great detail, making it an excellent tool for studying spin and molecular dynamics. We report on the design and implementation of a high-power, high-bandwidth, pulsed ESR spectrometer operating at 95 GHz. One of the principal design goals was the ability to investigate dynamic processes in aqueous samples at physiological temperatures with the intent to study biological systems. In initial experiments on aqueous samples at room temperature, we achieved 200 MHz spectral coverage at a sensitivity of 1.1×1010√s spins and a dead time of less than 50 ns. 2D-electron-electron double resonance experiments on aqueous samples are discussed to demonstrate the practical application of such a spectrometer.

  18. Observation of spin flips with a single trapped proton.

    Science.gov (United States)

    Ulmer, S; Rodegheri, C C; Blaum, K; Kracke, H; Mooser, A; Quint, W; Walz, J

    2011-06-24

    Radio-frequency induced spin transitions of one individual proton are observed. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.

  19. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  20. High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bainsla, Lakhan; Mallick, A.I. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Coelho, A.A. [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas-UNICAMP, SP 6165, Campinas 13 083-859, Sao Paulo (Brazil); Nigam, A.K. [DCMPMS, Tata Institute of Fundamental Research, Mumbai 4000052 (India); Varaprasad, B.S.D.Ch.S.; Takahashi, Y.K. [Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Alam, Aftab [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Suresh, K.G., E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Hono, K. [Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-11-15

    In this paper, we investigate CoFeCrAl alloy by means of ab-initio electronic structure calculations and various experimental techniques. The alloy is found to exist in the B2-type cubic Heusler structure, which is very similar to Y-type (or LiMgPdSn prototype) structure with space group F-43m (#216). Saturation magnetization (M{sub S}) of about 2 µ{sub B}/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater–Pauling rule. M{sub S} values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallicity for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67±0.02, as deduced from the point contact Andreev reflection measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices. - Highlights: • The ab-initio calculations predict half-metallic nature for the alloy. • Saturation magnetization (M{sub S}) gives characteristics of half-metallic nature. • Current spin polarization (P) value of 0.67±0.02 is deduced from PCAR measurements. • Deduced P is higher than those obtained for many ternary and/or quaternary alloys. • Resistivity behavior gives signature of high P at elevated temperatures.

  1. Baryonic Spectroscopy at BESIII

    Science.gov (United States)

    Liu, Fang

    Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.

  2. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Abstract. In view of recent experimental progress on production and spectroscopy of neutron-rich isotopes of Dy with mass number A. 166 and 168, we have made theoretical investigations on the structure of high spin states of164 170Dy isotopes in the cranked Hartree–Fock–Bogoliubov (CHFB) theory employing a ...

  3. High-spin structure of yrast-band in Kr

    Indian Academy of Sciences (India)

    are in good agreement with the earlier measurements. [4]. The lifetimes measured and the transition quadrupole measurements can be seen in table 1. The present measurements show a drop in transition quadrupole moments at high-spins. (. 16 ). It is shown that the bandcrossing frequencies and the variation in t values ...

  4. Observation of high spin levels in Cs from Ba decay

    Indian Academy of Sciences (India)

    Abstract. The γ- and conversion electron spectra following 131Ba ε-decay are investigated, using. HPGe detector and mini-orange electron spectrometer. Attention is particularly focussed on iden- tifying weak transitions associated with low energy high spin levels in 131Cs level scheme earlier inferred in reaction studies but ...

  5. Qcd Sum Rule Analysis Of Baryon Masses

    CERN Document Server

    Liu, X

    2004-01-01

    The masses of low-lying baryon states are calculated using the QCD sum rule method. Both octet and decuplet baryon states are studied via the conventional sum rule method and the new parity-projected sum rule method. Firstly, the low-lying N* channels of octets are studied via the conventional sum rule method. Using generalized interpolating fields, three independent sets of QCD sum rules are derived which allow the extraction of the spin 12± , and 32± states in both the non-strange and strange channels. Thereafter, we explored a new technique which exactly projects out the parities that are mixed in the conventional sum rules. One advantage of the new parity- project sum rules is to be able to study the origin of mass splittings between positive and negative-parity baryon pairs in a direct manner in relation to the chiral-symmetry breaking of QCD as manifested via the vacuum condensates. At last, we re-visited the spin 32± decuplet states in both the conventional and t...

  6. Spin relaxation in high-spin iron(III) complexes of tretraphenylporphine

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, Toshie; Sato, Mitsuo (Biophysics Div., Faculty of Pharmaceutical Sciences, Teikyo Univ., Sagamiko, Kanagawa (Japan))

    1993-04-01

    The Moessbauer spectra of Fe(por)X (por=tetraphenylporphinato, TPP, and tetrakis(p-chlorophenyl)porphinato, Tp-CIPP, dianions; X=Cl, Br and I) have been measured. They show varying quadrupolar pattern depending on the temperature: Asymmetric broadening of the high-velocity line at higher temperatures, a symmetric doublet at a temperature T[sub r], and a reversal in asymmetry below T[sub r]. The temperature dependence results from temperature-dependent spin-spin relaxation in high-spin iron(III) and the off-diagonal terms of the hyperfine operator, and reflects the ionic zero-field splitting. For a given X, T[sub r] is higher and the quadrupole splitting, [Delta]E[sub Q], is larger for Tp-CIPP derivatives than for TPP derivatives. The result is explained on the basis of the resonance effect of the p-chloro substituents of the meso-phenyl groups. When por is fixed, both the values of T[sub r] and [Delta]E[sub Q] are in the order Cl

  7. The Static Baryon Potential

    CERN Document Server

    Alexandrou, C; Tsapalis, A; Forcrand, Ph. de

    2002-01-01

    Using state of the art lattice techniques we investigate the static baryon potential. We employ the multi-hit procedure for the time links and a variational approach to determine the ground state with sufficient accuracy that, for distances up to $\\sim 1.2$ fm, we can distinguish the $Y$- and $\\Delta$- Ans\\"atze for the baryonic Wilson area law. Our analysis shows that the $\\Delta$-Ansatz is favoured. This result is also supported by the gauge-invariant nucleon wave function which we measure for the first time.

  8. Spectroscopy of doubly charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  9. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  10. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    Science.gov (United States)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  11. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...

  12. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...

  13. Two Baryons with Twisted Boundary Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)

    2014-04-01

    The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.

  14. Problems in baryon spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Capstick, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  15. Baryons in the plasma

    DEFF Research Database (Denmark)

    Aarts, Gert; Allton, Chris; Boni, Davide de

    2018-01-01

    We investigate the fate of baryons made out of u, d and s quarks in the hadronic gas and the quark-gluon plasma, using nonperturbative lattice simulations, employing the FASTSUM anisotropic Nf=2+1 ensembles. In the confined phase a strong temperature dependence is seen in the masses of the negative...

  16. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  17. Island of high-spin isomers near N = 82

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-10-17

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed ..gamma.. radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with /sup 40/Ar, /sup 50/Ti, and /sup 65/Cu projectiles. An island of high-spin isomers is found to exist in the region 64 < or approx. = Z > or approx. = 71 and N < or approx. = 82.

  18. Collective high spin states in {sup 45}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Bednarczyk, P. [Institute of Nuclear Physics, Krakow (Poland)]|[INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Styczen, J. [Institute of Nuclear Physics, Krakow (Poland); Broda, R. [Institute of Nuclear Physics, Krakow (Poland); Lach, M. [Institute of Nuclear Physics, Krakow (Poland); Meczynski, W. [Institute of Nuclear Physics, Krakow (Poland); Bazzacco, D. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Brandolini, F. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); De Angelis, G. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Lunardi, S. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Mueller, L. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Medina, N. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Petrache, C. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Rossi-Alvarez, C. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Scarlassara, F. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Segato, G.F. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Signorini, C. [Dipartimento di Fisica dell`Universita and INFN, Padova (Italy); Soramel, F. [Dipartimento di Fisica dell`Universita and INFN, Udine (Italy)

    1995-02-06

    The high-spin states in {sup 45}Sc were studied with the GASP multidetector array. The nuclei were excited by the {sup 30}Si({sup 18}O,p2n){sup 45}Sc reaction at E{sub LAB}=60 MeV and separated with the Recoil Mass Spectrometer. Several new high-spin levels extending the known single-particle and collective structures were observed. Energies of the negative-parity states agree with the shell model predictions whereas the positive-parity-intruder rotational band extends up to very high rotational frequencies and continues beyond the maximum angular momentum available from the single-particle f{sub 7/2} configuration. ((orig.)).

  19. Preequilibrium spin effects in Feshbach-Kerman-Koonin and exciton models and application to high-spin isomer production

    Science.gov (United States)

    Chadwick, M. B.; Young, P. G.; Oblozinsky, P.; Marcinkowski, A.

    1994-06-01

    We describe how the Feshbach-Kerman-Koonin (FKK) theory can be used to obtain residual nucleus spin distributions following preequilibrium decay, by removing the assumption of zero intrinsic spins in multistep direct reactions. By making use of parallels between the exciton model and the FKK multistep direct theory we also obtain a straightforward method for determining spin distributions in the exciton model. We compare these two approaches and apply them to high-spin isomer production cross sections in 14 MeV neutron reactions on hafnium. We obtain reasonable agreement with measurements, though there is evidence that the FKK theory underpredicts high spin transfer reactions. Comparisions with the exciton model suggest that multistep processes in FKK are underestimated, and that an FKK formulation incorporating non-normal DWBA transitions may yield results in closer agreement with the exciton model, and with experiment.

  20. Baryon spectroscopy results at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Van Kooten, R.; /Indiana U.

    2010-01-01

    The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state {Lambda}{sub b}, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and D0 Collaborations are presented.

  1. Masses and magnetic moments of triple heavy flavour baryons in ...

    Indian Academy of Sciences (India)

    The predicted masses are found to attain a saturated value with respect to variation in p beyond the power index > 1.0. Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks within the baryons, the magnetic moments are computed with no additional free parameters ...

  2. Metal-Ligand Multiple Bonds in High-Spin Complexes

    OpenAIRE

    King, Evan

    2012-01-01

    The chemistry of late first row transition metals supported by dipyrromethane and dipyrromethene ligands bearing sterically bulky substituents was explored. Transition metal complexes (Mn, Fe, Co, Ni, Zn) of the dipyrromethane ligand 1,9-dimesityl-5,5-dimethyldipyrromethane (dpma) were prepared. Structural and magnetic characterization (SQUID, EPR) of the bis-pyridine adducts \\((dpma)Mn(py)_2\\), \\((dpma)Fe(py)_2\\), and \\((dpma)Co(py)_2\\) showed each tetrahedral divalent ion to be high-spin, w...

  3. Polarized heavy baryon production in quark-diquark model considering two different scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Delpasand, M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2017-09-15

    At sufficiently large transverse momentum, the dominant production mechanism for heavy baryons is actually the fragmentation. In this work, we first study the direct fragmentation of a heavy quark into the unpolarized triply heavy baryons in the leading order of perturbative QCD. In a completely different approach, we also analyze the two-stage fragmentation of a heavy quark into a scalar diquark followed by the fragmentation of such a scalar diquark into a triply heavy baryon: quark-diquark model of baryons. The results of this model are in acceptable agreement with those obtained through a full perturbative regime. Relying on the quark-diquark model and considering two different scenarios we determine the spin-dependent fragmentation functions of polarized heavy baryons in such a way that a vector or a pseudoscalar heavy diquark is an intermediate particle between the initial heavy quark and the final state baryon. (orig.)

  4. Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutt-mazumder, A. K. [McGill Univ., Montreal, QC (Canada); Gale, C. [McGill Univ., Montreal, QC (Canada); Ko, C. M. [Texas A & M Univ., College Station, TX (United States); Koch, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.

  5. Physics of Baryons

    Science.gov (United States)

    de Freitas Pacheco, J. A.

    In this lecture, different milestones in the cosmological history of baryons are reviewed. First, the appearance of hadrons as a consequence of the confinement of quarks is discussed. Then the era in which nuclei interact to produce light elements like deuterium, helium and lithium is described. The third relevant episode is the decoupling between matter-radiation and the properties of the "last scattering" surface. The next covered aspect refers to the value of the residual ionization fraction when "freezing" occurs and the thermal decoupling of matter from CMB photons. As stars appear in the Universe, their UV radiation begins to reionize the intergalactic medium and such a process is also discussed in this lecture. Finally, results from cosmological simulations are presented, permitting to describe where baryons can be found either in the form of stars or in the form of cold, warm and hot gas.

  6. Baryons with functional methods

    Directory of Open Access Journals (Sweden)

    Fischer Christian S.

    2017-01-01

    Full Text Available We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.

  7. GHG effects of spinning reserve for high penetration renewables

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley; Peter Scaife; Joe Winsen

    2008-03-15

    This study gives a high level assessment of the greenhouse gas cost implications of providing additional backup for intermittent renewable power at a high level (20%) of penetration. The report considers international experience with higher levels of renewable generation, the Australian electricity system, and the current and likely future levels of renewables on the grids. To enable coal to provide back up/spinning reserve with a high degree of flexibility it is proposed that direct injected coal engines and novel gasification/gas engine combinations be considered. 31 refs., 17 figs., 6 tabs.

  8. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  9. High-spin states in sup 183 Pt

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, J. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden) Royal Inst. of Tech., Stockholm (Sweden). Physics Dept. 1 Niels Bohr Inst., Roskilde (Denmark). Tandem Accelerator Lab.); Johnson, A. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden) Royal Inst. of Tech., Stockholm (Sweden). Physics Dept. 1); Carpenter, M.P.; Bingham, C.R.; Courtney, L.H.; Janzen, V.P.; Juutinen, S.; Larabee, A.J.; Liu, Z.M.; Riedinger, L.L. (Tennessee Univ., Knoxville (USA). Dept. of Physics); Baktash, C.; Halbert, M.L.; Johnson, N.R.; Lee, I.Y.; Schutz, Y. (Oak Ridge National Lab., TN (USA). Holifield Heavy Ion Research Facility); Waddington, J.C.; Popescu, D.G. (McMaster Univ., Hamilton, Ontario (Canada). Tandem Accelerator Lab.)

    1990-04-30

    High-spin states in {sup 183}Pt have been studied for the first time using the reactions {sup 154}Sm({sup 34}S, 5n) and {sup 170}Yb({sup 16}O,3n). Rotational bands built on the Nilsson configurations 1/2{sup -}(521), 7/2{sup -}(514) and 9/2{sup +}(624) were observed up to spin values of 39/2-49/2{Dirac h}. Quasiparticle alignments and band crossing frequencies were investigated in these bands. A large signature splitting was observed in the {nu}i{sub 13/2}-band structure. The experimental results were compared with total routhian surface calculations, in which the shape of the nucleus could be followed as a function of rotational frequency for different quasiparticle configurations. (orig.).

  10. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  11. Thermodynamical analysis of spin-state transitions in LaCo O3 : Negative energy of mixing to assist thermal excitation to the high-spin excited state

    Science.gov (United States)

    Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru

    2005-01-01

    Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.

  12. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  13. Lattice QCD determination of patterns of excited baryon states

    CERN Document Server

    Basak, Subhasish; Fleming, G T; Juge, K J; Lichtl, A; Morningstar, C; Richards, D G; Sato, I; Wallace, S J

    2007-01-01

    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  14. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Wolf, Matthias M. N.; Gross, Ruth

    2008-01-01

      The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive...... infrared difference bands between 1000 and 1065 cm-1 that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin 5T2 state. Vibrational relaxation is observed and characterized by the time constants 9.......4 ± 0.7 ps for [Fe(btpa)](PF6)2/acetone and 12.7 ± 0.7 ps for both [Fe(btpa)](PF6)2/acetonitrile and [Fe(b(bdpa)](PF6)2/acetonitrile. Vibrational analysis has been performed via DFT calculations of the low-spin and high-spin state normal modes of both compounds as well as their respective infrared...

  15. One-baryon spectrum and analytical properties of one-baryon dispersion curves in 3 + 1 dimensional strongly coupled lattice QCD with three flavors

    Energy Technology Data Exchange (ETDEWEB)

    Faria da Veiga, Paulo A., E-mail: veiga@icmc.usp.br; O’Carroll, Michael, E-mail: michaelocarroll@gmail.com; Valencia Alvites, José C., E-mail: cien.mat@hotmail.com [Departamento de Matemática Aplicada e Estatística, ICMC, USP-São Carlos, C.P. 668, São Carlos, SP 13560-970 (Brazil)

    2016-03-15

    Considering a 3 + 1 dimensional lattice quantum chromodynamics (QCD) model defined with the improved Wilson action, three flavors, and 4 × 4 Dirac spin matrices, in the strong coupling regime, we reanalyze the question of the existence of the eightfold way baryons and complete our previous work where the existence of isospin octet baryons was rigorously solved. Here, we show the existence of isospin decuplet baryons which are associated with isolated dispersion curves in the subspace of the underlying quantum mechanical Hilbert space with vectors constructed with an odd number of fermion and antifermion basic quark and antiquark fields. Moreover, smoothness properties for these curves are obtained. The present work deals with a case for which the traditional method to solve the implicit equation for the dispersion curves, based on the use of the analytic implicit function theorem, cannot be applied. We do not have only one but two solutions for each one-baryon decuplet sector with fixed spin third component. Instead, we apply the Weierstrass preparation theorem, which also provides a general method for the general degenerate case. This work is completed by analyzing a spectral representation for the two-baryon correlations and providing the leading behaviors of the field strength normalization and the mass of the spectral contributions with more than one-particle. These are needed results for a rigorous analysis of the two-baryon and meson-baryon particle spectra.

  16. Baryon and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Gorsky, A. [Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia and Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Krikun, A. [NORDITA, KTH Royal Institute of Technology and Stockholm University Stockholm, Sweden and Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation)

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  17. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  18. Angular momentum properties of haloes and their baryon content in the Illustris simulation

    Science.gov (United States)

    Zjupa, Jolanta; Springel, Volker

    2017-04-01

    The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.

  19. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V G

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  20. CP asymmetries in Strange Baryon Decays

    Science.gov (United States)

    Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo

    2018-01-01

    While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)

  1. Holographic Baryons and Instanton Crystal

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated ADHM construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review we summarize the known results on the construction and phases of crystals of the holographic baryons.

  2. Holographic baryons and instanton crystals

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    2015-06-01

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-Abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review, we summarize the known results on the construction and phases of crystals of the holographic baryons.

  3. COS Ultraviolet Baryon Survey (CUBS)

    Science.gov (United States)

    Chen, Hsiao-Wen

    2017-08-01

    The cosmic star-formation-rate density declines rapidly from z 1.5 to the present day. Observing the co-evolution of galaxies and their surrounding gas during this epoch provides key insights into how galaxy growth is regulated by accretion and outflows. We propose the COS Ultraviolet Baryon Survey (CUBS) project to map gas flows in and out of the circumgalactic medium at intermediate redshifts using absorption line spectroscopy of 15 QSOs at zqso=0.8-1.3. CUBS will bridge the gap between existing efforts at z4 studies in the JWST era, and greatly enhance HST's UV spectroscopic legacy with a three-fold increase in high-quality UV absorption spectra at zqso>0.8. Over the range of z=0.4-0.8, absorption measurements of both low- and high-ions (i.e. C, O, Si, Ne), together with accurate measurements of HI column density from multiple Lyman series transitions, enable robust measurements of the ionization state and metallicity of the gas. All of the proposed QSOs are in the Dark Energy Survey, providing deep, multi-color images of the galactic environments of the absorption systems. We will obtain follow-up spectroscopy of the QSOs and complete spectroscopic redshift surveys of the galaxies in the foreground volume. CUBS will 1) provide a census of the chemical enrichment of the CGM/IGM over cosmic time, 2) assess its relationship to galaxies at various stages of evolution, and 3) inform and refine galactic feedback prescriptions in cosmological simulations. This project exploits a synergy between UV spectroscopy, parallel slitless grism spectroscopy, and ground-based wide-field survey data to advance our understanding of the cosmic evolution of baryonic structures.

  4. Spectra of charmed and bottom baryons with hyperfine interaction

    Science.gov (United States)

    Wang, Zhen-Yang; Qi, Jing-Juan; Guo, Xin-Heng; Wei, Ke-Wei

    2017-09-01

    Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of , the only L = 0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L = 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the “Review of Particle Physics", we find that in the GBE model, there exist some multiplets (Σc(b), and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature. Supported by National Natural Science Foundation of China (11175020, 11575023, U1204115)

  5. Decays of J/psi (3100) to baryon final states

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, M.W.

    1982-05-01

    We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.

  6. An investigation of triply heavy baryon production at hadron colliders

    CERN Document Server

    Gomshi Nobary, M A

    2006-01-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the Ωccc and Ωbbb baryons as the prototypes of triply heavy baryons at the hadron colliders with different . We present and compare the transverse momentum distributions of the differential cross sections, distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  7. High-spin research with HERA (High Energy-Resolution Array)

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum.

  8. Meson baryon components in the states of the baryon decuplet

    Directory of Open Access Journals (Sweden)

    Aceti F.

    2014-06-01

    Full Text Available We extend the Weinberg compositeness condition to partial waves of L = 1 and resonant states to determine the weight of meson-baryon component in the Jp = 3+/2 baryon decuplet. We obtain an appreciable weight of πN in the Δ(1232 wave function, of the order of 60 % and we also show that, as we go to higher energies in the members of the decuplet, the weights of meson-baryon component decrease and they already show a dominant part for a genuine component in the wave function. We interpret the meaning of the Weinberg sum-rule extended to complex energies.

  9. Overview of baryon resonances

    Directory of Open Access Journals (Sweden)

    Downie E.J.

    2014-06-01

    Full Text Available The quest to understand the physics of any system cannot be said to be complete as long as one cannot predict and fully understand its resonance spectrum. Despite this, due to the experimental challenge of the required double polarization measurements and the difficulty in achieving unambiguous, model-independent extraction and interpretation of the nucleon resonance spectrum of many broad and overlapping resonances, understanding of the structure and dynamics of the nucleon has suffered. The recent improvement in statistical quality and kinematic range of the data made available by such full-solid-angle systems as the CB and TAPS constellation at MAMI, coupled with the high flux polarized photon beam provided by the Glasgow Photon Tagger, and the excellent properties of the Mainz Frozen Spin Target, when paired with new developments in Partial Wave Analysis (PWA methodology make this a very exciting and fruitful time in nucleon resonance studies. Here the recent influx of data and PWA developments are summarized, and the requirements for a complete, unambiguous PWA solution over the first and second resonance region are briefly reviewed.

  10. Storing quantum information in spins and high-sensitivity ESR.

    Science.gov (United States)

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  11. High-spin yrast structure of {sup 43}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, T [Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Nakamura, M [Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Sugimitsu, T [Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Kusakari, H [Faculty of Education, Chiba University, Chiba 263-8522 (Japan); Oshima, M [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Toh, Y [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, M [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Kimura, A [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Goto, J [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Hatsukawa, Y [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Sugawara, M [Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan)

    2005-01-01

    High-spin yrast states in {sup 43}Sc were investigated by using in-beam {gamma}-ray technique with the {sup 27}Al({sup 19}F,p2n) reaction at 50 MeV. The positive-parity rotational band built on the 152-keV J{sup {pi}} = 3/2{sup +} state has been extended up to the terminating J{sup {pi}} = (27/2{sup +}) state. Several fast transitions feeding to the oblate-deformed J{sup {pi}} = 19/2{sup -} isomer have been also identified. the character of the observed levels and transition rates were discussed in comparison with the shell-model calculations.

  12. High-spin states in sup 166 Lu

    Energy Technology Data Exchange (ETDEWEB)

    Hojman, D.; Kreiner, A.J.; Davidson, M.; Davidson, J.; Debray, M.; Cybulska, E.W.; Pascholati, P.; Seale, W.A. (Departamento de Fisica, Comision Nacional de Energia Atomica, 1429 Buenos Aires, Buenos Aires (Argentina) Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil))

    1992-01-01

    High-spin states belonging to {sup 166}Lu have been studied through the {sup 159}Tb({sup 12}C,5{ital n}) fusion-evaporation reaction in the energy range {ital E}({sup 12}C)=75--90 MeV. In-beam and activity singles spectra and {gamma}-{gamma}-{ital t} coincidences have been measured. A completely new level scheme is proposed. Each rotational band is interpreted on the basis of coupling scheme systematics. {ital g}-{ital S} crossing frequencies and alignments have been extracted. {ital B}({ital M}1)/{ital B}({ital E}2) reduced transition probability ratios have been calculated using a semiclassical method and compared to the experimental values.

  13. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  14. On the Quantum Mechanical State of the Δ++ Baryon

    Directory of Open Access Journals (Sweden)

    Comay E.

    2011-01-01

    Full Text Available The ++ and the baryons have been used as the original reason for the construction of the Quantum Chromodynamics theory of Strong Interactions. The present analy- sis relies on the multiconfiguration structure of states which are made of several Dirac particles. It is shown that this property, together with the very strong spin-dependent interactions of quarks provide an acceptable explanation for the states of these baryons and remove the classical reason for the invention of color within Quantum Chromody- namics. This explanation is supported by several examples that show a Quantum Chro- modynamics’ inconsistency with experimental results. The same arguments provide an explanation for the problem called the proton spin crisis.

  15. On the Quantum Mechanical State of the Delta++ Baryon

    Directory of Open Access Journals (Sweden)

    Comay E.

    2011-01-01

    Full Text Available The Delta++ and the Omega- baryons have been used as the original reason for the construction of the Quantum Chromodynamics theory of Strong Interactions. The present analysis relies on the multiconfiguration structure of states which are made of several Dirac particles. It is shown that this property, together with the very strong spin-dependent interactions of quarks provide an acceptable explanation for the states of these baryons and remove the classical reason for the invention of color within Quantum Chromodynamics. This explanation is supported by several examples that show a Quantum Chromodynamics' inconsistency with experimental results. The same arguments provide an explanation for the problem called the proton spin crisis.

  16. Production of Mesons and Baryons at High Rapidity and High Pt in Proton-Proton Collisions at $\\sqrt{s}$ = 200 GeV

    CERN Document Server

    Arsene, I; Beavis, D; Bekele, S; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Dalsgaard, H H; Debbe, R; Gaardhøje, J J; Hagel, K; Ito, H; Jipa, A; Johnson, E B; Jorgensen, C E; Karabowicz, R; Kim, E J; Larsen, T M; Lee, J H; Lindal, S; Løvhøiden, G; Majka, Z; Murray, M; Natowitz, J B; Nielsen, B S; Nygård, C; Planeta, R; Rami, F; Renault, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yang, H; Yin, Z; Zgura, I S; al, et

    2007-01-01

    We present particle spectra for charged hadrons $\\pi^\\pm, K^\\pm, p$ and $\\bar{p}$ from pp collisions at $\\sqrt{s}$=200$ GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small $\\bar{p}/p$ ratios associated with baryon transport.

  17. Renormalization of the baryon axial vector current in large-N{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ruiz, Maria de los Angeles [University Aut. de San Luis Potosi, Av. V. Carranza 2405, 78216, San Luis Potosi (Mexico)

    2010-07-01

    The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large-N{sub c} limit, where N{sub c} is the number of colors. Loop graphs with octet and decuplet intermediate states cancel to various orders in N{sub c} as a consequence of the large-N{sub c} spin-flavor symmetry of QCD baryons. We present a preliminary study of the convergence of the chiral expansion with 1/N{sub c} corrections in the case of g{sub A} = N{sub c} = 3. (author)

  18. Control of Spinning Sidebands in High Resolution NMR Spectroscopy

    Science.gov (United States)

    Borer; Maple

    1998-04-01

    The presence of spinning sidebands can severely compromise the detection of low molarity analytes. Spinning sidebands have traditionally been minimized by improving the magnetic field homogeneity and by varying the spinning of the sample in a linear fashion during data acquisition. The effect of the latter is to spread the spinning sideband intensity over a range of frequencies so that the final result is a spinning sideband whose shape reflects the distribution of spinning speeds. We have designed a customized profile of spinner speed variation that optimizes the reduction of spinning sidebands. The customized profile is based on theoretical considerations of how the intensity of sidebands vary with the rate of sample rotation and also compensates for the mechanical design of the spinner mechanism. The result is a unique combination of an exponential increase in gas flow rate to balance the theoretical considerations coupled with a strategically placed rapid change in air flow to annul the sluggish response of the spinning mechanism to acceleration. The resulting sideband shape is a broad, flat, square step in the baseline that is least likely to interfere with low molarity analyte peaks. Copyright 1998 Academic Press.

  19. Spin, Isospin and Strong Interaction Dynamics

    Directory of Open Access Journals (Sweden)

    Comay E.

    2011-10-01

    Full Text Available The structure of spin and isospin is analyzed. Although both spin and isospin are related to the same SU(2 group, they represent different dynamical effects. The Wigner-Racah algebra is used for providing a description of bound states of several Dirac particles in general and of the proton state in particular. Isospin states of the four ∆ (1232 baryons are discussed. The work explains the small contribution of quarks spin to the overall proton spin (the proton spin crisis. It is also proved that the addition of QCD’s color is not required for a construction of an antisymmetric state for the ∆ ++ (1232 baryon.

  20. Masses and magnetic moments of triple heavy flavour baryons in ...

    Indian Academy of Sciences (India)

    of heavy flavour baryons are computed for different power index, p starting from 0.5 to. 2.0. The predicted masses are found to attain a saturated value with respect to variation in p beyond the power index p > 1.0. Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks ...

  1. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....

  2. Baryon number of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, S.; Susskind, L.

    1978-12-15

    We consider the possibility that the observed particle-antiparticle imbalance in the universe is due to baryon-numbers, C, and CP nonconservation. We make general observations and describe a framework for making quantitative estimates.

  3. Baryonic Higgs at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fileviez Perez, Pavel [Case Western Reserve Univ., Cleveland, OH (United States). CERCA, Physics Dept.; Smirnov, Juri [INFN, Sezione di Firenze (Italy); Florence Univ., Sesto Fiorentino (Italy). Dept. of Physics and Astronomy

    2017-04-15

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. We refer to this new Higgs as ''Baryonic Higgs''. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and WW searches at the Large Hadron Collider, needed to find a lower bound on the scale at which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. We also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.

  4. Baryon Interactions from Lattice QCD

    CERN Document Server

    Aoki, Sinya

    2010-01-01

    We report on new attempt to investigate baryon-baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon ($NN$) potentials in quenched QCD simulations, which reproduce qualitative features of modern $NN$ potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon ($YN$) interactions, in both quenched and full QCD.

  5. Complex narrow-line Seyfert 1s : high spin or high inclination?

    OpenAIRE

    Gardner, E.; Done, C.

    2015-01-01

    Complex narrow-line Seyfert 1s (NLS1s), such as 1H 0707−495, differ from simple NLS1s like PG 1244+026 by showing stronger broad spectral features at Fe K and larger amplitude flux variability. These are correlated: the strongest Fe K features are seen during deep dips in the light curves of complex NLS1s. There are two competing explanations for these features, one where a compact X-ray source on the spin axis of a highly spinning black hole approaches the horizon and the consequent strong r...

  6. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  7. Tunable Dirac points and high spin polarization in ferromagnetic-strain graphene superlattices.

    Science.gov (United States)

    Wu, Qing-Ping; Liu, Zheng-Fang; Chen, Ai-Xi; Xiao, Xian-Bo; Miao, Guo-Xing

    2017-11-07

    Spin-dependent energy bands and transport properties of ferromagnetic-strain graphene superlattices are studied. The high spin polarization appears at the Dirac points due to the presence of spin-dependent Dirac points in the energy band structure. A gap can be induced in the vicinity of Dirac points by strain and the width of the gap is enlarged with increasing strain strength, which is beneficial for enhancing spin polarization. Moreover, a full spin polarization can be achieved at large strain strength. The position and number of the Dirac points corresponding to high spin polarization can be effectively manipulated with barrier width, well width and effective exchange field, which reveals a remarkable tunability on the wavevector filtering behavior.

  8. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  9. Spin-offs of high energy physics to society

    CERN Document Server

    Amaldi, Ugo

    2000-01-01

    Scientists are more and more frequently asked about the spin-offs of fundamental research. To answer effectively, it is important to organise the multiple aspects of knowledge and technology transfer in a coherent scheme. In this paper the spin-offs of particle physics to other fields of science and to industries are grouped in four streams: usable knowledge, people, methods and technologies. After treating these four items, with examples and suggestions of ways to improve the quality and quantity of the spin-offs, the pathways through which the results and the techniques of fundamental science percolate to society are discussed. (33 refs).

  10. Interactions between baryon octets by quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, S. [Suzuka National College of Technology, Suzuka, Mie (Japan); Fujiwara, Y. [Kyoto Univ., Faculty of Science, Kyoto (Japan); Suzuki, Y. [Niigata Univ., Faculty of Science, Niigata (Japan); Kohno, M. [Kyushu Dental College, Kita-kyushu, Fukuoka (Japan)

    2003-03-01

    Interactions between the baryon octets are studied by using the two spin flavor SU{sub 6} quark models, namely fss2 and FSS. In all channels, results that can be systematically understood along with the flavor symmetry are obtained. Effect of the channel coupling in the {sup 1}S{sub 0} state of the system of strangeness-2 shows a tendency to be weak in the system of isospin 0 while strong in the system of isospin 1. It is shown that this tendency is due to the competitive contributions of the color magnetic term and the effective meson exchange potential to the transition potential. Flavor symmetry breaking weakens both the repulsive force in the short range and the attractive force in the intermediate range. It is revealed that the overall qualitative behavior is determined as the result of the competitive effect of those interactions. (S. Funahashi)

  11. Biased galaxy formation with baryonic dark matter.

    Science.gov (United States)

    Morikawa, M.

    The author studies the possibility of baryonic dark matter associated with a galaxy/halo in the light of the biasing which segregates the luminous inner region and the dark outer region of a galaxy. He proposes a biasing mechanism based on the fact that stellar luminosity is highly sensitive to the strength of the gravitational force. He uses a nonconformal scalar field model in which the scalar field accumulates around the gravitational potential formed by the baryonic matter and yields a slight galactocentric gradient of the effective gravitational constant G. A small gradient (the value of G becomes half of the ordinary value at the distance about 100 kpc from the center of the galaxy) is sufficient to explain the smooth flat rotation curve of the spiral galaxies as well as a sharp cutoff of the luminosity profile. Several tests of this scenario are studied.

  12. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  13. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    Science.gov (United States)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  14. A new high-spin isomer in {sup 195}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T.; Mukherjee, G.; Rana, T.K.; Bhattacharya, Soumik; Asgar, Md.A.; Bhattacharya, C.; Bhattacharya, S.; Bhattacharyya, S.; Pai, H. [Variable Energy Cyclotron Centre, Kolkata (India); Madhavan, N.; Bala, I.; Gehlot, J.; Gurjar, R.K.; Jhingan, A.; Kumar, R.; Muralithar, S.; Nath, S.; Singh, R.P.; Varughese, T. [Inter University Acclerator Centre, New Delhi (India); Basu, K.; Bhattacharjee, S.S.; Ghugre, S.S.; Raut, R.; Sinha, A.K. [UGC-DAE-CSR Kolkata Centre, Kolkata (India); Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India)

    2015-11-15

    A new high-spin isomer has been identified in {sup 195}Bi at the focal plane of the HYbrid Recoil mass Analyser (HYRA) used in the gas-filled mode. The fusion evaporation reactions {sup 169}Tm ({sup 30}Si, x n) {sup 193,} {sup 195}Bi were used with the beam energies on targets of 168 and 146MeV for 6n and 4n channels, respectively. The evaporation residues, separated from the fission fragments, and their decays were detected at the focal plane of HYRA using MWPC, Si-Pad and clover HPGe detectors. The half-life of the new isomer in {sup 195}Bi has been measured to be 1.6(1) μs. The configuration of the new isomer has been proposed and compared with the other isomers in this region. The Total Routhian Surface (TRS) calculations for the three-quasiparticle configurations corresponding to the new isomer suggest an oblate deformation for this isomeric state. The same calculations for different configurations in {sup 195}Bi and for the even-even {sup 194}Pb core indicate that the proton i{sub 13/2} orbital has a large shape driving effect towards oblate shape in these nuclei. (orig.)

  15. A new high-spin isomer in 195Bi

    Science.gov (United States)

    Roy, T.; Mukherjee, G.; Madhavan, N.; Rana, T. K.; Bhattacharya, Soumik; Asgar, Md. A.; Bala, I.; Basu, K.; Bhattacharjee, S. S.; Bhattacharya, C.; Bhattacharya, S.; Bhattacharyya, S.; Gehlot, J.; Ghugre, S. S.; Gurjar, R. K.; Jhingan, A.; Kumar, R.; Muralithar, S.; Nath, S.; Pai, H.; Palit, R.; Raut, R.; Singh, R. P.; Sinha, A. K.; Varughese, T.

    2015-11-01

    A new high-spin isomer has been identified in 195Bi at the focal plane of the HYbrid Recoil mass Analyser (HYRA) used in the gas-filled mode. The fusion evaporation reactions 169Tm (30Si, x n) 193, 195Bi were used with the beam energies on targets of 168 and 146MeV for 6n and 4n channels, respectively. The evaporation residues, separated from the fission fragments, and their decays were detected at the focal plane of HYRA using MWPC, Si-Pad and clover HPGe detectors. The half-life of the new isomer in 195Bi has been measured to be 1.6(1)μs. The configuration of the new isomer has been proposed and compared with the other isomers in this region. The Total Routhian Surface (TRS) calculations for the three-quasiparticle configurations corresponding to the new isomer suggest an oblate deformation for this isomeric state. The same calculations for different configurations in 195Bi and for the even-even 194Pb core indicate that the proton i 13/2 orbital has a large shape driving effect towards oblate shape in these nuclei.

  16. Shape evolution in 76, 78Kr nuclei at high spins in tilted axis ...

    Indian Academy of Sciences (India)

    A two-dimensional tilted axis cranking Hartree–Fock–Bogoliubov (CHFB) calculation is performed for 76Kr and 78Kr nuclei up to high spins = 30 employing a pairing-plus-quadrupole (PPQ) model interaction Hamiltonian. Intricate details of the evolution of single particle structures and shapes as a function of spin have ...

  17. Shape evolution in 76,78Kr nuclei at high spins in tilted axis ...

    Indian Academy of Sciences (India)

    CHFB) calculation is performed for 76Kr and 78Kr nuclei up to high spins J = 30 employing a pairing-plus-quadrupole (PPQ) model interaction Hamiltonian. Intricate details of the evolution of single particle structures and shapes as a function of spin ...

  18. Spin Torque Oscillator for High Performance Magnetic Memory

    Directory of Open Access Journals (Sweden)

    Rachid Sbiaa

    2015-06-01

    Full Text Available A study on spin transfer torque switching in a magnetic tunnel junction with perpendicular magnetic anisotropy is presented. The switching current can be strongly reduced under a spin torque oscillator (STO, and its use in addition to the conventional transport in magnetic tunnel junctions (MTJ should be considered. The reduction of the switching current from the parallel state to the antiparallel state is greater than in  the opposite direction, thus minimizing the asymmetry of the resistance versus current in the hysteresis loop. This reduction of both switching current and asymmetry under a spin torque oscillator occurs only during the writing process and does not affect the thermal stability of the free layer.

  19. Problems and Progress in Covariant High Spin Description

    Science.gov (United States)

    Kirchbach, Mariana; Banda Guzmán, Víctor Miguel

    2016-10-01

    A universal description of particles with spins j > 1, transforming in (j, 0) ⊕ (0, j), is developed by means of representation specific second order differential wave equations without auxiliary conditions and in covariant bases such as Lorentz tensors for bosons, Lorentz-tensors with Dirac spinor components for fermions, or, within the basis of the more fundamental Weyl- Van-der-Waerden sl(2,C) spinor-tensors. At the root of the method, which is free from the pathologies suffered by the traditional approaches, are projectors constructed from the Casimir invariants of the spin-Lorentz group, and the group of translations in the Minkowski space time.

  20. Unification and local baryon number

    Science.gov (United States)

    Fileviez Pérez, Pavel; Ohmer, Sebastian

    2017-05-01

    We investigate the possibility to find an ultraviolet completion of the simple extensions of the Standard Model where baryon number is a local symmetry. In the context of such theories one can understand the spontaneous breaking of baryon number at the low scale and the proton stability. We find a simple theory based on SU(4)C ⊗ SU(3)L ⊗ SU(3)R where baryon number is embedded in a non-Abelian gauge symmetry. We discuss the main features of the theory and the possible implications for experiments. This theory predicts stable colored and/or fractional electric charged fields which can give rise to very exotic signatures at the Large Hadron Collider experiments such as CMS and ATLAS. We further discuss the embedding in a gauge theory based on SU(4)C ⊗ SU(4)L ⊗ SU(4)R which could define the way to achieve the unification of the gauge interactions at the low scale.

  1. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    Directory of Open Access Journals (Sweden)

    Staszczak Andrzej

    2016-01-01

    Full Text Available We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ħ and 140ħ, which follow the same (multi-particle–(multi-hole systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC experiments.

  2. High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves

    Science.gov (United States)

    Wang, X. J.; Zou, H.; Ocola, L. E.; Ji, Y.

    2009-07-01

    Submicron metallic lateral spin valves are fabricated with AlOx tunnel junctions as spin injection and detection barriers. The spin polarization is estimated to be ˜20%, determined by both Hanle effect and variations of device dimensions. The polarization is maintained at a large dc injection current density >2×106 A/cm2. Both the spin polarization and spin diffusion length are weakly temperature dependent.

  3. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  4. Baryon - baryon correlations in Au+Au collisions at sqrt(sNN)= 62 GeV and sqrt(sNN)= 200 GeV, measured in the STAR experiment at RHIC

    CERN Document Server

    Gos, H P

    2006-01-01

    Particle correlations at small relative velocities can be used to study the space-time evolution of hot and expanding system created in heavy ion collisions. Baryon and antibaryon source sizes extracted from baryon-baryon correlations complement the information deduced from the correlation studies of identical pions. Correlations of non-identical particles are sensitive also to the space-time asymmetry of their emission. High statistics data set of STAR experiment allows us to present the results of baryon-baryon correlation measurements at various centralities and energies, as well as to take carefully into account the particle identification probability and the fraction of primary baryons and antibaryons. Preliminary results show significant contribution of annihilation channel in baryon-antibaryon correlations.

  5. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  6. Non-baryonic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berkes, I.

    1996-12-31

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.

  7. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  8. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  9. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2013-01-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$\\otimes$O(3) symmetry.

  10. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  11. Glueball-baryon interactions in holographic QCD

    Science.gov (United States)

    Li, Si-Wen

    2017-10-01

    Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.

  12. Charmed and strange baryon production in 29 GeV electron positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S.R.

    1988-06-01

    This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark III detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The ..xi../sup /minus// production rate is measured to be 0.017 +- 0.004 +- 0.004 per hadronic event, ..cap omega../sup /minus// production is measured to be 0.014 +- 0.006 +- 0.004 per hadronic event, and ..xi..*/sup 0/ production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryon production. In particular, the unexpectedly high rate of ..cap omega../sup /minus// production is difficult to explain in any diquark based model. Semileptonic ..lambda../sub c//sup +/ decays have also been observed. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results. However, they do indicate that the branching ratio for ..lambda../sub c//sup +/ ..-->.. ..lambda..l..nu.. may be higher than previous experimental measurements. 85 refs., 45 figs., 12 tabs.

  13. arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    CERN Document Server

    Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Vidal, F. Martinez; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-05

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  14. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goity, Jose Luis [JLAB; Calle Cordon, Alvaro [JLAB

    2013-08-01

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  15. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Wrzesinski, J.; Pawlat, T. [and others

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  16. High-spin level structure of the neutron-rich nucleus 91Y

    CERN Document Server

    He, Xiao-Feng; Fang, Yong-De; Liu, Min-Liang; Zhang, Yu-Hu; Wang, Kai-Long; Wang, Jian-Guo; Guo, Song; Qiang, Yun-Hua; Zheng, Yong; Zhang, Ning-Tao; Li, Guang-Shun; Gao, Bing-Shui; Wu, Xiao-Guang; He, Chuang-Ye; Zheng, Yun

    2015-01-01

    High-spin level structure of the neutron-rich nucleus 91Y has been reinvestigated via the 82Se(13C, p3n)91Y reaction. A newly constructed level scheme including several key levels clarifies the uncertainties in the earlier studies. These levels are characterized by the breaking of the Z=38 and N=56 subshell closures, which involves in the spin-isospin dependent central force and tensor force.

  17. Future Perspectives on Baryon Form Factor Measurements with BES III

    Science.gov (United States)

    Schönning, Karin; Li, Cui

    2017-03-01

    The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.

  18. X-ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan,X.; Rohde, J.; Koehntop, K.; Zhou, Y.; Bukowski, M.; Costas, M.; Fujisawa, K.; Que, Jr., L.

    2007-01-01

    The reactions of iron(II) complexes [Fe(Tpt-Bu,i-Pr)(OH)] (1a, Tpt-Bu,i-Pr = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me2BPMCN)(OTf)2] (1b, 6-Me2BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L8Py2)(OTf)](OTf) (1c, L8Py2 = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin FeIII-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes. These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86-1.96 Angstroms Fe-OOR bond, compared to the 1.78 Angstroms Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin FeIII-OOR species.

  19. Persistent high-energy spin excitations in iron-pnictide superconductors.

    Science.gov (United States)

    Zhou, Ke-Jin; Huang, Yao-Bo; Monney, Claude; Dai, Xi; Strocov, Vladimir N; Wang, Nan-Lin; Chen, Zhi-Guo; Zhang, Chenglin; Dai, Pengcheng; Patthey, Luc; van den Brink, Jeroen; Ding, Hong; Schmitt, Thorsten

    2013-01-01

    Motivated by the premise that superconductivity in iron-based superconductors is unconventional and mediated by spin fluctuations, an intense research effort has been focused on characterizing the spin-excitation spectrum in the magnetically ordered parent phases of the Fe pnictides and chalcogenides. For these undoped materials, it is well established that the spin-excitation spectrum consists of sharp, highly dispersive magnons. The fate of these high-energy magnetic modes upon sizable doping with holes is hitherto unresolved. Here we demonstrate, using resonant inelastic X-ray scattering, that optimally hole-doped superconducting Ba(0.6)K(0.4)Fe(2)As(2) retains well-defined, dispersive high-energy modes of magnetic origin. These paramagnon modes are softer than, though as intense as, the magnons of undoped antiferromagnetic BaFe(2)As(2). The persistence of spin excitations well into the superconducting phase suggests that the spin fluctuations in Fe-pnictide superconductors originate from a distinctly correlated spin state. This connects Fe pnictides to cuprates, for which, in spite of fundamental electronic structure differences, similar paramagnons are present.

  20. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology

    Energy Technology Data Exchange (ETDEWEB)

    Loordhuswamy, Amalorpava Mary [Department of Textile Technology, Anna University, Chennai 600025 (India); Krishnaswamy, Venkat Raghavan; Korrapati, Purna Sai [Department of Biomaterials, CSIR-Central Leather Research Institute, Chennai 600020 (India); Thinakaran, Senthilram [Department of Textile Technology, Anna University, Chennai 600025 (India); Rengaswami, Giri Dev Venkateshwarapuram, E-mail: vrgiridev@yahoo.com [Department of Textile Technology, Anna University, Chennai 600025 (India)

    2014-09-01

    Centrifugal spinning (C-Spin) is an emerging technology which uses centrifugal force to produce ultrafine fibers. Being a voltage free technique it can overcome the limitations of electrospinning. Owing to the unique characteristic features such as high surface area to volume ratio, porosity, mechanical strength and fiber alignment, centrifugal spun (C-spun) fibrous mat has a wide range of scope in various biomedical applications. Higher degree of fiber alignment can be effortlessly achieved by the C-Spin process. In order to prove the versatility of C-Spin system with respect to fiber alignment, Polycaprolactone (PCL) and gelatin were spun taking them as model polymers. The morphological analysis revealed that highly aligned ultrafine fibers with smooth surface are achieved by C-Spinning. Hydrophilicity, porosity and mechanical property results confirm that the C-spun mat is more suitable for tissue engineering applications. In vitro and in vivo experiments proved that the scaffolds are biocompatible and can be efficiently used as a wound dressing material. - Highlights: • Highly aligned PCL/gelatin fibrous scaffolds were prepared by C-Spinning system. • Degree of fiber alignment was influenced by the proportion of gelatin in the blends. • Direction of cell growth was parallel to the direction of fiber alignment. • C-Spun matrices can efficiently accelerate faster wound healing.

  1. Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure.

    Science.gov (United States)

    Wang, Shuanhu; Zou, Lvkuan; Zhang, Xu; Cai, Jianwang; Wang, Shufang; Shen, Baogen; Sun, Jirong

    2015-11-14

    Based on unique experimental setups, the temperature dependences of the longitudinal spin Seebeck effect (LSSE) and spin Hall magnetoresistance (SMR) of the Pt/yttrium iron garnet (Pt/YIG) hybrid structure are determined in a wide temperature range up to the Curie temperature of YIG. From a theoretical analysis of the experimental relationship between the SMR and temperature, the spin mixing conductance of the Pt/YIG interface is deduced as a function of temperature. Adopting the deduced spin mixing conductance, the temperature dependence of the LSSE is well reproduced based on the magnon spin current theory. Our research sheds new light on the controversy about the theoretical models for the LSSE.

  2. Baryon helicity in B decay

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2005-07-01

    The unexpectedly large transverse polarization measured in the decay B {yields} {phi}K* poses the question whether it is accounted for as a strong interaction effect or possibly points to a hidden nonstandard weak interaction. We extend here the perturbative argument to the helicity structure of the two-body baryonic decay and discuss qualitatively on how the baryonic B decay modes might help us in understanding the issue raised by B {yields} {phi}K*. We find among others that the helicity +1/2 amplitude dominates the leading order in the B(b-barq) decay and that unlike the B {yields} VV decay the dominant amplitude is sensitive to the right-handed b {yields} s current, if any, in the penguin interaction.

  3. Baryon number and strangeness: signals of a deconfinedantecedent

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, A.; Koch, V.; Randrup, J.

    2005-06-29

    The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.

  4. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...... degrees around the resonance energy E-res. The intensity has a 2D character even in a single twin crystal. The value of E-res is related to the nesting properties of the Fermi surface. The excitations above E-res are shown to be due to in-plane spin fluctuations, a testable difference from the stripe...... model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state....

  5. On the search for the electric dipole moment of strange and charm baryons at LHC

    Science.gov (United States)

    Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.

    2017-03-01

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.

  6. On the search for the electric dipole moment of strange and charm baryons at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)

    2017-03-15

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)

  7. Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures.

    Science.gov (United States)

    Hofbauer, Stefan; Bellei, Marzia; Sündermann, Axel; Pirker, Katharina F; Hagmüller, Andreas; Mlynek, Georg; Kostan, Julius; Daims, Holger; Furtmüller, Paul G; Djinović-Carugo, Kristina; Oostenbrink, Chris; Battistuzzi, Gianantonio; Obinger, Christian

    2012-11-27

    Chlorite dismutases (Clds) are heme b-containing oxidoreductases that convert chlorite to chloride and dioxygen. In this work, the thermodynamics of the one-electron reduction of the ferric high-spin forms and of the six-coordinate low-spin cyanide adducts of the enzymes from Nitrobacter winogradskyi (NwCld) and Candidatus "Nitrospira defluvii" (NdCld) were determined through spectroelectrochemical experiments. These proteins belong to two phylogenetically separated lineages that differ in subunit (21.5 and 26 kDa, respectively) and oligomeric (dimeric and pentameric, respectively) structure but exhibit similar chlorite degradation activity. The E°' values for free and cyanide-bound proteins were determined to be -119 and -397 mV for NwCld and -113 and -404 mV for NdCld, respectively (pH 7.0, 25 °C). Variable-temperature spectroelectrochemical experiments revealed that the oxidized state of both proteins is enthalpically stabilized. Molecular dynamics simulations suggest that changes in the protein structure are negligible, whereas solvent reorganization is mainly responsible for the increase in entropy during the redox reaction. Obtained data are discussed with respect to the known structures of the two Clds and the proposed reaction mechanism.

  8. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  9. Dispersive high-energy spin excitations in iron pnictide superconductors investigated with RIXS

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten; Zhou, Kejin; Monney, C.; Strocov, V.N. [Paul Scherrer Institut, Villigen (Switzerland); Huang, Y.B. [Paul Scherrer Institut, Villigen (Switzerland); IOP, CAS, Beijing (China); Brink, J. van den [IFW Dresden (Germany); Ding, H. [IOP, CAS, Beijing (China)

    2012-07-01

    The discovery of iron-based high temperature superconductivity has triggered tremendous research efforts in searching for novel high-T{sub c} superconductors. Unlike cuprates, which have long-range ordered antiferromagnetic Mott insulators as parent compounds, the parent compounds of iron-based superconductors are spin-density wave metals with delocalized electronic structure and more itinerant magnetism. Recent developments of the high-resolution resonant inelastic X-ray scattering (RIXS) technique have enabled investigations of magnetic excitations in cuprates, which show excellent agreement with results from Inelastic Neutron Scattering. In this presentation we demonstrate that RIXS can be used to measure collective magnetic excitations in iron-based superconductors despite their much stronger itinerancy compared to cuprates. The persistence of high-energy spin excitations even in optimally doped pnictide superconductors in a wide range of temperatures strongly suggests a spin-mediated Cooper pairing mechanism as proposed in cuprate superconductors.

  10. Mass and Width Measurements of $\\Sigma_{c}$ Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Vaandering, Eric Wayne [Colorado U.

    2000-01-01

    Analyses of several charmed baryons decaying to $\\Lambda^+_c$ are presented. The data for these analyses were collected by FOCUS, Fermilab Experiment E831. FOCUS is a high statistics charm photoproduction experiment and accumulated data during the 1996{1997 Fermilab Fixed Target run....

  11. Light-cone distribution amplitudes of the ground state bottom baryons in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Wang, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hambrock, C. [Technische Univ. Dortmund (Germany); Parkhomenko, A.Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation)

    2012-12-15

    We provide the definition of the complete set of light-cone distribution amplitudes (LCDAs) for the ground state heavy bottom baryons with the spin-parities J{sup P}=1/2{sup +} and J{sup P}=3/2{sup +} in the heavy quark limit. We present the renormalization effects on the twist-2 light-cone distribution amplitudes and use the QCD sum rules to compute the moments of twist-2, twist-3, and twist-4 LCDAs. Simple models for the heavy baryon distribution amplitudes are analyzed with account of their scale dependence.

  12. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  13. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  14. Electron magnetic resonance data on high-spin Mn(III; S=2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach.

    Science.gov (United States)

    Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro

    2017-10-01

    The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d 4 ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d 4 and 3d 6 ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g || =g z , g ⊥ =g x =g y ) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters b k q (in the Stevens notation) and the Zeeman factors g i on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δ i ) within the 5 D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δ i best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b 2 0 (D) parameter and the experimental one. The fourth-rank ZFS parameters (b 4 0 , b 4 4 ) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Non-collective high-spin states in /sup 148/Dy

    Energy Technology Data Exchange (ETDEWEB)

    Dines, E.L.

    1985-04-01

    General physical concepts regarding nuclear high-spin states are given. The high-spin states in /sup 148/Dy(Z = 66, N = 82) were produced via the reaction /sup 112/Cd(Pb-backed)(/sup 40/Ar,4n) at E/sub lab/ = 175, at the 88-inch Cyclotron at Lawrence Berkeley Laboratory. Methods for placing gates on various transitions above and below the 480 nsec isomer at 10/sup +/(known from previous work), as well as for calculating transition intensities and their associated errors, are given. Calculations of angular correlations for multiple ..gamma..-ray cascades, assuming non-zero-width distributions in m-states for some given spin state, were done and compared to experimental values. Analysis of RF - Ge and Ge - Ge TAC spectra for transitions above the 480 nsec isomer implied lifetimes of less than or equal to 5 nsec (except for the 327.2 keV transition). Using such analysis, some 19 new ..gamma..-ray transitions were discovered above the isomer, thereby extending the /sup 148/Dy level scheme up to spin I = 31 h-bar. Assignments of spins and parities for the new levels are made based on information obtained from angular correlations and the lifetime limits. Previous work on the 11 transitions below the 480 nsec isomer is confirmed.

  16. Observation of high-spin oblate band structures in Pm141

    Science.gov (United States)

    Gu, L.; Zhu, S. J.; Wang, J. G.; Yeoh, E. Y.; Xiao, Z. G.; Zhang, S. Q.; Meng, J.; Zhang, M.; Liu, Y.; Ding, H. B.; Xu, Q.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Li, G. S.; Wang, L. L.; Zheng, Y.; Zhang, B.

    2011-06-01

    The high-spin states of Pm141 have been investigated through the reaction Te126(F19,4n) at a beam energy of 90 MeV. A previous level scheme has been updated with spins up to 49/2ℏ. Six collective bands at high spins are newly observed. Based on the systematic comparison, one band is proposed as a decoupled band; two bands with strong ΔI=1 M1 transitions inside the bands are suggested as the oblate bands with γ ~-60°; three other bands with large signature splitting have been proposed with the oblate-triaxial deformation with γ~ -90°. The triaxial n-particle-n-hole particle rotor model calculations for one of the oblate bands in Pm141 are in good agreement with the experimental data. The other characteristics for these bands have been discussed.

  17. Baryon Form Factors at Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)

    2012-04-15

    An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.

  18. Beautiful baryons from lattice QCD

    CERN Document Server

    Alexandrou, C; Güsken, S; Jegerlehner, F; Schilling, K; Siegert, G; Sommer, Rainer

    1994-01-01

    We perform a lattice study of heavy baryons, containing one (\\Lambda_b) or two b-quarks (\\Xi_b). Using the quenched approximation we obtain for the mass of \\Lambda_b M_{\\Lambda_b}= 5.728 \\pm 0.144 \\pm 0.018 {\\rm GeV}. The mass splitting between the \\Lambda_b and the B-meson is found to increase by about 20\\% if the light quark mass is varied from the chiral limit to the strange quark mass. ------- Figures obtained upon request from borrelli@psiclu.cern.ch.

  19. First observation of doubly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Moinester et al.

    2003-09-25

    The SELEX experiment (E781) at Fermilab has observed two statistically compelling high mass states near 3.6 GeV/c{sup 2}, decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +} and {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}. These final states are Cabibbo-allowed decay modes of doubly charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}, respectively. The masses are in the range expected from theoretical considerations, but the spectroscopy is surprising. SELEX also has weaker preliminary evidence for a state near 3.8 GeV/c{sup 2}, a high mass state decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}, possibly an excited {Xi}{sub cc}{sup ++} (ccu*). Data are presented and discussed.

  20. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  1. Complex narrow-line Seyfert 1s: high spin or high inclination?

    Science.gov (United States)

    Gardner, Emma; Done, Chris

    2015-04-01

    Complex narrow-line Seyfert 1s (NLS1s), such as 1H 0707-495, differ from simple NLS1s like PG 1244+026 by showing stronger broad spectral features at Fe K and larger amplitude flux variability. These are correlated: the strongest Fe K features are seen during deep dips in the light curves of complex NLS1s. There are two competing explanations for these features, one where a compact X-ray source on the spin axis of a highly spinning black hole approaches the horizon and the consequent strong relativistic effects focus the intrinsic flux on to the inner edge of a thin disc, giving a dim, reflection-dominated spectrum. The other is that the deep dips are caused by complex absorption by clumps close to the hard X-ray source. The reflection-dominated model is able to reproduce the very short 30 s soft lag from reverberation seen in the complex NLS1 1H 0707-495. However, it does not explain the characteristic switch to hard lags on longer time-scales. Instead, a full model of propagating fluctuations coupled to reverberation can explain the switch in the simple NLS1 PG 1244+026 using a low spin black hole. However, PG 1244+026 has a longer reverberation lag of ˜200 s. Here we extend the successful propagation-reverberation model for the simple NLS1 PG 1244+026 to include the effect of absorption from clumps in a turbulent region above the disc. The resulting occultations of the inner accretion flow can introduce additional hard lags when relativistic effects are taken into account. This dilutes the soft lag from reverberation and shifts it to higher frequencies, making a smooth transition between the 200 s lags seen in simple NLS1s to the 30 s lags in complex NLS1s. These two classes of NLS1 could then be determined by inclination angle with respect to a clumpy, probably turbulent, failed wind structure on the disc.

  2. Unexpected Spin-Crossover and a Low-Pressure Phase Change in an Iron(II)/Dipyrazolylpyridine Complex Exhibiting a High-Spin Jahn-Teller Distortion.

    Science.gov (United States)

    Kershaw Cook, Laurence J; Thorp-Greenwood, Flora L; Comyn, Tim P; Cespedes, Oscar; Chastanet, Guillaume; Halcrow, Malcolm A

    2015-07-06

    The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X(-) = BF4(-), 1; X(-) = ClO4(-), 2; X(-) = PF6(-), 3; X(-) = CF3SO3(-), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T1/2↓ = 204 and T1/2↑ = 209 K (1), and T1/2↓ = 175 and T1/2↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn-Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T1/2, exposing both compounds to 10(-5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn-Teller distortion.

  3. X-Ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)Iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X.; Rohde, J.-U.; Koehntop, K.D.; Zhou, Y.; Bukowski, M.R.; Costas, M.; Fujisawa, K.; Que, L.; Jr.

    2009-06-04

    The reactions of iron(II) complexes [Fe(Tp{sup t-Bu,i-Pr})(OH)] (1a, Tp{sup t-Bu,i-Pr} = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me{sub 2}BPMCN)(OTf){sub 2}] (1b, 6-Me{sub 2}BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L{sup 8}Py{sub 2})(OTf)](OTf) (1c, L{sup 8}Py{sub 2} = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin Fe{sup III}-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes (Rohde, J.-U.; et al. J. Am. Chem. Soc. 2004, 126, 16750--16761). These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86--1.96 {angstrom} Fe-OOR bond, compared to the 1.78 {angstrom} Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin Fe{sup III}-OOR species.

  4. The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory

    Energy Technology Data Exchange (ETDEWEB)

    Calle Cordon, Alvaro C. [JLAB; DeGrand, Thomas A. [University of Colorado; Goity, Jose L. [JLAB

    2014-07-01

    Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.

  5. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  6. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, M. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Physics; Miller, C.A. [TRIUMF, Vancouver, BC (Canada); Nowak, W.D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-08-15

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  7. Physical limitations to efficient high-speed spin-torque switching in magnetic tunnel junctions

    Science.gov (United States)

    Heindl, R.; Rippard, W. H.; Russek, S. E.; Kos, A. B.

    2011-02-01

    We have investigated the physical limitations to efficient high-speed spin-torque switching by means of write error rates both experimentally as well as through macrospin simulations. The spin-torque-induced write operations were performed on in-plane MgO magnetic tunnel junctions. The write error rates were determined from up to 106 switching events as a function of pulse amplitude and duration (5 to 100 ns) for devices with different thermal stability factors. Both experiments and simulations show qualitatively similar results. In particular, the write error rates as a function of pulse voltage amplitude increase at higher rates for pulse durations below ≈50 ns. Simulations show that the write error rates can be reduced only to some extent by the use of materials with perpendicular anisotropy and reduced damping, whereas noncollinear orientation of the spin current polarization and the magnetic easy axis increases the write error rates. The cause for the write error rates is related to the underlying physics of spin-torque switching and the occurrence of the stagnation point on the magnetization switching trajectory where the spin-torque disappears and the device loses the energy needed to switch. The stagnation point can be accessed either during the initial magnetization distribution or by thermal diffusion during the switching process.

  8. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid.

    Science.gov (United States)

    Yamashita, Minoru; Nakata, Norihito; Senshu, Yoshinori; Nagata, Masaki; Yamamoto, Hiroshi M; Kato, Reizo; Shibauchi, Takasada; Matsuda, Yuji

    2010-06-04

    The nature of quantum spin liquids, a novel state of matter where strong quantum fluctuations destroy the long-range magnetic order even at zero temperature, is a long-standing issue in physics. We measured the low-temperature thermal conductivity of the recently discovered quantum spin liquid candidate, the organic insulator EtMe3Sb[Pd(dmit)2]2. A sizable linear temperature dependence term is clearly resolved in the zero-temperature limit, indicating the presence of gapless excitations with an extremely long mean free path, analogous to excitations near the Fermi surface in pure metals. Its magnetic field dependence suggests a concomitant appearance of spin-gap-like excitations at low temperatures. These findings expose a highly unusual dichotomy that characterizes the low-energy physics of this quantum system.

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP CIRCUM-PAN-PACIFIC RIKEN SYMPOSIUM ON HIGH ENERGY SPIN PHYSICS, VOLUME 25

    Energy Technology Data Exchange (ETDEWEB)

    KUMANO,S.; SHIBATA,T.A.; YAZAKI,K.

    2000-06-28

    The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields.

  10. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc...

  11. Ill-defined block-spin transformations at arbitrarily high temperatures

    NARCIS (Netherlands)

    Enter, Aernout C.D. van

    Examples are presented of block-spin transformations which map the Gibbs measures of the Ising model in two or more dimensions at temperature intervals extending to arbitrarily high temperatures onto non-Gibbsian measures. In this way we provide the first example of this kind of pathology for very

  12. Glueball–baryon interactions in holographic QCD

    Directory of Open Access Journals (Sweden)

    Si-Wen Li

    2017-10-01

    Full Text Available Studying the Witten–Sakai–Sugimoto model with type IIA string theory, we find the glueball–baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball–baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball–baryon interaction as “graviton–instanton” interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball–baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are “scalar and tensor glueball interacting with baryons”. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.

  13. High-dimensional quantum state transfer through a quantum spin chain

    Science.gov (United States)

    Qin, Wei; Wang, Chuan; Long, Gui Lu

    2013-01-01

    In this paper, we investigate a high-dimensional quantum state transfer protocol. An arbitrary unknown high-dimensional state can be transferred with high fidelity between two remote registers through an XX coupling spin chain of arbitrary length. The evolution of the state transfer is determined by the natural dynamics of the chain without external modulation and coupling strength engineering. As a consequence, entanglement distribution with a high efficiency can be achieved. Also the strong field and high spin quantum number can partly counteract the effect of finite temperature to ensure the high fidelity of the protocol when the quantum data bus is in the thermal equilibrium state under an external magnetic field.

  14. Photoproduction of the Λ c charmed baryon

    Science.gov (United States)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; d'Almagne, B.; David, M.; DiCiaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.; NA14/2 Collaboration

    1990-08-01

    In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c( overlineΛ c) charmed-baryon and antibaryon decays in the pK-π + ( overlinepK +π -) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c2 and its lifetime 0.18±0.03±0.03 ps. The ratio of {Λ c}/{D} production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.

  15. Population of high-spin isomeric states following fragmentation of 238U

    Science.gov (United States)

    Bowry, M.; Podolyák, Zs.; Pietri, S.; Kurcewicz, J.; Bunce, M.; Regan, P. H.; Farinon, F.; Geissel, H.; Nociforo, C.; Prochazka, A.; Weick, H.; Al-Dahan, N.; Alkhomashi, N.; Allegro, P. R. P.; Benlliure, J.; Benzoni, G.; Boutachkov, P.; Bruce, A. M.; Denis Bacelar, A. M.; Farrelly, G. F.; Gerl, J.; Górska, M.; Gottardo, A.; Grębosz, J.; Gregor, N.; Janik, R.; Knöbel, R.; Kojouharov, I.; Kubo, T.; Kurz, N.; Litvinov, Yu. A.; Merchan, E.; Mukha, I.; Naqvi, F.; Pfeiffer, B.; Pfützner, M.; Plaß, W.; Pomorski, M.; Riese, B.; Ricciardi, M. V.; Schmidt, K.-H.; Schaffner, H.; Scheidenberger, C.; Simpson, E. C.; Sitar, B.; Spiller, P.; Stadlmann, J.; Strmen, P.; Sun, B.; Tanihata, I.; Terashima, S.; Valiente Dobón, J. J.; Winfield, J. S.; Wollersheim, H.-J.; Woods, P. J.

    2013-08-01

    Isomeric ratios have been determined for 23 metastable states identified in A≈200 nuclei from Pt to Rn near the valley of stability following fragmentation of 238U. This includes high-spin states with angular momenta ranging from (39/2)ℏ to 25ℏ. The experimental results are discussed together with those of similar experiments performed in this mass region. Isomeric ratios are compared with theoretical predictions where the angular momentum of the fragment arises purely due to the angular momentum of nucleons removed from the projectile. The theoretical yield of low-spin states is generally overestimated. In these cases the assumption of 100% feeding of the isomer may require modification. However, the yield of high-spin isomeric states [Im ≥ (39/2)ℏ] is significantly underestimated and highlights the requirement for a more complete theoretical framework in relation to the generation of fragment angular momentum. The enhanced population of high-spin states reported here is advantageous to future studies involving isomeric beams at fragmentation facilities such as the Rikagaku Kenkyusho RI Beam Factory (Japan) and next-generation facilities at the Facility for Antiproton and Ion Research (Germany) and Facility for Rare Isotope Beams (USA).

  16. Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis

    Science.gov (United States)

    Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.; Weiss, C.

    2017-08-01

    The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O (Mπ-1) using methods of relativistic chiral effective field theory (χEFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 Mπ2 are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.

  17. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang [TDK-Headway Technologies, Inc., Milpitas, California 95035 (United States)

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  18. Spectroscopy of doubly and triply-charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2013-01-01

    We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $\\otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental $B_c$ meson mass, we predict the mass splittings...

  19. Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity

    Directory of Open Access Journals (Sweden)

    Ch. Cherif

    2018-03-01

    Full Text Available A stable and reproducible bi-component melt spinning process on an industrial scale incorporating Phase Change Material (PCM into textile fibres has been successfully developed and carried out using a melt spinning machine. The key factor for a successful bi-component melt spinning process is that a deep insight into the thermal and rheological behaviour of PCM using Difference Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, and an oscillatory rheological investigation. PCM is very sensitive to the temperature and residence time of the melt spinning process. It is found that the optimal process temperature of PCM is 210 °C. The textile-physical properties and the morphology of the melt spun and further drawn bi-component core and sheath fibres (bico fibres were investigated and interpreted. The heat capacities of PCM incorporated in bico fibres were also determined by means of DSC. The melt spun bico fibres integrating PCM provide a high latent heat of up to 22 J/g, which is three times higher than that of state-of-the-art fibres, which were also obtained using the melt spinning process. Therefore, they have the potential to be used as smart polymer fibres for textile and other technical applications.

  20. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  1. Baryon electromagnetic form factors at BESIII

    Directory of Open Access Journals (Sweden)

    Dbeyssi Alaa

    2017-01-01

    Full Text Available Electromagnetic form factors are fundamental quantities which parameterize the electric and magnetic structure of hadrons. This contribution reports on the measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e− collider BEPCII is a double-ring symmetric collider running at √s between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the e+e− → p̄p cross section and the time-like proton form factor is measured. Preliminary results from the analysis of the initial state radiation process e+e− → p̄pγ using a data set of 7.408 fb−1 collected at center-of-mass energies between 3.773 and 4.6 GeV, are also presented. The cross section for e+e−→Λ¯Λ${e^ + }{e^ - } \\to \\bar \\Lambda \\Lambda $ is measured based on 40.5 pb−1 data collected at 4 energy points from the threshold up to 3.08 GeV. Preliminary results on the total cross section and the Λ effective form factor are shown. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different √s are also described.

  2. The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys

    Science.gov (United States)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Lagos, Claudia del P.; Baker, Ashley D.; Berlind, Andreas A.; Stark, David V.; Moffett, Amanda J.; Nasipak, Zachary; Norris, Mark A.

    2017-11-01

    We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass {M}{bary}{cold} ∼ 1011 {M}ȯ . The SAM, however, has significantly fewer groups at the transition mass ∼1011 {M}ȯ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ∼2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of {M}{halo}∼ {10}11.4-12 {M}ȯ , which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.

  3. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  4. Excited [70,@?^+] baryons in large N"c QCD [rapid communication

    Science.gov (United States)

    Matagne, N.; Stancu, Fl.

    2005-12-01

    The masses of the positive parity [70,0] and [70,2] non-strange baryons are calculated in large N QCD by considering the most dominant operators in an 1/N expansion. The approach is based on the introduction of an excited core, obtained after the last particle (an excited quark) has been removed. Configuration mixing is neglected, for simplicity. Although being a sub-leading 1/N order, we find that the spin-spin interaction plays a dominant role in describing the data. The role of Nc0 operators is also pointed out. We show how the contribution of the linear term in N, of the spin-spin and of the spin-orbit terms vary with the excitation energy.

  5. On nonleptonic decays of charmed baryons

    CERN Document Server

    Voloshin, M B; Okun, Lev Borisovich

    1975-01-01

    Nonleptonic decays of charmed baryons provide many possibilities of testing various selection rules imposed on the weak interaction Hamiltonian by the Weinberg-Salam model. Relations for the dominating ( approximately cos/sup 2/ theta /sub c/) two-particle nonleptonic decays of the charm-one baryons are obtained that result from the selection rules Delta T=1, Delta U=1, Delta V=1,0, as well as from a stronger rule Delta V=0. A simple relation between the masses of the charmed baryons and masses of the known particles is presented. (5 refs).

  6. Analysis of Baryon Angular Correlations with Pythia

    CERN Document Server

    Mccune, Amara

    2017-01-01

    Our current understanding of baryon production is encompassed in the framework of the Lund String Fragmentation Model, which is then encoded in the Monte Carlo event generator program Pythia. In proton-proton collisions, daughter particles of the same baryon number produce an anti-correlation in $\\Delta\\eta\\Delta\\varphi$ space in ALICE data, while Pythia programs predict a correlation. To understand this unusual effect, where it comes from, and where our models of baryon production go wrong, correlation functions were systematically generated with Pythia. Effects of energy scaling, color reconnection, and popcorn parameters were investigated.

  7. Entanglement and magnetism in high-spin graphene nanodisks

    Science.gov (United States)

    Hagymási, I.; Legeza, Ö.

    2018-01-01

    We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory with local density approximation or Hartree-Fock methods cannot handle the strong quantum fluctuations. Applying the unbiased density-matrix renormalization group algorithm we calculate the magnetization and entanglement patterns with high accuracy for different interaction strengths and compare them to the mean-field results. With the help of quantum information analysis and subsystem density matrices we reveal that the edges are strongly entangled with each other. We also address the effect of electron and hole doping and demonstrate that the magnetic properties of triangular nanoflakes can be controlled by an electric field, which reveals features of flat-band ferromagnetism. This may open up new avenues in graphene based spintronics.

  8. Spin conversion of cytochrome b559 in photosystem II induced by exogenous high potential quinone

    Science.gov (United States)

    Kropacheva, Tatyana N.; Feikema, W. Onno; Mamedov, Fikret; Feyziyev, Yashar; Styring, Stenbjorn; Hoff, Arnold J.

    2003-11-01

    The spin-state of cytochrome b559 (Cyt b559) was studied in photosystem II (PSII) membrane fragments by low-temperature EPR spectroscopy. Treatment of the membranes with 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ) converts the native low-spin (LS) form of Cyt b559 to the high-spin (HS) form characterized with the g= 6.19 and g= 5.95 split signal. The HS Cyt b559 was pH dependent with the amplitude increasing toward more acidic pH values (pH 5.5-8.5). The HS state was not photochemically active upon 77 and 200 K continuous illumination under our conditions and was characterized by a low reduction potential (⩽0 V). It was also demonstrated that DDQ treatment damages the oxygen evolving complex, leading to inhibition of oxygen evolution, decrease of the S 2-state EPR multiline signal and release of Mn 2+. In parallel, studies of model systems containing iron(III) protoporphyrin IX chloride (Fe IIIPor), which is a good model compound for the Cyt b559 prosthetic group, were performed by using optical and EPR spectroscopy. The interaction of Fe IIIPor with imidazole (Im) in weakly polar solvent results in formation of bis-imidazole coordinated heme iron (Fe IIIPor Im 2) which mimic the bis-histidine axial ligation of Cyt b559. The reaction of DDQ with the LS Fe IIIPor Im 2 complex leads to its transformation into the HS state ( g⊥=5.95, g∥=2.00). It was shown that the spin conversion occurs due to the donor-acceptor interaction of coordinated imidazole with this high-potential quinone causing the displacement of imidazole from the axial position. The similar mechanism of DDQ-induced spin change is assumed to be valid for the native membrane Cyt b559 in PSII centers.

  9. Observation of high-spin bands with large moments of inertia in 124Xe

    Science.gov (United States)

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; Sletten, G.; Herskind, B.; Døssing, T.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Chmel, S.; Wilson, A. N.; Rogers, J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Zhu, S.; Korichi, A.; Stefanova, E. A.; Fallon, P.; Nyakó, B. M.; Timár, J.; Juhász, K.

    2016-09-01

    High-spin states in 124Xe have been populated using the 80Se(48Ca,4 n ) reaction at a beam energy of 207 MeV and high-multiplicity, γ -ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin bands with large moments of inertia, similar to those observed in neighboring nuclei, have been observed. The experimental results are compared with calculations within the framework of the cranked Nilsson-Strutinsky model. It is suggested that the configurations of the bands involve excitations of protons across the Z =50 shell gap coupled to neutrons within the N =50 -82 shell or excited across the N =82 shell closure.

  10. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K.; Hatsukawa, Y. [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  11. High frequency magnetic eigen excitations in a spin valve submitted to CPP DC current

    Energy Technology Data Exchange (ETDEWEB)

    Mistral, Q. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)]. E-mail: mistral@ief.u-psud.fr; Deac, A. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Grollier, J. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France); Redon, O. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Liu, Y. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Li, M. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Wang, P. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Dieny, B. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Devolder, T. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)

    2006-01-25

    We study the magnetization dynamics induced at low field by spin-transfer in a pillar-shaped spin valve. The spin valve is a square of 150 nmx 150 nm patterned from a film of IrMn 7 nm/CoFe, 2.4 nm/Ru, 0.8 nm/CoFe, 4.4 nm/Cu, 2.6 nm/CoFe, and 3.6 nm. The spin valve is studied in its anti-parallel state at 50 K. The high frequency voltage noise generated by the DC current flowing through the magneto-resistive device is used to identify the excitations induced by spin-transfer. Between an instability current of 1.72 mA and the switching current of 1.89 mA, we demonstrate the existence of pre-switch steady-state excitations, i.e. low amplitude precession. We study the frequency (10 GHz, red shift -1.46 GHz/mA) of this excitation, its line width (78-246 MHz), the power it carries (113 nW), and the current dependance thereof. We discuss those experimental findings using the formalism of Sun et al. and Valet et al., and show that the experimental behavior can be described by a macrospin approximation only at the very onset of the pre-switch excitations. The early saturation of the excitation power and the non-monotonic switching probability with the current are experimental indications that the pre-switch excitations are strongly non-uniform when approaching the switching current.

  12. Baryonic resonances from baryon decuplet-meson octet interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sourav [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptd. 22085, 46071 Valencia (Spain)]. E-mail: sourav@ific.uv.es; Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptd. 22085, 46071 Valencia (Spain); Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptd. 22085, 46071 Valencia (Spain)

    2005-04-04

    We study S-wave interactions of the baryon decuplet with the octet of pseudoscalar mesons using the lowest order chiral Lagrangian. In the S=1 sector, we find an attractive interaction in the {delta}K channel with I=1 while it is repulsive for I=2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and is manifested as a large strength in the scattering amplitude close to the {delta}K threshold, which is not the case for I=2.We use the unitarized coupled channel approach to also investigate all the other possible values of strangeness and isospin. We find two bound states in the SU(3) limit corresponding to the octet and decuplet representations. These are found to split into eight different trajectories in the complex plane when the SU(3) symmetry is broken gradually. Finally, we are able to provide a reasonable description for a good number of 4-star 32- resonances listed by the Particle Data Group. In particular, the {xi}(1820), the {lambda}(1520) and the {sigma}(1670) states are well reproduced. We predict a few other resonances and also evaluate the couplings of the observed resonances to the various channels from the residues at the poles of the scattering matrix from where partial decay widths into different channels can be evaluated.

  13. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  14. Study of B-Meson Decays to Final States with a Single Charm Baryon

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Stephanie A. [Stanford Univ., CA (United States)

    2007-08-01

    A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B- → Λ+c$\\bar{p}$π- and $\\bar{B}$0 → Λ+c$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B- → Λ+c$\\bar{p}$π-, is favored over $\\bar{B}$0 → Λ+c$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ+c$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B- → Λ+c$\\bar{p}$π- system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B- → Σc(2455) 0$\\bar{p}$ and B- → Σc(2800) 0$\\bar{p}$. This is the first observation of the decay B- → Σc(2800) 0$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B- → Σc(2455) 0$\\bar{p}$ decays and measure the spin of the B- → Σc(2455) 0$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.

  15. Spin-orbital nature of the high-field magnetic state in the Sr4Ru3O10

    Science.gov (United States)

    Granata, Veronica; Capogna, Lucia; Forte, Filomena; Lepetit, Marie-Bernadette; Fittipaldi, Rosalba; Stunault, Anne; Cuoco, Mario; Vecchione, Antonio

    2016-03-01

    We perform a spin-polarized neutron-diffraction study to investigate the nature of the high-field magnetic state of the trilayered Sr4Ru3O10 . The analysis indicates that a high field applied within the a b plane leads to an unbalance of the spin and orbital moments with a spatial profile that is strongly tied to the layers where the electrons are located in the unit cell. We provide evidence of a layer dependent magnetic anisotropy with the inner layers having larger spin and orbital magnetic moments than the outer ones and show that such behavior is robust to temperature variation being persistent above the Curie temperature. By means of an effective model that includes the coupling between the spin-orbital degrees of freedom at inequivalent Ru sites we ascribe the origin of the layer anisotropy to the cooperative effects between octahedral distortions, spin orbit, and Coulomb interactions.

  16. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  17. Baryon-strangeness correlations: a diagnostic of stronglyinteracting matter

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker; Majumder, Abhijit; Randrup, Jorgen

    2005-09-29

    The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q-qbarbound states, thus supporting a picture of independent (quasi)quarks.

  18. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    CERN Document Server

    Floerchinger, Stefan

    2015-01-01

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

  19. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114 (China); Hu, J. [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Wang, H. [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, R. Q., E-mail: wur@uci.edu [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  20. The baryon content of the Cosmic Web

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  1. The baryonic mass function of galaxies.

    Science.gov (United States)

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  2. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  3. High-spin chloro mononuclear MnIII complexes: a multifrequency high-field EPR study.

    Science.gov (United States)

    Mantel, Claire; Chen, Hongyu; Crabtree, Robert H; Brudvig, Gary W; Pécaut, Jacques; Collomb, Marie-Noëlle; Duboc, Carole

    2005-03-01

    The isolation, structural characterization, and electronic properties of two six-coordinated chloromanganese (III) complexes, [Mn(terpy)(Cl)3] (1) and [Mn(Phterpy)(Cl)3] (2), are reported (terpy = 2,2':6'2"-terpyridine, Phterpy = 4'-phenyl-2,2':6',2"-terpyridine). These complexes complement a series of mononuclear azide and fluoride Mn(lll) complexes synthesized with neutral N-tridentate ligands, [Mn(L)(X)3] (X = F- or N3 and L = terpy or bpea [N,N-bis(2-pyridylmethyl)-ethylamine)], previously described. Similar to these previous complexes, 1 and 2 exhibit a Jahn-Teller distortion of the octahedron, characteristic of a high-spin Mn(III) complex (S = 2). The analysis of the crystallographic data shows that, in both cases, the manganese ion lies in the center of a distorted octahedron characterized by an elongation along the tetragonal axis. Their electronic properties were investigated by multifrequency EPR (190-475 GHz) performed in the solid state at different temperatures (5-15 K). This study confirms our previous results and further shows that: i) the sign of D is correlated with the nature of the tetragonal distortion; ii) the magnitude of D is not sensitive to the nature of the anions in our series of rhombic complexes, contrary to the porphyrinic systems; iii) the [E/D] values (0.124 for 1 and 0.085 for 2) are smaller compared to those found for the [Mn(L)(X)3] complexes (in the range of 0.146 to 0.234); and iv) the E term increases when the ligand-field strength of the equatorial ligands decreases.

  4. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    Science.gov (United States)

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

  5. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  6. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

  7. Spin dephasing and photoinduced spin diffusion in a high-mobility two-dimensional electron system embedded in a GaAs-(Al,Ga)As quantum well grown in the [110] direction

    Science.gov (United States)

    Völkl, R.; Griesbeck, M.; Tarasenko, S. A.; Schuh, D.; Wegscheider, W.; Schüller, C.; Korn, T.

    2011-06-01

    We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spin lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: The optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aronov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 μm. For high pump intensity, the spin polarization in a distance of several micrometers from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.

  8. Continuum-mediated dark matter–baryon scattering

    CERN Document Server

    Katz, Andrey; Sajjad, Aqil

    2016-01-01

    Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \

  9. Net baryon fluctuations from a crossover equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, J.; Albright, M. [University of Minnesota, School of Physics and Astronomy, Minneapolis, MN (United States); Young, C. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-08-15

    We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out. (orig.)

  10. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  11. PELDOR and RIDME Measurements on a High-Spin Manganese(II) Bisnitroxide Model Complex.

    Science.gov (United States)

    Meyer, Andreas; Schiemann, Olav

    2016-05-26

    A homoleptic bisnitroxide complex of manganese(II) was synthesized as a model system for EPR spectroscopic distance determinations involving high-spin metal ions and more than one distance. The performance of the RIDME experiment is compared with that of the more frequently used PELDOR experiment. It is shown that the PELDOR experiment yields both distances, Mn(II)-nitroxide and nitroxide-nitroxide, and that they can be separated to a certain extent, whereas the RIDME experiment yields only the Mn(II)-nitroxide distance. Both pulse sequences yield artifacts, either due to multispin effects or higher electron-spin transitions. Orientation selection is mostly introduced by the nitroxide signal and can be averaged out by variation of the observer field in the RIDME experiment. Thus, both methods might be used complementarily to obtain a reliable picture of an unknown system.

  12. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  13. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor......-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....

  14. Strongly Deformed Nuclear Shapes at Ultra-High Spin and Shape Coexistence in Nsim 90 Nuclei

    Science.gov (United States)

    Riley, M. A.; Aguilar, A.; Evans, A. O.; Hartley, D. J.; Lagergren, K.; Ollier, J.; Paul, E. S.; Pipidis, A.; Simpson, J.; Teal, C.; Twin, P. J.; Wang, X.; Appelbe, D. E.; Campbell, D. B.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Darby, I. G.; Fallon, P.; Garg, U.; Janssens, R. V. F.; Joss, D. T.; Kondev, F. G.; Lauritsen, T.; Lee, I. Y.; Lister, C. J.; Macchiavelli, A. O.; Nolan, P. J.; Petri, M.; Rigby, S. V.; Thompson, J.; Unsworth, C.; Ward, D.; Zhu, S.; Ragnarsson, I.

    2009-03-01

    The N sim 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N sim 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50 hbar, marking a return to collectivity that extends discrete gamma -ray spectroscopy to well over 60 hbar. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.

  15. Metal-biradical chains from a high-spin ligand and bis(hexafluoroacetylacetonato)copper(II).

    Science.gov (United States)

    Rajadurai, Chandrasekar; Enkelmann, Volker; Ikorskii, Vladimir; Ovcharenko, Victor I; Baumgarten, Martin

    2006-11-27

    The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.

  16. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-03-17

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

  17. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  18. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  19. A new look at the Y tetraquarks and Ω{sub c} baryons in the diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maiani, Luciano [CERN, Geneva (Switzerland). Theory Div.; Borisov, Anatoly V. [Moscow State Univ. (Russian Federation). Faculty of Physics; Ahmed, Ishtiaq; Rehman, Abdur [Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Aslam, M. Jamil [Quaid-i-Azam Univ., Islamabad (Pakistan). Department of Physics; Parkhomenko, Alexander Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation). Dept. of Theoretical Physics; Polosa, Antonio D. [Sapienza Univ. Roma (Italy). Dipt. di Fisica; INFN, Roma (Italy)

    2017-08-15

    We analyze the hidden charm P-wave tetraquarks in the diquark model, using an effective Hamiltonian incorporating the dominant spin-spin, spin-orbit and tensor interactions, comparing with the P-wave charmonia and with the recent analysis of the newly discovered Ω{sub c} baryons. Given the uncertain experimental situation on the Y states, we allow for two different spectra and discuss the related parameters in the diquark model, including the constrains from Ω{sub c} baryons. The diquark model allows to select a preferable Y-states pattern. The existence of higher resonances, as the one predicted with L=3, would be another footprint of the underlying diquark dynamics.

  20. Strongly magnetized strange baryonic matter in neutron star

    CERN Document Server

    Miyazaki, K

    2006-01-01

    We investigate the strongly magnetized strange baryonic matter in a relativistic mean-field theory. We first take into account the hidden strange mesons and the field-dependent meson-baryon coupling constants. In low-density region the strongly magnetized neutron star (NS) matter is nearly iso-symmetric. The equation of state (EOS) therefore becomes softer than that of the normal NS matter. Because the magnetic field increases the threshold densities of \\Lambda and \\Xi^-, the EOS becomes stiffer in high-density region. However, the magnetic field has little effect on the effective masses of \\Lambda and \\Sigma. Taking into account the anomalous magnetic moments (AMMs) of baryons, the EOS becomes much stiffer although the threshold densities of \\Sigma^+, \\Sigma^0 and \\Xi^0 decrease largely. The density dependence of the effective mass of \\Xi precisely reflects the EOS while the effective masses of \\Lambda and \\Sigma are strongly influenced by the AMMs of nucleons th! rough the scalar mean-field.

  1. A Baryonic Solution to the Missing Satellites Problem

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem

  2. The baryon vector current in the combined chiral and 1/Nc expansions

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Mendieta, Ruben; Goity, Jose L [JLAB

    2014-12-01

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.

  3. TOPICAL REVIEW: Highly spin-polarized materials and devices for spintronics

    Directory of Open Access Journals (Sweden)

    Koichiro Inomata et al.

    2008-01-01

    Full Text Available The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x and Co2FeSi1 ? xAlx (CFSA(x and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs using Co2FeSi0.5Al0.5 (CFSA(0.5 Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5 at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD and nuclear magnetic resonance (NMR analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001 substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5 electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001 single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO

  4. Monitoring and data acquisition of the high speed hydrogen pellet in SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Samiran Shanti, E-mail: samiran@ipr.res.in; Mishra, Jyotishankar; Gangradey, Ranjana; Dutta, Pramit; Rastogi, Naveen; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Bairagi, Pawan; Patel, Haresh; Sharma, Hardik

    2016-11-15

    Highlights: • Pellet INjector System with monitoring and data acquisition is described. • A high speed camera was used to view pellet size, and its flight trajectory. • PXI based high speed control system is used data acquisition. • Pellets of length 2–4.8 mm and speed 250–750 m/s were obtained. - Abstract: Injection of solid hydrogen pellets is an efficient way of replenishing the spent fuel in high temperature plasmas. Aiming that, a Single Pellet INjector System (SPINS) is developed at Institute for Plasma Research (IPR), India, to initiate pellet injection related research in SST-1. The pellet injector is controlled by a PXI system based data acquisition and control (DAC) system for pellet formation, precise firing control, data collection and diagnostics. The velocity of high speed moving pellets is estimated by using two sets of light gate diagnostic. Apart from light gate, a fast framing camera is used to measure the pellet size and its speed. The pellet images are captured at a frame rate of ∼200,000 frames per second at (128 × 64) pixel resolution with an exposure time of 1 μs. Using these diagnostic, various cylindrical pellets of length ranging from 2 to 4.8 mm and speed 250–750 m/s were successfully obtained. This paper describes the control and data acquisition system of SPINS, the techniques for measurement of pellet velocity and capturing images of high speed moving pellet.

  5. Octupole shapes and shape changes at high spins in the Z approx 58, N approx 88 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W. (Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)); Tabor, S.L. (Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States))

    1992-05-01

    The shapes of rotating Xe, Ba, Ce, Nd, and Sm nuclei (84{le}{ital N}{le}94) are calculated using the cranking model with the Woods-Saxon average potential and pairing. The lightest isotopes of Xe and Ba have nearly spherical ground states, but develop octupole and quadrupole deformations under rotation which remain up to very high spins. The ground states of the heavier isotopes have octupole and quadrupole deformations which persist up to medium spins ({ital I}{approx}12{h bar}). At higher spins, a shape transition is predicted to reflection-symmetric aligned many-quasiparticle configurations.

  6. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  7. Solution spinning of high-? oxide superconductors: part VII. The effect of polyvinyl alcohol spinning medium on the sintering of ? superconducting filaments

    Science.gov (United States)

    Tomita, Hisayo; Goto, Tomoko; Takahashi, Kiyohisa

    1996-05-01

    As basic research for the solution spinning of high-0953-2048/9/5/005/img8 oxide superconductor, the effect of poly(vinyl alcohol) (PVA) spinning medium on the sintering of 0953-2048/9/5/005/img9 filament was examined. A precursor filament was produced by dry-spinning starting from a homogeneous aqueous PVA solution of Y, Ba and Cu acetates. The as-drawn filament was pyrolysed to remove volatile components and sintered to generate a superconducting phase. The degree of polymerization (DP) of PVA and the content of acetates in the precursor filament affected the 0953-2048/9/5/005/img10 of the sintered filament. Although most filaments exhibited high 0953-2048/9/5/005/img10 greater than 0953-2048/9/5/005/img12 at 77 K and 0 T, superconductivity above 77 K was not observed for the filament spun from PVA solution of DP=2450 with [acetates]/[PVA]=2 and sintered at 900 and 0953-2048/9/5/005/img13C for 15 min. The filament had a dense structure due to liquid phase sintering. The filament with high 0953-2048/9/5/005/img10 had a skin - core structure, and the highest 0953-2048/9/5/005/img10 of 0953-2048/9/5/005/img16 at 77 K and 0 T was attained for the filament from DP=3500 with [acetates]/[PVA]=4.

  8. Resonance Raman frequencies and core size for low- and high-spin nickel porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Su, Y.O.; Spiro, T.G.

    1986-10-22

    Resonance Raman (RR) spectra are reported with B- and Q-band excitation for nickel(II) complexes of octaethylporphyrin (OEP), protoporphyrin IX dimethyl ester (PP), and meso-tetraphenylporphine (TPP) in methylene chloride (4-coordinate, low spin) and piperidine (pip) (6-coordinate, high spin). The large core size expansion accompanying the formation of the 6-coordinate species (1.96-2.04 A) is reflected in large decreases, up to 40 cm/sup -1/ in the positions of high-frequency porphyrin skeletal modes. For NiOEP and NiPP, these are in near-quantitative accord with the core size correlations obtained previously for iron porphyrin complexes, although certain deviations due to differential coupling with the vinyl modes of protoporphyrin are noted. Contributions of a minority 5-coordinate complex to the RR spectrum of NiTPP in piperidine, previously noted on the basis of photolysis effects, are evaluated quantitatively from titration data. Formation of a monopiperidine adduct, detected previously via a RR study of NiTPP(pip)/sub 2/ photolysis, is examined for nickel meso-tetrakis(p-cyanophenyl)porphine. Equilibrium constants for successive addition of piperidine ligands, K/sub 1/ = 0.4 and K/sub 2/ = 2.5 M/sup -1/, are evaluated from optical titration data, and the absorptivities of the 5- and 6-coordinate species are found to be nearly the same, consistent with both having a high-spin configuration. The frequency of the 5-coordinate nu/sub 4/ RR band is likewise found to be much closer to the 6-coordinate than to the 4-coordinate frequency.

  9. Spin-on metal oxide materials with high etch selectivity and wet strippability

    Science.gov (United States)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  10. Spin-symmetry conversion and internal rotation in high J molecular systems

    Science.gov (United States)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  11. RHIC SPIN FLIPPER

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  12. High precision measurements of the neutron spin structure in Hall A at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B

    2012-04-01

    Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

  13. High spin states above the 28{sup {minus}} isomer in {sup 152}Ho

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Ribas, R.V.; Cybulska, E.W.; Oliveira, J.R.; Zahn, G.S.; Medina, N.H. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Bazzacco, D.; Medina, N.H.; Brandolini, F.; Burch, R.; Lunardi, S.; Pavan, P.; Alvarez, C.R. [Dipartimento di Fisica and INFN, Sezione di Padova, Padova (Italy); Spolaore, P. [INFN, Laboratori Nazionali di Legnaro (Italy)

    1997-03-01

    The structure of the high spin states above the 28{sup {minus}} isomer in the odd-odd {sup 152}Ho nucleus was investigated using the GASP {gamma}-ray spectrometer coupled to the recoil mass spectrometer CAMEL. The {sup 152}Ho nucleus was populated through the {sup 120}Sn({sup 37}Cl,5n) fusion reaction at a beam energy of 187 MeV. A complex level scheme above that isomer was established up to an excitation energy of 13 MeV and I{approx} 40{h_bar}. No rotational bands were observed. {copyright} {ital 1997} {ital The American Physical Society}

  14. Configuration assignments of yrare high-spin structures in sup 1 sup 2 sup 6 Cs

    CERN Document Server

    Li, X F; Lu, J B; Zhao, G Y; Yin, L C; Meng, R; Zhang, Z L; Wen, L J; Liu, Y Z; Zhou, X H; Guo, Y X; Lei, X G; Liu, Z; Zheng, Y; He, J J

    2003-01-01

    High-spin states in sup 1 sup 2 sup 6 Cs were populated in the reaction sup 1 sup 1 sup 6 Cd( sup 1 sup 4 N,4n) at a beam energy of 65 MeV. About 50 new transitions were placed in a level scheme that consists of six rotational structures, three of which have been observed for the first time. The newly observed bands and a previously reported but uninterpreted band were assigned configurations based on their population, aligned angular momentum, energy signature splitting and B(M1)/B(E2) ratios (for the strongly coupled bands). (orig.)

  15. Atomic masses above /sup 146/Gd derived from a shell model analysis of high spin states

    CERN Document Server

    Blomqvist, J; Daly, P J; Kleinheinz, P

    1981-01-01

    Using extensive spectroscopic data on high spin states involving aligned valence nucleons in very neutron deficient nuclei above /sup 146/Gd the authors have derived the ground state masses of /sup 146 /Gd, /sup 147,148/Tb, /sup 148,149,150/Dy, /sup 149,150,151/Ho, and /sup 150,151,152/Er from a shell model analysis. The mass values show a pronounced irregularity in the two-proton separation energies at /sup 146/Gd. The results also link nine alpha -decay chains to the known masses. (0 refs).

  16. Accessing baryon to meson transition distribution amplitudes in meson production in association with a high invariant mass lepton pair at GSI-FAIR with P¯ANDA

    Science.gov (United States)

    Lansberg, J. P.; Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2012-12-01

    Nucleon-antinucleon annihilation into a near backward- (or forward-) produced meson and a high invariant mass lepton pair admits a factorized description in terms of antinucleon (or nucleon) distribution amplitudes and nucleon-to-meson (or antinucleon-to-meson) transition distribution amplitudes. We estimate the cross section of backward (and forward) pion and η-meson production in association with a high invariant mass lepton pair for the kinematical conditions of GSI-FAIR. The cross sections are found to be large enough to be measured with the P¯ANDA detector. Interesting phenomenological applications of the approach are thus expected.

  17. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    Science.gov (United States)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km insulator transition and compare them with the experimental seismic and geomagnetic field data.

  18. Exciting Baryons: now and in the future

    Energy Technology Data Exchange (ETDEWEB)

    Michael Pennington

    2012-04-01

    This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.

  19. Strange two-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.

    2008-01-01

    We have constructed the leading order strangeness S = −1,−2 baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)f symmetry constraints,

  20. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  1. High spin levels populated in multinucleon-transfer reactions with 480 MeV /sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, L.; Boucenna, A.; Linck, I.; Lott, B.; Rebmeister, R.; Schulz, N.; Sens, J.C.; Mermaz, M.C.; Berthier, B.; Lucas, R.; and others

    1988-06-01

    Two- and three-nucleon stripping reactions induced by 480 MeV /sup 12/C have been studied on /sup 12/C, /sup 16/O, /sup 28/Si, /sup 40/Ca, and /sup 54/Fe target nuclei. Discrete levels are fed with cross sections up to 1 mbsr for d-transfer reactions and 1 order and 2 orders of magnitude less for 2p- and /sup 3/He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus.

  2. High-spin states and lifetime measurements in sup 1 sup 7 sup 1 Hf

    CERN Document Server

    Cullen, D M; Appelbe, D E; Wilson, A N; Paul, E S; Bergström, M H; Sharpey-Schafer, J F; Baktash, C; Frosch, I; Lee, I Y; Macchiavelli, A O; MacLeod, R W; Prevost, D; Theisen, C; Curien, D

    2000-01-01

    This paper describes the results of two complementary experiments which studied the properties of the well-deformed nucleus sup 1 sup 7 sup 1 Hf. The first experiment, with a thin self-supporting target, extended the rotational bands built upon the [633]7/2, [512]5/2 and [521]1/2 configurations up to spins of 73/2-85/2 Planck constant. The configurations of these bands and observed band crossings are discussed within the framework of the cranked-shell model. The second experiment employed a backed target in order to measure the lifetimes, by the Doppler Shift Attenuation method, and thereby establish deformations for some of the states in the collective rotational bands. The extracted deformations are found to be consistent with those predicted from theoretical Total Routhian Surface calculations. These deformations provide strong evidence that the high-spin states in sup 1 sup 7 sup 1 Hf, and perhaps more importantly, in the region where the high-K (K suppi=19/2 sup + and K suppi=23/2 sup -) isomeric states ...

  3. Beta decay of medium and high spin isomers in sup 9 sup 4 Ag

    CERN Document Server

    La Commara, M; Döring, J; Galanopoulos, S; Grawe, H; Harissopoulos, S V; Hellström, M; Janas, Z; Kirchner, R; Mazzocchi, C; Ostrowski, A N; Plettner, C; Rainovski, G; Roeckl, E; Schmidt, K

    2002-01-01

    The very neutron-deficient isotope sup 9 sup 4 Ag was produced at the GSI on-line mass separator by using the reaction sup 5 sup 8 Ni( sup 4 sup 0 Ca, p3n). The beta-decay properties of sup 9 sup 4 Ag were studied by detecting for the first time beta-delayed gamma rays and beta-gamma-gamma coincidences. Both the population of excited levels in the daughter nucleus sup 9 sup 4 Pd and the beta-decay half-life of sup 9 sup 4 Ag were investigated. The major part of the feeding was assigned to the decay of an I suppi=(7 sup +) isomer with a half-life of (0.36+-0.03) s. A weak beta-decay branch was found to populate high-spin levels in the sup 9 sup 4 Pd daughter with I>=18. It is tentatively assigned to the decay of a high-spin parent state in sup 9 sup 4 Ag with I>=17 and a half-life (0.3+-0.2) s. The measured beta-decay properties as well as the level structure of sup 9 sup 4 Ag and sup 9 sup 4 Pd are discussed in comparison with shell-model predictions.

  4. Study of spin-exchange optically pumped 3He cells with high polarisation and long lifetimes

    Science.gov (United States)

    Parnell, S. R.; Babcock, E.; Nünighoff, K.; Skoda, M. W. A.; Boag, S.; Masalovich, S.; Chen, W. C.; Georgii, R.; Wild, J. M.; Frost, C. D.

    2009-01-01

    We present a detailed investigation into 3He neutron spin filter cells polarised by spin exchange optical pumping (SEOP). We include measurements of the absolute 3He polarisation using neutron transmission and characterisation of both the X-factor and 3He relaxation times ( T1) for a number of cells. For one cell we calculated a maximum 3He polarisation of 79% with a T1 of 633 h. The measured X-factor of this cell, X=0.17±0.01, is low. For all cells polarisations of >71% are observed. In addition we present 3He relaxation data for a new design of magneto-static cavity with a field of high homogeneity ΔB/B0≈3.5×10-4 cm-1. This compact device provides a magnetic field in an orientation suitable for in situ optical pumping that minimises the field inhomogeneity contribution to the T1 to 930 h in a 1 bar cell, the longest reported on beam thus far. The results suggest that high 3He polarisation with long relaxation times can now be routinely obtained with SEOP, enabling time independent incident beam polarisation to be easily implemented across many different neutron scattering instruments.

  5. High-spin states and lifetime measurements in {sup 171}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.M.; Reed, A.T.; Appelbe, D.E.; Wilson, A.N.; Paul, E.S.; Bergstroem, M.H.; Sharpey-Schafer, J.F.; Baktash, C.; Frosch, I.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W.; Prevost, D.; Theisen, Ch.; Curien, D

    2000-06-19

    This paper describes the results of two complementary experiments which studied the properties of the well-deformed nucleus {sup 171}Hf. The first experiment, with a thin self-supporting target, extended the rotational bands built upon the [633]7/2, [512]5/2 and [521]1/2 configurations up to spins of 73/2-85/2{Dirac_h}. The configurations of these bands and observed band crossings are discussed within the framework of the cranked-shell model. The second experiment employed a backed target in order to measure the lifetimes, by the Doppler Shift Attenuation method, and thereby establish deformations for some of the states in the collective rotational bands. The extracted deformations are found to be consistent with those predicted from theoretical Total Routhian Surface calculations. These deformations provide strong evidence that the high-spin states in {sup 171}Hf, and perhaps more importantly, in the region where the high-K (K{sup {pi}}=19/2{sup +} and K{sup {pi}}=23/2{sup -}) isomeric states decay, retain their well-deformed axial symmetry.

  6. Preparation of CNTs rope by electrostatic and airflow field carding with high speed rotor spinning

    Science.gov (United States)

    Dai, J. F.; Liu, J. F.; Zou, J. T.; Dai, Y. L.

    2015-12-01

    The large-scale preparation of disorderly CNTs with a length larger than 3 mm using CVD method were aligned in polymer monomer airflow fields in a quartz tube with an internal diameter of 200 μm and a length of 1.5 m. The airflow aligned CNTs at the output end of the pipe connects to a copper nozzle with an electrostatic field of applied voltage 5x105 V/m and space length of 0.03 m, which were further realigned using via electrostatic spinning. End to end spray into the high speed rotor twisted single-stranded carbon nanotubes threads via rotor spinning technology. The essential component of this technique was the use of carbon nanotubes at a high rotory speed (200000 r/min) combined with the double twisting of filaments that were twisted together to increase the radial friction of the entire section. SEM micrography showed that carbon nanotube thread has a uniform diameter of approximately 200 μm. Its tensile strength was tested up to 2.7 Gpa, with a length of several meters.

  7. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning

    Science.gov (United States)

    Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan

    2017-11-01

    Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.

  8. Baryons in the chiral regime

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Bastian

    2012-03-05

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point

  9. Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation

    Energy Technology Data Exchange (ETDEWEB)

    Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)

    2016-12-15

    We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)

  10. Baryon-baryon interaction of strangeness S=-1 sector

    CERN Document Server

    Nemura, Hidekatsu

    2012-01-01

    We present our recent studies on hyperon-nucleon (YN) interactions in the strangeness S=-1 that $p\\Lambda, \\Sigma^0 p$ and $\\Sigma^+ n$, by extracting corresponding potentials through Nambu-Bethe-Salpeter wave functions. We calculate $\\Lambda N$ and $\\Sigma N$ potentials in the isospin I=3/2 channel, using the $N_f=2+1$ gauge configurations generated by PACS-CS collaboration and employing an improved method to obtain potentials in lattice QCD simulations. For the $^1S_0$ channel, the central $\\Sigma N (I=3/2, ^1S_0)$ potential and the central $\\Lambda N (^1S_0)$ potential are found to be very similar. In the spin triplet ($^3S_1-^3D_1$) channels, the central $\\Lambda N(^3S_1-^3D_1)$ potential is attractive while the central $\\Sigma N(I=3/2, ^3S_1-^3D_1)$ potentials is repulsive. Tensor potentials, on the other hand, are rather weak in the diagonal part of both $\\Lambda N$ and $\\Sigma N(I=3/2)$ systems.

  11. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  12. Structure and reactions of pentaquark baryons

    Indian Academy of Sciences (India)

    Abstract. We review the current status of the exotic pentaquark baryons. After a brief look at experiments of both positive and negative results, we discuss theoretical methods to study the structure and reactions for the pentaquarks. First we introduce the quark model and the chiral soliton model, where we discuss the relation ...

  13. Rare B → baryon decays from CLEO

    National Research Council Canada - National Science Library

    Thayer, Jana B

    2004-01-01

    ... at the Υ(4S) with the CLEO detector. We find no evidence for such decays, and set a 90% confidence level upper limit of ${\\cal B} (B \\rightarrow X_s \\gamma, X_s ~{\\it containing~baryons}) _{E_\\gamma > 2.0 \\rm{~GeV}} 5...

  14. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index ν = 1.0. Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-. Coulomb plus power potential. PACS Nos 12.39.Jh; 12.39.pn; 14.20.kp. 1. Introduction. Recent experimental ...

  15. Structure of high-spin states in sup 1 sup 0 sup 0 Pd

    CERN Document Server

    Pérez, G E; Algora, A; Dombrádi, Z; Nyakó, B M; Timar, J; Zolnai, L; Wyss, R; Cederkäll, J; Johnson, A; Kérek, A; Klamra, W; Norlin, L O; Lipoglavsek, M; Fahlander, C; Likar, A; Palacz, M; Atac, A; Nyberg, J; Persson, J; Gizon, A; Gizon, J; Boston, A J; Paul, E S; Grawe, H; Schubart, R; Joss, D T; Juutinen, S; Maekelae, E; Kownacki, J P; De Poli, M; Bednarczyk, P; De Angelis, G; Seweryniak, D; Foltescu, D; Roth, H A; Skeppstedt, Ö; Jerrestam, D; Shizuma, T; Sletten, G; Toermaenen, S

    2001-01-01

    High-spin states of the neutron deficient sup 1 sup 0 sup 0 Pd nucleus have been investigated via the sup 5 sup 0 Cr( sup 5 sup 8 Ni, 4p alpha) and sup 7 sup 0 Zn( sup 3 sup 6 S,6n) heavy-ion induced reactions. For the detection of evaporated particles and gamma rays the NORDBALL array equipped with ancillary detectors and the EUROGAM II detector system were utilized. By the use of in-beam spectroscopic methods 89 transitions belonging to sup 1 sup 0 sup 0 Pd have been observed, 49 of which were identified for the first time. The level scheme has been extended up to E sub x approx 16 MeV excitation energy and I approx 25 Planck constant. The experimental results were compared with the predictions of cranked shell model calculations. Maximal spin alignments were found in the (pi g sub 9 sub / sub 2) sup - sup 4 sub 1 sub 2 sub sup + (nu d sub 5 sub / sub 2 ,g sub 7 sub / sub 2 sup 3 h sub 1 sub 1 sub / sub 2) sub 1 sub 3 sub sup - and (pi g sub 9 sub / sub 2 sup - sup 3 p sub 1 sub / sub 2) sub 1 sub 1 sub sup...

  16. Enhanced Central System of the Traversing Rod for High-Performance Rotor Spinning Machines

    Directory of Open Access Journals (Sweden)

    Valtera Jan

    2017-03-01

    Full Text Available The paper deals with the improvement of central traversing system on rotor spinning machines, where rectilinear motion with variable stroke is used. A new system of traversing rod with implemented set of magnetic-mechanical energy accumulators is described. Mathematical model of this system is analysed in the MSC. Software Adams/View and verified by an experimental measurement on a real-length testing rig. Analysis results prove the enhancement of devised traversing system, where the overall dynamic force is reduced considerably. At the same time, the precision of the traversing movement over the machine length is increased. This enables to increase machine operating speed while satisfying both the maximal tensile strength of the traversing rod and also output bobbin size standards. The usage of the developed mathematical model for determination of the optimal number and distribution of accumulators over the traversing rod of optional parameters is proved. The potential of the devised system for high-performance rotor spinning machines with longer traversing rod is also discussed.

  17. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.

  18. Simulations of Early Baryonic Structure Formation with Stream Velocity: II. The Gas Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Yoshida, Naoki; Gnedin, Nickolay Y.

    2012-12-28

    Understanding the gas content of high redshift halos is crucial for studying the formation of the first generation of galaxies and reionization. Recently, Tseliakhovich & Hirata showed that the relative "stream" velocity between the dark matter and baryons at the time of recombination - formally a second order effect, but an unusually large one - can influence the later structure formation history of the Universe. We quantify the effect of the stream velocity on the so-called "characteristic mass" - the minimum mass of a dark matter halo capable of retaining most of its baryons throughout its formation epoch - using three different high-resolution sets of cosmological simulations (with separate transfer functions for baryons and dark matter) that vary in box size, particle number, and the value of the relative velocity between the dark matter and baryons. In order to understand this effect theoretically, we generalize the linear theory filtering mass to properly account for the difference between the dark matter and baryonic density fluctuation evolution induced by the stream velocity. We show that the new filtering mass provides an accurate estimate for the characteristic mass, while other theoretical ansatzes for the characteristic mass are substantially less precise.

  19. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar o...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion.......We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...

  20. Observation of isomeric decays and the high spin states in doubly-odd 208Fr

    CERN Document Server

    Kanjilal, D; Goswami, A; Kshetri, R; Raut, R; Saha, S; Bhowmik, R K; Gehlot, J; Muralithar, S; Singh, R P; Jnaneswari, G; Mukherjee, G; Mukherjee, B

    2009-01-01

    Neutron deficient isotopes of Francium (Z=87, N=121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197Au(16O,xn)[213-x]Fr at 100 MeV. The gamma-rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd 208Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half lives of the 194(2) keV isomeric transition, known from earlier observations, was measured to be 233(18) ns. A second isomeric transition at 383(2) keV and half life of 33(7) ns was also found. The measured half lives were compared with the corresponding single particle estimates, based on a the level scheme obtained from the experiment.

  1. High spin states and isomeric decays in doubly-odd 208Fr

    Science.gov (United States)

    Kanjilal, D.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R.; Saha, S.; Bhowmik, R. K.; Gehlot, J.; Muralithar, S.; Singh, R. P.; Jnaneswari, G.; Mukherjee, G.; Mukherjee, B.

    2010-10-01

    Neutron deficient isotopes of francium ( Z=87, N˜121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197Au( 16O, xn) 213 - xFr at 100 MeV. The γ rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd 208Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half-lives of the E=194(2) keV isomeric transition, known from earlier observations, was measured to be T=233(18) ns. A second isomeric transition at E=383(2) keV and T=33(7) ns was also found. The measured half-lives were compared with the corresponding single particle estimates, based on the level scheme obtained from the experiment.

  2. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  3. Highly Nuclear-Spin-Polarized Deuterium Atoms from the UV Photodissociation of Deuterium Iodide

    Science.gov (United States)

    Sofikitis, Dimitris; Glodic, Pavle; Koumarianou, Greta; Jiang, Hongyan; Bougas, Lykourgos; Samartzis, Peter C.; Andreev, Alexander; Rakitzis, T. Peter

    2017-06-01

    We report a novel highly spin-polarized deuterium (SPD) source, via the photodissociation of deuterium iodide at 270 nm. I (P2 3 /2) photofragments are ionized with m -state selectivity, and their velocity distribution measured via velocity-map slice imaging, from which the D polarization is determined. The process produces ˜100 % electronically polarized D at the time of dissociation, which is then converted to ˜60 % nuclear D polarization after ˜1.6 ns . These production times for SPD allow collision-limited densities of ˜1 018 cm-3 and at production rates of ˜1 021 s-1 which are 1 06 and 1 04 times higher than conventional (Stern-Gerlach separation) methods, respectively. We discuss the production of SPD beams, and combining high-density SPD with laser fusion, to investigate polarized D-T, D -He 3 , and D-D fusion.

  4. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  5. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  6. Summary: symmetries and spin

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C. (Institute for Nuclear Theory, Department of Physcis, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1989-05-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity non-conservation, CP/T nonconservation, and tests of charge symmetry and charge independence.

  7. Exciting baryon resonances in isobar charge-exchange reactions

    Science.gov (United States)

    Benlliure, J.; Rodriguez-Sanchez, J. L.; Vargas, J.; Alavarez-Pol, H.; Aumann, T.; Atkinson, J.; Ayyad, Y.; Beceiro, S.; Boretzky, K.; Chatillon, A.; Cortina, D.; Diaz, P.; Estrade, A.; Geissel, H.; Lenske, H.; Litvinov, Y.; Mostazo, M.; Paradela, C.; Pietri, S.; Prochazka, A.; Takechi, M.; Vidaña, I.; Weick, H.; Winfield, J.

    2017-11-01

    Isobaric charge-exchange reactions induced by different tin isotopes have been investigated at GSI. The high-resolving power of the FRS spectrometer made it possible to separate elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component was associated to the in-medium excitation of nucleon resonances such as the Delta and Roper resonances. These data are expected to contribute to better understand the in-medium properties of baryon resonances but also to investigate the abundance of protons and neutrons at the nuclear periphery.

  8. Flows of Baryons through the Milky Way Halo

    Science.gov (United States)

    Fox, Andrew J.

    2017-07-01

    The Milky Way provides an ideal opportunity to study baryon flows in the circumgalactic medium of a star-forming spiral galaxy. High velocity clouds (HVCs) seen in UV absorption toward background AGN probe the multi-phase ionized gas in the Galactic CGM. In this talk new observations from the Cosmic Origins Spectrograph (COS) on Hubble will be presented, focusing on two Galactic regions: the biconical outflow from the Galactic Center, which drives gas into the Fermi Bubbles, and the Smith Cloud, an accreting HVC close to the Galactic disk showing clear signs of fragmentation. These observations allow us to constrain the rates of gas circulation in the Galactic halo.

  9. Spin dynamics in high-T{sub C} superconducting cuprates; Dynamique de spins dans les oxydes de cuivre supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, Ph

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa{sub 2}Cu{sub 3}O{sub 6+x} system.

  10. An auto-balancer device for high spin-drying frequencies (LoWash Project

    Directory of Open Access Journals (Sweden)

    Clerc Christian

    2015-01-01

    Full Text Available Auto-balancing or active control balancing can be efficient solutions for high speed rotors with changing out-of-balance loads like washing machines in spin-drying mode. In the LoWash EU project, Vibratec is in charge to design, to build and to validate a balancing system for reducing the vibrations at high spin-drying speeds. The system is based on two trolleys rolling in a ring linked to the drum. The trolley shape allows a ring cross section optimization and they are equipped with a mechanism for escaping the disadvantage encountered at low speeds by similar devices. Analytical and multi-body models are first made for understanding the mechanisms, highlighting the driving parameters and drawing the final design of a first prototype which is inserted in a washing machine drum. Different tests are carried out for different initial unbalances and different rotation speeds: the residual unbalance is measured by means of a set of accelerometers mounted on the tub, while the mobile masses behaviour is observed by means of a large aperture swift camera. The test results highlight the auto-balancer high efficiency but also the sensitivity to geometrical defects which should be corrected in the next systems. According the theory, the balancing is efficient when the rotation frequency is significantly greater than the hanging frequencies. The multi-body model relevance is also demonstrated. A washer-dryer prototype including an auto-balancer second prototype and two other innovations, regarding thermal exchange efficiency and drum insulation, will be tested in operating conditions.

  11. The proton mass and scale-invariant hidden local symmetry for compressed baryonic matter

    Science.gov (United States)

    Rho, Mannque

    2017-12-01

    I discuss how to access dense baryonic matter of compact stars by combining hidden local symmetry (HLS) of light-quark vector mesons with spontaneously broken scale invariance of a (pseudo) Nambu-Goldstone boson, dilaton, in a description that parallels the approach to dilatonic Higgs. Some of the surprising observations are that the bulk of proton mass is not Nambu-Goldstonian, parity doubling emerges at high density and the EoS of baryonic matter can be soft enough for heavy-ion processes at low density and stiff enough at high density for ˜ 2 solar mass neutron stars.

  12. Observation of the doubly strange b-Baryon Ωb-

    Energy Technology Data Exchange (ETDEWEB)

    Orduna, Jose de Jesus Hernandez [The Center for Research and Advanced Studies of the National Polytechnic Inst., Mexico D.F. (Mexico)

    2011-02-01

    This thesis reports the first experimental evidence of the doubly strange b-baryon Ωb- (ssb) following the decay channel Ωb- → J/Ψ(1S) μ+μ- Ω- Λ K- p π- in p$\\bar{p}$ collisions at √s = 1.96 Tev. Using approximately 1.3 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) Ωb- signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10-8. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, ττ, electron neutrino ve, muon neutrino vμ and, τ neutrino vτ. Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction

  13. High-resolution electron microscopy in spin pumping NiFe/Pt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ley Domínguez, D., E-mail: david.ley@cimav.edu.mx; Sáenz-Hernández, R. J.; Faudoa Arzate, A.; Arteaga Duran, A. I.; Ornelas Gutiérrez, C. E.; Solís Canto, O.; Botello-Zubiate, M. E.; Rivera-Gómez, F. J.; Matutes-Aquino, J. A. [Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Azevedo, A.; Silva, G. L. da; Rezende, S. M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)

    2015-05-07

    In order to understand the effect of the interface on the spin pumping and magnetic proximity effects, high resolution transmission electron microscopy and ferromagnetic resonance (FMR) were used to analyze Py/Pt bilayer and Pt/Py/Pt trilayer systems. The samples were deposited by dc magnetron sputtering at room temperature on Si (001) substrates. The Py layer thickness was fixed at 12 nm in all the samples and the Pt thickness was varied in a range of 0–23 nm. A diffusion zone of approximately 8 nm was found in the Py/Pt interfaces and confirmed by energy dispersive X-ray microanalysis. The FMR measurements show an increase in the linewidth and a shift in the ferromagnetic resonance field, which reach saturation.

  14. Spin-Orbit Torque from a Magnetic Heterostructure of High-Entropy Alloy

    Science.gov (United States)

    Chen, Tian-Yue; Chuang, Tsao-Chi; Huang, Ssu-Yen; Yen, Hung-Wei; Pai, Chi-Feng

    2017-10-01

    High-entropy alloy (HEA) is a family of metallic materials with nearly equal partitions of five or more metals, which might possess mechanical and transport properties that are different from conventional binary or tertiary alloys. In this work, we demonstrate current-induced spin-orbit torque (SOT) magnetization switching in a Ta-Nb-Hf-Zr-Ti HEA-based magnetic heterostructure with perpendicular magnetic anisotropy. The maximum dampinglike SOT efficiency from this particular HEA-based magnetic heterostructure is further determined to be |ζDLHEA | ≈0.033 by hysteresis-loop-shift measurements, while that for the Ta control sample is |ζDLTa | ≈0.04 . Our results indicate that HEA-based magnetic heterostructures can serve as an alternative group of potential candidates for SOT device applications due to the possibility of tuning buffer-layer properties with more than two constituent elements.

  15. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  16. Interpulse phase corrections for unbalanced pseudo-continuous arterial spin labeling at high magnetic field.

    Science.gov (United States)

    Hirschler, Lydiane; Debacker, Clément S; Voiron, Jérôme; Köhler, Sascha; Warnking, Jan M; Barbier, Emmanuel L

    2017-06-06

    To evaluate a prescan-based radiofrequency phase-correction strategy for unbalanced pseudo-continuous arterial spin labeling (pCASL) at 9.4 T in vivo and to test its robustness toward suboptimal shim conditions. Label and control interpulse phases were optimized separately by means of two prescans in rats. The mean perfusion as well as the interhemispherical symmetry were measured for several phase combinations (optimized versus theoretical phases) to evaluate the correction quality. Interpulse phases were also optimized under degraded shim conditions (i.e., up to four times the study shim values) to test the strategy's robustness. For all tested shim conditions, the full arterial spin labeling (ASL) signal could be restored. Without any correction, the relative ASL signal was 1.4 ± 1.7%. It increased to 3.6 ± 1.4% with an optimized label phase and to 5.3 ± 1.2% with optimized label and control phases. Moreover, asymmetry between brain hemispheres, which could be as high as 100% without phase optimization, was dramatically reduced to 1 ± 3% when applying optimized label and control phases. Pseudo-continuous ASL at high magnetic field is very sensitive to shim conditions. Label and control radiofrequency phase optimization based on prescans robustly maximizes the ASL signal obtained with unbalanced pCASL and minimizes the asymmetry between hemispheres. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Tuning the Spin State in LaCoO3 Thin Films for Enhanced High-Temperature Oxygen Electrocatalysis.

    Science.gov (United States)

    Hong, Wesley T; Gadre, Milind; Lee, Yueh-Lin; Biegalski, Michael D; Christen, Hans M; Morgan, Dane; Shao-Horn, Yang

    2013-08-01

    The slow kinetics of oxygen surface exchange hinders the efficiency of high-temperature oxygen electrocatalytic devices such as solid oxide fuel cells and oxygen separation membranes. Systematic investigations of material properties that link to catalytic activity can aid in the rational design of highly active cathode materials. Here, we explore LaCoO3 thin films as a model system for tuning catalytic activity through strain-induced changes in the Co spin state. We demonstrate that Raman spectroscopy can be used to probe the Co-O bond strength at different temperatures to determine the relative spin occupancies of LaCoO3. We find that strain can be used to reduce the spin transition temperature and promote the occupation of higher spin states that weaken the Co-O bond. The decrease in Co-O bond strength and increased spin moment of the thin films result in significant enhancements of the oxygen surface exchange kinetics by up to 2 orders of magnitude.

  18. Advances in large, transportable, highly spin-polarized, solid HD targets operable in the frozen-spin mode in a 1-4K temperature environment

    Science.gov (United States)

    Lewis, Aaron Paul

    The development of large, portable highly spin-polarized solid HD targets has been in progress at Syracuse University for the past 5 years. These targets are scheduled for deployment at Brookhaven National Laboratory, bearing the acronym SPHICE (Spin-Polarized Hydrogen Ice), for studies of the electro-magnetic spin structure of the nucleus via scattering of polarized gammas from the HD polarized protons and deuterons. The target work has just reached the milestone demonstration of the complete system, including polarization of triple targets containing 4 moles of solid HD, aging of these targets so that they retain their polarization for months under storage at a temperature of 1.3K and in an 8 Tesla field, and for at least a week at operational conditions of 1.3K and 0.7 Tesla in an in-beam cryostat. Cold-transfers of the polarized targets to a storage cryostat have been successfully carried out, and the storage cryostat has been trucked from Syracuse to BNL with one polarized target, sufficient to test the in-beam operations there. The complete system is presented here, with emphasis on innovations for engagement and disengagement of multiple targets, a solution to the challenge of attaining sufficiently strong RF fields in the large volume probe coils at acceptable power dissipation in the cables, and the polarization production and monitoring in the highly inhomogeneous magnetic fields owing to the multiple targets and the large dimensions of the targets. In this first multiple target production and extraction-to-storage cycle, air-ice accumulation in the dilution refrigerator due to repetitive use of cold sliding o-ring seals resulted in a rupture of one of the inserted targets, and a consequent partial thermal short from a solid HD ice bridge. The o-ring fault was cured with double evacuatable o-ring seals, and the air-ice was successfully cleaned out. However, the refrigerator operating base temperature was substantially higher than that normally obtained

  19. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan

    2011-01-01

    . The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained...

  20. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  1. Big Bang Nucleosynthesis of Lithium-7 and the Baryon Density of the Universe

    Science.gov (United States)

    Vangioni-Flam, Elisabeth; Coc, Alain; Cassé, Michel

    Thanks to recent nuclear physic compilations, we update Standard Big Bang Nucleosynthesis (SBBN) calculations. By a Monte-Carlo technique, we calculate the uncertainties on the light element yields related to nuclear reactions. The results are compared to astrophysical observations. The baryonic density obtained is confronted to other estimates deduced from recent independent approaches as the observations of the anisotropies of the Cosmic Microwave Background or the Lyα forest at high redshift. Lithium-7 could lead to more stringent constraints on the baryonic density of the universe than deuterium, because of a much higher observation statistics and an easier extrapolation to primordial values.

  2. The baryon vertex with magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Bert [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales, Universidad de Granada, 18071 Granada (Spain); Lozano, Yolanda [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Rodriguez-Gomez, Diego [Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2006-11-15

    In this letter we generalise the baryon vertex configuration of AdS/CFT by adding a suitable instantonic magnetic field on its worldvolume, dissolving D-string charge. A careful analysis of the configuration shows that there is an upper bound on the number of dissolved strings. This could be a manifestation of the stringy exclusion principle. We provide a microscopical description of this configuration in terms of a dielectric effect for the dissolved strings.

  3. Baryon spectra with instanton induced forces

    OpenAIRE

    Semay, Claude; Brau, Fabian; Silvestre-Brac, B.

    2001-01-01

    Except the vibrational excitations of $K$ and $K^*$ mesons, the main features of spectra of mesons composed of quarks $u$, $d$, and $s$ can be quite well described by a semirelativistic potential model including instanton induced forces. The spectra of baryons composed of the same quarks is studied using the same model. The results and the limitations of this approach are described. Some possible improvements are suggested.

  4. Understanding the baryon and meson spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Michael R. [JLAB

    2013-10-01

    A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.

  5. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)

    2016-08-01

    Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.

  6. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.

    Science.gov (United States)

    Tang, Zhenhua; Jia, Shuhai; Wang, Fei; Bian, Changsheng; Chen, Yuyu; Wang, Yonglin; Li, Bo

    2018-02-12

    Lightweight, stretchable, and wearable strain sensors have recently been widely studied for the development of health monitoring systems, human-machine interfaces, and wearable devices. Herein, highly stretchable polymer elastomer-wrapped carbon nanocomposite piezoresistive core-sheath fibers are successfully prepared using a facile and scalable one-step coaxial wet-spinning assembly approach. The carbon nanotube-polymeric composite core of the stretchable fiber is surrounded by an insulating sheath, similar to conventional cables, and shows excellent electrical conductivity with a low percolation threshold (0.74 vol %). The core-sheath elastic fibers are used as wearable strain sensors, exhibiting ultra-high stretchability (above 300%), excellent stability (>10 000 cycles), fast response, low hysteresis, and good washability. Furthermore, the piezoresistive core-sheath fiber possesses bending-insensitiveness and negligible torsion-sensitive properties, and the strain sensing performance of piezoresistive fibers maintains a high degree of stability under harsh conditions. On the basis of this high level of performance, the fiber-shaped strain sensor can accurately detect both subtle and large-scale human movements by embedding it in gloves and garments or by directly attaching it to the skin. The current results indicate that the proposed stretchable strain sensor has many potential applications in health monitoring, human-machine interfaces, soft robotics, and wearable electronics.

  7. Development of neutron resonance spin flipper for high resolution NRSE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, Masaaki [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan)]. E-mail: kitaguch@rri.kyoto-u.ac.jp; Hino, Masahiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Kawabata, Yuji [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Hayashida, Hirotoshi [Faculty of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Tasaki, Seiji [Faculty of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Maruyama, Ryuji [JAEA, Tokai, Ibaraki 319-1195 (Japan); Yamazaki, Dai [JAEA, Tokai, Ibaraki 319-1195 (Japan); Ebisawa, Toru [JAEA, Tokai, Ibaraki 319-1195 (Japan); Torikai, Naoya [KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-11-15

    Neutron spin echo (NSE) is one of the techniques with the highest energy resolution for measurement of quasi-elastic scattering. In neutron resonance spin echo (NRSE), two separated neutron resonance spin flippers (RSFs) replace a homogeneous static magnetic field for spin precession in a conventional NSE. We have made a new type of RSF with pure aluminum wires in order to reduce the scattering from the surface. Test experiments have been performed at cold neutron beam line MINE1 at JRR-3M reactor in JAERI and the beam line CN3 at KUR The spin-flip probability was higher than 0.95 at a neutron wavelength of 0.81 nm and a RSF frequency of 100 kHz.

  8. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  9. Quantum Spin Liquids

    OpenAIRE

    Savary, Lucile; Balents, Leon

    2016-01-01

    Quantum spin liquids may be considered "quantum disordered" ground states of spin systems, in which zero point fluctuations are so strong that they prevent conventional magnetic long range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local e...

  10. High-Frequency and -Field Electron Paramagnetic Resonance of High-Spin Manganese(III) in Porphyrinic Complexes.

    Science.gov (United States)

    Krzystek, J.; Telser, Joshua; Pardi, Luca A.; Goldberg, David P.; Hoffman, Brian M.; Brunel, Louis-Claude

    1999-12-27

    High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study two complexes of high-spin manganese(III), d(4), S = 2. The complexes studied were (tetraphenylporphyrinato)manganese(III) chloride and (phthalocyanato)manganese(III) chloride. Our previous HFEPR study (Goldberg, D. P.; Telser, J.; Krzystek, J.; Montalban, A. G.; Brunel, L.-C.; Barrett, A. G. M.; Hoffman, B. M. J. Am. Chem. Soc. 1997, 119, 8722-8723) included results on the porphyrin complex; however, we were unable to obtain true powder pattern HFEPR spectra, as the crystallites oriented in the intense external magnetic field. In this work we are now able to immobilize the powder, either in an n-eicosane mull or KBr pellet and obtain true powder pattern spectra. These spectra have been fully analyzed using spectral simulation software, and a complete set of spin Hamiltonian parameters has been determined for each complex. Both complexes are rigorously axial systems, with relatively low magnitude zero-field splitting: D approximately -2.3 cm(-)(1) and g values quite close to 2.00. Prior to this work, no experimental nor theoretical data exist for the metal-based electronic energy levels in Mn(III) complexes of porphyrinic ligands. This lack of information is in contrast to other transition metal complexes and is likely due to the dominance of ligand-based transitions in the absorption spectra of Mn(III) complexes of this type. We have therefore made use of theoretical values for the electronic energy levels of (phthalocyanato)copper(II), which electronically resembles these Mn(III) complexes. This analogy works surprisingly well in terms of the agreement between the calculated and experimentally determined EPR parameters. These results show a significant mixing of the triplet (S = 1) excited state with the quintet (S = 2) ground state in Mn(III) complexes with porphyrinic ligands. This is in agreement with the experimental observation of lower spin ground states in

  11. Use of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy

    NARCIS (Netherlands)

    Orlinkskii, S.B.; Borovykh, I.V.; Zielke, V.; Steinhoff, H.J.

    2007-01-01

    The applicability of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy is demonstrated. With the use of bacteriorhodopsin embedded in a lipid membrane as an example, the spectra of protons of neighboring amino acids are recorded, electric field

  12. Entrepreneurship and prior experience as antecedents of absorptive capacity of high-tech academic spin-offs

    NARCIS (Netherlands)

    Khodaei, H.; Scholten, V.; Wubben, E.F.M.; Omta, S.W.F.

    2016-01-01

    We investigate the influence of entrepreneurial orientation and team efficacy, in addition to the impact of domain-specific industry and research experience of spin-off management teams, on absorptive capacity, both potential and realised. A multiple regression analysis in 95 Dutch high-tech

  13. Ultrafast high harmonics for probing the fastest spin and charge dynamics in magnetic materials

    Science.gov (United States)

    Grychtol, Patrick

    2015-03-01

    Ultrafast light based on the high-harmonic up-conversion of femtosecond laser pulses have been successfully employed to access resonantly enhanced magnetic contrast at the Mabsorption edges of the 3d ferromagnets Fe, Co and Ni in a table-top setup. Thus, it has been possible to study element-specific dynamics in magnetic materials at femtosecond time scales in a laboratory environment, providing a wealth of opportunities for a greater fundamental understanding of correlated phenomena in solid-state matter. However, these investigations have so far been limited to linear polarized harmonics, since most techniques by which circular soft x-rays can be generated are highly inefficient reducing the photon flux to a level unfit for scientific applications. Besides presenting key findings of our ultrafast studies on charge and spin dynamics, we introduce a simple setup which allows for the efficient generation of circular harmonics bright enough for XMCD experiments. Our work thus represents a critical advance that enables element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution on the tabletop. In collboration with Ronny Knut, Emrah Turgut, Dmitriy Zusin, Christian Gentry, Henry Kapteyn, Margaret Murnane, JILA, University of Colorado, Boulder; Justin Shaw, Hans Nembach, Tom Silva, Electromagnetics Division, NIST, Boulder, CO; and Ofer Kfir, Avner Fleischer, Oren Cohen, Extreme Nonlinear Optics Group, Solid State Institute, Technion, Israel.

  14. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  15. Photoproduction of the Cascade Baryons at GlueX

    Science.gov (United States)

    Ernst, Ashley; GlueX Collaboration

    2017-09-01

    Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.

  16. Observation of two new $\\Xi_b^-$ baryon resonances

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew Christopher; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Domenico, Antonio; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    Two structures are observed close to the kinematic threshold in the $\\Xi_b^0\\pi^-$ mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content $bds$ are expected in this mass region: the spin-parity $J^P = \\frac{1}{2}^+$ and $J^P=\\frac{3}{2}^+$ states, denoted $\\Xi_b^{\\prime -}$ and $\\Xi_b^{*-}$. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be \\begin{eqnarray*} m(\\Xi_b^{\\prime -}) - m(\\Xi_b^0) - m(\\pi^{-}) &=& 3.653 \\pm 0.018 \\pm 0.006~{\\rm MeV}/c^2, \\\\ m(\\Xi_b^{*-}) - m(\\Xi_b^0) - m(\\pi^{-}) &=& 23.96 \\pm 0.12\\pm 0.06~{\\rm MeV}/c^2, \\\\ \\Gamma(\\Xi_b^{*-}) &=& 1.65 \\pm 0.31 \\pm 0.10~{\\rm MeV}, \\end{eqnarray*} where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place ...

  17. The Baryon Cycle and its (Lack of) Environmental Dependencies

    Science.gov (United States)

    Grootes, Meiert W.

    2017-07-01

    The cycle of gas into and out of galaxies, fueling the conversion of gas into stars, is fundamental to the evolution of galaxies. Indeed, the paradigm that this baryon cycle is self-regulated has proven to be successful at explaining a number of trends, foremost amongst which is the main sequence of star forming galaxies (MS). Combined with a halo mass dependence of the inflow rate and environmental quenching of satellite galaxies, this paradigm represents a compellingly simple picture of galaxy evolution. We use the current SFRs of morphologically selected samples of disk galaxies drawn from the GAMA survey to test this paradigm in the local universe (zfueling of the majority of disk dominated satellite group galaxies is nigh identical to that of their group central and non-grouped counterparts, high-lighting a pronounced lack of dependence of the baryon-cycle on the environment and on halo mass in particular. Finally, we empirically quantify the group-wide impact of an AGN in the group central galaxy on the star-formation of galaxies in galaxy groups as a new and potentially significant environmental influence.

  18. Scale-Dependent Bias of Galaxies from Baryonic Acoustic Oscillations

    OpenAIRE

    Barkana, Rennan; Loeb, Abraham

    2010-01-01

    Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark matter across large regions of the Universe. We show that the associated variation in the mass-to-light ratio of galaxies should generate an oscillatory, scale-dependent bias of galaxies relative to the underlying distribution of dark matter. A measurement of this effect would calibrate the dependence of the characteristic mass-to-light ratio of galaxies on the baryon mass fraction in their large scale environ...

  19. Electron spin resonance spectroscopy of high purity crystals at millikelvin temperatures

    Science.gov (United States)

    Farr, Warrick G.; Creedon, Daniel L.; Goryachev, Maxim; Benmessai, Karim; Tobar, Michael E.

    2013-12-01

    Progress in the emerging field of engineered quantum systems requires the development of devices that can act as quantum memories. The realisation of such devices by doping solid state cavities with paramagnetic ions imposes a trade-off between ion concentration and cavity coherence time. Here, we investigate an alternative approach involving interactions between photons and naturally occurring impurity ions in ultra-pure crystalline microwave cavities exhibiting exceptionally high quality factors. We implement a hybrid Whispering Gallery/Electron Spin Resonance method to perform rigorous spectroscopy of an undoped single-crystal sapphire resonator over the frequency range 8{19 GHz, and at external applied DC magnetic fields up to 0.9 T. Measurements of a high purity sapphire cooled close to 100 mK reveal the presence of Fe3+, Cr3+, and V2+ impurities. A host of electron transitions are measured and identified, including the two-photon classically forbidden quadrupole transition (Δms = 2) for Fe3+, as well as hyperfine transitions of V2+.

  20. Highly spin-polarized deuterium atoms from the UV dissociation of Deuterium Iodide

    CERN Document Server

    Sofikitis, D; Koumarianou, G; Jiang, H; Bougas, L; Samartzis, P C; Andreev, A; Rakitzis, T P

    2016-01-01

    Hyperpolarisation of deuterium (D) and tritium (T) nuclear spins increases the D-T fusion reaction rate by ~50%, thus lowering the breakeven limit for the achievement of self-sustained fusion, and controls the emission direction of the reaction products for improved reactor efficiency. However, the important D-D polarization-dependent fusion reaction has not yet been measured, due to the low density of conventional polarized deuterium beams of ~10$^{12}$ cm$^{-3}$, limited by collisions on the ms-timescale of production. Here we demonstrate that hyperpolarised D atoms are produced by the 270 nm photodissociation of deuterium iodide (DI), yielding ~60% nuclear D polarization after ~1.6 ns, ~10$^6$ times faster than conventional methods, allowing collision-limited densities of ~10$^{18}$ cm$^{-3}$. Such ultrahigh densities of polarized D atoms open the way for the study of high-signal polarized D-D reactions. We discuss the possibility of the production of high-density pulsed polarized beams, and of polarized D...

  1. High dynamic range magnetometry with a single nuclear spin in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Waldherr, Gerald; Beck, Johannes; Neumann, Philipp; Nitsche, Matthias; Wrachtrup, Joerg [3. Physikalisches Institut, Universitaet Stuttgart, 70569 Stuttgart (Germany); Said, Ressa S. [Institut fuer Quanten-Informationsverarbeitung, Universitaet Ulm, 89081 Ulm (Germany); Twamley, Jason [Centre for Engineered Quantum Systems, Faculty of Science, Macquarie University, Sydney (Australia); Jelezko, Fedor [Institut fuer Quantenoptik, Universitaet Ulm, 89073 Ulm (Germany)

    2012-07-01

    Sensors based on the nitrogen-vacancy (NV) defect in diamond are being developed to measure weak magnetic and electric fields at nanoscale. However, such sensors rely on measurements of a shift in the Lamor frequency of the defect, so an accumulation of quantum phase causes the measurement signal to exhibit a periodic modulation. This means that the measurement time is either restricted to half of one oscillation period, which limits accuracy, or that the magnetic field range must be known in advance. Moreover, the precision increases only slowly, as T{sup -0.5}, with the measurement time T. We implement a quantum phase estimation algorithm on a single nuclear spin in diamond to combine both high sensitivity and high dynamic range. By achieving a scaling of the precision with time to T{sup -0.85}, we improve the sensitivity by a factor of 7.4, for an accessible field range of 16 mT, or alternatively, we improve the dynamic range by a factor of 130 for a sensitivity of 2.5 {mu}T/Hz{sup 0.5}. These methods are applicable to a variety of field detection schemes, and do not require entanglement.

  2. High-fidelity spin measurement on the nitrogen-vacancy center

    Science.gov (United States)

    Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae

    2017-10-01

    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

  3. The spin-half XXZ antiferromagnet on the square lattice revisited: A high-order coupled cluster treatment

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.; Zinke, R.; Darradi, R.; Richter, J.; Farnell, D. J. J.; Schulenburg, J.

    2017-04-01

    We use the coupled cluster method (CCM) to study the ground-state properties and lowest-lying triplet excited state of the spin-half XXZ antiferromagnet on the square lattice. The CCM is applied to it to high orders of approximation by using an efficient computer code that has been written by us and which has been implemented to run on massively parallelized computer platforms. We are able therefore to present precise data for the basic quantities of this model over a wide range of values for the anisotropy parameter Δ in the range - 1 ≤ Δ 1) regimes, where Δ → ∞ represents the Ising limit. We present results for the ground-state energy, the sublattice magnetization, the zero-field transverse magnetic susceptibility, the spin stiffness, and the triplet spin gap. Our results provide a useful yardstick against which other approximate methods and/or experimental studies of relevant antiferromagnetic square-lattice compounds may now compare their own results. We also focus particular attention on the behaviour of these parameters for the easy-axis system in the vicinity of the isotropic Heisenberg point (Δ = 1) , where the model undergoes a phase transition from a gapped state (for Δ > 1) to a gapless state (for Δ ≤ 1), and compare our results there with those from spin-wave theory (SWT). Interestingly, the nature of the criticality at Δ = 1 for the present model with spins of spin quantum number s =1/2 that is revealed by our CCM results seems to differ qualitatively from that predicted by SWT, which becomes exact only for its near-classical large-s counterpart.

  4. Search for CP violation in baryon decays at LHCb

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.

  5. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel

    2017-12-01

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.

  6. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  7. Optical cooling and trapping highly magnetic atoms: The benefits of a spontaneous spin polarization

    CERN Document Server

    Dreon, Davide; Bouazza, Chayma; Maineult, Wilfried; Dalibard, Jean; Nascimbene, Sylvain

    2016-01-01

    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically $3\\times 10^8$ atoms at a temperature of 20$\\,\\mu$K. The spin polarization reduces the complexity of the radiative cooling description, whi...

  8. Self-energies of octet and decuplet baryons due to the coupling to the baryon-meson continuum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tecocoatzi, H. [INFN, Sezione di Genova, Genova (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Bijker, R. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Ferretti, J. [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Dipartimento di Fisica, Universita di Roma Sapienza, Roma (Italy); INFN, Roma (Italy); Santopinto, E. [INFN, Sezione di Genova, Genova (Italy)

    2017-06-15

    We present an unquenched quark model calculation of the mass shifts of ground-state octet and decuplet baryons due to the coupling to the meson-baryon continuum. All ground-state baryons and pseudoscalar mesons are included in our calculation as intermediate states. The q anti q pair creation effects are taken explicitly into account through a microscopic, QCD-inspired, quark-antiquark pair creation mechanism. (orig.)

  9. High power all-metal spin torque oscillator using full Heusler Co{sub 2}(Fe,Mn)Si

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Takeshi, E-mail: go-sai@imr.tohoku.ac.jp; Sakuraba, Yuya; Ueda, Masaki; Okura, Ryo; Takanashi, Koki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Arai, Hiroko; Imamura, Hiroshi [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan)

    2014-09-01

    We showed the high rf power (P{sub out}) emission from an all-metal spin torque oscillator (STO) with a Co{sub 2}Fe{sub 0.4}Mn{sub 0.6}Si (CFMS)/Ag/CFMS giant magnetoresistance (GMR) stack, which was attributable to the large GMR effect thanks to the highly spin-polarized CFMS. The oscillation spectra were measured by varying the magnetic field direction, and the perpendicular magnetic field was effective to increase P{sub out} and the Q factor. We simultaneously achieved a high output efficiency of 0.013%, a high Q of 1124, and large frequency tunability. CFMS-based all-metal STO is promising for overcoming the difficulties that conventional STOs are confronted with.

  10. Observation of Proton Radioactivity of the (21+) High-Spin Isomerin 94Ag

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, I.; Roeckl, E.; Doring, J.; Batist, L.; Blazhev, A.; Grawe, H.; Hoffman, C.R.; Huyse, M.; Janas, Z.; Kirchner, R.; La Commara,M.; Mazzocchi, C.; Plettner, C.; Tabor, S.L.; Van Duppen, P.; Wiedeking, M.

    2005-07-05

    We have observed direct one-proton decay of the (21{sup +}) isomer in the N=Z nuclide {sup 94}Ag into high-spin states in {sup 93}Pd by detecting protons in coincidence with {gamma}-{gamma} correlations and applying {gamma} gates based on known {sup 93}Pd levels. Two decay branches have been identified, with proton energies of 0.79(3) and 1.01(3) MeV and branching ratios of 1.9(5)% and 2.2(4)%, respectively. The corresponding partial half-life values are 21(6) and 18(4) s. The Q value of the direct proton decay of the (21{sup +}) isomer was found to be 5.78(3) MeV. The very small reduced widths of the observed proton decays might reflect dominating collective configurations in the (21{sup +}) isomer, and the fine structure of the proton spectrum might indicate a strong deformation of this state.

  11. Spin dynamics in high-mobility two-dimensional electron systems embedded in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael

    2012-11-22

    Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.

  12. Meson-baryon components in the states of the baryon decuplet

    Energy Technology Data Exchange (ETDEWEB)

    Aceti, F.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Kavli Institute for Theoretical Physics China, Beijing (China); Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China); Kavli Institute for Theoretical Physics China, Beijing (China); Geng, L.S. [Beihang University, School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Zhang, Y. [Liaoning Normal University, Department of Physics, Dalian (China)

    2014-03-15

    We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Δ(1232) resonance and the other members of the J{sup P} = (3)/(2){sup +} baryon decuplet. We obtain an appreciable weight of πN in the Δ(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of πN component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential. (orig.)

  13. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    CERN Document Server

    Kato, Y; Adachi, I; Aihara, H; Asner, D M; Aushev, T; Bakich, A M; Bala, A; Ban, Y; Bhardwaj, V; Bhuyan, B; Bobrov, A; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Dutta, K; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Gillard, R; Goh, Y M; Golob, B; Haba, J; Hayasaka, K; Hayashii, H; He, X H; Horii, Y; Hoshi, Y; Hou, W -S; Hsiung, Y B; Inami, K; Ishikawa, A; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, J H; Kim, M J; Kim, Y J; Klucar, J; Ko, B R; Kodyš, P; Korpar, S; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y -J; Lee, S -H; Li, J; Li, Y; Gioi, L Li; Libby, J; Liu, Y; Liventsev, D; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Moll, A; Muramatsu, N; Mussa, R; Nagasaka, Y; Nakano, E; Nakao, M; Nayak, M; Nedelkovska, E; Ng, C; Niiyama, M; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Peng, T; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Saito, T; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Semmler, D; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Steder, M; Sumihama, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Vorobyev, V; Wagner, M N; Wang, C H; Wang, M -Z; Wang, P; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamashita, Y; Yashchenko, S; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2013-01-01

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.

  14. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  15. Effective field theories of baryons and mesons, or, what do quarks do?

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, G.L. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group

    1995-06-26

    This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.

  16. Non-baryonic dark matter in cosmology

    Science.gov (United States)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.

  18. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Baryonic effects in cosmic shear tomography: PCA parametrization and importance of extreme baryonic models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Irshad [Fermilab; Gnedin, Nickolay Y. [Fermilab

    2017-07-07

    Baryonic effects are amongst the most severe systematics to the tomographic analysis of weak lensing data which is the principal probe in many future generations of cosmological surveys like LSST, Euclid etc.. Modeling or parameterizing these effects is essential in order to extract valuable constraints on cosmological parameters. In a recent paper, Eifler et al. (2015) suggested a reduction technique for baryonic effects by conducting a principal component analysis (PCA) and removing the largest baryonic eigenmodes from the data. In this article, we conducted the investigation further and addressed two critical aspects. Firstly, we performed the analysis by separating the simulations into training and test sets, computing a minimal set of principle components from the training set and examining the fits on the test set. We found that using only four parameters, corresponding to the four largest eigenmodes of the training set, the test sets can be fitted thoroughly with an RMS $\\sim 0.0011$. Secondly, we explored the significance of outliers, the most exotic/extreme baryonic scenarios, in this method. We found that excluding the outliers from the training set results in a relatively bad fit and degraded the RMS by nearly a factor of 3. Therefore, for a direct employment of this method to the tomographic analysis of the weak lensing data, the principle components should be derived from a training set that comprises adequately exotic but reasonable models such that the reality is included inside the parameter domain sampled by the training set. The baryonic effects can be parameterized as the coefficients of these principle components and should be marginalized over the cosmological parameter space.

  20. Spin-sprayed ferrite films with high resistivity and high-frequency magnetic loss for GHz conducted noise suppressors

    Energy Technology Data Exchange (ETDEWEB)

    Subramani, A.K. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama (Japan)], E-mail: subramani.aa@m.titech.ac.jp; Matsushita, N. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama (Japan)], E-mail: matsushita@msl.titech.ac.jp; Watanabe, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama (Japan); Tada, M.; Abe, M. [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Kondo, K. [NEC Tokin Corporation, 6-7-1 Koriyama, Taihaku-ku, Sendai, Miyagi 982-8510 (Japan); Yoshimura, M. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama (Japan)

    2008-02-25

    In the present study, crystallized ferrite (an intermediate between Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}) films prepared by spin-spray technique exhibited strong magnetic losses at high frequencies and are applicable as GHz conducted noise suppressors. The reaction (metal ions) and oxidizing (pH buffers and oxidizing agent) solutions were separately sprayed onto the substrates (90 deg. C) mounted on a rotating disc. Two types of films were prepared on the basis of the different oxidizing solutions; CH{sub 3}COONa + NaNO{sub 2} in the case of film-A and CH{sub 3}COONa + (NH{sub 4}){sub 2}CO{sub 3} + NaNO{sub 2} + NaOH for film-B. The as-prepared films were heat-treated under a condition similar to that of the reflow soldering process (265 deg. C). The effects of the preparation conditions and film morphology on the electrical and magnetic properties before and after the heat treatment were studied. The results revealed that film-B had a relatively smaller initial permeability ({mu}') compared to film-A. However, it had a high-imaginary permeability ({mu}''), resonance frequency (f{sub r}) and surface resistivity ({rho}{sub s}) even after heat treatment. Also, the noise suppressing properties of film-B were relatively good, hence ideal for use as conducted noise suppressors.

  1. Search for strange baryon electric dipole moment at LHCb

    CERN Document Server

    Lewis, Daniel James

    2017-01-01

    A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.

  2. Massive pions, anomalies and baryons in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, O. [Departament de Fisica and IFAE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Panico, G., E-mail: panico@phys.ethz.c [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Wulzer, A. [Institut de Theorie des Phenomenes Physiques, EPFL, CH-1015 Lausanne (Switzerland)

    2011-03-01

    We consider a holographic model of QCD, obtained by a very simple modification of the original construction, which describes at the same time the pion mass, the QCD anomalies and the baryons as topological solitons. We study in detail its phenomenological implications in both the mesonic and baryonic sectors and compare with the observations.

  3. Evidence for chiral logarithms in the baryon spectrum

    CERN Document Server

    Walker-Loud, Andre

    2011-01-01

    Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...

  4. Meson-Baryon coupling constants in QCD sum rules

    NARCIS (Netherlands)

    Erkol, Güray

    2006-01-01

    There is a long history of describing the baryon-baryon interactions in terms of One Boson Exchange (OBE) models. These phenomenological models give an effective first-order approximation of the complete interaction and provide a very accurate description of the rich nucleon-nucleon (N!N) and the

  5. Properties of light flavour baryons in hypercentral quark model

    Indian Academy of Sciences (India)

    The light flavour baryons are studied within the quark model using the hypercentral description of the three-body system. The confinement potential is assumed as hypercentral Coulomb plus power potential (hCPP ) with power index . The masses and magnetic moments of light flavour baryons are computed for different ...

  6. Cosmological baryon asymmetry constraints on extensions of the standard model

    Science.gov (United States)

    Campbell, Bruce A.; Davidson, Sacha; Ellis, John; Olive, Keith A.

    1991-03-01

    The existence of the baryon asymmetry of the Universe puts strong constraints on extensions of the standard model which violate baryon and/or lepton number. Interactions violating baryon number but conserving lepton number in the early universe could wash away any previously established baryon asymmetry. Interactions which violate lepton number separately (as first discussed by Fukugita and Yanagida), with or without associated violation of baryon number, could combine with non-perturbative baryon and lepton number violating electroweak effects to eradicate the cosmological baryon asymmetry. We derive the constraints on any such interaction of arbitrary dimension arising from the persistence of the cosmological baryon asymmetry. We find, in particular, severe constraints on δB≠0 interactions that could mediate nn oscillations or δB≠δL proton decay, and on interactions that could violate R parity in supersymmetric models. These constraints severely limit the potential observability of n-n oscillations and R-parity violation in present laboratory experiments. On leave of absence from School of Physics and Astronomy, University of Minnesota, Minneapolis MN 55455, USA.

  7. High-field study of the spin-Peierls system CuGeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L.P. [CEA Centre d`Etudes de Grenoble, 38 (France)

    1997-04-01

    The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.

  8. Experiments Needed in Meson and Baryon Spectroscopy

    Directory of Open Access Journals (Sweden)

    D. V. Bugg

    2008-03-01

    Full Text Available Three (or four straightforward experiments would contribute greatly to completing the spectroscopy of baryons and light mesons. In the baryon sector, data are needed on inelastic reactions from a polarised target with π± and K± beams up to ∼ 3 GeV/c. Similar data are needed in the light meson sector for p¯p interactions in the momentum range 0.3–2 GeV/c. In both cases, valuable information is to be obtained from longitudinal (L and sideways (S target polarisations as well as the conventional normal (N polarisation. Thirdly, 3S1 and 3D1 mesons in the mass range 1–2.4 GeV could probably be separated either by diffractive dissociation of transversely polarised photons or by e+e− radiative return experiments using transversely and longitudinally polarised electrons.

  9. Quark-level analogue of nuclear fusion with doubly heavy baryons

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L.

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium–tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  10. Quark-level analogue of nuclear fusion with doubly heavy baryons.

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  11. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  12. Spin spring behavior in exchange coupled soft and high-coercivity hard ferromagnets.

    Energy Technology Data Exchange (ETDEWEB)

    Shull, R. D.; Shapiro, A. J.; Gornakov, V. S.; Nikitenko, V. I.; Jiang, J. S.; Kaper, H.; Leaf, G.; Bader, S. D.

    2000-11-01

    The magnetization reversal processes in an epitaxial Fe/Sm{sub 2}Co{sub 7} structure were investigated using the magneto-optical indicator film technique. The dependence of the magnitude and the orientation of the structure average magnetization have been studied on both cycling and rotating the external magnetic field. It was discovered that the magnetization reversal of the soft ferromagnet can proceed by formation of not only one-dimensional, but also two-dimensional, exchange spin springs. Experimental data is compared with a theoretical estimation of the rotational hysteresis loop for a spin system containing a one-dimensional exchange spring.

  13. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    Science.gov (United States)

    Carmelo, J. M. P.; Prosen, T.

    2017-01-01

    Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L - 2 S spins 1/2 that are paired within Msp = L / 2 - S spin-singlet pairs. The Bethe-ansatz strings of length n = 1 and n > 1 describe a single unbound spin-singlet pair and a configuration within which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing magnetic field h → 0 and within the grand-canonical ensemble.

  14. Method for estimating spin-spin interactions from magnetization curves

    Science.gov (United States)

    Tamura, Ryo; Hukushima, Koji

    2017-02-01

    We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.

  15. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  16. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  17. Vector mesons in meson-baryon scattering and large-N{sub c} quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, Hans-Friedrich

    2016-02-11

    We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N{sub c} QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N{sub c} is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J{sup P}=(1)/(2){sup +})- and (J{sup P}=(3)/(2){sup +})-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N{sub c} QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N{sub c} the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N{sub c} was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non

  18. IN15 ultra-high-resolution spin-echo project. First experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schleger, P.; Hayes, C. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Kollmar, A. [Forschungszentrum Juelich GmbH (Germany)

    1997-04-01

    The IN15 project is a collaboration between the ILL, HMI (Berlin), and FZ (Juelich) to construct a spin-echo spectrometer with a fourier time-range surpassing half a microsecond. Three different operational modes are possible: normal, with neutron focusing, and time-of-flight. Present status of the project is described. (author). 3 refs.

  19. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    Following a fully self-consistent cranked Hartree-Fock-Bogoliubov (CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum = 24. Evolution of the shape with spin, and rotation alignment of proton as well ...

  20. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  1. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    Science.gov (United States)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  2. CMOS patterning over high-aspect ratio topographies for N10/N7 using spin-on carbon hardmasks

    Science.gov (United States)

    Hopf, Toby; Ercken, Monique; Mannaert, Geert; Kunnen, Eddy; Tao, Zheng; Vandenbroeck, Nadia; Sebaai, Farid; Kikuchi, Yoshiaki; Mertens, Hans; Kubicek, Stefan; Demuynck, Steven; Horiguchi, Naoto

    2017-03-01

    In this paper proof-of-principle demonstrations of spin-on carbon (SOC)/spin-on glass (SOG)-based lithography processes which could replace standard patterning stacks within the FEOL for upcoming advanced nodes like N10/N7 are presented. At these dimensions the standard lithography approaches that have been utilized within the previous nodes will begin to run into fundamental limitations as a result of the extremely high aspect ratios of the device topography, requiring both new materials as well as new patterning flows in order to allow for continued device scaling. Here, novel SOC/SOG-based patterning flows have been demonstrated which could be applied to implement Source Drain Extension implantations and epitaxial growth processes for CMOS FinFET device architectures even down at N10/N7 dimensions.

  3. High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet

    Science.gov (United States)

    Caretta, Antonio; Dell'Angela, Martina; Chuang, Yi-De; Kalashnikova, Alexandra M.; Pisarev, Roman V.; Bossini, Davide; Hieke, Florian; Wurth, Wilfried; Casarin, Barbara; Ciprian, Roberta; Parmigiani, Fulvio; Wexler, Surge; Wray, L. Andrew; Malvestuto, Marco

    2017-11-01

    We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3. By tuning the EUV photon energy to the cobalt M23 edge, a complete set of low-energy 3 d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material.

  4. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

    Science.gov (United States)

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2015-04-28

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.

  5. High-spin Mn–oxo complexes and their relevance to the oxygen-evolving complex within photosystem II

    Science.gov (United States)

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L.; Yano, Junko; Hendrich, Michael P.; Borovik, A. S.

    2015-01-01

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III–V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn–oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin MnV–oxo complex and not a MnIV–oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal–ligand bonding. Oxygen-17–labeled samples were used to determine spin density within the Mn–oxo unit, with the greatest delocalization occurring within the MnV–oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn–oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn–oxo species that is postulated to form during turnover is discussed. PMID:25852147

  6. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin

    2015-11-03

    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  7. Baryons and their Effects on Planes of Satellites Around Milky Way-Mass Galaxies

    Science.gov (United States)

    Ahmed, Sheehan H.

    2017-01-01

    Both the Milky Way and Andromeda have thin, coherently rotating planes of satellites. In this study I try to find similar satellite planes around four different Milky Way-mass simulations, each run both as dark matter-only and with baryons included. In all halos I am able to identify a planar configuration that significantly maximizes the number of satellites that are members of a plane. The member satellites that make up this maximum plane are consistently different between the dark matter-only and baryonic versions of the same run. In the baryonic runs, satellites are more likely to be destroyed through interactions with the disk, and substructure tends to infall later. Hence, studying satellite planes in dark matter-only simulations is misleading, because they will be composed of different satellite members than those that would exist if baryons were included. Additionally, baryonic runs tend to have less radially concentrated satellite distributions. Since all planes pass through the center of the galaxy, it is much harder to create a plane containing a large number of satellites from a random distribution if the satellites have a low radial concentration. Andromeda’s low radial satellite concentration is possibly a key reason behind why the plane in Andromeda is highly significant. Despite this, when co-rotation is considered, none of the satellite planes identified for the simulated galaxies are as statistically significant as the observed planes around the Milky Way and Andromeda. I will then show that co-rotation in our satellite planes can be attributed to how the satellites are accreted through filaments from the cosmic web. When two sets of opposing filaments contribute, coherent planes are more likely to form, when there are no well-defined filaments, there is a lack of coherent satellite rotation.

  8. Production cross sections for Lee-Wick massive electromagnetic bosons and for spin-zero and spin-one W bosons at high energies.

    Science.gov (United States)

    Linsker, R.

    1972-01-01

    Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.

  9. Heavy spin-2 Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  10. High spin exotic states and new method for pairing energy; Etats exotiques a hauts spins et nouvelle methode pour l`energie d`appariement nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.

    1996-01-19

    We present a new method called `PSY-MB`, initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C{sub 4}-polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author). 2370refs.

  11. Faddeev calculations of {sup 3}H by using quark model baryon-baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yoshikazu [Kyoto Univ., Faculty of Science, Kyoto (Japan); Miyakawa, Kazuya [Okayama Univ. of Science, Faculty of Science, Okayama (Japan); Kohno, Michio [Kyushu Dental College, Kita-kyushu, Fukuoka (Japan); Suzuki, Yasuyuki [Niigata Univ., Faculty of Science, Niigata (Japan); Nemura, Hidekatsu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2003-01-01

    A large coupling energy of {sup 3}H is evaluated by the fss2 and FSS models, which are the practical-nucleon interaction models based on the quark model, while the D-state probability P{sub D} of deuterons is kept at an adequate level. The magnitude of the estimated coupling energy is closer to the experimental values by far compared with the one evaluated by the conventional meson exchange model. The mean square radii of {sup 3}H and {sup 3}He are also precisely reproduced by these models.The possible origin of these differences may be due to the different way of describing the short-range part of the baryon-baryon interactions with the nonlocal integration kernel which is the specific character of the quark model. In this paper, results of Faddeev calculation of {sup 3}H, the simplest three-body system, by directly using the quark exchange kernels of fss2 and FSS focusing on the NN interaction are reported. Parameters in this quark model have been determined to reproduce the most existing NN and YN data. The (3q)-(3q) RGM in which the effective meson potentials between quarks are taken into account can be extended to the strangeness S=-2, -3, and -4 sectors without adding new parameters. This fact will makes it possible to discuss the baryon-baryon interactions having large strangeness at the same accuracy level of the NN interactions. Overall features of all B{sub 8}B{sub 8} interactions and relations between them are brought into the light theoretically at least. (S. Funahashi)

  12. High-spin {gamma}-ray spectroscopy of {sup 124}Ba, {sup 124}Xe and {sup 125}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khatib, Ali

    2008-08-18

    Rotational spectra had been observed for the first time in excited atomic nuclei in 1938. This observation was attributed to the deviation from spherical shape. In quantum mechanics, when a perfectly spherical system rotates, it appears identical when it is viewed from any direction and no point of reference exists to which the change in position can be identified. Therefore, rotation cannot be defined for spherical nuclei. If the shape deviates from spherical symmetry, the nucleus can rotate and rotational spectra are observed. Many nucleons contribute to the rotation which is referred to as collective excitation. Depending on the mass region, nuclei have different deformations and, therefore, different shapes. Many nuclei show larger deformation with increasing excitation energy. Transitional nuclei between spherical and strongly deformed regions of the nuclear chart are usually soft with respect to deformation changes. In the mass region around A{proportional_to}125, which is the subject of this thesis, nuclei are predicted to be soft with respect to deformation. Rotational motion leads to Coriolis-induced alignments of high-j nucleons, which are in this mass region predominantly protons and neutrons from the h{sub 11/2} unique-parity intruder subshells. The proton Fermi level lies in the lower part of the h{sub 11/2} subshell which favours prolate shape whereas the neutron Fermi level lies in the upper part of the h{sub 11/2} subshell which favours oblate shape. According to the opposite shape-driving forces of protons and neutrons, shape co-existence is expected and the interplay between the h{sub 11/2} proton and neutron orbitals is of great interest for spectroscopic investigations. In addition, superdeformation has been established in this mass region. An interesting observation in this mass region is that nuclei undergo a shape-change from collective prolate to non-collective oblate states at high spins. In this spin range the transitions within the

  13. arXiv A New Look at the $Y$ Tetraquarks and $\\Omega_c$ Baryons in the Diquark Model

    CERN Document Server

    Ali, Ahmed; Borisov, Anatoly V.; Ahmed, Ishtiaq; Aslam, M. Jamil; Parkhomenko, Alexander Ya.; Polosa, Antonio D.; Rehman, Abdur

    We analyze the hidden charm $P$-wave tetraquarks in the diquark model, using an effective Hamiltonian incorporating the dominant spin-spin, spin-orbit and tensor interactions. We compare with other $P$-wave system such as $P$-wave charmonia and the newly discovered $\\Omega_c$ baryons, analysed recently in this framework. Given the uncertain experimental situation on the $Y$ states, we allow for different spectra and discuss the related parameters in the diquark model. In addition to the presently observed ones, we expect many more states in the supermultiplet of $L=1$ diquarkonia, whose $J^{PC}$ quantum numbers and masses are worked out, using the parameters from the currently preferred $Y$-states pattern. The existence of these new resonances would be a decisive footprint of the underlying diquark dynamics.

  14. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Iritani, T. [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York, 11794-3800 (United States); Doi, T. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Aoki, S. [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Gongyo, S. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Universitéde Tours,Tours, 37200 (France); Hatsuda, T. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); iTHES Research Group, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ikeda, Y. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Research Center for Nuclear Physics (RCNP), Osaka University,10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Inoue, T. [Nihon University, College of Bioresource Sciences,1866 Kameino, Fujisawa, Kanagawa, 252-0880 (Japan); Ishii, N.; Murano, K. [Research Center for Nuclear Physics (RCNP), Osaka University,10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Nemura, H. [Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Sasaki, K. [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Collaboration: The HAL QCD collaboration

    2016-10-19

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ({sup 3}He and {sup 4}He) as well, employing (2+1)-flavor lattice QCD at m{sub π}=0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

  15. Observation of excited $\\Lambda^0_b$ baryons

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    Using $pp$ collision data corresponding to 1.0~fb^{-1} integrated luminosity collected by the LHCb detector, two narrow states are observed in the $\\Lambda_b^0\\pi^+\\pi^-$ spectrum with masses $5911.95\\pm 0.12(\\mbox{stat})\\pm 0.03(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$ and $5919.76\\pm 0.07(\\mbox{stat})\\pm 0.02(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$. The significances of the observations are 4.9 and 10.1 standard deviations, respectively. These states are interpreted as the orbitally-excited $\\Lambda_b^0$ baryons, $\\Lambda_b^{*0}(5912)$ and $\\Lambda_b^{*0}(5920)$.

  16. Cluster outskirts and the missing baryons

    Science.gov (United States)

    Eckert, D.

    2016-06-01

    Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.

  17. Baryon transition form factors at the pole

    Energy Technology Data Exchange (ETDEWEB)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  18. Leptogenesis and gravity: Baryon asymmetry without decays

    Directory of Open Access Journals (Sweden)

    J.I. McDonald

    2017-03-01

    Full Text Available A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  19. Leptogenesis and gravity: Baryon asymmetry without decays

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk

    2017-03-10

    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  20. Review of Baryon Spectroscopy in Lattice QCD

    CERN Document Server

    Lin, Huey-Wen

    2011-01-01

    The complex patterns of the hadronic spectrum have puzzled physicists since the early discovery of the "particle zoo" in the 1960s. Today, the properties of these myriad particles are understood to be the result of quantum chromodynamics (QCD) with some modification by the electroweak interactions. Despite the discovery of this fundamental theory, the description of the hadronic spectrum has long been dominated by phenomenological models, due to the difficulties of addressing QCD in the strong-coupling regime, where nonperturbative effects are essential. By making numerical calculations in discretized spacetime, lattice gauge theory enables the ab initio study of many low-energy properties of QCD. Significant efforts are underway internationally to use lattice QCD to directly compute properties of ground and excited-state baryons. Detailed knowledge of the hadronic spectrum will provide insight into the character of these states beyond what can be extracted from models. In this review, I will focus on the lat...

  1. Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power

    CERN Document Server

    Mosca, S; Karimi, E; Piccirillo, B; Marrucci, L; De Rosa, R; Genin, E; Milano, L; Santamato, E

    2010-01-01

    In this paper, we present experimental evidence of a newly discovered third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod for an impinging laser power of about 100~W. To study the SISTOC process we used different techniques: polarization analysis, interferometry and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism...

  2. Spinning Them Off: Entrepreneuring practices in Corporate Spin-Offs

    National Research Council Canada - National Science Library

    Hydle, Katja Maria; Meland, Kjersti Vikse; Haus-Reve, Silje

    2016-01-01

    .... We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs...

  3. Point contact Andreev reflection and the measurement of spin polarization: high fields and novel materials (Conference Presentation)

    Science.gov (United States)

    Stamenov, Plamen; Borisov, Kiril

    2016-10-01

    Point Contact Andreev Reflection (PCAR) is one of the few available methods for the determination of the Fermi level spin polarisation in metals and degenerate semiconductors. It has traditionally been applied at fixed (liquid He) temperatures, using pure niobium as the superconductor, and at essentially zero applied magnetic fields, all of which limit the amount of information that it can provide - i.e. do not allow for the extraction of the sign of the spin polarisation and make the assignment of the transport regime to ballistic or diffusive almost impossible. Here a series of experiments is described, aimed at the expansion of this parameter space to higher magnetic fields and to higher temperatures. These require redesigned experimental setups and the use of higher performance superconductors. Demonstrations are described of the determination of the sign of the spin polarisation, at fields of more than 5 Tesla using a low-Z superconductor, as well as operations beyond 9.2 K. Doubts about the practical reliability of the PCAR technique are dispersed using systematic series of samples - the heavy rare-earths and comparisons with alternatives, such as spin-polarised field emission, photo-emission and Tedrow-Meservey tunnelling. The specific material examples presented include 3d-metals, order-disorder transition alloys and zero-moment half-metals - Fe, FeAl and MnRuGa, alternative low-Z and high-Z superconductors - MgB2 and NbTi, and magnetic topological insulators, such as Cr- and V-doped (Bi1-xSbx)2Te3.

  4. Probing the Impact of Solvation on Photoexcited Spin Crossover Complexes with High-Precision X-ray Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cunming; Zhang, Jianxin [State; Lawson Daku, Latévi M. [Département; Gosztola, David; Canton, Sophie E. [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary; Attosecond; Zhang, Xiaoyi

    2017-11-17

    Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. This work presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [FeII(mbpy)3]2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [FeIIN6] first coordination shell in water (H2O) and acetonitrile (CH3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering paths enables resolving the subtle difference in the photoexcited structures of an FeII complex in two solvents for the first time. Compared to the low spin (LS) 1A1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T2 state are found to be 0.181 . 0.003 Å in H2O and 0.199 . 0.003 Å in CH3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H2O than in CH3CN for the HS excited state. Our studies demonstrate that, although the metal center of [FeII(mbpy)3]2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.

  5. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  6. High-order standing spin wave modes in Fe{sub 19}Ni{sub 81} micron wire observed by homodyne method

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A; Motoi, K; Miyajima, H [Department of Physics, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Uchiyama, T [Department of Electrical Engineering and Computer, Nagoya University, Chikusaku, Nagoya 464-8603 (Japan); Utsumi, Y, E-mail: yamaguch@phys.keio.ac.jp [Laboratory of Advanced Science and Technology fro Industry, University of Hyogo, Koto, Ako, Hyogo 678-1205 (Japan)

    2011-01-01

    The broadband spin dynamics of patterned ferromagnetic Fe{sub 19}Ni{sub 81} microwire with thickness of 80 nm has been investigated experimentally using broadband rectifying method. The rectifying effect provides a highly sensitive method to detect the high-order perpendicular standing spin wave (PSSW) mode. Present analytical calculation reproduces the observed relation between resonance frequency and applied magnetic field. The effective thickness is explained by the pinning condition of magnetic moment at the surface of the wire.

  7. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    Abstract. We review experimental results on baryon production at mid-rapidity in nucleus–nucleus collisions at RHIC. Outstanding physics issues include the mechanism for baryon–anti-baryon pro- duction from thermally equilibrated partons, the dynamics of baryon number transport and the evolu- tion dynamics of baryons ...

  8. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated....... The results show that at high temperatures, mostly aliphatic radicals (g = 2.0026-2.0028) and PAH radicals (g = 2.0027e2.0031) were formed....

  9. Higher Spin Matrix Models

    Directory of Open Access Journals (Sweden)

    Mauricio Valenzuela

    2017-10-01

    Full Text Available We propose a hybrid class of theories for higher spin gravity and matrix models, i.e., which handle simultaneously higher spin gravity fields and matrix models. The construction is similar to Vasiliev’s higher spin gravity, but part of the equations of motion are provided by the action principle of a matrix model. In particular, we construct a higher spin (gravity matrix model related to type IIB matrix models/string theory that have a well defined classical limit, and which is compatible with higher spin gravity in A d S space. As it has been suggested that higher spin gravity should be related to string theory in a high energy (tensionless regime, and, therefore to M-Theory, we expect that our construction will be useful to explore concrete connections.

  10. Spin conversion of cytochrome b{sub 559} in photosystem II induced by exogenous high potential quinone

    Energy Technology Data Exchange (ETDEWEB)

    Kropacheva, Tatyana N.; Feikema, W. Onno; Mamedov, Fikret; Feyziyev, Yashar; Styring, Stenbjorn; Hoff, Arnold J

    2003-11-01

    The spin-state of cytochrome b{sub 559} (Cyt b{sub 559}) was studied in photosystem II (PSII) membrane fragments by low-temperature EPR spectroscopy. Treatment of the membranes with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) converts the native low-spin (LS) form of Cyt b{sub 559} to the high-spin (HS) form characterized with the g= 6.19 and g= 5.95 split signal. The HS Cyt b{sub 559} was pH dependent with the amplitude increasing toward more acidic pH values (pH 5.5-8.5). The HS state was not photochemically active upon 77 and 200 K continuous illumination under our conditions and was characterized by a low reduction potential ({<=}0 V). It was also demonstrated that DDQ treatment damages the oxygen evolving complex, leading to inhibition of oxygen evolution, decrease of the S{sub 2}-state EPR multiline signal and release of Mn{sup 2+}. In parallel, studies of model systems containing iron(III) protoporphyrin IX chloride (Fe{sup III}Por), which is a good model compound for the Cyt b{sub 559} prosthetic group, were performed by using optical and EPR spectroscopy. The interaction of Fe{sup III}Por with imidazole (Im) in weakly polar solvent results in formation of bis-imidazole coordinated heme iron (Fe{sup III}Por Im{sub 2}) which mimic the bis-histidine axial ligation of Cyt b{sub 559}. The reaction of DDQ with the LS Fe{sup III}Por Im{sub 2} complex leads to its transformation into the HS state (g{sub perpendicular}=5.95, g{sub parallel}=2.00). It was shown that the spin conversion occurs due to the donor-acceptor interaction of coordinated imidazole with this high-potential quinone causing the displacement of imidazole from the axial position. The similar mechanism of DDQ-induced spin change is assumed to be valid for the native membrane Cyt b{sub 559} in PSII centers.

  11. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  12. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Kavokin, K. V.; Glazov, M. M. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Ioffe Institute, Russian Academy of Sciences, 26 Polytechnicheskaya, St.-Petersburg 194021 (Russian Federation); Vladimirova, M.; Scalbert, D.; Cronenberger, S. [Laboratoire Charles Coulomb UMR 5221 CNRS/Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 05 (France); Kavokin, A. V. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); School of Physics and Astronomy, University of Southampton, SO17 1NJ Southampton (United Kingdom); Lemaître, A.; Bloch, J. [Laboratoire de Photonique et de Nanostructures, UPR CNRS, Route de Nozay, 91460 Marcoussis (France)

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  13. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1-xFx measured by muon spin rotation.

    Science.gov (United States)

    Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C

    2008-08-29

    Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).

  14. Baryon number fluctuations in quasi-particle model

    National Research Council Canada - National Science Library

    Zhao, Ameng; Luo, Xiaofeng; Zong, Hongshi

    2017-01-01

    .... According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of the quark–gluon plasma...

  15. Baryon production in $e^{+}e^{-}$-annihilation at PETRA

    CERN Document Server

    Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Prosper, H B; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nozaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C

    1981-01-01

    Data on p and Lambda production by e/sup +/e/sup -/-annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.

  16. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  17. THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z {approx} 2-3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Rudie, Gwen C.; Steidel, Charles C.; Trainor, Ryan F. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Rakic, Olivera [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Bogosavljevic, Milan [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Pettini, Max [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Reddy, Naveen [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Shapley, Alice E. [Department of Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90024 (United States); Erb, Dawn K. [Department of Physics, University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); Law, David R., E-mail: gwen@astro.caltech.edu [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto M5S 3H4, Ontario (Canada)

    2012-05-01

    We present results from the Keck Baryonic Structure Survey (KBSS), a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes, focusing particularly on scales from {approx}50 kpc to a few Mpc. The KBSS is optimized for the redshift range z {approx} 2-3, combining S/N {approx}100 Keck/HIRES spectra of 15 of the brightest QSOs in the sky at z {approx_equal} 2.5-2.9 with very densely sampled galaxy redshift surveys within a few arcmin of each QSO sightline. In this paper, we present quantitative results on the distribution, column density, kinematics, and absorber line widths of neutral hydrogen (H I) surrounding a subset of 886 KBSS star-forming galaxies with 2.0 {approx}< z {approx}< 2.8 and with projected distances {<=}3 physical Mpc from a QSO sightline. Using Voigt profile decompositions of the full Ly{alpha} forest region of all 15 QSO spectra, we compiled a catalog of {approx}6000 individual absorbers in the redshift range of interest, with 12 {<=} log (N{sub HI}) {<=}21. These are used to measure H I absorption statistics near the redshifts of foreground galaxies as a function of projected galactocentric distance from the QSO sightline and for randomly chosen locations in the intergalactic medium (IGM) within the survey volume. We find that N{sub HI} and the multiplicity of velocity-associated H I components increase rapidly with decreasing galactocentric impact parameter and as the systemic redshift of the galaxy is approached. The strongest H I absorbers within {approx_equal} 100 physical kpc of galaxies have N{sub HI} {approx}3 orders of magnitude higher than those near random locations in the IGM. The circumgalactic zone of most significantly enhanced H I absorption is found within transverse distances of {approx}< 300 kpc and within {+-}300 km s{sup -1} of galaxy systemic redshifts. Taking this region as the defining bounds of the

  18. Multiple-quantum magic-angle spinning: high-resolution solid state NMR spectroscopy of half-integer quadrupolar nuclei

    CERN Document Server

    Goldbourt, A

    2002-01-01

    Experimental and theoretical aspects of the multiple-quantum magic-angle spinning experiment (MQMAS) are discussed in this review. The significance of this experiment, introduced by Frydman and Harwood, is in its ability to provide high-resolution NMR spectra of half-integer quadrupolar nuclei (I /geq 3/2). This technique has proved to be useful in various systems ranging from inorganic materials to biological samples. This review addresses the development of various pulse schemes aimed at improving the signal-to-noise ratio and anisotropic lineshapes. Representative spectra are shown to underscore the importance and applications of the MQMAS experiment. Refs. 97 (author)

  19. Low-lying levels and high-spin band structures in sup 1 sup 0 sup 2 Rh

    CERN Document Server

    Gizon, J; Timar, J; Cata-Danil, G; Nyakó, B M; Zolnai, L; Boston, A J; Joss, D T; Paul, E S; Semple, A T; O'Brien, N J; Parry, C M; Bucurescu, D; Brant, S; Paar, V

    1999-01-01

    Levels in sup 1 sup 0 sup 2 Rh have been populated in the reaction sup 7 sup 0 Zn+ sup 3 sup 6 S at 130 MeV. The level structure of sup 1 sup 0 sup 2 Rh has been investigated using the EUROGAM II array. Low-lying states and four high-spin bands have been identified. The configurations of low-lying levels and two-quasiparticle bands are interpreted in the frame of the interacting boson-fermion-fermion model. The four observed band structures are also compared with cranked shell model calculations using a modified oscillator potential.

  20. Low-mode averaging for baryon correlation functions

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2005-01-01

    The low-mode averaging technique is a powerful tool for reducing large fluctuations in correlation functions due to low-mode eigenvalues of the Dirac operator. In this work we propose a generalization to baryons and test our method on two-point correlation functions of left-handed nucleons, computed with quenched Neuberger fermions on a lattice with extension L=1.5 fm. We show that the statistical fluctuations can be reduced and the baryon signal significantly improved.

  1. Study of compressed baryonic matter at FAIR: JINR participation

    Science.gov (United States)

    Derenovskaya, O.; Kurilkin, P.; Gusakov, Yu.; Ivanov, V.; Ladygin, V.; Ladygina, N.; Malakhov, A.; Peshekhonov, V.; Zinchenko, A.

    2017-11-01

    The scientific goal of the CBM (Compressed Baryonic Matter) experiment at FAIR (Darmstadt) is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The results of JINR participation in the development of different sub-projects of the CBM experiment are presented.

  2. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  3. Observation of Two Excited Charmed Baryons Decaying into lambda(c)+ pi+-

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, Colin P.

    2003-05-19

    Using data recorded by the CLEO-II detector at CESR, we report evidence of a pair of excited charmed baryons, one decaying into {Lambda}{sub c}{sup +} {pi}{sup +} and the other into {Lambda}{sub c}{sup +}{pi}{sup -}. The doubly charged state has a measured mass difference M({Lambda}{sub c}{sup +} {pi}{sup +}) - M({Lambda}{sub c}{sup +}) of 234.5 {+-} 1.1 {+-} 0.8 MeV and a width of 17.9{sub -3.2}{sup +3.8} {+-} 4.0 MeV, and the neutral state has a measured mass difference M({Lambda}{sub c}{sup +}{pi}{sup -}) - M({Lambda}{sub c}{sup +}) of 232.6 {+-} 1.0 {+-} 0.8 MeV and a width of 13.0{sub -3.0}{sup +3.7} {+-} 4.0 MeV. We identify these states as {Sigma}*{sub c}{sup ++} and {Sigma}*{sub c}{sup 0}, the spin 3/2{sup +} excitations of the {Sigma}{sub c} baryons.

  4. Observation of Two Excited Charmed Baryons Decaying into lambda(c)+ pi+-

    CERN Document Server

    Jessop, C P

    2003-01-01

    Using data recorded by the CLEO-II detector at CESR, we report evidence of a pair of excited charmed baryons, one decaying into LAMBDA sub c sup + pi sup + and the other into LAMBDA sub c sup +pi sup -. The doubly charged state has a measured mass difference M(LAMBDA sub c sup + pi sup +) - M(LAMBDA sub c sup +) of 234.5 +- 1.1 +- 0.8 MeV and a width of 17.9 sub - sub 3 sub . sub 2 sup + sup 3 sup . sup 8 +- 4.0 MeV, and the neutral state has a measured mass difference M(LAMBDA sub c sup +pi sup -) - M(LAMBDA sub c sup +) of 232.6 +- 1.0 +- 0.8 MeV and a width of 13.0 sub - sub 3 sub . sub 0 sup + sup 3 sup . sup 7 +- 4.0 MeV. We identify these states as SIGMA* sub c sup + sup + and SIGMA* sub c sup 0 , the spin 3/2 sup + excitations of the SIGMA sub c baryons.

  5. Intra-arterial high signals on arterial spin labeling perfusion images predict the occluded internal carotid artery segment

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, Shu; Satomi, Junichiro; Tada, Yoshiteru; Kanematsu, Yasuhisa; Kuwayama, Kazuyuki; Yagi, Kenji; Yoshioka, Shotaro; Mizobuchi, Yoshifumi; Mure, Hideo; Yamaguchi, Izumi; Kitazato, Keiko T.; Nagahiro, Shinji [Tokushima University Graduate School, Department of Neurosurgery, Tokushima (Japan); Abe, Takashi; Harada, Masafumi [Tokushima University Graduate School, Department of Radiology, Tokushima (Japan); Yamamoto, Nobuaki; Kaji, Ryuji [Tokushima University Graduate School, Department of Clinical Neurosciences, Institute of Biomedical Biosciences, Tokushima (Japan)

    2017-06-15

    Arterial spin labeling (ASL) involves perfusion imaging using the inverted magnetization of arterial water. If the arterial arrival times are longer than the post-labeling delay, labeled spins are visible on ASL images as bright, high intra-arterial signals (IASs); such signals were found within occluded vessels of patients with acute ischemic stroke. The identification of the occluded segment in the internal carotid artery (ICA) is crucial for endovascular treatment. We tested our hypothesis that high IASs on ASL images can predict the occluded segment. Our study included 13 patients with acute ICA occlusion who had undergone angiographic and ASL studies within 48 h of onset. We retrospectively identified the high IAS on ASL images and angiograms and recorded the occluded segment and the number of high IAS-positive slices on ASL images. The ICA segments were classified as cervical (C1), petrous (C2), cavernous (C3), and supraclinoid (C4). Of seven patients with intracranial ICA occlusion, five demonstrated high IASs at C1-C2, suggesting that high IASs could identify stagnant flow proximal to the occluded segment. Among six patients with extracranial ICA occlusion, five presented with high IASs at C3-C4, suggesting that signals could identify the collateral flow via the ophthalmic artery. None had high IASs at C1-C2. The mean number of high IAS-positive slices was significantly higher in patients with intra- than extracranial ICA occlusion. High IASs on ASL images can identify slow stagnant and collateral flow through the ophthalmic artery in patients with acute ICA occlusion and help to predict the occlusion site. (orig.)

  6. Phenomenological sizes of confinement regions in baryons

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E.; Klimt, S.; Weise, W.; Rho, M.

    1988-10-01

    Standard order of magnitude estimates from QCD indicate that the radius of the quark-gluon core in the nucleon is ..lambda../sup -1//sub QCD/ > or approx. 1 fm. However, in work with the chiral bag model, we have found that the effective confinement size for low energy reactions can be as small as approx. = 1/2 fm or smaller. This shrinking of the effective confinement size has been attributed to the pressure of the pion cloud surrounding the quark core. The concept of confinement size is evidently subtle in light-quark systems, due to the chiral vacuum structure. This is indicated by the 'Cheshire Cat' phenomenon, in which physical observables tend to be insensitive to the bag radius R. We suggest that when strange quarks are present, a qualitative change occurs in the Cheshire Cat picture; in particular, we propose that strangeness provides an obstruction to this picture. We present a phenomenological indication that when strange quarks are present, the bag radius R is frozen at a value substantially larger than 0.5 fm by as much as a factor of two. Roughly speaking, the Cheshire Cat picture emerges from a near cancellation between repulsive quark kinetic and attractive pion-cloud energies in the case of the nucleon. In the ..lambda.. and ..sigma.. particles, however, replacement of one up or down quark by a strange quark removes part of the attraction from the coupling of the quarks to the pion cloud. This upsets the balance needed for the Cheshire Cat phenomenon and makes larger strange baryons more favorable energetically than the 0.5 fm ones appropriate for pure u- and d-systems. We find that magnetic moments of strange baryons favor a bag radius R approx. = 1.1 fm. We find that the excited states of the ..lambda..-hyperons favor similarly large bag radii. Somewhat less convincingly, due to perturbative effects - the bag radius appropriate to the ..delta..(1232) lies intermediate between that of the nucleon and of the stran

  7. Study of ψ(3770 decaying to baryon anti-baryon pairs

    Directory of Open Access Journals (Sweden)

    Li-Gang Xia

    2016-05-01

    Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.

  8. Energy distributions at the high-spin ferric sites in myoglobin crystals.

    Science.gov (United States)

    Fiamingo, F G; Brill, A S; Hampton, D A; Thorkildsen, R

    1989-01-01

    The orientation and temperature dependence (4.2-2.5 K) of electron paramagnetic resonance (EPR) power saturation and spin-lattice relaxation rate, and the orientation dependence of signal linewidth, were measured in single crystals of the aquo complex of ferric sperm whale skeletal muscle myoglobin. The spin-packet linewidth was found to be temperature independent and to vary by a factor of seven within the heme plane. An analysis is presented which enables one to arrive at (a) hyperfine component line-widths and, from the in-plane angular variation of the latter, at (b) the widths of distributions in energy differences between low-lying electronic levels and (c) the angular spread in the in-plane principal g-directions. The values of the energy level distributions in crystals obtained from the measurements and analysis reported here are compared with those obtained by a different method for the same protein complex in frozen solution. The spread in the rhombic energy splitting is significantly greater in solution than in the crystal. PMID:2539208

  9. Analytical high-order post-Newtonian expansions for spinning extreme mass ratio binaries

    CERN Document Server

    Kavanagh, Chris; Wardell, Barry

    2016-01-01

    We present an analytic computation of Detweiler's redshift invariant for a point mass in a circular orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no assumptions on the magnitude of the spin of the black hole. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi, and employs a rigorous mode-sum regularization prescription based on the Detweiler-Whiting singular-regular decomposition. The approximations used in our approach are minimal; we use the standard self-force expansion to linear order in the mass ratio, and the standard post-Newtonian expansion in the separation of the binary. A key advantage of this approach is that it produces expressions that include contributions at all orders in the spin of the Kerr black hole. While this work applies the method to the specific case of Detweiler's redshift invariant, it can be readily extended to other gauge invariant quantities and to higher post-Newtonian orders.

  10. Effects of impurities and vortices on the low-energy spin excitations in high-Tc materials

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Schmid, M.

    2011-01-01

    a quasi-long range ordered state. When correlations are sufficiently strong, disorder is unimportant for the generation of static magnetism but plays an additional role of pinning disordered stripe configurations. We calculate the spin excitations in a disordered spin-density wave phase, and show how...... disorder and/or applied magnetic fields lead to a slowing down of the dynamical spin fluctuations in agreement with neutron scattering and muon spin rotation (mSR) experiments....

  11. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  12. Light-Front Holography and Gauge/Gravity Duality: The Light Meson and Baryon Spectra

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

    2009-12-09

    Starting from the bound state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability amplitudes of the hadronic constituents at a given scale. An effective classical gravity description in a positive-sign dilaton background exp(+{kappa}{sup 2}z{sup 2}) is given for the phenomenologically successful soft-wall model which naturally encodes the internal structure of hadrons and their orbital angular momentum. Applications to the light meson and baryon spectrum are presented.

  13. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  14. The Photon-Baryon Governed Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2012-01-01

    Full Text Available In a previous paper we postulated that the repulsive force responsible for the universal expansion is associated with the excitation of the empty space (quantum vacuum and the excitation energy is represented by the energy of the cosmic microwave background (CMB. In this paper, we show that the concept of the repulsive space expanding photon field (i can successfully be applied to explain the local velocity anomaly of the Milky Way Galaxy as shown by Faber and Burstein (1998 and Tully (1998, (ii offers a convincing explanation of the still disputed question of the cosmological expansion on local and intergalactic scales discussed by Cooperstock et al. (1998, and (iii explains the redshift (RS of the CMB in accordance with the law of energy conservation without the need for dark matter (DM and dark energy (DE. Probably the most remarkable result of this model (abbreviated as photon/baryon: PB model in the following discussion is that the individual voids building up the soup-bubble- (SB- like galaxy distribution are the governing dynamical components of the universal expansion. Further consequence implies that the universe is considerably older than the interpretation of the Hubble constant as expansion velocity suggests.

  15. Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Wein, Philipp

    2016-05-06

    In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.

  16. Chemical freeze-out in heavy ion collisions at large baryon densities

    CERN Document Server

    Floerchinger, Stefan

    2012-01-01

    We argue that the chemical freeze-out in heavy ion collisions at high baryon density is not associated to a phase transition or rapid crossover. We employ the linear nucleon-meson model with parameters fixed by the zero-temperature properties of nuclear matter close to the liquid-gas quantum phase transition. For the parameter region of interest this yields a reliable picture of the thermodynamic and chiral properties at non-zero temperature. The chemical freeze-out observed in low-energy experiments occurs when baryon densities fall below a critical value of about 15 percent of nuclear density. This region in the phase diagram is far away from any phase transition or rapid crossover.

  17. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  18. Study of spin-exchange optically pumped {sup 3}He cells with high polarisation and long lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, S.R. [Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF (United Kingdom); ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: s.r.parnell@sheffield.ac.uk; Babcock, E. [Insitut Laue-Langevin, 6, rue J. Horowitz, F-38042 Grenoble Cedex 9 (France); Nuenighoff, K. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany); Skoda, M.W.A.; Boag, S. [ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Masalovich, S. [Neutronenforschungsquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr, 1, 85747 Garching (Germany); Chen, W.C. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Georgii, R. [Neutronenforschungsquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr, 1, 85747 Garching (Germany); Wild, J.M. [Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF (United Kingdom); Frost, C.D. [ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2009-01-21

    We present a detailed investigation into {sup 3}He neutron spin filter cells polarised by spin exchange optical pumping (SEOP). We include measurements of the absolute {sup 3}He polarisation using neutron transmission and characterisation of both the X-factor and {sup 3}He relaxation times (T{sub 1}) for a number of cells. For one cell we calculated a maximum {sup 3}He polarisation of 79% with a T{sub 1} of 633 h. The measured X-factor of this cell, X=0.17{+-}0.01, is low. For all cells polarisations of >71% are observed. In addition we present {sup 3}He relaxation data for a new design of magneto-static cavity with a field of high homogeneity {delta}B/B{sub 0}{approx}3.5x10{sup -4}cm{sup -1}. This compact device provides a magnetic field in an orientation suitable for in situ optical pumping that minimises the field inhomogeneity contribution to the T{sub 1} to 930 h in a 1 bar cell, the longest reported on beam thus far. The results suggest that high {sup 3}He polarisation with long relaxation times can now be routinely obtained with SEOP, enabling time independent incident beam polarisation to be easily implemented across many different neutron scattering instruments.

  19. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  20. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  1. Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2016-02-01

    Full Text Available We measured the longitudinal double spin asymmetries ALL for single hadron muoproduction off protons and deuterons at photon virtuality Q2<1(GeV/c2 for transverse hadron momenta pT in the range 1 GeV/c to 4 GeV/c. They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/c or 200 GeV/c impinging on polarised 6LiD or NH3 targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05

  2. Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high $p_T$

    CERN Document Server

    Adolph, C; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Chang, W-C; Chiosso, M; Choi, I; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr , M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giordano, F; Gnesi, I; Gorzellik, M; Grabmüller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; von Harrach, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Horikawa, N; d'Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Joosten, R; Jörg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marchand, C; Marianski, B; Martin, A; Marzec, J; Matoušek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Montuenga, P; Nagaytsev, A; Nerling, F; Neyret, D; Nikolaenko, V I; Nový, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pešek, M; Peshekhonov, D V; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tessaro, S; Tessarotto, F; Thibaud, F; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A

    2016-01-01

    We measured the longitudinal double spin asymmetries $A_{LL}$ for single hadron muo-production off protons and deuterons at photon virtuality $Q^2$ < 1(GeV/$\\it c$)$^2$ for transverse hadron momenta $p_T$ in the range 0.7 GeV/$\\it c$ to 4 GeV/$\\it c$ . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/$\\it c$ or 200 GeV/$\\it c$ impinging on polarised $\\mathrm{{}^6LiD}$ or $\\mathrm{NH_3}$ targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation $\\Delta G$ inside the nucleon in the range of the nucleon momentum fraction carried by gluons $0.05 < x_g < 0.2$.

  3. Pressure-induced hysteresis in the high spin {r_reversible} low spin transition in bis(2,4-bis(pyridin-2-yl)thiazole) iron(II) tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, A; Ksenofontov, V; Guetlich, P [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universitaet, D-55099 Mainz (Germany); Goodwin, H A [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia)], E-mail: ashis.bhattacharjee@visva-bharati.ac.in, E-mail: guetlich@uni-mainz.de

    2009-01-14

    Studies of the spin transition behavior of the mononuclear compound [Fe(pythiaz){sub 2}](BF{sub 4}){sub 2} have been carried out under hydrostatic pressures up to 9.13 kbar in the 5-300 K temperature range. Under ambient pressure this compound exhibits an approximately half-step (incomplete) HS {r_reversible} LS transition with T{sub 1/2} = 146 K without any thermal hysteresis. At pressures up to 4.5 kbar the behavior remains similar but with an upward displacement of T{sub 1/2} and a slight decrease in the residual high spin fraction at low T. Application of higher pressures resulted in an almost complete two-step spin transition with several unusual pressure effects. Along with the expected pressure dependence of T{sub 1/2} the surprising appearance of hysteresis in the spin transition curves was observed. It is suggested that the likely origin of this unprecedented behavior is a pressure-induced structural change.

  4. Pressure-induced hysteresis in the high spin [Formula: see text] low spin transition in bis(2,4-bis(pyridin-2-yl)thiazole) iron(II) tetrafluoroborate.

    Science.gov (United States)

    Bhattacharjee, A; Ksenofontov, V; Goodwin, H A; Gütlich, P

    2009-01-14

    Studies of the spin transition behavior of the mononuclear compound [Fe(pythiaz)(2)](BF(4))(2) have been carried out under hydrostatic pressures up to 9.13 kbar in the 5-300 K temperature range. Under ambient pressure this compound exhibits an approximately half-step (incomplete) HS [Formula: see text] LS transition with T(1/2) = 146 K without any thermal hysteresis. At pressures up to 4.5 kbar the behavior remains similar but with an upward displacement of T(1/2) and a slight decrease in the residual high spin fraction at low T. Application of higher pressures resulted in an almost complete two-step spin transition with several unusual pressure effects. Along with the expected pressure dependence of T(1/2) the surprising appearance of hysteresis in the spin transition curves was observed. It is suggested that the likely origin of this unprecedented behavior is a pressure-induced structural change.

  5. Spin-flipping polarized electrons

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2001-10-01

    Full Text Available We recently used a prototype rf dipole magnet to study the spin flipping of a 669 MeV horizontally polarized electron beam stored in the presence of a nearly full Siberian snake in the new MIT-Bates storage ring. We flipped the spin by ramping the rf dipole's frequency through an rf-induced depolarizing resonance. After optimizing the frequency ramp parameters, we used multiple spin flipping to measure a spin-flip efficiency of 94.5±2.5%. The spin-flip efficiency was apparently limited by the field strength in the air-core prototype rf dipole magnet. This unexpectedly high efficiency indicates that very efficient spin flipping of the ring's stored polarized electron beam should be possible using the much stronger ferrite spin flipper, which is now being built by the University of Michigan's Spin Physics Center.

  6. Control over the magnetism and transition between high- and low-spin states of an adatom on trilayer graphene.

    Science.gov (United States)

    Zheng, Anmin; Gao, Guoying; Huang, Hai; Gao, Jinhua; Yao, Kailun

    2017-05-31

    Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

  7. Spin-glass behavior in YCo 10- xNi xSi 2 with high Ni content

    Science.gov (United States)

    Tang, H.; Qiao, G. W.; Liu, J. P.; Sellmyer, D. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-02-01

    The magnetic properties and the structure of YCo 10- xNi xSi 2 alloys with high Ni content have been investigated by means of measurements of X-ray diffraction, dc magnetization and ac-susceptibility. The samples are basically of single phase (with x=6, 7, 8, 8.5, 9, 10) and adopt the ThMn 12 type structure. With x≤7.0, the samples show ferromagnetic behavior below the Curie temperatures. For compounds YCo 2Ni 8Si 2 and YCo 1.5Ni 8.5Si 2, the ac-susceptibility and dc zero-field cooling (ZFC) M( T) curve show a cusp with decreasing temperature, and the dc ZFC and field cooling (FC) M( T) curves in lower fields exhibit thermal irreversibility at low temperatures. The magnetization curves at temperatures below the cusp temperature on the ZFC branches do not saturate in the field range of H≤55 kOe. Furthermore, the hysteresis loops at temperatures below the cusp temperature exhibit no coercivity after ZFC. All these features suggest a spin-glass ordering of the compounds YCo 10- xNi xSi 2 with x equal to 8 and 8.5. The spin-glass behavior can be understood in terms of a competition between ferromagnetic interactions involving close Co-Co neighbors and antiferromagnetic interactions involving more remote Co-Co neighbors.

  8. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  9. Antiferromagnetic Spin Seebeck Effect.

    Science.gov (United States)

    Wu, Stephen M; Zhang, Wei; Kc, Amit; Borisov, Pavel; Pearson, John E; Jiang, J Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-04

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9  T) are applied parallel to the easy axis of the MnF_{2} thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  10. Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD

    Science.gov (United States)

    Elliot-Ripley, Matthew

    2015-07-01

    The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.

  11. Discovery of the doubly charmed baryon $\\Xi_{cc}^{++}$ at LHCb

    CERN Document Server

    Spradlin, Patrick

    2017-01-01

    The LHCb collaboration announced the first observation of the doubly charmed baryon $\\Xi_{cc}^{++}$, which was discovered decaying to a $\\Lambda_{c}^{+}K^{-}\\pi^{+}\\pi^{+}$ final state. A highly significant structure is found in the $\\Lambda_{c}^{+}K^{-}\\pi^{+}\\pi^{+}$ mass spectrum in proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 13 TeV and 8 TeV. The peak contains $313 \\pm 33$ decays in the 13 TeV sample and $113 \\pm 21$ decays in the 8 TeV, with local significances in excess of $12\\sigma$ and $7\\sigma$ respectively. The narrow structure has a width that is consistent with experimental resolution, and its properties are consistent with those of a weakly decaying state and inconsistent with those of a strongly decaying state. The difference between the masses of the structure, identified as $\\Xi_{cc}^{++}$, and the $\\Lambda_{c}^{+}$ baryon is $1334.94 \\pm 0.72(\\mbox{stat.}) \\pm 0.27(\\mbox{syst.})\\,\\mbox{MeV}/c^{2}$, and the mass of the $\\Xi_{cc}^{++}$ baryon ...

  12. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  14. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    Science.gov (United States)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.

  15. Spin multiplicities

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)

    2017-02-05

    The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.

  16. Spinning Them Off: Entrepreneuring Practices in Corporate Spin-Offs

    Directory of Open Access Journals (Sweden)

    Katja Maria Hydle

    2016-01-01

    Full Text Available This paper focuses on the practices between parent and child firms in corporate spinoffs. We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs. The practices associated with spinning off are solving problems, involving multidisciplinary expertise and entrepreneuring management at the parent firm. We contribute to the spin-off literature by discussing the knowledge required for successfully spinning off child firms and to practice theory by empirically uncovering the practical understanding involved in the origin and perpetuation of an organization.

  17. Development of high heat resistant polyphenols applied to the spin-on carbon hardmask

    Science.gov (United States)

    Takigawa, Tomoaki; Horiuchi, Junya; Uchiyama, Naoya; Okada, Kana; Shimizu, Yoko; Makinoshima, Takashi; Sato, Takashi; Echigo, Masatoshi

    2017-03-01

    In this paper, we report on new polyphenols synthesized by the condensation compounds of phenols and aldehydes. The phenols were 4,4'-biphenol, 2,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene. The aldehydes were 4- phenylbenzaldehyde and 4,4'-biphenyldicarbaldehyde. And we evaluated basic properties for the Spin-On Carbon Hardmask [1]. We recognized 4,4'-biphenol was showed good applicability to the best raw material of the phenols for polyphenol, and 2,6-dihydroxynaphthalene was showed good applicability to better raw material for polyphenol than 2,7-dihydroxynaphthalene. 4,4'-biphenyldicaraldehyde was better raw material of the aldehydes for polyphenols than 4- phenylbenzaldehyde, in solubility. As for heat resistance, 2,6-dihydroxynaphthalene was the best raw material of the phenols for polyphenols, 2,7-dihydroxynaphthalene was better raw material for polyphenols than 4,4'-biphenol. However, NF7177 synthesized by the condensation of 4,4'-biphenol and 4-phenylbenzaldehyde and NF7A78 synthesized by the condensation of 4,4'-biphenol and 4,4'-biphenyldicarbaldehyde seem to be crosslinking by heating, whence the heat resistance of the polyphenols using 4,4'-biphenol might be improved by optimizing heating condition. These materials are low molecular weight of less than 1000, so we expected having good planarization and gap filling.

  18. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours

    Directory of Open Access Journals (Sweden)

    Davies Nigel P

    2009-02-01

    Full Text Available Abstract Background Brain and nervous system tumours are the most common solid cancers in children. Molecular characterisation of these tumours is important for providing novel biomarkers of disease and identifying molecular pathways which may provide putative targets for new therapies. 1H magic angle spinning NMR spectroscopy (1H HR-MAS is a powerful tool for determining metabolite profiles from small pieces of intact tissue and could potentially provide important molecular information. Methods Forty tissue samples from 29 children with glial and primitive neuro-ectodermal tumours were analysed using HR-MAS (600 MHz Varian gHX nanoprobe. Tumour spectra were fitted to a library of individual metabolite spectra to provide metabolite values. These values were then used in a two tailed t-test and multi-variate analysis employing a principal component analysis and a linear discriminant analysis. Classification accuracy was estimated using a leave-one-out analysis and B632+ bootstrapping. Results Glial tumours had significantly (two tailed t-test p Conclusion HR-MAS identified key differences in the metabolite profiles of childhood brain and nervous system improving the molecular characterisation of these tumours. Further investigation of the underlying molecular pathways is required to assess their potential as targets for new agents.

  19. Double longitudinal spin asymmetries in single hadron photoproduction at high p_T at COMPASS

    CERN Document Server

    Levillain, Maxime

    This thesis presents a new study aiming at constraining the gluon contribution {\\Delta G} to the 1/2 nucleon spin. The collinear pQCD theoretical framework, on which it is based, deals with asymmetries calculated from cross-sections for single inclusive hadron in the regime of quasi-real photoproduction {Q^2 1 GeV/c). These calculations are done up to Next-to-Leading order with a foreseen inclusion of Next-to-Leading logarithm threshold gluon resummation, only performed for the unpolarised cross-sections yet. This makes the asymmetries sensitive to the gluon polarisation not only through Photon Gluon Fusion {\\gamma* g} but also through resolved {\\gamma*}g processes such as qg or gg. The measurement of the asymmetries is performed for all the COMPASS data available from 2002 to 2011 with a polarised muon beam at 160-200 GeV scattered off a longitudinally polarised target of deuteron ( {_6LiD} for 2002-2006) or proton ({NH_3} for 2007 and 2011). The asymmetries are presented in bins of pT and of pseudorapidity...

  20. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius

    2011-01-01

    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel...... temperature T-N. The ordered IC structure at the lowest temperatures is shown instead to be an elliptically polarized canted spiral for fields larger than 12 T. The transition between the two IC phases is of second order and takes place about 2 K below T-N. For mu H-0 > 16 T and temperatures below 10 K......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...

  1. Photoproduction of the. Lambda. sub c charmed baryon

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.P.; Calvino, F.; Crespo, J.M. (Universidad Autonoma de Barcelona (Spain)); Barate, R.; DiCiaccio, L.; Ferrer, A.; Giomataris, Y.; Pattison, B.; Treille, D.; Zolnierowski, Y. (European Organization for Nuclear Research, Geneva (Switzerland)); Bloch, D.; Engel, J.P.; Foucault, P.; Gerber, J.P.; Strub, R. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires Strasbourg-1 Univ., 67 (France)); Bonamy, P.; Borgeaud, P.; David, M.; Lemoigne, Y.; Magneville, C.; Primout, M.; Villet, G. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires); Burchell, M.; Burmeister, H.; Cattaneo, M.; Dixon, J.; Duane, A.; Forty, R.W.; Seez, C.; Websdale, D.M. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.); Brunet, J.M.; Poutot, D.; Triscos, P.; Tristram, G.; Volte, A. (College de France, 75 - Paris (France)); Almagne, B. d' ; Druet, P.; Krafft, C.; Lefievre, B.; Roudeau, P.; Six, J.; Wayne, M.; NA14/2 Collaboration

    1990-08-23

    In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29{plus minus}8 {Lambda}{sub c} (anti {Lambda}{sub c}) charmed-baryon and antibaryon decays in the pK{sup -}{pi}{sup +} (anti pK{sup +}{pi}{sup -}) final state. Quasi two-body final states do not contribute significantly to this channel. The mass of the {Lambda}{sub c} was measured to be 2281.7{plus minus}2.7{plus minus}2.6 MeV/c{sup 2} and its lifetime 0.18{plus minus}0.03{plus minus}0.03 ps. The ratio of {Lambda}{sub c}/D production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a {Lambda}{sub c} branching fraction in pK{pi} as high as 5%. (orig.).

  2. High frequency out-of-plane oscillation with large cone angle in mag-flip spin torque oscillators for microwave assisted magnetic recording

    Science.gov (United States)

    Bosu, S.; Sepehri-Amin, H.; Sakuraba, Y.; Kasai, S.; Hayashi, M.; Hono, K.

    2017-04-01

    We investigated spin torque induced magnetization dynamics in the mag-flip spin torque oscillators (STOs) of diameters D from 29 to 96 nm comprising of an in-plane magnetized field generation layer (FGL) Fe67Co33 (7 nm) with high saturation magnetization, μ0Ms ˜ 2.3 T, and perpendicular FePt(10 nm)/Co2FeGa0.5Ge0.5(3 nm) highly spin polarized spin injection layers. Out-of-plane high frequency, f ˜ 21-26 GHz, spin torque induced oscillation with a large cone angle in FGL was observed under nearly perpendicular external magnetic field μ0Hext of 1.1 T for the pillar D of 29 and 42 nm. Our micromagnetic simulation results indicated that ac magnetic fields of about 0.15 to 0.2 T are obtainable from the STOs having the same stacking structure and size as the experiment, which is large enough for the applications to microwave assisted magnetic recording technology.

  3. Solution spinning of high-T{sub c} oxide superconductors: part VII. The effect of polyvinyl alcohol spinning medium on the sintering of YBa{sub 2}Cu{sub 3}O{sub x} superconducting filaments

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Hisayo [Suzuka Junior College, 1250 Shono, Suzuka, Mie 513 (Japan); Goto, Tomoko; Takahashi, Kiyohisa [Department of Material Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 (Japan)

    1996-05-01

    As basic research for the solution spinning of high-T{sub c} oxide superconductor, the effect of poly(vinyl alcohol) (PVA) spinning medium on the sintering of YBa{sub 2}Cu{sub 3}O{sub x} filament was examined. A precursor filament was produced by dry-spinning starting from a homogeneous aqueous PVA solution of Y, Ba and Cu acetates. The as-drawn filament was pyrolysed to remove volatile components and sintered to generate a superconducting phase. The degree of polymerization (DP) of PVA and the content of acetates in the precursor filament affected the J{sub c} of the sintered filament. Although most filaments exhibited high J{sub c} greater than 10{sup 3} A cm{sup -3} at 77 K and 0 T, superconductivity above 77 K was not observed for the filament spun from PVA solution of DP=2450 with [acetates]/[PVA]=2 and sintered at 900 and 920{sup 0}C for 15 min. The filament had a dense structure due to liquid phase sintering. The filament with high J{sub c} had a skin-core structure, and the highest J{sub c} of 4.3x10{sup 3} A cm{sup -2} at 77 K and 0 T was attained for the filament from DP=3500 with [acetates]/[PVA]=4. (author)

  4. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  5. Baryonic resonances from the interactions of the baryon decuplet and meson octet

    Energy Technology Data Exchange (ETDEWEB)

    Oset, E.; Sarkar, S.; Vicente Vacas, M.J. [Universidad de Valencia-CSIC, Valencia (Spain). Institutos de Investigacion de Paterna. Dept. de Fisica Teorica; Instituto de Fisica Corpuscular (IFIC), Valencia (Spain). Centro Mixto

    2005-07-01

    We study S-wave interactions of the baryon decuplet with the octet of pseudoscalar mesons using the lowest order chiral Lagrangian. We find two bound states in the SU(3) limit corresponding to the octet and decuplet representations. These are found to split into eight different trajectories in the complex plane when the SU(3) symmetry is broken gradually. Finally, we are able to provide a reasonable description for a good number of 4-star 3{sup -}/2 resonances listed by the Particle Data Group. In particular, the {xi}(1820), the {lambda}(1520) and the {sigma}(1670) states are well reproduced. We predict a few other resonances and also evaluate the couplings of the observed resonances to the various channels from the residues at the poles of the scattering matrix from where partial decay widths into different channels can be evaluated. (author)

  6. Measurement of the Lifetime of b-baryons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    The average lifetime of weakly decaying $b$-baryons was studied using 3.6 million $Z^0$ hadronic decays collected by the DELPHI detector at LEP. The measurement of the proper decay time distribution of secondary vertices was used on three complementary samples. The first sample consisted of events with a fully reconstructed $\\Lambda_c^+$ and an opposite charge lepton, or an oppositely charged lepton pair accompanied by a $\\Lambda^0$. The other two samples were more inclusive, where $b$-baryon semileptonic decays were recognized by the presence of either a proton identified by the RICH detector or a $\\Lambda^0$ and a lepton of charge opposite to that of the proton. The combined result was: \\begin{eqnarray*} \\tau(b\\mathrm{-baryon}) = 1.14\\pm0.08 \\; (stat)\\pm0.04 \\; (syst) \\; \\mathrm{ps} \\; . \\end{eqnarray*} It updates and replaces all previous results published by the DELPHI collaboration.

  7. Borel sum rules for octet baryons in nuclear medium

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Y.; Morimatsu, O.

    1992-06-01

    Borel sum rules are examined for octet baryons in the nuclear medium. First, it is noticed that in the medium the dispersion relation is realized for the retarded correlation [Pi][sup R]([omega], q[sup 2]) in the energy [omega]. Then, [Pi][sup R]([omega], q[sup 2]) is split into even and odd parts of [omega] in order to apply the Borel transformation. The obtained Borel sum rules differ from those of previous works. The mass shifts of octet baryons are calculated in the leading order of the operator product expansion with linear density approximation for the condensates. It is found that both scalar and vector condensates of the quark field, and , induce attraction to the octet baryons in the medium in contrast to the results of previous works. It is also found that [delta]M[sub N] > [delta]M[sub [Lambda

  8. Excited baryons from Bayesian priors and overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    F.X. Lee; S.J. Dong; T. Draper; I. Horvath; K.F. Liu; N. Mathur; J.B. Zhang

    2003-05-01

    Using the constrained-fitting method based on Bayesian priors, we extract the masses of the two lowest states of octet and decouplet baryons with both parities. The calculation is done on quenched 163 x 28 lattices of a = 0.2 fm using an improved gauge action and overlap fermions, with the pion mass as low as 180 MeV. The Roper state N(1440)+ is clearly observed for the first time as the 1st-excited state of the nucleon from the standard interpolating field. Together with other baryons, our preliminary results indicate that the level-ordering of the low-lying baryon states on the lattice is largely consistent with experiment. The realization is helped by cross-overs between the excited + and - states in the region of mp 300 to 400 MeV.

  9. Excited state mass spectra and Regge trajectories of bottom baryons

    Science.gov (United States)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  10. Accurate initial conditions in mixed Dark Matter--Baryon simulations

    CERN Document Server

    Valkenburg, Wessel

    2017-06-01

    We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...

  11. Measurement of b-Baryons with the CDF II detector

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Joachim; /Karlsruhe U., EKP

    2007-10-01

    We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.

  12. A high-resolution fast spin-echo inversion-recovery sequence for preoperative localization of the internal globus pallidus.

    Science.gov (United States)

    Reich, C A; Hudgins, P A; Sheppard, S K; Starr, P A; Bakay, R A

    2000-05-01

    A fast spin-echo inversion-recovery (FSE-IR) sequence is described for its utility regarding surgical planning for patients with Parkinson's disease (PD) who are undergoing microelectrode-guided internal globus pallidus (GPi) ablation. Images from thirty-seven adult patients with PD were reviewed and visualization of the GPi, globus pallidus externa (GPe), and the intervening lamina was noted. High-resolution images were acquired from all patients despite the external hardware and the patients' movement disorder. In all cases, the conventional surgical trajectory, determined indirectly by a fixed measurement from the anteroposterior commissure line, was modified by the ability to visualize the GPi and optic tract directly. This sequence facilitated accurate stereotactic targeting.

  13. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  14. High-spin states and a new band based on the isomeric state in {sup 152}Nd

    Energy Technology Data Exchange (ETDEWEB)

    Yeoh, E.Y.; Wang, J.G.; Ding, H.B.; Gu, L.; Xu, Q.; Xiao, Z.G. [Tsinghua University, Department of Physics, Beijing (China); Zhu, S.J. [Tsinghua University, Department of Physics, Beijing (China); Vanderbilt University, Department of Physics, Nashville, TN (United States); Hamilton, J.H.; Ramayya, A.V.; Hwang, J.K.; Liu, S.H.; Li, K. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Yang, Y.C.; Sun, Y. [Shanghai Jiao Tong University, Department of Physcis, Shanghai (China); Luo, Y.X. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Lee, I.Y. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ma, W.C. [Mississippi State University, Department of Physics, Mississippi State, MS (United States)

    2010-08-15

    High-spin states of the neutron-rich {sup 152}Nd nucleus have been reinvestigated by measuring the prompt {gamma} -rays in the spontaneous fission of {sup 252}Cf. The ground-state band and a side negative-parity band have been updated. A new band based on the 2243.7keV isomeric state has been identified. The half-life for the isomeric state has been measured to be 63(7)ns. The projected shell model is employed to study the band structure of this nucleus. The results show that the calculated levels of the bands are in good agreement with the experimental ones, and the isomeric state and the negative-parity band are based on the proton {pi} 5/2{sup -}[532] x {pi}9/2{sup +}[404] and neutron {nu} 3/2{sup -}[521] x {nu}5/2{sup +}[642] two-quasiparticles configurations, respectively. (orig.)

  15. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  16. Mn7 species with an S = 29/2 ground state: high-frequency EPR studies of a species at the classical/quantum spin interface.

    Science.gov (United States)

    Wang, Zhenxing; van Tol, Johan; Taguchi, Taketo; Daniels, Matthew R; Christou, George; Dalal, Naresh S

    2011-11-09

    A high spin (S) compound has been synthesized whose properties straddle the interface between the classical and quantum mechanical spin descriptions. The cluster [Mn(7)O(4)(pdpm)(6)(N(3))(4)](ClO(4))(2) (Mn(7)) has an unprecedented core structure comprising an octahedral [Mn(III)(6)(μ(4)-O)(μ(3)-O)(3)(μ(3)-N(3))(4)](6+) unit with one of its faces capped by a Mn(II) ion. Magnetization and susceptibility studies indicate an S = (29/2) ground state, the maximum possible. Variable-temperature, high-frequency electron paramagnetic resonance (HF-EPR) spectra on powder and single-crystal samples of Mn(7) exhibit sharp spectral features characteristic of a quantum spin that are well resolved in a certain temperature range but which transform to a continuum of peaks characteristic of a classical spin in another; these features have been well reproduced by computer simulations. A fast Fourier transform analysis of the sharp spectral features and the low temperature EPR spectra suggests that more than one spin state are involved.

  17. Spin Electronics

    Science.gov (United States)

    2003-08-01

    spin resonance of rare earth and transition metal impurities in chalcopyrite semiconductors. They also have worked in diluted magnetic...past, the ferromagnetic injector had been a ferromagnetic metal or alloy containing 3d transition elements with fractional spin polarization of the...polarized carriers. There have been numerous attempts to inject transition metals or their alloys into semiconductors, either directly (Johnson and

  18. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  19. Baryonic matter in the lattice Gross-Neveu model

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Wenger, Urs

    2006-01-01

    We investigate the Gross-Neveu model on the lattice at finite temperature and chemical potential in the limit of an infinite number of fermion flavours. We check the universality of the continuum limit of staggered and overlap fermions at finite temperature and chemical potential. We show that at finite density a recently discovered phase of cold baryonic matter emerges as a baryon crystal from a spatially inhomogeneous fermion condensate. However, we also demonstrate that on the lattice, this new phase disappears at large coupling or in small volumes. Furthermore, we investigate unusual finite size effects that appear at finite chemical potential. Finally, we speculate on the implications of our findings for QCD.

  20. Rapid Thermalization by Baryon Injection in Gauge/Gravity Duality

    CERN Document Server

    Hashimoto, Koji; Oka, Takashi

    2011-01-01

    Using the AdS/CFT correspondence for strongly coupled gauge theories, we calculate thermalization of mesons caused by a time-dependent change of a baryon number chemical potential. On the gravity side, the thermalization corresponds to a horizon formation on the probe flavor brane in the AdS throat. Since heavy ion collisions are locally approximated by a sudden change of the baryon number chemical potential, we discuss implication of our results to RHIC and LHC experiments, to find a rough estimate of rather rapid thermalization time-scale t_{th} < 1 [fm/c]. We also discuss universality of our analysis against varying gauge theories.

  1. Exotic spin phases in the one-dimensional spin-1/2 quantum magnet LiCuSbO{sub 4} as seen by high-field NMR and ESR spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Iakovleva, Margarita [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Zavoisky Physical Technical Institute, Kazan (Russian Federation); Grafe, Hans-Joachim; Kataev, Vladislav; Alfonsov, Alexey; Sturza, Mihai I.; Wurmehl, Sabine [IFW Dresden, Dresden (Germany); Vavilova, Evgeniia [Zavoisky Physical Technical Institute, Kazan (Russian Federation); Nojiri, Hiroyuki [Institute of Materials Research, Sendai (Japan); Buechner, Bernd [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany)

    2016-07-01

    We will present our recent results of high-field NMR and sub-THz ESR studies of the quantum magnet LiCuSbO{sub 4} (LCSO) that presents an excellent model system of a one-dimensional spin-1/2 quantum magnet with frustrated exchange interactions. Such networks are predicted to exhibit a plethora of novel ground states beyond classical ferro- or antiferromagnetic phases. In LCSO the absence of a long-range magnetic order down to sub-Kelvin temperatures is suggestive of the realization of a quantum spin liquid state. Our NMR and ESR measurements in strong magnetic fields up to 16 Tesla reveal clear indications for the occurrence of an exotic field-induced hidden phase which we will discuss in terms of multipolar physics.

  2. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  3. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  4. Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Sergey A Siletsky

    Full Text Available Cytochrome bd-I is one of the three proton motive force-generating quinol oxidases in the O2-dependent respiratory chain of Escherichia coli. It contains one low-spin haem (b558 and the two high-spin haems (b595 and d as the redox-active cofactors. In order to examine the flash-induced intraprotein reverse electron transfer (the so-called ''electron backflow'', CO was photolyzed from the ferrous haem d in one-electron reduced (b5583+b5953+d2+-CO cytochrome bd-I, and the fully reduced (b5582+b5952+d2+-CO oxidase as a control. In contrast to the fully reduced cytochrome bd-I, the transient spectrum of one-electron reduced oxidase at a delay time of 1.5 μs is clearly different from that at a delay time of 200 ns. The difference between the two spectra can be modeled as the electron transfer from haem d to haem b595 in 3-4% of the cytochrome bd-I population. Thus, the interhaem electron backflow reaction induced by photodissociation of CO from haem d in one-electron reduced cytochrome bd-I comprises two kinetically different phases: the previously unnoticed fast electron transfer from haem d to haem b595 within 0.2-1.5 μs and the slower well-defined electron equilibration with τ ~16 μs. The major new finding of this work is the lack of electron transfer at 200 ns.

  5. Nuclear inelastic scattering of 1D polymeric Fe(II) complexes of 1,2,4-aminotriazole in their high-spin and low-spin state

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Juliusz A., E-mail: wolny@physik.uni-kl.de; Rackwitz, Sergej [University of Kaiserslautern, Department of Physics (Germany); Achterhold, Klaus [Technische Universitaet Muenchen, Department of Physics (Germany); Muffler, Kai; Schuenemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2012-03-15

    The vibrational properties of Fe(II) 1D spin crossover polymers have been characterized by nuclear inelastic scattering (NIS). The complexes under study were the tosylate and perchlorate salts of ([Fe(4-amino-1,2,4-triazole){sub 3}] <{sup +2}){sub n} complexes. The complexes have LS (S = 0) marker bands in the range of 300-500 cm{sup - 1}, while the marker bands corresponding to the HS (S = 2) state are detected between 200 cm{sup - 1} and 300 cm{sup - 1}, in line with the decreasing Fe-N bond strengths during the transition from LS to HS. Accompanying DFT calculations using the functional B3LYP and the basis set CEP-31G confirm these assignments.

  6. Singly and Doubly Charmed $J=1/2$ Baryon Spectrum from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liuming [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Univ. of Washington, Seattle, WA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2010-05-01

    We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our heavy-quark action and as a guide to understanding the discretization errors associated with the heavy quark. Our results are in good agreement with experiment within our systematicss, except for the spin-1/2 $\\Xi_{cc}$, for which we predict the isospin averaged mass to be $M_{\\Xi_{cc}} = 3665 \\pm17 \\pm14\\, {}^{+0}_{-35}$~{MeV} (here the first uncertainty is statistical, the second systematic and the third an estimate of lattice discretization errors). In addition, we predict the splitting of the (isospin averaged) spin-1/2 $\\O_{cc}$ with the $\\Xi_{cc}$ to be $M_{\\O_{cc}} - M_{\\Xi_{cc}} = 98 \\pm9 \\pm22$~{MeV} (in this mass splitting, the leading discretization errors cancel). This corresponds to a prediction of $M_{\\O_{cc}} = 3763\\pm9\\pm44\\, {}^{+0}_{-35}$~{MeV}.

  7. On the quark-mass dependence of baryon ground-state masses

    Energy Technology Data Exchange (ETDEWEB)

    Semke, Alexander

    2010-02-17

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  8. Baryon number of the Universe as a result of extra space dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A.V., E-mail: alexey.grobov@gmail.com; Rubin, S.G., E-mail: sergeirubin@list.ru

    2013-11-04

    Origin of baryon asymmetry is studied in the framework of extra dimensional approach. Baryon excess production and the symmetrization of extra-space are performed simultaneously. Baryon number is conserved long after the inflationary stage when the U(1) symmetry is achieved.

  9. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method

    Science.gov (United States)

    Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L.; Zoombelt, Arjan P.; Mannsfeld, Stefan C. B.; Chen, Jihua; Nordlund, Dennis; Toney, Michael F.; Huang, Jinsong; Bao, Zhenan

    2014-01-01

    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm2 Vs-1 (25 cm2 Vs-1 on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

  10. SuperB: An opportunity to study baryons with beauty and bottom super-nuclei

    Science.gov (United States)

    Feliciello, A.

    2012-05-01

    SuperB is an INFN flagship project for a new high-luminosity heavy-flavor factory. Along with its companion detector, it is dedicated to the search for CP violation effects in the B meson sector with the aim of looking for direct and indirect signals of new physics, beyond the Standard Model. However it could offer as well the opportunity for a systematic, high-statistics study of b baryon properties and for a search for bottom super-nuclei, that is bound nuclear systems with an explicit content of beauty.

  11. High-spin states and lifetimes in 33S and shell-model interpretation in the s d -f p space

    Science.gov (United States)

    Aydin, S.; Ionescu-Bujor, M.; Gavrilov, G. Tz.; Dimitrov, B. I.; Lenzi, S. M.; Recchia, F.; Tonev, D.; Bouhelal, M.; Kavillioglu, F.; Pavlov, P.; Bazzacco, D.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; de Angelis, G.; Deloncle, I.; Farnea, E.; Gadea, A.; Gottardo, A.; Goutev, N.; Haas, F.; Huyuk, T.; Laftchiev, H.; Lunardi, S.; Marinov, Tz. K.; Mengoni, D.; Menegazzo, R.; Michelagnoli, C.; Napoli, D. R.; Petkov, P.; Sahin, E.; Singh, P. P.; Stefanova, E. A.; Ur, C. A.; Valiente-Dobón, J. J.; Yavahchova, M. S.

    2017-08-01

    The structure of the 33S nucleus was investigated in the 24Mg(14N,α p ) fusion-evaporation reaction using a 40-MeV 14N beam. The level scheme was extended up to an excitation energy of 11.7 MeV and spin 19 /2+ . Lifetimes of the intermediate- and high-spin states have been investigated by the Doppler shift attenuation method. Data were compared with different shell-model calculations where effective interactions involving two main shells, the sd and the fp, are used.

  12. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next...

  13. A study of spin-lattice relaxation rates of glucose, fructose, sucrose and cherries using high-T c SQUID-based NMR in ultralow magnetic fields

    Science.gov (United States)

    Liao, Shu-Hsien; Wu, Pei-Che

    2017-08-01

    We study the concentration dependence of spin-lattice relaxation rates, T 1 -1, of glucose, fructose, sucrose and cherries by using high-T c SQUID-based NMR at magnetic fields of ˜97 μT. The detected NMR signal, Sy (T Bp), is fitted to [1 - exp(-T Bp/T 1)] to derive T 1 -1, where Sy (T Bp) is the strength of the NMR signal, T Bp is the duration of pre-polarization and T 1 -1 is the spin-lattice relaxation rate. It was found that T 1 -1 increases as the sugar concentrations increase. The increased T 1 -1 is due to the presence of more molecules in the surroundings, which increases the spin-lattice interaction and in turn enhances T 1 -1. The T 1 -1 versus degrees Brix curve provides a basis for determining unknown Brix values for cherries as well as other fruits.

  14. High-spin configuration of Mn in Bi{sub 2}Se{sub 3} three-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolos, Agnieszka, E-mail: agnieszka.wolos@fuw.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Drabinska, Aneta [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Borysiuk, Jolanta [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Sobczak, Kamil [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaminska, Maria [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Hruban, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Strzelecka, Stanislawa G.; Materna, Andrzej; Piersa, Miroslaw; Romaniec, Magdalena; Diduszko, Ryszard [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2016-12-01

    Electron paramagnetic resonance was used to investigate Mn impurity in Bi{sub 2}Se{sub 3} topological insulator grown by the vertical Bridgman method. Mn in high-spin S=5/2, Mn{sup 2+}, configuration was detected regardless of the conductivity type of the host material. This means that Mn{sup 2+}(d{sup 5}) energy level is located within the valence band, and Mn{sup 1+}(d{sup 6}) energy level is outside the energy gap of Bi{sub 2}Se{sub 3}. The electron paramagnetic resonance spectrum of Mn{sup 2+} in Bi{sub 2}Se{sub 3} is characterized by the isotropic g-factor |g|=1.91 and large axial parameter D=−4.20 GHz h. This corresponds to the zero-field splitting of the Kramers doublets equal to 8.4 GHz h and 16.8 GHz h, respectively, which is comparable to the Zeeman splitting for the X-band. Mn in Bi{sub 2}Se{sub 3} acts as an acceptor, effectively reducing native-high electron concentration, compensating selenium vacancies, and resulting in p-type conductivity. However, Mn-doping simultaneously favors formation of native donor defects, most probably selenium vacancies. For high Mn-doping it may lead to the resultant n-type conductivity related with strong non-stoichiometry and degradation of the crystal structure - switching from Bi{sub 2}Se{sub 3} to BiSe phase. - Highlights: • We studied electron paramagnetic resonance in Bi{sub 2}Se{sub 3}:Mn. • We found Mn in high-spin Mn{sup 2+} configuration in both n-type and p-type samples. • The g-factor for Mn{sup 2+} equals to 1.91 and axial parameter D=−4.20 GHz h. • Mn acts as an acceptor. • Mn substitution affects formation of native donors.

  15. Influence of pairing on the ({ital p},{ital t}) transition strength between high-spin {ital K} isomers of Hf isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, N.K. [V. G. Khlopin Radium Institute, 2nd Murinsky Prosp. 28, St. Petersburg 194021 (Russian Federation); Mikhajlov, V.M. [Institute of Physics, St. Petersburg State University, St. Petersburg 19804 (Russian Federation)

    1995-05-01

    The influence of pairing on the probability of the two-nucleon-transfer transition between high-spin {ital K} isomers of Hf isotopes is discussed. Calculations of energies and cross sections are performed by using the particle number projection (FBCS method). In contrast with BCS, the FBCS method predicts that the pairing in many-quasiparticles states does not disappear.

  16. Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring

    OpenAIRE

    Baryshevsky, Vladimir

    2013-01-01

    Spin rotation and oscillation phenomena of particles captured in a gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies.

  17. Exploring helical folding of oligoureas during chain elongation by high-resolution magic-angle-spinning (HRMAS) NMR spectroscopy.

    Science.gov (United States)

    Violette, Aude; Lancelot, Nathalie; Poschalko, Alexander; Piotto, Martial; Briand, Jean-Paul; Raya, Jesus; Elbayed, Karim; Bianco, Alberto; Guichard, Gilles

    2008-01-01

    The development of novel folding oligomers (foldamers) for biological and biomedical applications requires both precise structural information and appropriate methods to detect folding propensity. However, the synthesis and the systematic conformational investigation of large arrays of oligomers to determine the influence of factors, such as chain length, side chains, and surrounding environment, on secondary structure can be quite tedious. Herein, we show for 2.5-helical N,N'-linked oligoureas (gamma-peptide lineage) that the whole process of foldamer characterization can be accelerated by using high-resolution magic-angle-spinning (HRMAS) NMR spectroscopy. This was achieved by monitoring a simple descriptor of conformational homogeneity (e.g., chemical shift difference between diastereotopic main chain CH2 protons) at different stages of oligourea chain growth on a solid support. HRMAS NMR experiments were conducted on two sets of oligoureas, ranging from dimer to hexamer, immobilized on DEUSS, a perdeuterated poly(oxyethylene)-based solid support swollen in solvents of low to high polarity. One evident advantage of the method is that only minute amount of material is required. In addition, the resonance of the deuterated resin is almost negligeable. On-bead NOESY spectra of high quality and with resolution comparable to that of liquid samples were obtained for longer oligomers, thus allowing detailed structural characterization.

  18. Factorization of heavy-to-light baryonic transitions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei

    2011-12-15

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)

  19. Twisted-baryon-loop effects in dual topological unitarization

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B.; Ouvry, S.; Uschersohn, J.

    1981-05-01

    Within the framework of dual topological unitarization we propose a simple model for mesons, baryons, and baryonium which allows us to calculate the effects of inserting nonplanar BB-bar loops in all possible ways into meson and baryonium propagators. We study the renormalization of the leading nonzero-isospin trajectories and the mixing of qq-bar and qqq-barq-bar states.

  20. Charge radii of octet and decuplet baryons in chiral constituent ...

    Indian Academy of Sciences (India)

    contributions have also been investigated in detail and are found to be the key parameters in under- standing the non-zero values for the neutral octet (n, 0, 0, ) and ... of baryons is determined in terms of electromagnetic Dirac and. Pauli form factors F1(Q2) and F2(Q2) or equivalently in terms of the electric and mag-.

  1. Production of doubly charmed baryons nearly at rest

    Energy Technology Data Exchange (ETDEWEB)

    Groote, Stefan; Koshkarev, Sergey [University of Tartu, Institute of Physics, Tartu (Estonia)

    2017-08-15

    We investigate the production cross sections, momentum distributions and rapidity distributions for doubly charmed baryons which according to the intrinsic heavy quark mechanism are produced nearly at rest. These events should be measurable at fixed-target experiments like STAR rate at RHIC and AFTER rate at LHC. (orig.)

  2. Weak coupling large-N transitions at finite baryon density

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Kumar, S. Prem; Myers, Joyce C.

    2011-01-01

    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks),

  3. Heavy baryons and their exotics from instantons in holographic QCD

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    2017-06-01

    We use a variant of the D 4 -D 8 construction that includes two chiral and one heavy meson, to describe heavy-light baryons and their exotics as heavy mesons bound to a flavor instanton in bulk. At strong coupling, the heavy meson is shown to always bind in the form of a flavor instanton zero mode in the fundamental representation. The ensuing instanton moduli for the heavy baryons exhibits both chiral and heavy quark symmetry. We detail how to quantize it, and derive model independent mass relations for heavy baryons with a single-heavy quark in leading order, in overall agreement with the reported baryonic spectra with one charm or bottom. We also discuss the low-lying masses and quantum assignments for the even and odd parity states, some of which are yet to be observed. We extend our analysis to double-heavy pentaquarks with hidden charm and bottom. In leading order, we find a pair of double-heavy iso-doublets with I Jπ=1/2 1/2-,1/2 3/2- assignments for all heavy flavor combinations. We also predict five new Delta-like pentaquark states with I Jπ=3/2 1/2-,3/2 3/2-,3/2 5/2- assignments for both charm and bottom.

  4. Heavy-light baryonic mass splittings from the lattice

    CERN Document Server

    Alexandrou, C.; Gusken, S.; Jegerlehner, F.; Schilling, K.; Siegert, G.; Sommer, R.; Borrelli, A; Guesken, S; Jegerlehner, F; Schilling, K; Siegert, G

    1994-01-01

    We present lattice estimates of the mass of the heavy-light baryons \\Lambda_b and \\Xi_b obtained using propagating heavy quarks. For \\Lambda_b our result is M_{\\Lambda_b}=5.728 \\pm 0.144 \\pm 0.018 GeV, after extrapolation to the continuum limit and in the quenched approximation.

  5. Production of doubly charmed baryons nearly at rest

    Science.gov (United States)

    Groote, Stefan; Koshkarev, Sergey

    2017-08-01

    We investigate the production cross sections, momentum distributions and rapidity distributions for doubly charmed baryons which according to the intrinsic heavy quark mechanism are produced nearly at rest. These events should be measurable at fixed-target experiments like STAR@RHIC and AFTER@LHC.

  6. Measurement of matter-antimatter differences in beauty baryon decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M-O.; Van Beuzekom, Martin; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.D.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N.Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; De Serio, M.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, Mark; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; Garcia Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Carvalho-Gaspar, M.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffth, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.J.; He, J.; Head, T.; Heister, A.J.G.A.M.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D. E.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.M.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lanfranchi, G.; Langenbruch, C.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; Van Leerdam, J.; Lees, J. P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli-Boneschi, F.; Martinez-Santos, D.; Martinez-Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B. T.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, Karl; von Müller, L.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J.G.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parker, W.S; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; De Oliveira, L. Silva; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; De Paula, B. Souza; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; Van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M. N.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, M.A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel-Plandsoen, M.M.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; De Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Williams, T.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.

    Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP

  7. Static potential in baryon in the method of field correlators

    OpenAIRE

    Kuzmenko, D. S.

    2002-01-01

    The static three-quark potential in arbitrary configuration of quarks is calculated analytically. It is shown to be in a full agreement with the precise numerical simulations in lattice QCD. The results of the work have important application in nuclear physics, as they allow to perform accurate analytic calculations of spectra of the baryons.

  8. Skewness as a probe of baryon acoustic oscillations

    NARCIS (Netherlands)

    Juszkiewicz, Roman; Hellwing, Wojciech A.; Weijgaert, van de Marinus

    2013-01-01

    In this study, we show that the skewness S-3 of the cosmic density field contains a significant and potentially detectable and clean imprint of baryonic acoustic oscillations (BAOs). Although the BAO signal in the skewness has a lower amplitude than second-order measures like the two-point

  9. Photon production from quark gluon plasma at finite baryon density

    Indian Academy of Sciences (India)

    In the QGP phase, rate of photon production is evaluated up to two-loop level. In the hadron phase, dominant contribution from π, ρ, ω mesons has been considered. The evolution of the plasma has been studied with appropriate equation of state in both QGP and hadron phase for a baryon-rich system. At SPS energy, the ...

  10. Baryon inhomogeneities due to cosmic string wakes at the quark ...

    Indian Academy of Sciences (India)

    Abstract. Baryon inhomogeneities generated during the quark–hadron transition may alter the abundances of light elements if they persist up to the time of nucleosynthesis. These inhomogeneities survive up to the nucleosynthesis epoch if they are separated by a distance of at least a few metres. In this work we present a ...

  11. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2014-07-01

    Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.

  12. Spin Physics at COMPASS

    CERN Document Server

    Schill, C

    2012-01-01

    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off a longitudinally or a transversely polarized deuteron (6LiD) or proton (NH3) target. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavors. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins an...

  13. The search for exotic baryons at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Deconinck, Wouter

    2008-07-15

    One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed. Recently, calculations based on the quark soliton model predicted the narrow exotic baryons {theta}{sup +} and {xi}{sup --}. A narrow resonance identified as the {theta}{sup +} was observed by several experiments at the predicted mass of 1540 MeV, but later followed by several dedicated experiments that could not confirm these positive results. At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon {theta}{sup +} on a deuterium target and the subsequent decay through pK{sup 0}{sub S} {yields} p{pi}{sup +}{pi}{sup -} revealed a narrow resonance in the pK{sup 0}{sub S} invariant mass distribution at 1528 MeV. In the search for the corresponding antiparticle {xi}{sup --} the result is consistent with zero events. In this thesis we present the search for the exotic baryon {xi}{sup --} on a deuterium target in the data sample used for the observation of the {theta}{sup +}. An upper limit on the cross section of the exotic baryon {xi}{sup --} is determined. The search for the exotic baryon {theta}{sup +} on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event mixing method can be used to estimate the distribution of background events. Several difficulties with this method were addressed, but the background description in the case of the exotic baryon {theta}{sup +} remains unconvincing. Between the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target. A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years 2006 and 2007 offer an integrated

  14. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schulze, Felix; Steinborn, Lisa K. [Universitäts-Sternwarte München, Scheinerstraße 1, D-81679 München (Germany); Schmidt, Andreas S., E-mail: ateklu@usm.lmu.de [Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, D-85741 Garching (Germany)

    2015-10-10

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo

  15. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  16. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  17. Insight into the baryon-gravity relation in galaxies

    Science.gov (United States)

    Famaey, Benoit; Gentile, Gianfranco; Bruneton, Jean-Philippe; Zhao, Hongsheng

    2007-03-01

    Observations of spiral galaxies strongly support a one-to-one analytical relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass. It is baffling that baryons manage to settle the dark matter gravitational potential in such a precise way, leaving no “messy” fingerprints of the merging events and “gastrophysical” feedbacks expected in the history of a galaxy in a concordance Universe. This correlation of gravity with baryonic mass can be interpreted from several nonstandard angles, especially as a modification of gravity called TeVeS, in which no galactic dark matter is needed. In this theory, the baryon-gravity relation is captured by the dieletric-like function μ of modified Newtonian dynamics (MOND), controlling the transition from 1/r2 attraction in the strong gravity regime to 1/r attraction in the weak regime. Here, we study this μ-function in detail. We investigate the observational constraints upon it from fitting galaxy rotation curves, unveiling the degeneracy between the stellar mass-to-light ratio and the μ-function as well as the importance of the sharpness of transition from the strong to weak gravity regimes. We also numerically address the effects of nonspherical baryon geometry in the framework of nonlinear TeVeS, and exhaustively examine how the μ-function connects with the free function of that theory. In that regard, we exhibit the subtle effects and wide implications of renormalizing the gravitational constant. We finally present a discontinuity-free transition between quasistatic galaxies and the evolving Universe for the free function of TeVeS, inevitably leading to a return to 1/r2 attraction at very low accelerations in isolated galaxies.

  18. High-performance spinning device for DVD-based micromechanical signal transduction

    DEFF Research Database (Denmark)

    Hwu, En-Te; Chen, Ching-Hsiu; Bosco, Filippo

    2013-01-01

    mechanism, this device can simultaneously measure surface topography, mechanical deflections and resonance frequencies of several microfabricated beams at a high speed. In biochemical sensing applications, the OPU can measure bending changes of functionalized microcantilevers, providing a statistically...

  19. High-intensity polarized H- ion source for the RHIC SPIN physics

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  20. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite