WorldWideScience

Sample records for high speed steels

  1. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  2. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  3. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  4. Current Developments of Alloyed Steels for Hot Strip Roughing Mills : Characterization of High-Chromium Steel and Semi-High Speed Steel

    OpenAIRE

    Lecomte-Beckers, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2012-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill - high chromium steel (HCS) and semi-high-speed steel (semi-HSS), In this paper, the new semi-high-speed steel grade is studied Peer reviewed

  5. Metallographic problems of the production of parts from continuously cast high-speed steels

    Science.gov (United States)

    Supov, A. V.; Aleksandrova, N. M.; Paren'kov, S. A.; Kakabadze, R. V.; Pavlov, V. P.

    1998-09-01

    It has been assumed until recently that high-speed steels cannot be produced by the method of continuous casting. Numerous attempts to use this highly efficient technology for manufacturing such steels have failed because of breakage of the cast preforms. A solution was sought in improving the design of the continuous-casting machines (CCM), increasing the level of their automation, and using rational compositions of slag-forming mixtures (SFM). The idea was that a high-speed steel can be cast only in vertical CCM. The present work concerns regimes of secondary cooling under which the structures formed in high-speed steels provide a ductility sufficient for bending the continuously cast preform without failure. Steel R6M5 cast continuously in such a machine can easily be machined into hot-rolled preforms for sheets, wire, silver-steel rods, and other final products without a forging stage.

  6. Tribological resistance of high speed steel HS 6-5-2 remelted with electric arc

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2009-07-01

    Full Text Available The intensity of tribological wear of the high speed steel HS 6-5-2 remelted with the GTAW method has been compared to the heat treatment steel in a conventional way. Moreover, the types of the wear appeared during the friction. The tribiological research, were done in the technically dry friction conditions on a testing machine of the pin-on-disc T-01M. The smallest intensity of wear was shown by the high speed steel remelted with the parameters leading to obtain the biggest speed of cooling of the molten metal. The main wear type appearing during the research, was the abrasion and adhesive wear.

  7. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  8. Structure and properties of nitrocarburized diffusion layers generated on high-speed steels

    Science.gov (United States)

    Babul, Tomasz; Nakonieczny, Aleksander; Senatorski, Jan; Kucharieva, Natalia

    2003-12-01

    This work analyzes the structure and properties of nitrocarburized diffusion cases generated on M2 type high-speed and 321 stainless steels in a thermochemical. Application of variable process temperatures in the range of 450 600 °C and a variable process duration (2 6 h) enabled observation of growth kinetics of the layers on tested steel grades. Evaluation of properties of the cases obtained comprised hardness measurements and wear tests, carried out by the 3 cylinder-cone method. The evaluation showed that the nitrocarburizing process developed for high-speed and stainless steels yields hard surface layers with beneficial functional properties.

  9. Electroslag remelting of high-speed steel using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Murgas, M.

    2000-10-01

    The electroslag remelting process was studied when the consumable electrode made from the powder of M2 type high-speed steel was used and the effect of outside magnetic field was applied. The electromagnetic forces that arise from the interaction between the outside direct magnetic field and the one-phase electric current of the electroslag remelting process by a monofilar scheme alter the mechanism of the electrode remelting and thus, affect the solidification of a high-speed steel and its structure. The cast cutting tips made from ingots produced by this technology had tool life to be comparable to that of standard ones made from the wrought steel of the identical chemical composition and heat treatment. It has been shown that a magnetic field also affects both the temperature ranges and the kinetics of phase transformation in a high-speed steel. This suggestion is proved by DTA measurements. (author)

  10. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  11. GRINDABILITY OF SELECTED GRADES OF LOW-ALLOY HIGH-SPEED STEEL

    Directory of Open Access Journals (Sweden)

    Jan Jaworski

    2016-09-01

    Full Text Available In this paper, we presents the results of investigations studied the cutting ability and grindability of selected high-speed steels. We analysed the effect of the austenitization temperature on the grain size, the amount of retained austenite and percentage of retained austenite in HS3-1-1 steel. Furthermore, the investigations concerned on the efficiency of the keyway broaches during the whole period of operation were carried out. It was found that the value of average roughness parameter increases together with increases in the grinding depth. The investigations also show the influence of tempering conditions on the volume of carbide phases in HS3-1-1 steel.

  12. Increasing the life of high-speed steel cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, Y.G.

    1984-05-01

    The paper describes work on determining the rational area of use, mastering of production operations, and introduction into the plants of the industry of various methods of increasing the life of high-speed tools. Among these methods are carbonitriding, treatment of the tool by shock cooling and by application of a magnetic field, and the application of wear resistant coatings by the method of cathodic-ionic bombardment. The article briefly characterizes each method. Experience in the introduction of the carbonitriding process has shown that the greatest increase in life is obtained for relatively large cutting tools such as hubs and large diameter drills. The effectiveness of shock cooling depends to a great degree upon the original structure of the tool material and upon the requirements imposed on it in service (for stability). Experience in the magnetic treatment of drills and end mills up to 30mm in diameter has shown that the life of a magnetically treated tool with subsequent demagnetization increases by 1.2-1.4 times and without demagnetization by 1.7-2 times. The effectiveness of magnetic hardening depends not only upon the correctly selected strength of the magnetic field and time of application, but also upon the time of postmagnetic aging. Wear resistant coatings applied by the cathodic-ionic bombardment method increases by 2-5 times the life of a cutting tool. However, careful preparation of the tool surface is required as well as careful control of the temperature and thickness of the coating.

  13. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross...... sections. The specimens were made of Böhler P/M steel grade 390s and 690s in both micro-clean and conventional grades. The results show that the content of non-metallic inclusions are higher in the conventionalgrades than in the microclean grades, but there were found to be no link between non-metallic...... inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  14. Solidification of hipereutectoid high speed steel for rolls

    Directory of Open Access Journals (Sweden)

    J. Gontarev

    2011-01-01

    Full Text Available This work presents results of microstructural development through solidification, heat treated processes and characterization of two low-alloyed hypereutectoid alloys, emphasizing the effects of the alloy chemical composition. Samples of different compositions were prepared by melting in the induction furnace. The microstructural difference of the different HSS steels will affect the performance of the end products. The main features of the as cast microstructure are the distribution and morphology of eutectic carbides which have been obtained through progress in alloy design concerning the type, morphology, and the volume fraction of the eutectic carbides. Samples were characterized by optical and Scanning electron microscopy.

  15. PERSPECTIVES OF USING OF HIGH-SPEED STEELS FOR PRODUCTION OF CAST METAL-CUTTING INSTRUMENT. THE PECULIARITIES OF STRUCTURE AND CHARACTERISTICS OF CAST AND DEFORMED STEELS

    Directory of Open Access Journals (Sweden)

    A. S. Chaus

    2004-01-01

    Full Text Available In the article there are examined the different ways of improvement of the structure and properties of the high-speed steels, intended for production of the cast metal-cutting instrument. It is shown, that effective methods of improving of impact elasticity of the cast high-speed steel are modification and accelerated cooling of melt at primary crystallization, electroslag remelting with using of magnetic field, and also using of steels with decreased structure dissimilarity.

  16. The influence of grinding parameters of the surface layer of low-alloyed high-speed steel

    Directory of Open Access Journals (Sweden)

    J. Jaworski

    2009-01-01

    Full Text Available The measurements of machining forces, temperature and quality parameters of surface layer and ratio of grinding property of selected grades of low-alloyed high speed steels were carried out. It was shown that improvement of grinding properties of low-alloyed high-speed steels is possible on the way of efficient selection of their chemical constitution, which is confirmed by results of researches of grinding properties of SW2M5 steel

  17. On the thermo-mechanical events during friction surfacing of high speed steels

    OpenAIRE

    Bedford, G.M.; Vitanov, V.I.; Voutchkov, I.I.

    2001-01-01

    This paper is concerned with the friction surfacing of high-speed steels, BM2, BT15 and ASP30 onto plain carbon steel plate. The events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, is described. The coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate. This autohardening is observed to be an inherent feature of the friction surfacing process and the onl...

  18. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  19. Optimization strategy in end milling process for high speed machining of hardened die/mold steel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An optimization strategy for high speed machining of hardened die/mold steel based on machining feature analysis was studied. It is a further extension of the previously presented study on the thermal mechanism of end milling and constant cutting force control. An objective function concerning machining cost and associated optimization algorithm based on machining time and cutting length calculation was proposed. Constraints to satisfy specific machining strategies when high speed machining the hardened die/mold steel, trochoid tool path pattern in slot end milling to avoid over-heat and feed rate adaptation to avoid over-load, were also discussed.As a case study, the tool selection problem when machining a die part with multiple machining features was investigated.

  20. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  1. Surface Layer Properties of Low-Alloy High-Speed Steel after Grinding

    Directory of Open Access Journals (Sweden)

    Jaworski Jan

    2016-12-01

    Full Text Available Investigations of the surface layer characteristics of selected kinds of low-alloy high-speed steel after grinding were carried out. They were carried out on the flat-surface grinder with a 95A24K grinding wheel without cooling. The influence of grinding parameters was defined especially for: the quantity of secondary austenite, surface roughness, microhardness and grinding efficiency with a large range of grinding parameters: grinding depth 0.005–0.035 mm, lengthwise feed 2–6 m/min, without a cross-feed on the whole width of the sample. It was found that improvement of grinding properties of low-alloy high-speed steels is possible by efficient selection of their chemical composition. The value of the grinding efficiency is conditioned by grinding forces, whose value has an impact on the grinding temperature. To ensure high quality of the tool surface layer (i.e. a smaller amount of secondary austenite, lack of wheel burn and micro-cracks in the case of sharpening of tools made of low-alloy high-speed steel, the grinding temperature should be as low as possible.

  2. The influence of arc plasma electric and laser treatment on the structure and properties of the high speed steel

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2009-07-01

    Full Text Available The examination of the structure, hardness and abrasion resistance of surface layer of high speed steel: HS 2-10-1-8, HS 6-5-2 and HS 10-2-5-8 after arc plasma and laser welding are presented in the paper. They are compared with the properties obtained after conventional hardening. Diode laser of continuous operation and GTAW (Gas Tungsten Arc Welding method were used. As a result of concentrated energy beam treatment applied to a steels surface layer, the structures characteristic of rapid solidification / crystallization process were obtained. The treatment of the steel by arc plasma electric with a single remelted track about 7 mm width does not lead to growth of the mechanical and tribological properties of high speed steels. The growth of microhardness as well as low the coefficient Archard of the high speed steel after remelting on the surface single track about 6 mm width by diode laser using can be obtained.

  3. Internal grinding of high-speed steels: Shorter processing times with boron nitride grinding tools

    Science.gov (United States)

    Borse, D.

    Boron nitride grinding tools can be used to advantage for the grinding of high speed steel (HSS) with a high vanadium content. the abrasives available to date are of limited value because the HSS materials contain very hard carbides, grinding of which, and of vanadium carbide in particular, results in very rapid wear in silicon carbide or corundum grinding wheels. The hardness of these steels is usually 62 RC to 70 RC. Boron nitride grinding tools are advantageous for internal grinding of workpieces made of high speed steel for example, sockets, milling tool bores, cutting wheels and crushing rollers. To date, boron nitride grinding wheels or pencil grinders were bonded with synthetic resin. Consequently internal grinding is usually carried out as wet grinding. In the meantime grinding tools bonded with electrodeposited metal bonds (GSS) were developed and proved to be successful for internal grinding. The abrasive grains which are arranged in a single layer protrude freely from the electrobond. During grinding very little heat is generated, so that dry grinding is possible.

  4. Influence of heat treatment and KIc/HRc ratio on the dynamic wear properties of coated high speed steel

    Directory of Open Access Journals (Sweden)

    M. Sedlaček

    2017-01-01

    Full Text Available The aim of this work was to determine the impact of various heat treatments on the KIc/HRc ratio and subsequently on the wear properties of coated high-speed steel under dynamic impact loading. The results showed that hardness and improvement in the fracture toughness have significant influence on the adhesion and impact wear properties of the coated high-speed steel.

  5. Effects of Austenitizing Conditions on the Microstructure of AISI M42 High-Speed Steel

    Directory of Open Access Journals (Sweden)

    Yiwa Luo

    2017-01-01

    Full Text Available The influences of austenitizing conditions on the microstructure of AISI M42 high-speed steel were investigated through thermodynamic calculation, microstructural analysis, and in-situ observation by a confocal scanning laser microscope (CSLM. Results show that the network morphology of carbides could not dissolve completely and distribute equably in the case of the austenitizing temperature is 1373 K. When the austenitizing temperature reaches 1473 K, the excessive increase in temperature leads to increase in carbide dissolution, higher dissolved alloying element contents, and unwanted grain growth. Thus, 1453 K is confirmed as the best austenitizing condition on temperature for the steel. In addition, variations on the microstructure and hardness of the steel are not obvious when holding time ranges from 15 to 30 min with the austenitizing temperature of 1453 K. However, when the holding time reaches 45 min, the average size of carbides tends to increase because of Ostwald ripening. Furthermore, the value of Ms and Mf decrease with the increase of cooling rate. Hence, high cooling rate can depress the martensitic transformation and increase the content of retained austenite. As a result, the hardness of the steel is the best (65.6 HRc when the austenitizing temperature reaches 1453 K and is held for 30 min.

  6. On microstructure and performance of tempered high-boron high-speed steel roll

    Directory of Open Access Journals (Sweden)

    Fu Hanguang

    2012-08-01

    Full Text Available Influences of the tempering temperature on the microstructure, mechanical property and wear resistance of High-Boron High Speed Steel (HBHSS roll materials were investigated by means of optical microscopy, scanning electron microscopy (SEM, X-ray diffraction, hardness measurement, impact tester, tensile tester and pin abrasion tester. The results show that the as-cast structure of HBHSS consists of a great amount of martensite and M2(B,C and a few retained austenites and M23(B,C6. After solution treated at 1,050 °C and followed by oil cooling, the amount of M23(B,C6 carbo-borides in quenched HBHSS increases obviously and the macrohardness of the quenched HBHSS is 66 HRC, which is very close to the 65.8 HRC of as-cast HBHSS. On the whole, the hardness of HBHSS alloy shows a trend of slight decrease with increasing tempering temperature when tempered below 500 °C. While when above 500 °C, the hardness increases slightly as the tempering temperature increases and reaches a peak at 525 °C and then decreases obviously. The impact toughness of HBHSS has a tendency to increase as the tempering temperature increases. Tempering can improve the tensile strength and elongation of HBHSS, but a higher tempering temperature causes a slight decrease in both tensile strength and elongation. Excellent wear resistance can be obtained by tempering at 500 to 550 °C.

  7. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  8. Effect of quenching temperature on structure and properties of centrifugal casting high speed steel roll

    Directory of Open Access Journals (Sweden)

    Fu Hanguang

    2009-02-01

    Full Text Available The critical points and time-temperature-transformation (TTT curves of the isothermal transformation diagrams for a high-speed steel casting on a horizontal centrifugal casting machine had been determined experimentally in the study. The effects of quenching temperature on the microstructures and properties of centrifugal casting high speed steel (HSS roll has been investigated using scanning electron microscopy (SEM, light optical microscopy (LOM and X-ray diffraction (XRD as well as using tensile, impact, and hardness tests. The results show that the HSS roll has excellent hardenability and its matrix structure can be transformed into the martensite after being quenched in the sodium silicate solution. The retained austenite in the quenching structure increases and the hardness decreases when the quenching temperature exceeds 1,040℃. The tensile strength and impact toughness of HSS roll increase once the quenching temperature is raised from 980℃ to 1,040℃. However, the tensile strength and impact toughness have no signifi cant change when the quenching temperature exceeds 1,040℃. The HSS roll quenched at 1,040℃ exhibits excellent comprehensive mechanical properties.

  9. The refinement of the surface layer of HS 7425 high speed tool steel by laser and electric arc plasma

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2008-10-01

    Full Text Available The paper present two different techniques: laser remelting surface and plasma remelting surface of the high speed steel HS 7425. Thestructure of the remelted layers were examined by means of SEM – microscopy. Measurement of microhardness in remelting zone usingVickers method. The remelting zone consist of dendritic cells and columnar crystals. Increase of hardness was observed in remelted zonein comparison to the substrate of the steel. The hardness in the remelted zone increases with the increasing cooling rate.

  10. Solidification microstructure of M2 high speed steel by different casting technologies

    Directory of Open Access Journals (Sweden)

    Zhou Xuefeng

    2011-08-01

    Full Text Available The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.

  11. Composition, microstructure, hardness, and wear properties of high-speed steel rolls

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W.; Lee, H.C. [Kangwon Industries, Ltd., Pohang (Korea, Republic of). Roll Mfg. Div.; Lee, S. [Pohang Univ. of Science and Technology (Korea, Republic of). Center for Advanced Aerospace Materials

    1999-02-01

    The effects of alloying elements on the microstructural factors, hardness, and wear properties of four high-speed steel (HSS) rolls fabricated by centrifugal casting were investigated. A hot-rolling simulation test was carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. The test results revealed that the HSS roll containing a larger amount of vanadium showed the best wear resistance because it contained a number of hard MC-type carbides. However, it showed a very rough roll surface because of cracking along cell boundaries, the preferential removal of the matrix, and the sticking of the rolled material onto the roll surface during the wear process, thereby leading to an increase in the friction coefficient and rolling force. In order to improve wear resistance with consideration to surface roughness, it is suggested that a reduction in the vanadium content, an increase in solid-solution hardening by adding alloying elements, an increase in secondary hardening by precipitation of fine carbides in the matrix, and formation of refined prior austenite grains by preaustenitization treatment be employed to strengthen the matrix, which can hold hard carbides in it.

  12. Possibilities and constraints of implementing starch consolidated high speed steel in prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Borgstroem, H. [Chalmers University of Technology, Goeteborg (Sweden)], E-mail: henrik.borgstrom@chalmers.se; Harlin, P.; Olsson, M. [Dalarna University, Borlaenge (Sweden); Paiar, T. [Universita di Trento, Trento (Italy); Wang, Y. [University of Karlstad (Sweden); Nyborg, L. [Chalmers University of Technology, Goeteborg (Sweden)

    2008-02-25

    In the starch consolidation (SC) process, a water-based slurry containing powder, starch, dispersant and thickener is used to fabricate near net-shape green bodies that are de-binded and further consolidated by sintering. In this study, gas atomized M3/2 as well as high and low carbon V-rich M4 type high speed steel powder (<150 {mu}m) are considered. Both material types undergo high volumetric shrinkage during super-solidus liquid phase sintering enabling them to reach near full density. The analyses and the review cover different process aspects like: recipe optimisation, post-gelatinization drying, de-binding and sintering. A SC recipe consisting of 58 vol.% powder, 3 vol.% starch, 1 vol.% dispersant and a thickener solution resulted in a density of >98% than what is theoretically stated after sintering. It is found that the success of the post-gelatinization drying procedure depends on the smoothness of mould material and controlling powder oxidation. The best combination was freeze drying the slurry in a silicon rubber mould. For V-rich alloys a total or partial control of eutectic carbides in the final microstructure could be realized for vacuum and nitrogen sintering atmospheres, respectively.

  13. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  14. Experimental evaluation of coated carbide insert on alloy of steel materials during high speed turning process

    Directory of Open Access Journals (Sweden)

    S. A. Lawal

    2017-06-01

    Full Text Available The present study investigated the effect of coated carbide turning inserts on the surface roughness of AISI 304L austenitic stainless steel, AISI 316L austenitic stainless steel and AISI 1020 low carbon steel workpiece materials. The three steel grade materials were dry-turned using aluminium oxide (Al2O3 duratomic coated inserts at cutting speeds ranging from 1500 – 2000 rpm (229 – 314 m/min, feed rates of 0.25 – 0.75 mm/rev and depth of cut kept constant at 0.5 mm. Surface roughness values at different cutting conditions were measured and analysed. Chips formed at different cutting parameters were collected, classified according to ISO 3685 standards for chip classification and their surface morphology were analysed using optical microscopy. It was observed that feed rate had the greatest influence on surface roughness for the three workpiece materials. Surface finish deteriorated as feed rate increased. The chips formed were generally of the continuous type with built-up-edges.

  15. Hardening of Steel with High-Speed Deformation in Wide Temperature Range,

    Science.gov (United States)

    1980-02-28

    are higher than after shcck wave deformation [2]. It saculd also be noted that the cbserved effects way have the same cider as in the hardening...quenchirg] cf steel and a somewhat hi~ar cider than in static defcrmaticn bith high degrees of reducticc. Finally we must mention the tact that the scurce

  16. In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6

    Science.gov (United States)

    Shen, Weijun; Yu, Linping; Li, Zhi; He, Yuehui; Zhang, Qiankun; Zhang, Huibin; Jiang, Yao; Lin, Nan

    2017-11-01

    A novel technology which was characterized by the vacuum solid state sintering was developed for powder metallurgy high speed steels production. During sintering, both the WC and Mo2C reacted with Fe and transformed to W and Mo rich M6C carbides which were the common hard phases in high speed steels. Also, a high number of W, Mo and Fe were dissolved in VC, forming the MC carbides. The densification of the material mainly relied on the solubility effect during the M6C and MC carbides formation. By alloying with a 0.1 wt% of LaB6 to the steel, the bending strength and the fracture toughness were improved from 3290 MPa and 25.6 MPam1/2 to 4018 MPa and 29.4 MPam1/2, respectively. The TEM analysis demonstrated three types of reaction products by the LaB6 addition: the amorphous phase, the core-shell structure and the La2O3 phase. The impurity elements such as the Mg, Al, Si, S, Ca, and O were absorbed following the LaB6 addition. Moreover, the deoxidization effect caused by the LaB6 addition promoted the sintering at a high-temperature period which contributed to the bending strength and fracture toughness improvement.

  17. Surface Roughness and Residual Stresses of High Speed Turning 300 M Ultrahigh Strength Steel

    Directory of Open Access Journals (Sweden)

    Zhang Huiping

    2014-03-01

    Full Text Available Firstly, a single factor test of the surface roughness about tuning 300 M steel is done. According to the test results, it is direct to find the sequence of various factors affecting the surface roughness. Secondly, the orthogonal cutting experiment is carried out from which the primary and secondary influence factors affecting surface roughness are obtained: feed rate and corner radius are the main factors affecting surface roughness. The more the feed rate, the greater the surface roughness. In a certain cutting speed rang, the surface roughness is smaller. The influence of depth of cut to the surface roughness is small. Thirdly, according to the results of the orthogonal experiment, the prediction model of surface roughness is established by using regressing analysis method. Using MatLab software, the prediction mode is optimized and the significance test of the optimized model is done. It showed that the prediction model matched the experiment results. Finally, the surface residual stress test of turning 300 M steel is done and the residual stress of the surface and along the depth direction is measured.

  18. Surface alloying of high-vanadium high-speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties

    NARCIS (Netherlands)

    Cao, H.T.; Dong, X.P.; Pan, Z.; Wu, X.W.; Huang, Q.W.; Pei, Y.T.

    2016-01-01

    A high-vanadium high speed steel (HVHSS) alloying layer was synthesized from pre-placed powders (V-Cr-Ti-Mo) on ductile iron (DI) substrate using plasma transferred arc (PTA) technique. The PTA-alloyed layer, characterized by microhardness, optical microscopy, XRD, EDS enabled SEM, TEM and

  19. Influence of Heat Treatment on Content of the Carbide Phases in the Microstructure of High-Speed Steel

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2017-09-01

    Full Text Available This article presents the results of investigations of the effect of heat treatment temperature on the content of the carbide phase of HS3-1-2 and HS6-5-2 low-alloy high-speed steel. Analysis of the phase composition of carbides is carried out using the diffraction method. It is determined that with increasing austenitising temperature, the intensification of dissolution of M6C carbide increases. As a result, an increase in the grain size of the austenite and the amount of retained austenite causes a significant reduction in the hardness of hardened steel HS3-1-2 to be observed. The results of diffraction investigations showed that M7C3 carbides containing mainly Cr and Fe carbides and M6C carbides containing mainly Mo and W carbides are dissolved during austenitisation. During austenitisation of HS3-1-2 steel, the silicon is transferred from the matrix to carbides, thus replacing carbide-forming elements. An increase in a degree of tempering leads to intensification of carbide separation and this process reduce the grindability of tested steels.

  20. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  1. The influence of remelting parameters of the electric arc and conventional tempering on the tribological resistance of high speed steel HS 6-5-2

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2011-07-01

    Full Text Available The present thesis depicts the results of the research of tribological high speed steel HS 6-5-2 remelted with the electric arc. Steel was remelted with different parameters. The amperage of electric arc was changed, the scanning speed was changed and the single, overlapping remeltings were used. There was also the influence of conventional tempering defined, which was conducted after remelting on the tribological resistance of hardened steel. For the previously mentioned processing variants, the intensity of tribological wear was defined and the linear wear were presented, and the friction coefficients. The type of tribological wear was also given, present during the friction, technically dry, of the hardened steel. The lower intensity of tribological wear was received for the single remelting by electric arc of 50 and 70A. Using the overlapping remeltings for the strengening of the surface layer of the high speed steel HS 6-5-2 causes the increase of the intensity of tribological wear in comparison to the steel with the single remelting. The conventional tempering leads to the decrease of the intensity of tribological wear.

  2. Surface Roughness Optimization Using Taguchi Method of High Speed End Milling For Hardened Steel D2

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    The main challenge for any manufacturer is to achieve higher quality of their final products with maintains minimum machining time. In this research final surface roughness analysed and optimized with maximum 0.3 mm flank wear length. The experiment was investigated the effect of cutting speed, feed rate and depth of cut on the final surface roughness using D2 as a work piece hardened to 52-56 HRC, and coated carbide as cutting tool with higher cutting speed 120-240 mm/min. The experiment has been conducted using L9 design of Taguchi collection. The results have been analysed using JMP software.

  3. Effect of magnetic field strength on M6C carbide precipitation behavior in W6Mo5Cr4V3 high speed steel during tempering

    Science.gov (United States)

    Wu, Y.; Zhang, Z. W.; Li, H. H.; Zhao, X.

    2017-05-01

    Effect of high magnetic field strength on M6C carbide precipitation morphology in W6Mo5Cr4V3 high speed steel was investigated. Results showed that at low and medium tempering temperatures, the high magnetic field significantly affects the precipitation morphology of M6C carbides and shows strong spheroidization. This effect increases with the enhancement of the magnetic field strength. At high tempering temperature, the high magnetic field has no obvious effect on M6C carbide precipitation behavior.

  4. The influence of conventional tempering on the tribiological resistance of the high speed steel HS 6-5-2 remelted with electric arc

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2010-04-01

    Full Text Available The influence of the conventional tempering has been defined in the paper in two different temperatures 560C and 600C on the intensity of tribological wear of the high speed steel HS 6-5-2 remelted with the electric arc. The influence of tempering on the intensity of wear for the steel has been tested with the single and overlapping remeltings. Moreover, the types of the tribological wear appeared during the friction. The tribiological research, were done in the technically dry friction conditions on a testing machine of the pin-on-disc T-01M. Conducting the conventional process of tempering after the remelting with the electric arc, causes the decrease of the intensity of the tribological wear. The smallest intensity of tribiological wear after tempering was observed in the high speed steel HS 6-5-2 with the single remelting of the current 70 A. The main wear type appearing during the research was the abrasion and adhesive wear.

  5. ABOUT POSSIBILITY OF SELECTIVE MODIFYING OF QUICK-SPEED STEEL

    Directory of Open Access Journals (Sweden)

    F. I. Rudnitsky

    2014-01-01

    Full Text Available It is established that in spite of presence of tungsten in composition of high-speed steel P6M5 at additional introduction of this element in volume of 0,1-0,6% the selective modifying effect becomes apparent.

  6. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  7. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  8. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Y., E-mail: yuematsu@gifu-u.ac.jp [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Kakiuchi, T.; Tokaji, K. [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Nishigaki, K. [Okamoto Co. Ltd., 5 Nawate-cho, Gifu 500-8743 (Japan); Ogasawara, M. [MEIRA Co. Ltd., 17-15 Tsubaki-cho, Nakamura-ku, Nagoya City, Aichi 453-0015 (Japan)

    2013-01-20

    Four-point bending fatigue tests had been performed using high speed steel and cast iron with vanadium carbides (VCs) dispersed within the martensitic-matrix microstructure. Shot peening or shot blast was applied to both the materials and the effect of surface treatments on fatigue behavior was investigated. The fatigue strengths of the high speed steel were improved by both shot peening and shot blast processes due to the high hardness near the specimen surface and residual compressive stress. Although the hardness of cast iron was enhanced by both treatments, the fatigue strengths were not improved by the shot blast because of the existence of large casting defects. Shot peening with higher shot energy could induce the transition of crack initiation mechanism of cast iron, where crack initiated from the cluster of VCs. However the shot peening had small effect on the fatigue strengths of the cast iron because large casting defects were not removed by the shot peening due to the high hardness of the martensitic matrix.

  9. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Directory of Open Access Journals (Sweden)

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  10. To Enhance the Fire Resistance Performance of High-Speed Steel Roller Door with Water Film System

    Directory of Open Access Journals (Sweden)

    De-Hua Chung

    2015-01-01

    Full Text Available The structure of high-speed roller door with water film has improved in this study. The flameproof water film system is equipped with a water circulating device to reduce the water consumption of water film system. The water film is generated at the roller box of the high-speed roller door in this study. The heating test is done with the full-scale heating furnace. Both cases of the water film on unexposed surface and water film on exposed surface passed the fire resistance test based on ISO 834, proving that the high-speed roller door with water film system has 120A fire resistance period. The main findings indicate that the water film on exposed surface shows that as the amount of water film evaporated by high temperature inside the furnace must be greater than the evaporation capacity of water film on unexposed surface, the required water supply is 660 L more than the water film on unexposed surface.

  11. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing; Estudo comparativo de acos rapidos AISI M3:2 produzidos por diferentes processos de fabricacao

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de

    2006-07-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  12. PECULIARITIES OF METALLOGRAPHIC RESEARCHES OF STRUCTURE OF CAST METAL FROM WASTE OF HIGH-SPEED STEEL P6M5

    Directory of Open Access Journals (Sweden)

    A. L. Valko

    2014-01-01

    Full Text Available Techniques metallographic researches of structure and definition of size of grain of tool steels are offered. The structure of the fast-cutting steel received by a method electroslag remelting from a waste of tool manufacture is investigated.

  13. Effect of high magnetic field on carbide precipitation in W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel during low-temperature tempering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan [Northeastern Univ., Shenyang (China). Research Inst.; Li, Hui-Hui; Zhang, Zhi-Wei; Tong, Lu; Zhao, Xiang [Northeastern Univ., Shenyang (China). Key Lab. for Anisotropy and Texture of Materials (Ministry of Education)

    2016-04-15

    The effect of a high magnetic field on carbide precipitation in W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel during low-temperature tempering was investigated. The applied high magnetic field promoted the precipitation of M{sub 6}C-type carbides at boundaries and in the grain interior, but maximum spheroidization and refinement occurred for those carbides precipitated at boundaries. Compared with M{sub 6}C-type carbides, the effect of high magnetic field on the precipitation behavior of MC-type carbides is much weaker. The high magnetic field hindered M{sub 2}C-type carbide precipitation by affecting the Gibbs free energy and increased the microhardness of W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel at low tempering temperature.

  14. Intrusion features of a high-speed striker of a porous tungsten-based alloy with a strengthening filler in a steel barrier

    Science.gov (United States)

    Ishchenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Burkin, V. V.; Rogaev, K. S.; Sammel', A. Yu.; Skosyrskii, A. B.; Tabachenko, A. N.; Yugov, N. T.

    2017-09-01

    The complex problem of increasing the penetrating power of strikers based on highly porous tungsten composites is considered by improving their strengthening properties by alloying the hardening components under high-speed collision conditions. Using the method of liquid-phase sintering, we fabricated samples of strikers based on a porous WNiFeCo alloy (tungsten + nickel + iron + cobalt), alloyed with tungsten carbide with cobalt (WCCo8) and titanium-tungsten carbide (TiWC). Dynamic tests of the strikers from the developed alloys were carried out at the collision velocity with a steel barrier of the order of 2800 m/s. The penetration depth of the striker based on a porous WNiFeCo alloy doped with tungsten carbides is 30% higher than the penetration depth of a striker of a monolithic WNiFe-90 alloy (tungsten + nickel + iron with a tungsten content of 90%).

  15. DEVELOPMENT OF THE COMPLEX-ALLOYED STEEL OF INCREASED HARDENABILITY, VISCOSITY AND HEAT-RESISTANCE FOR CUTTING PARTS OF HIGH-SPEED INSTRUMENT, OPERATING IN CONDITIONS OF HEATING UP AND DYNAMIC LOADS

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2006-01-01

    Full Text Available The theoretical aspects of development of the complex-alloyed steel compounds for cutting parts of high-speed instrument, particularly influence of alloying elements on its structure and characteristics are considered. It is shown that combined alloying of steel by carbon, chrome, silicon, manganese, vanadium and molybdenum in a certain proportion allows to reach the intended aim, achieving at the same time increase of solidity, impact elasticity and heat stability.

  16. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  17. High Speed Compressor Study

    Science.gov (United States)

    2011-12-21

    Davey G. The Design and Testing of a Stirling Cycle Domestic Freezer. Proc. of Conference on Applications for Natural Refrigerants , held in Aarhus...carried out on a relatively old design of compressor, initially developed for use with a Stirling cycle domestic freezer12, and subsequently used in a...limit’, and is suitable for high cycle fatigue. Beryllium copper has been largely superseded by stainless steel, which is more readily available

  18. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB{sub 2} coating on high speed steel

    Energy Technology Data Exchange (ETDEWEB)

    Panich, N. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)]. E-mail: panich@pmail.ntu.edu.sg; Sun, Y. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)

    2006-04-03

    Titanium diboride (TiB{sub 2}) coatings have been deposited on stationary and rotating high speed steel substrates by magnetron sputtering of a TiB{sub 2} target. The structure and hardness of the coatings and the coating-substrate adhesion have been investigated by X-ray diffraction, field emission scanning electron microscopy, nanoindentation and microscratch tests. The results show that substrate rotation has a significant effect on these structural and properties features. It was found that, with substrate rotation, the TiB{sub 2} coating exhibits a columnar structure with random orientation and relatively low hardness and coating-substrate adhesion. On the other hand, without substrate rotation, the TiB{sub 2} coating shows a strong (001) texture with dense, equiaxed grain structure. The hardness and coating-substrate adhesion of the coatings deposited on stationary substrates are much higher than those deposited on rotating substrates. The observed phenomena are discussed in terms of the energy of the sputtered flux, which varies with the substrate-target distance during deposition.

  19. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  20. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  1. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    Magnetic Levitation (Maglev) ...............................................................................................5 High Speed Rail In...conventional steel wheel on steel rail technology, or magnetic levitation (in which superconducting magnets levitate a train above a guide rail...transported.14 Magnetic Levitation (Maglev) Maglev train technology was developed in the United States in the 1960s. It uses electromagnets to suspend

  2. Water Containment Systems for Testing High-Speed Flywheels

    Science.gov (United States)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  3. High speed preprocessing system

    Indian Academy of Sciences (India)

    (a) Digitizing and writing the video data in the memory at HR rate, and (b) once the data are ready in the memory, reading the data and generating the LR image. Thus the execution time mainly depends on (i) processor speed, and (ii) the time taken for fetching video information/data. Figure 1. Hardware block diagram. 514.

  4. Caracterización de la integridad de las superficies maquinadas a altas velocidades en el acero 40XHMA//Characterization of surface integrity of machined surfaces at high cutting speed in 40XHMA steel

    Directory of Open Access Journals (Sweden)

    Mario Jacas-Cabrera

    2013-05-01

    Full Text Available Este trabajo tiene como objetivo el estudio de la integridad superficial de la superficie maquinada a altas velocidades de corte en el acero 40XHMA. Los experimentos fueron realizados en un proceso de torneado utilizando regímenes de corte correspondientes a un proceso de acabado. Una vez maquinadaslas probetas, se le realizaron ensayos de rugosidad superficial, tensiones residuales, microdureza Vickers y análisis de la deformación superficial. Como resultado se demostró que la variación de valores de la velocidad de corte no tuvo un efecto significativo en los valores de rugosidad superficial, observándoseuna ligera tendencia a la disminución de la misma, a medida que la velocidad de corte aumenta. En las muestras analizadas no se observaron zonas de deformación plástica superficial, pero sin embargo, se observó un incremento de la microdureza Vickers en la superficie maquinada, así como una disminuciónde las tensiones residuales al aumentar las velocidades de corte.Palabras claves: integridad superficial, maquinado a altas velocidades de corte, acero 40XHMA, acero 4340._______________________________________________________________________________AbstractThis work aims at the study of surface integrity on machined surfaces at high cutting speeds of the 40XHMA steel. The experiments were performed in a turning process with cutting schemes corresponding to polishing: Once machined, the specimens were subjected to different types of analysis: surface roughness, residual stresses, micro Vickers hardness and analysis of surface deformation .As a result it was shown that the variation of cutting speed had no significant effect on surface roughness values, showing a slight tendency to decrease it. In the tested samples zones of surface plastic-deformation were not observed. Nonetheless the micro Vickers hardness showed an increment in the machined surface anda decrease in residual stress with increasing cutting speeds was observed as well

  5. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  6. Hard-yet-tough high-vanadium high-speed steel composite coating in-situ alloyed on ductile iron by atmospheric plasma arc

    NARCIS (Netherlands)

    Cao, Huatang; Dong, Xuanpu; Pei, Yutao T.

    2018-01-01

    A graded high-vanadium alloy composite coating was synthesized from premixed powders (V, Cr, Ti, Mo, Nb) on ductile iron (DI) substrate via atmospheric plasma arc surface alloying process. The resulted cross-section microstructure is divided into three distinct zones: upper alloyed zone (AZ) rich

  7. High speed rail distribution study.

    Science.gov (United States)

    2016-08-01

    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...

  8. High-Speed Electrochemical Imaging.

    Science.gov (United States)

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  9. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties.

  10. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  11. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  12. High-speed OTDM switching

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders

    1998-01-01

    Optical TDM (OTDM) continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance fibre transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds. In conclusion, OTDM is emerging as an attracti...

  13. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  14. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  15. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are

  16. Ultra high-speed sorting.

    Science.gov (United States)

    Leary, James F

    2005-10-01

    Cell sorting has a history dating back approximately 40 years. The main limitation has been that, although flow cytometry is a science, cell sorting has been an art during most of this time. Recent advances in assisting technologies have helped to decrease the amount of expertise necessary to perform sorting. Droplet-based sorting is based on a controlled disturbance of a jet stream dependent on surface tension. Sorting yield and purity are highly dependent on stable jet break-off position. System pressures and orifice diameters dictate the number of droplets per second, which is the sort rate limiting step because modern electronics can more than handle the higher cell signal processing rates. Cell sorting still requires considerable expertise. Complex multicolor sorting also requires new and more sophisticated sort decisions, especially when cell subpopulations are rare and need to be extracted from background. High-speed sorting continues to pose major problems in terms of biosafety due to the aerosols generated. Cell sorting has become more stable and predictable and requires less expertise to operate. However, the problems of aerosol containment continue to make droplet-based cell sorting problematical. Fluid physics and cell viability restraints pose practical limits for high-speed sorting that have almost been reached. Over the next 5 years there may be advances in fluidic switching sorting in lab-on-a-chip microfluidic systems that could not only solve the aerosol and viability problems but also make ultra high-speed sorting possible and practical through massively parallel and exponential staging microfluidic architectures.

  17. A Study of Chip Formation Feedrates of Various Steels in Low-Speed Milling Process

    Science.gov (United States)

    Prasetyo, L.; Tauviqirrahman, M.; Rusnaldy

    2017-05-01

    Milling is a process of metal removal by feeding the workpiece a rotating multitoothed cutter. The objective of the study was to investigate the chip characteristics (chip length, width, and thickness) during the milling process by varying the feedrates and the types of materials used based on an experimental approach. The chosen materials were AISI 1020, AISI 1045, AISI 1090, AISI D2, and AISI 4340 with a high-speed steel (HSS) as a cutter. In this work, the feedrates were varied of 5, 10, and 15 mm/minutes with the depth of cut of 0.5 mm and a low spindle speed of 70 rpm. The results show that, in general, increasing the feedrate will lead to the growth of chip length, width, and thickness for all types of materials used. Also, related to the chip shape, AISI 1020 produces the discontinuous chip which can be related to its hardness value.

  18. Flank wear study of coating carbides and cermet inserts during the dry high speed turning of AISI 1045 steel; Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P.; Guerrero-Mata, M.; Dumitrescu, L.

    2011-07-01

    This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds. (Author) 19 refs.

  19. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  20. High speed nanofluidic protein accumulator.

    Science.gov (United States)

    Wu, Dapeng; Steckl, Andrew J

    2009-07-07

    Highly efficient preconcentration is a crucial prerequisite to the identification of important protein biomarkers with extremely low abundance in target biofluids. In this work, poly(dimethylsiloxane) microchips integrated with 10 nm polycarbonate nanopore membranes were utilized as high-speed protein accumulators. Double-sided injection control of electrokinetic fluid flow in the sample channel resulted in highly localized protein accumulation at a very sharp point in the channel cross point. This greatly enhanced the ability to detect very low levels of initial protein concentration. Fluorescein labeled human serum albumin solutions of 30 and 300 pM accumulated to 3 and 30 microM in only 100 s. Initial solutions as low as 0.3 and 3 pM could be concentrated within 200 s to 0.3 and 3 microM, respectively. This demonstrates a approximately 10(5)-10(6) accumulation factor, and an accumulation rate as high as 5000/sec, yielding a >10x improvement over most results reported to date.

  1. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  2. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can

  3. High Speed Viterbi Decoder Architecture

    DEFF Research Database (Denmark)

    Paaske, Erik; Andersen, Jakob Dahl

    1998-01-01

    The fastest commercially available Viterbi decoders for the (171,133) standard rate 1/2 code operate with a decoding speed of 40-50 Mbit/s (net data rate). In this paper we present a suitable architecture for decoders operating with decoding speeds of 150-300 Mbit/s....

  4. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  5. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Sheng, E-mail: longtubao@zju.edu.cn; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-02-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  6. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    OpenAIRE

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are performed by optical microscopy, Scanning Electron Microscopy (SEM), and hardness and sliding wear tests. The outcome of this research shows that an extreme refinement of the solidification structur...

  7. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş

    2005-01-01

    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  8. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  9. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  10. High-speed imaging in fluids

    NARCIS (Netherlands)

    Versluis, Michel

    2013-01-01

    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining

  11. Effect of Cutting Fluids on the Flank Wear of High Speed and ...

    African Journals Online (AJOL)

    The effect of some cutting fluids namely: Mentholated spirit, paraffin, and soluble oil on the flank wear of High-speed steel and carbide tipped tools by orthogonal cutting has been studied. Cente lathe was used for cylindrical turning operated at a speed of 370rpm and depth of cut of 1mm to machine aluminum, brass, mild ...

  12. High speed curving performance of rail vehicles

    Science.gov (United States)

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  13. Jane's high-speed marine transportation

    National Research Council Canada - National Science Library

    Phillips, S.J

    1998-01-01

    The purpose of this book is to provide a comprehensive reference yearbook covering the design, build and operation of high-speed marine transportation, worldwide, an annually updated reference book...

  14. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  15. Cracks in high-manganese cast steel

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2009-10-01

    Full Text Available The reasons which account for the formation of in service cracks in castings made from Hadfield steel were discussed. To explain the source of existence of the nuclei of brittle fractures, the properties of cast steel were examined within the range of solidification temperatures, remembering that feeding of this material is specially difficult, causing microporosity in hot spots. This creates conditions promoting the formation of microcracks which tend to propagate during service conditions involving high dynamic stresses, and explains why the cracks are mainly characterized by a brittle nature. The reason for crack formation in service are micro-porosities formed during casting solidification.

  16. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  17. High speed rail : challenges for the high speed rail project in Norway

    OpenAIRE

    Ringstad, Vidar

    2012-01-01

    This Master Thesis has focus on parts of the public transport system in Norway. The main topic in this thesis is: What variables must be calculated for the decision concerning the construction and implementation of the Norwegian High Speed Rail project, and how are the variables calculated? High Speed Rail does not have a single standard definition. High Speed Rail definition, given in the European Union definition, Directive 96/48 is suitable for many different systems of rolling stock...

  18. Scientific Visualization in High Speed Network Environments

    Science.gov (United States)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  19. Yonjung High-Speed Railway Bridge Assessment Using Output-Only Structural Health Monitoring Measurements under Train Speed Changing

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Yonjung Bridge is a hybrid multispan bridge that is designed to transport high-speed trains (HEMU-430X with maximum operating speed of 430 km/h. The bridge consists of simply supported prestressed concrete (PSC and composite steel girders to carry double railway tracks. The structural health monitoring system (SHM is designed and installed to investigate and assess the performance of the bridge in terms of acceleration and deformation measurements under different speeds of the passing train. The SHM measurements are investigated in both time and frequency domains; in addition, several identification models are examined to assess the performance of the bridge. The drawn conclusions show that the maximum deflection and acceleration of the bridge are within the design limits that are specified by the Korean and European codes. The parameters evaluation of the model identification depicts the quasistatic and dynamic deformations of PSC and steel girders to be different and less correlated when higher speeds of the passing trains are considered. Finally, the variation of the frequency content of the dynamic deformations of the girders is negligible when high speeds are considered.

  20. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  1. Brandaris ultra high-speed imaging facility

    NARCIS (Netherlands)

    Lajoinie, Guillaume; de Jong, Nico; Versluis, Michel; Tsuji, K.

    2017-01-01

    High-speed imaging is in popular demand for a broad range of scientific applications, including fluid physics, and bubble and droplet dynamics. It allows for a detailed visualization of the event under study by acquiring a series of images captured at high temporal and spatial resolution. The

  2. High Speed Digital Camera Technology Review

    Science.gov (United States)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  3. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  4. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  5. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation.......We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  6. High-speed dynamic-clamp interface

    Science.gov (United States)

    Yang, Yang; Adowski, Timothy; Ramamurthy, Bina; Neef, Andreas

    2015-01-01

    The dynamic-clamp technique is highly useful for mimicking synaptic or voltage-gated conductances. However, its use remains rare in part because there are few systems, and they can be expensive and difficult for less-experienced programmers to implement. Furthermore, some conductances (such as sodium channels) can be quite rapid or may have complex voltage sensitivity, so high speeds are necessary. To address these issues, we have developed a new interface that uses a common personal computer platform with National Instruments data acquisition and WaveMetrics IGOR to provide a simple user interface. This dynamic clamp implements leak and linear synaptic conductances as well as a voltage-dependent synaptic conductance and kinetic channel conductances based on Hodgkin-Huxley or Markov models. The speed of the system can be assayed using a testing mode, and currently speeds of >100 kHz (10 μs per cycle) are achievable with short latency and little jitter. PMID:25632075

  7. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  8. High-Speed Rail & Air Transport Competition

    NARCIS (Netherlands)

    Adler, Nicole; Nash, Chris; Pels, Eric

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers,

  9. High-speed Rail & air transport competition

    NARCIS (Netherlands)

    Adler, N; Nash, C.; Pels, E.

    2010-01-01

    This research develops a methodology to assess infrastructure investments and their effects on transport equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub-and-spoke legacy airlines and regional low-cost

  10. Crew Rostering for the High Speed Train

    NARCIS (Netherlands)

    R.M. Lentink (Ramon); M.A. Odijk; E. van Rijn

    2002-01-01

    textabstractAt the time of writing we entered the final stage of implementing the crew rostering system Harmony CDR to facilitate the planning of catering crews on board of the Thalys, the High Speed Train connecting Paris, Cologne, Brussels, Amsterdam, and Geneva. Harmony CDR optimally supports the

  11. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  12. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  13. Identification of Relevant Work Parameters of Ladle Furnace While Melting the High Ductility Steel and High-Carbon Steel

    Directory of Open Access Journals (Sweden)

    Warzecha M.

    2016-03-01

    Full Text Available In the present paper, secondary metallurgical treatment in ladle furnace during smelting the high carbon steel and steel with improved ductility for cold-deforming, under industrial conditions were analyzed.

  14. Identification of Relevant Work Parameters of Ladle Furnace While Melting the High Ductility Steel and High-Carbon Steel

    National Research Council Canada - National Science Library

    M. Warzecha; S. Garncarek; T. Merder; Z. Skuza

    2016-01-01

    In the present paper, secondary metallurgical treatment in ladle furnace during smelting the high carbon steel and steel with improved ductility for cold-deforming, under industrial conditions were analyzed...

  15. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  16. Fatigue resistance of welded joints in aluminium high-speed craft : A total stress concept

    NARCIS (Netherlands)

    Den Besten, J.H.

    2015-01-01

    Crew transfers, surveillance duties and {security, rescue, interception} operations at sea typically require high-speed craft. Aluminium is quite often selected as hull structure material because of its weight save potential in comparison to steel. The fatigue strength, however, may become a point

  17. High speed, high current pulsed driver circuit

    Science.gov (United States)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  18. Radiation-Tolerant High-Speed Camera

    Science.gov (United States)

    2017-03-01

    Radiation -Tolerant High-Speed Camera Esko Mikkola, Andrew Levy, Matt Engelman Alphacore, Inc. Tempe, AZ 85281 Abstract: As part of an... radiation -hardened CMOS image sensor and camera system. Radiation -hardened cameras with frame rates as high as 10 kfps and resolution of 1Mpixel are not...camera solution that is under development with a similar architecture. It also includes a brief description of the radiation -hardened camera that

  19. HIGH-SPEED HOT EXTRUSION IN HIGH TEMPERATURE MECHANICAL TREATMENT MODE OF BIMETALLIC ROD PARTS OF THE STAMPS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping change and especially high-speed hot extrusion create efficient conditions for treatment of low plastic and difficult-to-form materials which are widely used in tool making production. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under the increased loads and high wear. The purpose of the paper is to carry out experimental investigation of the possibility to obtain bimetallic rod stamping tooling by high-speed hot extrusion in high-temperature mode treatment in order to save die steels and improve the quality of the products obtained. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength. 

  20. PMSM sensorless control with separate control strategies and smooth switch from low speed to high speed.

    Science.gov (United States)

    Chen, SiYi; Luo, Ying; Pi, YouGuo

    2015-09-01

    This paper proposes a smooth switching scheme with separate control strategies on low speed mode and high speed mode for permanent magnet synchronous motor (PMSM) sensorless control to improve the overall performance in full speed range. Constant voltage/frequency tuning method is used on low speed mode because the rotor position can hardly be estimated precisely at low speed. Along with the increasing speed, the control strategy can be switched to high speed mode smoothly when current and speed meet the given requirements. In this high speed mode, the current tracking with a sliding mode observer (SMO) and speed tracking with a sliding mode controller (SMC) are handled, respectively. Experimental demonstration is presented to show the desired performance in full speed range of the PMSM sensorless control using the proposed control scheme in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  2. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  3. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  4. Developing course lecture notes on high-speed rail.

    Science.gov (United States)

    2017-07-15

    1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...

  5. Gas turbine for high speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Chenard, J.-L. [Turbomeca (France)

    1994-12-31

    This presentation will show how the gas turbine engines can be the right compromise to face the challenges raised by the demand for high speed trains through out the world. From the steam locomotive still in use in China to the TGV or ICE in Europe and Shinkensen in Japan able to run at more than 300 kms/hour, the modes of traction for trains have been greatly improved during the last fifty years. Even more faster trains are under studies for the future with the magnetic levitation system. Three main propulsion system, diesel, electric and gas turbines are actually competing in the high speed train market. They will have to comply with the new environmental regulations, better efficiency and customers` requirements for the developed countries, and with the necessity to use the existing tracks for most of the applications

  6. High-Speed Rail & Air Transport Competition

    OpenAIRE

    Nicole Adler; Chris Nash; Eric Pels

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers, maximize profit functions via prices, frequency and train/plane sizes, given infrastructure provision and costs and environmental charges. The methodology is subsequently applied to all 27 Europea...

  7. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  8. All aboard for high-speed rail

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  9. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    Directory of Open Access Journals (Sweden)

    Kramshonkov E.N.

    2016-01-01

    Full Text Available The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  10. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  11. RESOURCE-SAVING TECHNOLOGY FOR HIGH-SPEED HOT EXTRUSION OF BIMETALLIC ROD PARTS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under conditions of increased loads and wear. The purpose of the given paper is to carry out experimental investigations on the possibility to obtain a bimetallic rod tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic rod parts of die tooling with deformation at speed of vд = 70–80 m/s and composite billet temperature of Т = (1150±20 ºС has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  12. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  13. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  14. High-speed multispectral confocal biomedical imaging.

    Science.gov (United States)

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  15. Theory Of High-Speed Stereophotogrammetry

    Science.gov (United States)

    Hongxun, Song; Junren, Chen

    1989-06-01

    The general equations of direct linear transformation (DLT) are derived according to the actual process of high-speed stereophotogrammetry. The equations are not only applicable to the ordinary photographic system, but also to the photographic system with reflectors or stereo-reflectors. The equations are also suitable to the enlarged, copied and projected measurements of photographic film. The linear and non-linear errors in photogrammetric process can be corrected. Finally, the equations of right angle intersection photogrammetry are given and the merits and demerits of this method are discussed.

  16. CONSIDERATION OF AERODYNAMIC IMPACT IN SETTING THE MAXIMUM PERMISSIBLE SPEEDS OF HIGH-SPEED TRAIN

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2017-10-01

    Full Text Available Purpose. Studies of the effect of aerodynamic pressure on the maximum permissible speeds of a high-speed train on the existing railway infrastructure. Methodology. The study of the magnitude and direction of the aerodynamic pressure, its effect on the maximum speeds of a high-speed train was carried out on a train model composed of axisymmetric bodies with conical forms of head and tail parts. Findings. Determined the values of the aerodynamic pressure at different distances from the train are, when the high-speed train moves at a speed of 200 km/h or more. The maximum speeds of a high-speed train are determined taking into account the state of the infrastructure of the existing railway, ensuring the safe operation of a high-speed railway. Originality. Theoretical studies of aerodynamic pressure from secondary air currents formed during the movement of high-speed trains are performed on a model of a train composed of identical axisymmetric bodies with conical forms of head and tail moving in a compressible medium. The results of the research allow the regularity of the change in aerodynamic pressure during the movement of a high-speed train. Practical value. The obtained results allow to establish: 1 the maximum permissible speeds of a high-speed train taking into account the technical condition of permanent devices and structures of the existing railway infrastructure; 2 technical parameters of individual objects and structural elements of the infrastructure of high-speed iron subjected to the effect of aerodynamic pressure for a given maximum speed of high-speed trains.

  17. Study of high-speed civil transports

    Science.gov (United States)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  18. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  19. Laser beam welding by high-speed beam deflection; Laserstrahlschweissen durch High-Speed-Strahlbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbach, A.; Morgenthal, L.; Beyer, E. [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik, Dresden (Germany)

    1999-04-01

    The beam deflection system developed at Fraunhofer IWS can be used for rapid moving of a high power laser beam over the workpiece surface. Therefore it is possible to scan even rather small paths with high speed. The system contents two galvanometer scanner with specially designed lightweight mirrors in combination with a beam focusing unit. (Fig. 1). The high-speed welding of contours with small diameter is favorably done with both focusing optics and workpiece fixed (Fig. 2,3). Thus all notorius problems of conventional handling systems, as limited velocity and accuracy resulting from the inertia of the moved focusing head or workpiece, vanish. (orig.)

  20. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  1. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  2. ACTS High-Speed VSAT Demonstrated

    Science.gov (United States)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  3. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  4. High-speed analog CMOS pipeline system

    Science.gov (United States)

    Möschen, J.; Caldwell, A.; Hervas, L.; Hosticka, B.; Kötz, U.; Sippach, B.

    1990-03-01

    We present a switched-capacitor readout system for high speed analog signals. It consists of a 10 MHz four-channel delay-line chip with 58 samples per channel and a 12 channel buffer chip with a sampling rate of 1 MHz and a depth of nine samples. In addition the buffer chip includes an analog multiplexer with 25 inputs for the buffer channels and for 13 additional unbuffered signals. Both chips have been fabricated in CMOS-technology and will be used for the readout of the ZEUS high resolution calorimeter. The circuit and chip concept will be presented and some design optimizations will be discussed. Measurements from integrated prototypes will be given including some experimental data from irradiated chips.

  5. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  6. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  7. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2.A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon...

  8. Annealing Characteristics of Ultrafine Grained Low-Carbon Steel Processed by Differential Speed Rolling Method

    Science.gov (United States)

    Hamad, Kotiba; Ko, Young Gun

    2016-05-01

    The annealing behavior of ultrafine grained ferrite in low-carbon steel (0.18 wt pct C) fabricated using a differential speed rolling (DSR) process was examined by observing the microstructural changes by electron backscatter diffraction and transmission electron microscopy. For this purpose, the samples processed by 4-pass DSR at a roll speed ratio of 1:4 for the lower and upper rolls, respectively, were annealed isochronally at temperatures ranging from 698 K to 898 K (425 °C to 625 °C) for 1 hour. The deformed samples exhibited a complex microstructure in the ferrite phase consisting of an equiaxed structure with a mean grain size of ~0.4 µm and a lamellar structure with a mean lamellar width of ~0.35 µm. The texture evolved during deformation was characterized by the rolling and shear components with specific orientations. After annealing at temperatures lower than 798 K (525 °C), the aspect ratio of the deformed grains tended to shift toward a unit corresponding to the equiaxed shape, whereas the grain size remained unchanged as the annealing temperature increased. At temperatures above 798 K (525 °C), however, some grains with a low dislocation density began to appear, suggesting that the starting temperature of static recrystallization in the severely deformed ferrite grains was 798 K (525 °C). The annealing texture of the present sample after heat treatment showed a uniform fiber texture consisting of α- and γ-components.

  9. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  10. High-speed ground transportation noise and vibration impact assessment.

    Science.gov (United States)

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  11. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  12. South Carolina southeast high speed rail corridor improvement study

    Science.gov (United States)

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  13. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  14. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  15. High-speed electrical motor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  16. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  17. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... amplitude fatigue test results showed shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, the fatigue tests on high-strength steel tubular joints showed slightly longer fatigue lives than those obtained...

  18. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  19. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  20. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  1. Steel castings Ultrasonic examination, Part 2: Steel castings for highly stressed components

    CERN Document Server

    International Organization for Standardization. Geneva

    2004-01-01

    This European Standard specifies the requirements for the ultrasonic examination of steel castings (with ferritic structure) for highly stressed components and the methods for determining internal discontinuities by the pulse echo technique. This European Standard applies to the ultrasonic examination of steel castings which have usually received a grain refining heat treatment and which have wall thicknesses up to and including 600 mm. For greater wall thicknesses, special agreements apply with respect to test procedure and recording levels. This European Standard does not apply to austenitic steels and joint welds.

  2. Some problems related to the forming of blade blanks by high-speed ram extrusion

    Science.gov (United States)

    Shitarev, I. L.

    A high-speed ram extrusion process for the production of turbine blades is described, and some problems associated with the process are examined. The problems discussed relate to the rebound and the repeat impact of the tooling, the hydraulic hammer effect in oil lines, and insufficient durability of the dies. Methods of overcoming these problems are discussed with particular reference to the extrusion of 120-220-mm long blades of EI961ISh steel.

  3. High-tech maintenance for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Javier Rutz [Nertus Mantenimiento Ferroviario, S.A., Madrid (Spain); Hofmann, Manfred [Siemens AG, Erlangen (Germany). Mobility Div., Integrated Services

    2011-03-15

    Reliable, punctual trains cannot do without professional maintenance. Nertus S.A., a joint subsidiary of Siemens and Renfe, is responsible for providing precisely this for the Spanish high-speed train, Velaro E (AVE S103), which operates between Madrid and Barcelona. (orig.)

  4. Cleveland-Columbus-Cincinnati high-speed rail study

    Science.gov (United States)

    2001-07-01

    In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...

  5. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  6. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  7. New high temperature steels for steam power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J.; Nath, B.

    1998-07-01

    Development of high efficiency ultra supercritical (USC) steam power plant is based on the availability of improved high temperature steels for key components in the steam cycle i.e: Thick section boiler components and steam lines; turbine rotors, casings, valves and bolts; superheaters; furnace panels. New martensitic high creep strength 9--12%Cr steels like the P91, P92 and P122 allow increased steam parameters in steam headers and steam lines, and similar martensitic steels are used for rotors, casings and valves of advanced steam turbines. The development of these steels have included demonstration of fabricability like welding and bending, fabrication of demonstration components built into existing plants, and the validation of long term creep properties with testing times of more than 30,000 hours. The development work has been made in international projects like the EPRI RP1403, COST 501 and ECCC. The first use of the new steels have followed in USC plants in Europe and Japan, leading to plant efficiencies up to 47%. Superheater steels must have high corrosion and oxidation resistance, and a number of new austenitic steels have been developed for this purpose. Tests are currently running to obtain long term corrosion and oxidation data for design of superheaters in the new steels. Steels for furnace panels need to be welded without post weld heat treatment, and also for this purpose new ferritic and martensitic steels are available. With the materials development described above it is today possible to construct a USC plant with steam parameters 325bar/610 C/630 C/630 C and an efficiency approaching 50%. Future developments in the European THERMIE demonstration project ``Advanced (700 C) PF Power Plant'' will address the use of nickel or cobalt base superalloys for boilers, steam lines and turbines. This may lead to efficiencies in the range 52--55%.

  8. Analysis of coupling between high-speed railway and common speed railway system in transportation corridor

    Science.gov (United States)

    Zhou, Hongchang; Li, Haijun; Chen, Xiaohong; Zhu, Changfeng

    2017-04-01

    The high-speed railway and common speed railway subsystems as important components of the railway transportation system, can make railway traffic organization more orderly, when there are a rational division and balance development between them. In order to quantitatively evaluate the coordinate relations between high-speed railway subsystem and common speed railway subsystem, this paper takes the railway transportation corridor from Baoji to Lanzhou as an example. Firstly, using Logit model and grey forecasting model predict the passenger volume, passenger turnover and time value of high-speed railway and common speed railway in the Baoji-Lanzhou corridor. And then, the coupling forecast model of these two subsystems is established. Lastly, the coupling and coupling coordination of these two subsystems using are predicted and analyzed at theatrically level.

  9. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  10. High Speed Link Radiated Emission Reduction

    Science.gov (United States)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  11. Martensitic high nitrogen steel for applications at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berns, H.; Escher, C. [Bochum Univ. (Germany); Streich, W.-D. [TRW Deutschland GmbH, Blumberg (Germany)

    1999-07-01

    Based on required material properties for inlet valves in combustion engines a martensitic high nitrogen steel was created. After selecting an alloy system with 14-17 w/o Cr, 1-3 w/o Mo, 0.1-0.3 w/o V and 0.4-0.7 w/o N by method of thermodynamical calculations of phase equilibria the newly developed martensitic steel was produced by pressurized electroslag remelting. Hot tensile tests and corrosion tests were carried out on hardened and tempered specimens in comparison with two standard valve steels. The high nitrogen steel shows a distinctly better corrosion resistance and high-temperature strength than the standard steel X45CrSi9-3 and is therefore comparable with the steel X85CrMoV18-2. Due to finer nitrides the newly developed steel is characterized by a fatigue strength which is 26% higher at 500 C service temperature. (orig.)

  12. Properties of stainless high-strength chrome steels for bearings

    Science.gov (United States)

    Talyzin, V. M.; Burkin, V. S.; Doronin, V. M.

    1981-10-01

    Steel 40Kh11M3F-Sh has fairly high resistance to contact fatigue stresses at elevated temperatures and can be recommended for bearings operating in aggressive media at such temperatures, including large bearings.

  13. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  14. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  15. High speed flow cytometric separation of viable cells

    Science.gov (United States)

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  16. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  17. High-speed Stochastic Fatigue Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Sørensen, John Dalsgaard

    1990-01-01

    testing, quite unacceptable errors are introduced. Usually this problem is solved by running the tests at very low speeds and by editing the load history in order to reduce the duration of the test. In this paper a new method for control of stochastic fatigue tests is proposed. It is based on letting...

  18. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  19. High-speed rail-coming to America?

    Science.gov (United States)

    Cameron, David Ossian

    2009-01-01

    The United States lags many parts of the world when it comes to high-speed rail. But investing in high-speed rail could help us through current problems. Funds- $8 billion-in the economic stimulus package passed by Congress are designated for high-speed rail. Other funds in the pipeline total approximately $15.5 billion. High-speed rail can relieve congestion, free up national airspace, provide reliable transportation and positive economic development, create jobs, and is more energy efficient than other modes of travel.

  20. The high-speed train and its spatial effects

    OpenAIRE

    Javier Gutiérrez Puebla

    2004-01-01

    This paper analyses the high-speed train from a spatial point of view. The basic characteristics of this transportation mode,the evolution of high-speed networks in several countries and the building of a trans-European high-speed railway network are studied.The paper analyses also the process of space-time convergence and its consequences on competitivity and cohesion;the tunel effect;the impact of the high speed-train on transportation demand;and the impacts on the city.

  1. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  2. Design of Reforma 509 with High Strength Steel

    Science.gov (United States)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  3. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CT??) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  4. Process to Continuously Melt, Refine and Cast High Quality Steel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  5. Time optimal paths for high speed maneuvering

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  6. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  7. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  8. Strengthening of stainless steel weldment by high temperature precipitation

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2017-10-01

    Full Text Available The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C and long periods (up to 2000 h under constant load, and both mechanical properties and microstructural changes in the material were monitored. It was found that the exposure of the material at 600 °C under load contributes to a strengthening effect on the weld. The phenomenon might be correlated with an accelerated process of second phase precipitation hardening. Keywords: Stainless steel, Weld, AISI 304, Precipitation hardening

  9. 9 Cr-- 1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  10. New heat treatment process for advanced high-strength steels

    Science.gov (United States)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  11. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  12. Florida High Speed Rail Authority - 2003 report to the legislature

    Science.gov (United States)

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  13. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  14. Optical Systems for Ultra-High-Speed TDM Networking

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Mulvad, Hans Christian Hansen

    2014-01-01

    This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification...... and detection of ultra-high-speed optical signals....

  15. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili

    2014-04-01

    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  16. Rounding Technique for High-Speed Digital Signal Processing

    Science.gov (United States)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  17. CMOS Image Sensors for High Speed Applications

    OpenAIRE

    Jamal Deen, M.; Qiyin Fang; Louis Liu; Frances Tse; David Armstrong; Munir El-Desouki

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm) due to ...

  18. Damage characterization of high-strength multiphase steels

    Science.gov (United States)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  19. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  20. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  1. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  2. HIGH SPEED SHIP TOTAL RESISTANCE CALCULATION (AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Dimas Endro W

    2014-02-01

    Full Text Available High speed design studies became very intense studies. One of the subject that can be explore is obtaining total resistace. A high speed ship has four stages of condition when she operates. Starting from low speed condition until developent of dinamics lift force. These four states that happened on high speed ship when she cuise on her operational speed, make a specific consideration on predicting her total resistance.  As high speed ship become more widely built and operate in Indonesia, the study of the state of art of high speed vessel  especially for obtaining total resistance has became more challenging In this paper is foccused on proposing an applicative methods for high speed resistance calculation based on savitsky method. Result which obtained form empirical study is compared to numerical software. Result of this study shows that there are no significant differences between empirical method and result form software application. Considering of sea margin would be effective to made the empirical method would be applicable. There is a 128,0812 KN of total resistance using empirical method, by considering sea margine factor, and a 128,512 KN of total resistance resulted form software calculation

  3. Evaluation of Dynamic Load Factors for a High-Speed Railway Truss Arch Bridge

    Directory of Open Access Journals (Sweden)

    Ding Youliang

    2016-01-01

    Full Text Available Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.

  4. Parametric Optimization for High Speed FLIM Implementation

    Directory of Open Access Journals (Sweden)

    Kim Jayul

    2015-01-01

    Full Text Available FLIM (Fluorescence Lifetime Imaging Microscopy has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. To increase the FLIM speed, many methodologies have been developed and applied to the system. One of the recent methodologies is an analogue mean delay based FLIM using a PMT and digitizer for image reconstruction. In this system, however, imaging time is largely dependent upon several parameters such as data transfer rate, sampling rate of an A/D converter, and signal width etc. In this paper, such parametric optimization method is introduced for faster acquisition of the image.

  5. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  6. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  7. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  8. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  9. TECHNOLOGY FOR OBTAINING BIMETALLIC SHAPING PARTS OF DIE TOOLING USING METHOD OF HIGH-SPEED HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2014-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing shaping parts of die tooling parts operating which are subjected to increased loads and wear.The purpose of the paper is to carry out experimental investigations on the possibility to obtain a bimetallic tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic shaping parts of die tooling with deformation at speed of vR = 40-50 m/s and composite billet temperature of T = 1150 °C has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films.Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two- steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  10. On-line high-speed rail defect detection.

    Science.gov (United States)

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  11. Análise da topografia da superfície usinada por descargas elétricas do aço-rápido ABNT M2 = Analysis of surface topography in electrical discharge machining of ABNT M2 high speed steel

    Directory of Open Access Journals (Sweden)

    Jean Robert Pereira Rodrigues

    2011-01-01

    Full Text Available A usinagem por descargas elétricas é um processo excepcional para usinagem de formas complexas em materiais condutores elétricos, principalmente para aqueles de alta dureza, difíceis de serem usinados por processos tradicionais. Em cada descarga, uma cratera é formada no material e uma pequena cratera é formada no eletrodo. De todo material fundido produzido em cada descarga, só 15%, ou menos, são removidos através do fluido dielétrico. O restante do material fundido solidifica-se formando uma superfície rugosa. As características da superfície obtida, sobreposição de crateras, glóbulos de impurezas, “chaminés”, bolhas (formadas quando os gases presos são liberados através do material resolidificado, são reveladas através de uma análise por microscopia eletrônica de varredura. O trabalho proposto tem por objetivo estudar o efeito de vários fluidos dielétricos, sobre topografia da superfície e taxa de remoção de material (TRM, no aço rápido ABNT M2, durante a usinagem por descargas elétricas.The electrical discharge machining is an exceptional procedure for machining complex shapes into electric conductor materials, mainly for those of high hardness, difficult of machining by traditional processes. At each discharge, a crater is formed in the material and a small crater is formed in the electrode. From every molten material produced in each discharge, only 15%, or less is removed through the dielectric liquid. The remaining of molten material solidifies forming a wrinkled surface. The characteristics of the obtained surface, as overlap of craters, globules of sullage, “chimneys", bubbles (formed when trapped gases are released through the resolidified material, are revealed through an analysis by scanning electron microscopy. The proposed study aimed to examine the effect of several dielectric fluids, on the surface topography and material removal rate, in workpiece of high speed steel (ABNT M2, during the

  12. High speed electromechanical response of ionic microactuators

    Science.gov (United States)

    Maziz, Ali; Plesse, Cedric; Soyer, Caroline; Cattan, Eric; Vidal, Frederic

    2015-04-01

    This paper presents the synthesis and characterization of thin and ultra-fast conducting polymer microactuators which can operate in the open air. Compared to all previous existing electronic conducting polymer based microactuators, this approach deals with the synthesis of robust interpenetrating polymer networks (IPNs) combined with a spincoating technique in order to tune and drastically reduce the thickness of conducting IPN microactuators using a so-called "trilayer" configuration. Patterning of electroactive materials has been performed with existing technologies, such as standard photolithography and dry etching. The smallest air-operating microbeam actuator based on conducting polymer is then described with dimensions as low as 160x30x6 μm3. Under electrical stimulation the translations of small ion motion into bending deformations are used as tools to demonstrate that small ion vibrations can still occur at frequency as several hundreds of Hz. Conducting IPN microactuators are then promising candidates to develop new MEMS combining downscaling, softness, low driving voltage, and fast response speed.

  13. High speed high dynamic range high accuracy measurement system

    Science.gov (United States)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  14. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  15. The Paris - Strasbourg high-speed line; Hochgeschwindigkeitsstrecke Paris - Strassburg

    Energy Technology Data Exchange (ETDEWEB)

    Brux, G.

    2007-07-01

    On 10th June 2007, TGV high-speed trains operated by French state railways SNCF, and ICE high-speed trains of Deutsche Bahn, will commence operations of France's eastern highspeed line Paris - Strasbourg, running services from Paris to Luxembourg, Frankfurt am Main and Stuttgart, and also to Basel and Zurich. As from the start of the new timetable on 9th December 2007, the service will also extend to Munich. The new high-speed line will shorten rail travels on these connections by several hours. (orig.)

  16. FPGA Flash Memory High Speed Data Acquisition

    Science.gov (United States)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  17. Impact properties of tungsten-based alloys under conditions of high-speed interaction

    Science.gov (United States)

    Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; Ishchenko, A. N.; Martsunova, L. S.; Tabachenko, A. N.; Khabibullin, M. V.; Yugov, N. T.

    2013-04-01

    Some aspects of obtaining alloys of the tungsten-nickel-iron-cobalt (TNIC) system have been investigated by the method of liquid-phase sintering of powder preparations, including those containing nano-size tungsten powders. By varying the initial porosity of the powder preparations, samples of highly porous composites have been obtained. A calculational-experimental method was used to investigate the penetrating power of cylindrical impactors made from TNIC alloys on steel plates. An increase in penetration depth with growth of porosity of the sample has been established in the considered range of impact speeds.

  18. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    Science.gov (United States)

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  19. Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China

    Directory of Open Access Journals (Sweden)

    Shunquan Qin

    2017-12-01

    Full Text Available With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including combined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railway bridges are provided.

  20. Effects of High-Speed Power Training on Muscle Performance and Braking Speed in Older Adults

    Directory of Open Access Journals (Sweden)

    Stephen P. Sayers

    2012-01-01

    Full Text Available We examined whether high-speed power training (HSPT improved muscle performance and braking speed using a driving simulator. 72 older adults (22 m, 50 f; age = 70.6 ± 7.3 yrs were randomized to HSPT at 40% one-repetition maximum (1RM (HSPT: n=25; 3 sets of 12–14 repetitions, slow-speed strength training at 80%1RM (SSST: n=25; 3 sets of 8–10 repetitions, or control (CON: n=22; stretching 3 times/week for 12 weeks. Leg press and knee extension peak power, peak power velocity, peak power force/torque, and braking speed were obtained at baseline and 12 weeks. HSPT increased peak power and peak power velocity across a range of external resistances (40–90% 1RM; P<0.05 and improved braking speed (P<0.05. Work was similar between groups, but perceived exertion was lower in HSPT (P<0.05. Thus, the less strenuous HSPT exerted a broader training effect and improved braking speed compared to SSST.

  1. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  2. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...

  3. Parallelism and pipelining in high-speed digital simulators

    Science.gov (United States)

    Karplus, W. J.

    1983-01-01

    The attainment of high computing speed as measured by the computational throughput is seen as one of the most challenging requirements. It is noted that high speed is cardinal in several distinct classes of applications. These classes are then discussed; they comprise (1) the real-time simulation of dynamic systems , (2) distributed parameter systems, and (3) mixed lumped and distributed systems. From the 1950s on, the quest for high speed in digital simulators concentrated on overcoming the limitations imposed by the so-called von Neumann bottleneck. Two major architectural approaches have made ig possible to circumvent this bottleneck and attain high speeds. These are pipelining and parallelism. Supercomputers, peripheral array processors, and microcomputer networks are then discussed.

  4. Railroad Embankment Stabilization Demonstration for High-Speed Rail Corridors

    Science.gov (United States)

    2003-02-09

    The development of high-speed railroad corridors in the United States is being considered by Congress as a fuel efficient and economical alternative to air or highway passenger travel. The exisiting infrastructure is, in many ways, suitable for freig...

  5. Promoting intermodal connectivity at California's high-speed rail stations.

    Science.gov (United States)

    2015-07-01

    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a : profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and othe...

  6. Florida High Speed Rail Authority - 2002 report to the legislature

    Science.gov (United States)

    2002-01-01

    This report addresses a legislative requirement that the Authority issue a report of its actions, findings and recommendations. Previous high speed ground transportation studies were reviewed as part of the preparation of this report. Independent ana...

  7. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  8. Safety evaluation of high-speed rail bogie concepts.

    Science.gov (United States)

    2013-10-01

    The study defines the basic design concepts required to provide a safe, reliable, high-speed bogie for the next generation PRIIA passenger locomotive. The requirements and conditions for the U.S. market create unique design challenges that currently ...

  9. High-Speed-/-Hypersonic-Weapon-Development-Tool Integration

    National Research Council Canada - National Science Library

    Duchow, Erin M; Munson, Michael J; Alonge, Jr, Frank A

    2006-01-01

    Multiple tools exist to aid in the design and evaluation of high-speed weapons. This paper documents efforts to integrate several existing tools, including the Integrated Hypersonic Aeromechanics Tool (IHAT)1-7...

  10. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  11. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  12. Modern trends in designing high-speed trains

    National Research Council Canada - National Science Library

    Golubović, Snežana D; Rašuo, Boško P; Lučanin, Vojkan J

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains...

  13. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  14. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available -1 SABO 2013 TME Workshop Alkantpan Characterising Argon-bomb balloons for High-speed Photography M Olivier and FJ Mostert Landward Sciences, Defence Peace Safety and Security, CSIR, Meiring Naude Road, Pretoria, RSA. Abstract A...

  15. Engineering Data on Selected High Speed Passenger Trucks

    Science.gov (United States)

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  16. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent R&D associated with designing high speed rotorcraft has been greatly hampered by a lack of test data and confidence in predictions for rotors operating...

  17. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  18. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  19. From periphery to core: economic adjustments to high speed rail

    OpenAIRE

    Ahlfeldt, Gabriel M.; Feddersen, Arne

    2010-01-01

    This paper presents evidence that high speed rail systems, by bringing economic agents closer together, sustainably promote economic activity within regions that enjoy an increase in accessibility. Our results on the one hand confirm expectations that have led to huge public investments into high speed rail all over the world. On the other hand, they confirm theoretical predictions arising from a consolidate body of (New) Economic Geography literature taking a positive, man-made and reproduci...

  20. Fatigue experiments on connections made of very high strength steels

    NARCIS (Netherlands)

    Pijpers, R.; Kolstein, H.; Bijlaard, F.

    2013-01-01

    An effective application of Very High Strength Steels (VHSS) can be expected in truss-like structures, typically made of hollow sections. Improved design of VHSS truss structures could incorporate the application of cast joints, since an appropriate design of cast joints limits the stress

  1. Primary Crystallization of High Chromium Cast Steel in Metastable Conditions

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2012-12-01

    Full Text Available The analysis of the primary crystallization of wear corrosive-erosive high chromium cast steel was introduced in the article on the basis of investigations the widened method of the differential thermal analysis with testers DTA-C and DTA-Is. The use of these testers enabled the analysis of crystallization for the various rates of cooling.

  2. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  3. Nanotechnology: high-speed integrated nanowire circuits.

    Science.gov (United States)

    Friedman, Robin S; McAlpine, Michael C; Ricketts, David S; Ham, Donhee; Lieber, Charles M

    2005-04-28

    Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.

  4. Optimization Based High-Speed Railway Train Rescheduling with Speed Restriction

    Directory of Open Access Journals (Sweden)

    Li Wang

    2014-01-01

    Full Text Available A decision support framework with four components is proposed for high-speed railway timetable rescheduling in case of speed restriction. The first module provides the speed restriction information. The capacity evaluation module is used to evaluate whether the capacity can fulfill the demand before rescheduling timetable based on deduction factor method. The bilayer rescheduling module is the key of the decision support framework. In the bilayer rescheduling module, the upper-layer objective is to make an optimal rerouting plan with selected rerouting actions. Given a specific rerouting plan, the lower-layer focuses on minimizing the total delay as well as the number of seriously impacted trains. The result assessment module is designed to invoke the rescheduling model iteratively with different settings. There are three prominent features of the framework, such as realized interaction with dispatchers, emphasized passengers’ satisfaction, and reduced computation complexity with a bilayer modeling approach. The proposed rescheduling model is simulated on the busiest part of Beijing to Shanghai high-speed railway in China. The case study shows the significance of rerouting strategy and utilization of the railway network capacity in case of speed restriction.

  5. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  6. High-speed quantum networking by ship.

    Science.gov (United States)

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  7. High-speed velocity measurements on an EFI-system

    Science.gov (United States)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  8. Calculation and experimental study on high-speed impact of heat-resistant coating materials with a meteoric particle

    Science.gov (United States)

    Glazunov, Anatoly; Ishchenko, Aleksandr; Afanas'eva, Svetlana; Belov, Nikolai; Burkin, Viktor; Rogaev, Konstantin; Yugov, Nikolai

    2016-01-01

    The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids.

  9. Acoustic measurements on aerofoils moving in a circle at high speed

    Science.gov (United States)

    Wright, S. E.; Crosby, W.; Lee, D. L.

    1982-01-01

    Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.

  10. Dynamic response of arch bridges traversed by high-speed trains

    Science.gov (United States)

    Lacarbonara, Walter; Colone, Valerio

    2007-07-01

    A mechanical model describing the planar elasto-dynamics of arch bridges with general arch profiles is presented. The model is amenable to analytical or semi-analytical treatments and is effective for parametric studies, design of control systems or structural optimizations. The Ritz's energy approach is employed to calculate the solutions of the vibration eigenvalue problem—natural frequencies and mode shapes—and the forced responses to external excitations, namely those induced by the passage of trains. A closed-form solution of the bridge dynamic response to the transit of trains with arbitrary load distributions and running speeds is found and the train-induced resonances are accordingly discussed. In particular, three European high-speed trains—the French TGV, the Italian ETR 500, and the German ICE—traversing a lower-deck steel arch bridge are considered and the ensuing responses are investigated.

  11. Transient line starting analysis of the ultra-high speed PMSM

    Science.gov (United States)

    Cheng, Wenjie; Li, Wei; Xiao, ling; Li, Ming; Tian, Yongsheng; Sun, Yanhua; Yu, Lie

    2017-01-01

    Aiming at the ultra high speed permanent magnet synchronous motor (PMSM) supported by gas foil bearings (GFBs), this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method. PMID:28105384

  12. Transient line starting analysis of the ultra-high speed PMSM

    Directory of Open Access Journals (Sweden)

    Wenjie Cheng

    2017-05-01

    Full Text Available Aiming at the ultra high speed permanent magnet synchronous motor (PMSM supported by gas foil bearings (GFBs, this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method.

  13. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  14. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer

  15. High speed machining of aero-engine alloys

    OpenAIRE

    Ezugwu, E. O.

    2004-01-01

    Materials used in the manufacture of aero-engine components generally comprise of nickel and titanium base alloys. Advanced materials such as aero-engine alloys, structural ceramic and hardened steels provide serious challenges for cutting tool materials during machining due to their unique combinations of properties such as high temperature strength, hardness and chemical wear resistance. These materials are referred to as difficult-to-cut since they pose a greater challenge to manufacturing...

  16. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig

    2015-01-01

    In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario for the b......In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario...... for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  17. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  18. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  19. Modern trends in designing high-speed trains

    OpenAIRE

    Golubović Snežana D.; Rašuo Boško P.; Lučanin Vojkan J.

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself...

  20. Extremely high-speed imaging based on tubeless technology

    Science.gov (United States)

    Li, Jingzhen

    2008-11-01

    This contribution focuses on the tubeless imaging, the extreme-high speed imaging. A detail discussion is presented on how and why to make them, which would be the most important in the high speed imaging field in the future. Tubeless extreme-high speed imaging can not only be used to observe the transient processes like collision, detonating, and high voltage discharge, but also to research the processes like disintegration and transfer of phonon and exacton in solid, photosynthesis primitive reaction, and electron dynamics inside atom shell. Its imaging frequency is about 107~1015fps. For this kind of imaging, the mechanism of how forming both high speed and framing would better make fine use of the light speed, the light parallelism, the parameters of light wave such as its amplitude, phase, polarization and wave length, and even quantum characteristics of photons. In the cascade connection system of electromagnetic wave and particle wave, it is able to simultaneously realize high level both the temporal resolution and the spatial resolution, and it would be possible to break through the limit of the Heisenberg uncertainty correlation of the optical frequency band.

  1. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  2. HDR {sup 192}Ir source speed measurements using a high speed video camera

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P. [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Viana, Rodrigo S. S.; Yoriyaz, Hélio [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil); Podesta, Mark [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Rubo, Rodrigo A.; Sales, Camila P. de [Hospital das Clínicas da Universidade de São Paulo—HC/FMUSP, São Paulo 05508-000 (Brazil); Reniers, Brigitte [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, Frank, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  3. High specialty stainless steels and nickel alloys for FGD dampers

    Energy Technology Data Exchange (ETDEWEB)

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany); Starke, K. [Mannesmann-Seiffert GmbH, Beckum (Germany)

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  4. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting

    Directory of Open Access Journals (Sweden)

    Makoana, N. W.

    2016-11-01

    Full Text Available In Selective Laser Melting, the initial units produced are single tracks that overlap to create a single layer; from the sequence of layers, a 3D object is manufactured. The properties of the parts produced by SLM depend heavily on the properties of each single track and each layer formed by these tracks. This study evaluates the effect of processing parameters on the geometrical characteristics of single tracks manufactured from 17-4PH stainless steel powder. A single-mode continuous-wave ytterbium fibre laser was used to manufacture single tracks at laser powers in the range of 100-300 W with a constant spot size of ∼80μm. The single tracks produced were subjected to standard metallographic preparation techniques for further analysis with an optical microscope. Deep molten pool shapes were observed at low scan speeds, while shallow molten pool shapes were observed at high scan speeds. At higher laser power densities, under-cutting and humping effects were also observed. The dimensions of single tracks processed without powder generally decrease with increasing scan speed at constant laser power. However, the geometrical features of the single tracks processed with powder revealed pronounced irregularities believed to be caused by non-homogeneity in the deposited powder layer.

  5. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  6. Investigation into Effects of Scanning Speed on in Vitro Biocompatibility of Selective Laser Melted 316L Stainless Steel Parts

    Directory of Open Access Journals (Sweden)

    Shang Yitong

    2017-01-01

    Full Text Available In recent years, selective laser melting (SLM has gained an important place in fabrication due to their strong individualization which cannot be manufactured using conventional processes such as casting or forging. By proper control of the SLM processing parameters, characteristics of the alloy can be optimized. In the present work, 316L stainless steel (SS, as a widely used biomedical material, is investigated in terms of the effects of scanning speed on in vitro biocompatibility during SLM process. Cytotoxicity assay is adopted to assess the in vitro biocompatibility. The results show the scanning speed strongly affects the in vitro biocompatibility of 316L SS parts and with prolongs of incubation time, the cytotoxicity increase and the in vitro biocompatibility gets worse. The optimal parameters are determined as follows: scanning speed of 900 mm/s, laser power of 195 W, hatch spacing of 0.09 mm and layer thickness of 0.02 mm. The processing parameters lead to the change of surface morphology and microstructures of samples, which can affect the amount of toxic ions release, such as Cr, Mo and Co, that can increase risks to patient health and reduce the biocompatibility.

  7. Unsteady Flow Simulation of High-speed Turbopumps

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  8. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  9. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  10. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  11. High-speed T-38A landing gear extension loads

    Science.gov (United States)

    Schmitt, A. L.

    1980-01-01

    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  12. Additive Manufacturing of a 316L Steel Matrix Composite Reinforced with CeO2 Particles: Process Optimization by Adjusting the Laser Scanning Speed

    Directory of Open Access Journals (Sweden)

    Omar O. Salman

    2018-02-01

    Full Text Available The synthesis of novel materials by additive manufacturing requires the optimization of the processing parameters in order to obtain fully-dense defect-free specimens. This step is particularly important for processing of composite materials, where the addition of a second phase may significantly alter the melting and solidification steps. In this work, a composite consisting of a 316L steel matrix and 5 vol.% CeO2 particles was fabricated by selective laser melting (SLM. The SLM parameters leading to a defect-free 316L matrix are not suitable for the production of 316L/CeO2 composite specimens. However, highly-dense composite samples can be synthesized by carefully adjusting the laser scanning speed, while keeping the other parameters constant. The addition of the CeO2 reinforcement does not alter phase formation, but it affects the microstructure of the composite, which is significantly refined compared with the unreinforced 316L material.

  13. Analysis of phase transformation in high strength low alloyed steels

    OpenAIRE

    A. Di Schino

    2017-01-01

    The effect of low-alloy additions on phase transformation of high strength low alloyed steels is reported. Various as-quenched materials with microstructures consisting of low carbon (granular) bainitic, mixed bainitic/martensitic and fully martensitic microstructures were reproduced in laboratory. Results show that for a given cooling rate, an increase of austenite grain size (AGS) and of Mo and Cr contents decreases the transformation temperatures and promotes martensite formation.

  14. Visualization of Process of Wheel Steel High Ingots Simulation

    Science.gov (United States)

    Bondarenko, V. I.; Bodryaga, V. V.; Nedopekin, F. V.; Belousov, V. V.

    2017-12-01

    The mathematical model for computation of formation of wheel steel high ingots has been formulated based on the generalized system of equations consisting of the Navier-Stokes equation, the turbulent heat and mass transfer equation and the continuity equation. It is suggested to use a pattern when designing software for simulation of hydrodynamic and thermo-physical processes. A software complex with friendly input and output data flows is provided for technologists of metallurgical production.

  15. High-speed modulation of vertical cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.

    1998-03-01

    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  16. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  17. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  18. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  19. High Performance Steel Development for Highway Bridge Construction: A Cooperative Effort

    Science.gov (United States)

    1997-08-01

    mechanical property requirements of ASTM A709 Grades 70W and 100W. This paper presents the development of the steels produced under the FHWA Program on High Performance Steels for Bridge Construction .

  20. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  1. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  2. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  3. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  4. Effects of high sound speed confiners on ANFO detonations

    Science.gov (United States)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  5. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  6. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    Science.gov (United States)

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  7. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  8. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  9. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  10. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  11. High temperature workability behaviour of a modified P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Carsi, Manuel; Ruano, Oscar A. [CENIM-CSIC, Madrid (Spain); Penalba, Felix [TECNALIA, San Sebastian (Spain); Rieiro, Ignaciao [Castilla-La Mancha Univ., Toledo (Spain). Dept. Matematicas

    2011-11-15

    The high temperature forming behaviour of a modified P92, type 9% Cr, steel is studied by means of torsion tests. The data obtained from these tests allowed correlation of the number of turns to failure, a measure of ductility, as a function of strain rate and temperature. In addition, the data were correlated by the Garofalo equation with a stress exponent of 4.78 and an activation energy of 390 kJ mol{sup -1}. This equation was used to predict the formability behaviour for the rolling process and also to determine the maximum forming efficiency and stability of the steel. A temperature of 1 140 C is found to give the optimum forming temperature. (orig.)

  12. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  13. Crack propagation modelling for high strength steel welded structural details

    Science.gov (United States)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  14. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-07-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  15. The pulsed linear induction motor concept for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

    1995-06-01

    The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

  16. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  17. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  18. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  19. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  20. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  1. Research notes : high-speed rail survey results.

    Science.gov (United States)

    2010-08-01

    The survey was conducted from April 2010 to June 2010 using both a print and a web version with identical questions. The print version of the survey was distributed at open house meetings on high-speed rail held in Eugene, Junction City, Albany, Sale...

  2. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  3. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  4. High-speed photodiodes in standard CMOS technology

    NARCIS (Netherlands)

    Radovanovic, S.

    2004-01-01

    This thesis describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. The electronics for (multiple users) long-haul communication is very expensive (InP, GaAs), but the usage is justified by the large number of

  5. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Optimization and performance of a high-speed plasma position digital control system. M Emami A R Babazadeh H Rasouli. Research Articles Volume 62 Issue 1 January 2004 pp 53-60 ...

  6. Faster than "g", Revisited with High-Speed Imaging

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  7. High speed ultrafast laser surface processing (Conference Presentation)

    Science.gov (United States)

    Mincuzzi, Girolamo; Kling, Rainer; Lopez, John; Hoenninger, Clemens; Audouard, Eric; Mottay, Eric P.

    2017-03-01

    Surface functionalization is a rapidly growing application for industrial ultrafast lasers. There is an increasing interest for high throughput surface processing, especially for texturing and engraving large manufacturing tools for different industrial fields such as injection molding, embossing and printing. Hydrophobic and hydrophilic surfaces, colored or deep black metal surfaces can now be industrially produced. The engraving speed is continuously improving following improvements in beam scanning technology and high average power industrial ultrafast lasers. Several tenths of MHz for the laser repetition rate and several hundreds of meter per second for the beam speed are available. More than 100 m/s scanning speed is then possible for laser surface structuring. But these surfaces are quite hard to produce since it is necessary to have a good compromise between high removal rate and high surface quality (low roughness, burr-free, narrow heat affected zone). In this work, we apply a simple engineering model based on the two temperature description of ultra-fast ablation to estimate key processing parameters. In particular, the pulse-to-pulse overlap which depends on the scanning velocity, the spot size, and the laser repetition rate all have to be adjusted to optimize the depth and roughness, otherwise heat accumulation and heat affected zone may appear. Optimal sequences of time and spatial superposition of pulses are determined and applied with a polygonal scanner. Ablation depth and processing speed obtained are compared with experimental results.

  8. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    a time domain of the order of few milliseconds. In order to achieve maximum performance it is essential to optimize the control system. In this paper plasma position measurement and the details of implementing high-speed PID controllers based on a TMS320c25 digital signal processor along with the system optimization ...

  9. Parallel and distributed processing in high speed traffic monitoring

    NARCIS (Netherlands)

    Cristea, Mihai Lucian

    2008-01-01

    This thesis presents a parallel and distributed approach for the purpose of processing network traffic at high speeds. The proposed architecture provides the processing power required to run one or more traffic processing applications at line rates by means of processing full packets at

  10. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  11. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  12. Comparison between strong η-fiber-oriented high-silicon steel and grain-oriented high-silicon steel on magnetic properties

    Science.gov (United States)

    Qin, Jing; Yue, Ye; Zhang, Yinghui; Cao, Yanyan; Yang, Ping

    2017-10-01

    Two kinds of 0.23 mm-thick high-silicon steel sheets with strong η-fiber texture and Goss texture were produced by rolling methods. Their final microstructures, textures and magnetic properties were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), X-ray diffractometer (XRD), electron backscattered diffraction (EBSD) and classical loss separation. The results showed that the core loss of strong η-fiber-oriented high-silicon steel was lower than that of grain-oriented high-silicon steel at frequencies ranging from 40 Hz to 20 kHz, and their differences in core loss were more obvious at 400 Hz and higher frequencies. The hysteresis losses and anomalous losses of the strong η-fiber-oriented high-silicon steel were lower than that of grain-oriented high-silicon steel at frequencies ranging from 40 Hz to 1000 Hz, and the losses were closely related to final cleanness and grain sizes. A few stable remained nitride precipitates increased the hysteresis loss of the grain-oriented high-silicon steel. The effect of decreasing grain sizes on decreasing core losses at high frequencies was significant, and the strong η-fiber-oriented high-silicon steel was more suitable for high frequency applications because of smaller grain sizes compared to the grain-oriented high-silicon steel.

  13. High-speed cinematography of compressible mixing layers

    Science.gov (United States)

    Mahadevan, R.; Loth, Eric

    1994-07-01

    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  14. Investigations in high speed blanking: cutting forces and microscopic observations

    Directory of Open Access Journals (Sweden)

    Larue A.

    2010-06-01

    Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.

  15. Speed Acquisition Methods for High-Bandwidth Servo Drives

    OpenAIRE

    Bähr, Alexander

    2005-01-01

    A servo control needs the actual values of speed and position.Usually, the latter is computed from the signals of a position encoder; its 1st derivative is smoothed by a low-pass filter and used as actual speed signal. A number of enhanced and alternative methods is experimentally investigated in this thesis. Based on an equal steady-state behavior, the controlled servo's dynamic stiffness is used as the performance measure. The used setup has a special feature: because of its rather high res...

  16. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  17. Imaging acoustic sources moving at high-speed

    Science.gov (United States)

    Bodony, Daniel; Papanicolaou, George

    2006-11-01

    In the quantification of the noise radiated by a turbulent flow the source motion is important. It is well known that moving acoustic sources radiate sound preferrentially in the direction of motion in a phenomenon termed `convective amplification.' Modern acoustic theories have utilized this behavior in their predictions. In the inverse problem the imaging of noise sources, by techniques such as beam forming, the source motion is not explicitly taken into account. In this talk we consider the imaging of acoustic sources moving at speeds on the order of the the ambient speed of sound, as typical of high-speed jets, for which the D"oppler shift approximation is not appropriate. An analysis will be presented that can be used to estimate the source motion based on the radiated acoustic field.

  18. Modeling Compressibility Effects in High-Speed Turbulent Flows

    Science.gov (United States)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  19. Sound transmission loss of windows on high speed trains

    Science.gov (United States)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  20. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  1. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response...... to fire is also very important. In this context, it is of interest to investigate the characteristics of the structural system that could possibly reduce local damages or mitigate the progression of failures in case of fire. In this paper, a steel high rise building is taken as case study and the response...

  2. High speed tracking control of ball screw drives

    Science.gov (United States)

    Liu, Chao-Yi; Huang, Ruei-Yu; Lee, An-Chen

    2017-10-01

    This paper presents a new method to achieve the requirement of high speed and high precision for ball screw drive. First, a PI controller is adopted to increase the equivalent structural damping in the velocity loop. Next, the design of the position controller is implemented by a two-stage method. The Doubly Coprime Factorization Disturbance Observer (DCFDOB) is developed to suppress disturbance and resist modelling error in the inner loop, while the outer loop is then designed based on method to extend the system bandwidth over first resonant frequency so that high speed and high accuracy can be achieved. Finally, a feedforward controller is implemented to improve tracking performance. The experiment results showed that the proposed method has smaller tracking error and better performance for suppressing disturbance when compared to the conventional cascaded P-PI control.

  3. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly......, a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hitting position. Benefiting from the high-speed visual feedback, the hitting position and thus the motion planning...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  4. Development of Industrial High-Speed Transfer Parallel Robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2013-08-15

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

  5. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    Science.gov (United States)

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  6. Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel

    Directory of Open Access Journals (Sweden)

    Victor Geantă

    2017-11-01

    Full Text Available High entropy alloys (HEA are metallic materials obtained from a mixture of at least five atomic-scale chemical elements. They are characterized by high mechanical strength, good thermal stability and hardenability. AlCrFeCoNi alloys have high compression strength and tensile strength values of 2004 MPa, respectively 1250 MPa and elongation of about 32.7%. These materials can be used to create HEA-steel type composite structures which resist to dynamic deformation during high speed impacts. The paper presents four different composite structures made from a combination of HEA and carbon steel plates, using different joining processes. The numerical simulation of the impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. For analyzing each constructive variant, three virtual shootings were designed, using a 7.62 × 39 mm cal. incendiary armor-piercing bullet and different impact velocities. The best ballistic behavior was provided by the composite structures obtained by welding and brazing that have good continuity and rigidity. The other composite structures, which do not have good surface adhesion, show high fragmentation risk, because the rear plate can fragment on the axis of shooting due to the combination between the shock waves and the reflected ones. The order of materials in the composite structure has a very important role in decreasing the impact energy.

  7. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  8. High-speed gears for gas turbine drive

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.

    1995-06-01

    Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

  9. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    Science.gov (United States)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  10. Difference in muscle activation patterns during high-speed versus standard-speed yoga: A randomized sequence crossover study.

    Science.gov (United States)

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2017-02-01

    To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (pyoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  12. Performance analysis of WAVE communication under high-speed driving

    Directory of Open Access Journals (Sweden)

    Bo-young Kang

    2017-12-01

    Full Text Available Although WAVE (Wireless Access in Vehicular Environments is a technology designed for the high-speed mobile environments, WAVE communication performance in a real road environment is highly dependent on the surrounding environments such as moving vehicles, road shape, and topography. In particular, when a vehicle moves at high speed, the location of the vehicle and its proximity to the road-side device are rapidly changed and thus affect communication performance. Accordingly, we build a performance evaluation system based on the WAVE-LTE network cooperative operation. We also analyzed the performance differences based on external environmental factors, such as information volume and velocity, from the data acquired through actual vehicle tests.

  13. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    Science.gov (United States)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  14. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  15. MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri

    2013-09-03

    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.

  16. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  17. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    Science.gov (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  18. Quantification of the uncertainties of high-speed camera measurements

    Directory of Open Access Journals (Sweden)

    Robbe C.

    2014-01-01

    Full Text Available This article proposes a combined theoretical and experimental approach to assess and quantify the global uncertainty of a high-speed camera velocity measurement. The study is divided in five sections: firstly, different sources of measurement uncertainties performed by a high-speed camera are identified and quantified. They consist of geometrical uncertainties, pixel discretisation uncertainties or optical uncertainties. Secondly, a global uncertainty factor, taking into account the previously identified sources of uncertainties, is computed. Thirdly, a sensibility study of the camera set-up parameters is performed, allowing the experimenter to optimize these parameters in order to minimize the final uncertainties. Fourthly, the theoretical computed uncertainty is compared with experimental measurements. Good concordance has been found. Finally, the velocity measurement uncertainty study is extended to continuous displacement measurements as a function of time. The purpose of this article is to propose all the mathematical tools necessary to quantify the individual and global uncertainties, to highlight the important aspects of the experimental set-up, and to give recommendations on how to improve a specific set-up in order to minimize the global uncertainty. Taking all these into account, it has been shown that highly dynamic phenomena such as a ballistic phenomenon can be measured using a high-speed camera with a global uncertainty of less than 2%.

  19. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.

    2017-08-01

    The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ

  20. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  1. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  2. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  3. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  4. Clinical application of high speed B mode echocardiography.

    Science.gov (United States)

    Kambe, T; Nishimura, K; Hibi, N; Sakakibara, T; Kato, T

    1977-06-01

    This study discusses the clinical application of high speed B mode echocardiography to a wide variety of heart diseases. We used a rapid mechanical sector scan at 30 frames per second and 120 scanning lines per frame, resulting in real time observation of cardiac structures. The sector angle was relatively wide (maximum 90 degrees). The tomograms were synchronized with the electrocardiogram and recorded on ordinary 35 mm or Polaroid film in conjunction with 8 mm cinematography. Heart cross sections could be recorded even in the presence of arrhythmia. We used a flat or focused, 10 mm diameter transducer made of lead zirconate-titanate with a resonant frequency of 2 or 3 MHz at a repetition rate of 3.6 kHz. High speed B mode echocardiography is a means of observing cross sections of the heart that can contribute to the improvement of accuracy in cardiac diagnosis.

  5. HIPO: a high-speed imaging photometer for occultations

    Science.gov (United States)

    Dunham, Edward W.; Elliot, James L.; Bida, Thomas A.; Taylor, Brian W.

    2004-09-01

    HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed, imaging photometer that will be used for a variety of time-resolved precise photometry observations, including stellar occultations by solar system objects and transits by extrasolar planets. HIPO has two independent CCD detectors and can also co-mount with FLITECAM, an InSb imager and spectrometer, making simultaneous photometry at three wavelengths possible. HIPO's flexible design and high-speed imaging capability make it well suited to carry out initial test observations on the completed SOFIA system, and to this end a number of additional features have been incorporated. Earlier papers have discussed the design requirements and optical design of HIPO. This paper provides an overview of the instrument, describes the instrument's features, and reviews the actual performance, in most areas, of the completed instrument.

  6. Embedded function methods for compressible high speed turbulent flow

    Science.gov (United States)

    Walker, J. D. A.

    1994-09-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  7. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  8. Comparison of high-speed rail and maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering; Nassar, F.E. [Keith and Schnars, Fort Lauderdale, FL (United States)

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, the German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).

  9. Optical communication equalized technique suitable for high-speed transmission

    Science.gov (United States)

    Zhu, Yaolin; Guan, Hao

    2017-07-01

    To solve the phase distortion and high error rate in optical signal transmission, an equalized technique is proposed, which aims to improve the constant modulus algorithm (CMA). In order to correct phase rotating and reduce the error rate with 64 quadrature amplitude modulation (QAM), the method takes the mean square error as the judgment and utilizes the time-varying step size. Simulation results demonstrate that the proposed algorithm can improve the convergence speed of constellation points, make the eye opening larger, and the signal noise ratio (SNR) can be increased by 4 dB under the same bit error rate (BER), which is efficient for the recovery of information in high-speed transmission.

  10. High-speed FPGA-based phase measuring profilometry architecture.

    Science.gov (United States)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng; Wang, Congjun

    2017-05-01

    This paper proposes a high-speed FPGA architecture for the phase measuring profilometry (PMP) algorithm. The whole PMP algorithm is designed and implemented based on the principle of full-pipeline and parallelism. The results show that the accuracy of the FPGA system is comparable with those of current top-performing software implementations. The FPGA system achieves 3D sharp reconstruction using 12 phase-shifting images and completes in 21 ms with 1024 × 768 pixel resolution. To the best of our knowledge, this is the first fully pipelined architecture for PMP systems, and this makes the PMP system very suitable for high-speed embedded 3D shape measurement applications.

  11. High-speed cell sorting: fundamentals and recent advances.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2003-02-01

    Cell sorters have undergone dramatic technological improvements in recent years. Driven by the increased ability to differentiate between cell types, modern advances have yielded a new generation of cytometers, known as high-speed cell sorters. These instruments are capable of higher throughput than traditional sorters and can distinguish subtler differences between particles by measuring and processing more optical parameters in parallel. These advances have expanded their use to facilitate genomic and proteomic discovery, and as vehicles for many emerging cell-based therapies. High-speed cell sorting is becoming established as an essential research tool across a broad range of scientific fields and is poised to play a pivotal role in the latest therapeutic modalities.

  12. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    Science.gov (United States)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  13. Robust adaptive cruise control of high speed trains.

    Science.gov (United States)

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  15. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  16. Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

    Science.gov (United States)

    Schmoll, Tilman; Leitgeb, Rainer A.

    The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman's layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.

  17. High-speed deformation processing of a titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisakandala, S.; Medeiros, S.C.; Malas, J.C. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Yellapregada, P.V.R.K. [Department of Metallurgy, Indian Institute of Science Bangalore, Karnataka 560 012 (India); Frazier, W.G. [NCPA Coliseum Drive, University, MS 38677 (United States); Dutta, B. [Department of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2003-09-01

    The deformation rate is the critical parameter for the phase transforming mechanism and subsequently the morphology of Ti-Al-V alloys, which in turn determines the feasibility of high-speed deformation. The evolution of defect-free equiaxed microstructures is due to dislocation-induced heterogeneous nucleation and growth. The Figure shows a microstructure of a Ti-6Al-4V specimen deformed at 1000 C in a backscattered SEM image. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  18. Design and specification of a high speed transport protocol

    OpenAIRE

    McArthur, Robert C.

    1992-01-01

    Approved for public release; distribution is unlimited Due to the increase in data throughput potential provided by high speed (fiber optic) networks, existing transport protocols are becoming increasingly incapable of providing reli­able and timely transfer of data. Whereas in networks of the past it was the transmission medium that caused the greatest communications delay, it is the case today that the transport protocols themselves have become the bottleneck. This thesis provides de...

  19. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  20. Study and improvement of a high speed hydraulic jack

    Science.gov (United States)

    Garcia, M. S.; Nouillant, M.; Viot, P.

    2006-08-01

    This paper describes the control problem of a high speed hydraulic jack. We shall estimate the performances of a servo-control with a classic controlled correction of type PD (Proportional Derivate). The study will be performed from a model (servo valve + jack + load), whose simulation will be performed in the Matlab-SimulinK environment. The aim of this article is to characterize, by simulating, the interdependence between the experimental apparatus and the tested object.

  1. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  2. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  3. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  4. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  5. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    Science.gov (United States)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  6. Development of High-speed Machining Database with Case-based Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining data...

  7. Numerical analysis of dipole sound source around high speed trains.

    Science.gov (United States)

    Takaishi, Takehisa; Sagawa, Akio; Nagakura, Kiyoshi; Maeda, Tatsuo

    2002-06-01

    As the maximum speed of high speed trains increases, the effect of aeroacoustic noise on the sound level on the ground becomes increasingly important. In this paper, the distribution of dipole sound sources at the bogie section of high speed trains is predicted numerically. The three-dimensional unsteady flow around a train is solved by the large eddy simulation technique. The time history of vortices shows that unstable shear layer separation at the leading edge of the bogie section sheds vortices periodically. These vortices travel downstream while growing to finally impinge upon the trailing edge of the section. The wavelength of sound produced by these vortices is large compared to the representative length of the bogie section, so that the source region can be regarded as acoustically compact. Thus a compact Green's function adapted to the shape can be used to determine the sound. By coupling the instantaneous flow properties with the compact Green's function, the distribution of dipole sources is obtained. The results reveal a strong dipole source at the trailing edge of the bogie section where the shape changes greatly and the variation of flow with time is also great. On the other hand, the bottom of the bogie section where the shape does not change, or the leading edge and boundary layer where the variation of flow with time is small, cannot generate a strong dipole source.

  8. Phoenix: Preliminary design of a high speed civil transport

    Science.gov (United States)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  9. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  10. Analog parallel processor hardware for high speed pattern recognition

    Science.gov (United States)

    Daud, T.; Tawel, R.; Langenbacher, H.; Eberhardt, S. P.; Thakoor, A. P.

    1990-01-01

    A VLSI-based analog processor for fully parallel, associative, high-speed pattern matching is reported. The processor consists of two main components: an analog memory matrix for storage of a library of patterns, and a winner-take-all (WTA) circuit for selection of the stored pattern that best matches an input pattern. An inner product is generated between the input vector and each of the stored memories. The resulting values are applied to a WTA network for determination of the closest match. Patterns with up to 22 percent overlap are successfully classified with a WTA settling time of less than 10 microsec. Applications such as star pattern recognition and mineral classification with bounded overlap patterns have been successfully demonstrated. This architecture has a potential for an overall pattern matching speed in excess of 10 exp 9 bits per second for a large memory.

  11. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  12. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    Science.gov (United States)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  13. Adaptations to speed endurance training in highly trained soccer players

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Fiorenza, Matteo; Lund, Anders

    2016-01-01

    PURPOSE: The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I...... and II muscle fibers. METHODS: During the last nine weeks of the season, thirteen semi-professional soccer players performed additional speed endurance training sessions consisting of 2-3 sets of 8 - 10 repetitions of 30 m sprints with 10 s of passive recovery (SET). Before and after SET, subjects......-Yo Intermittent Recovery Test level 1 (YYIRT-1) was performed and a muscle biopsy was obtained at rest. RESULTS: YYIRT-1 performance was 11.6±6.4% (mean±SD) better (2803±330 vs. 3127±383 m, P

  14. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  15. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  16. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  17. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  18. Design and Analysis of High Speed Capacitive Pipeline DACs

    OpenAIRE

    Duong, Quoc-Tai; Dabrowski, Jerzy; Alvandpour, Atila

    2014-01-01

    Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the capacitor array imperfections. While it is possible to design a highly linear output driver with HD3 < -70 dB and HD2 < -90 dB over 0.55 GHz band as we show, the maxi...

  19. High-speed optical links for UAV applications

    Science.gov (United States)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  20. Development of FPGA-based High-Speed serial links for High Energy Physics Experiments

    OpenAIRE

    Perrella, Sabrina

    2016-01-01

    High Energy Physics (HEP) experiments generate high volumes of data which need to be transferred over long distance. Then, for data read out, reliable and high-speed links are necessary. Over the years, due to their extreme high bandwidth, serial links (especially optical) have been preferred over the parallel ones. So that, now, high-speed serial links are commonly used in Trigger and Data Acquisition (TDAQ) systems of HEP experiments, not only for data transfer, but also for the distributio...

  1. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  2. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...... show that the dry lubricant provides better lubrication and generates less galling than the rust protection oil. Also, the nitrogen alloyed PM steel grade shows a significantly higher galling resistance as compared with the conventional steel grade and can, in combination with a dry lubricant......The increasing use of high strength steels in a variety of mechanical engineering applications has illuminated problems associated with galling in sheet metal forming operations. Galling is a tribological phenomenon associated with transfer of material from the steel sheet to the tool surface...

  3. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  4. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front

    Science.gov (United States)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  5. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  6. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  7. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    In the present investigation, the fatigue life of offshore steel structures in high-strength steel is studied. The material used has a yield stress of 800-1000 MPa, and high weldability and toughness properties. Of special interest is the fatigue life under a realistic stochastic loading....... In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  8. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    The fatigue life of offshore steel structures in high-strength steel is studied. The material used has a yield stress of 800-1000 MPa and high weldability and toughness properties. Of special interest is the fatigue life under a realistic stochastic loading. In the experimental part...... of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  9. AC_ICAP: A Flexible High Speed ICAP Controller

    Directory of Open Access Journals (Sweden)

    Luis Andres Cardona

    2015-01-01

    Full Text Available The Internal Configuration Access Port (ICAP is the core component of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs. We developed a new high speed ICAP controller, named AC_ICAP, completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were implemented to evaluate its performance when connected to Peripheral Local Bus (PLB, Fast Simplex Link (FSL, and AXI interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 μs which implies a speed-up of more than 380x compared to the Xilinx XPS_HWICAP controller.

  10. Electrochemical noise measurements of stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Arganis-Juarez, C.R. [Instituto Nacional de Investigaciones Nucleares Km. 36.5, Carretera Federal Mexico-Toluca, Municipio de Ocoyoacac, C.P. 52045, Estado de Mexico (Mexico); Malo, J.M. [Instituto de Investigaciones Electricas Av. Reforma 113, Col. Palmira, C.P. 62490, Cuernavaca, Morelos (Mexico)], E-mail: jmmalo@iie.org.mx; Uruchurtu, J. [Centro de Investigaciones en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico)

    2007-12-15

    Corrosion in a high purity aqueous environment simulating a boiling water reactor (BWR) is addressed in this work. This condition necessitates autoclave experiments under high pressure and temperature. Long-term electrochemical noise measurements were explored as a mean to detect and monitor stress corrosion cracking phenomenon. An experimental set up, designed to insulate the working electrode from external interference, made possible to detect and monitor stress corrosion cracking in slow strain rate tests for sensitized and solution annealed 304 stainless steel at 288 {sup o}C. Time-series analysis showed variations in the signature of the current density series due to transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC)

  11. How sand grains stop a high speed intruder

    Science.gov (United States)

    Behringer, Robert

    When a speeding intruder impacts on a granular material, it comes rapidly to rest after penetrating only a modest distance. Empirical dynamical models, dating to the 19th century (if not earlier), describe the drag on the intruder in terms of two types of depth-dependent forces: one a static force, which also includes gravity, and the other a collisional force proportional to the square of the instantaneous speed of the intruder. What processes occur in the material to so quickly decelerate the intruder? We address this question through experiments and simulations (work of Lou Kondic and collaborators). We first probe the granular response using quasi-two-dimensional granular materials consisting of photoelastic discs. When such a particle experiences a force, it appears bright under cross-polarized illumination. High speed video reveals dynamic force transmission into the material along force chains that form in response to the intruder motion. These chains are nearly normal to the intruder surface, implying that collisional rather than frictional forces dominate the momentum transfer from intruder to grains. These observations allow the formation of a collision-based model that correctly captures the collisional drag force for both 2D and 3D intruders of a variety of shapes. This talk will develop a collisional picture of impact, and also explore the change in the system response as the impact speed increases. Experimental collaborators include Abe Clark, Cacey Stevens Bester, and Alec Petersen. This work supported by DTRA, NSF Grant DMR1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  12. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    Science.gov (United States)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  13. High-sensitivity, high-speed continuous imaging system

    Science.gov (United States)

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  14. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  15. High-speed signal processing using highly nonlinear optical fibres

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2009-01-01

    We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...... relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......-state phase shift keying (D8PSK) signals....

  16. Generation of an Optimum High Speed High Accuracy Operational Amplifier.

    Science.gov (United States)

    1985-09-01

    certainly will have gains and emitter resistances that are not identical. In mono- lithic op-amps, it is highly desirable that all of the tran- sistors on a...external resistances ( a and K . altered). In general, w and Q are functions of a and K. p .p , "It is desirable to select these values such that the...220),OMEGA(220) COMPLEX HH,S,DENOM REAL K,ANUM c THE FOLLOWING ARE CONSTANTS TO BE UTILIZED:A01=>DC GAIN OF FIRST c OPAMP ;A02=>DC GAIN OF SECOND OPAMP

  17. Exploring THz band for high speed wireless communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Hangkai; Jia, Shi

    2016-01-01

    We overview recent trend in developing high speed wireless communication systems by exploring large bandwidth available in the THz band, and we also present our recent experimental achievements on 400 GHz wireless transmission with a data rate of up to 60 Gbit/s by using a uni-travelling carrier...... photodiode (UTC-PD) as emitter and a Schottky diode as receiver. This system is foreseen to be capable of accommodating faster data rates beyond 100 Gbit/s, and would find application in bandwidth hungry scenarios....

  18. HORNET: High-speed Onion Routing at the Network Layer

    OpenAIRE

    Chen, Chen; Asoni, Daniele Enrico; Barrera, David; Danezis, George; Perrig, Adrian

    2015-01-01

    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as requ...

  19. An adaptive finite element method for high speed flows

    Science.gov (United States)

    Peraire, J.; Morgan, K.; Peiro, J.; Zienkiewicz, O. C.

    1987-01-01

    The solution of the equations of compressible high speed flow, on unstructured triangular grids in 2D and tetrahedral grids in 3D, is considered. Solution methods based upon both Taylor-Galerkin and Runge-Kutta time-stepping techniques are presented and the incorporation of the ideas of flux corrected transport (FCT) is discussed. These methods are combined with an adaptive mesh regeneration procedure and are employed in the solution of several examples, consisting of Euler flows in both 2D and 3D and Navier-Stokes flows in 2D.

  20. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  1. 3D high-speed cinematography and its problems

    Science.gov (United States)

    Eisfeld, Fritz

    1999-06-01

    Many fast events are three dimensional but the normal high- speed cameras are only suitable for 2-D images. Therefore it was investigated which stereoscopic methods could be used to study three dimensional processes. The choice of the optimal method is dependent on the investigated event. To record the 3-D spreading of an injection jet in a laboratory has to use other methods as to record an explosion from a smoke bomb in open air. Three methods are described and critically compared. Furthermore it is shown how from films with double pictures a cinematographic film can be made.

  2. High-Speed EMU TCMS Design and LCC Technology Research

    Directory of Open Access Journals (Sweden)

    Hongwei Zhao

    2017-02-01

    Full Text Available This paper introduces the high-speed electrical multiple unit (EMU life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC system. Each platform facilitates EMU LCC management and is an important part of the system.

  3. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    OpenAIRE

    Barry, Andrew J.; Tedrake, Russ

    2014-01-01

    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile ARM processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a local depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, sma...

  4. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  5. Preliminary results from the High Speed Airframe Integration Research project

    Science.gov (United States)

    Coen, Peter G.; Sobieszczanski-Sobieski, Jaroslaw; Dollyhigh, Samuel M.

    1992-01-01

    A review is presented of the accomplishment of the near term objectives of developing an analysis system and optimization methods during the first year of the NASA Langley High Speed Airframe Integration Research (HiSAIR) project. The characteristics of a Mach 3 HSCT transport have been analyzed utilizing the newly developed process. In addition to showing more detailed information about the aerodynamic and structural coupling for this type of vehicle, this exercise aided in further refining the data requirements for the analysis process.

  6. A quick-retrieval high-speed digital framing camera

    OpenAIRE

    Sato, A.H.; Yee, J; Bellan, P. M.

    1993-01-01

    A new high-speed digital framing camera is described. The design is built around a rotating polygon mirror that provides a framing rate of 24 000 frames/s. The camera electronics digitizes an image into a 32×104 grid of pixels, where the second dimension of the grid can be varied and is determined by the 8 bit computer-aided measurement and control digitizer sampling rate. Available digitizer memory provides for 314 frames at this horizontal resolution. The advantages over other available hig...

  7. High-speed digital-to-analog converter concepts

    Science.gov (United States)

    Schmidt, Christian; Kottke, Christoph; Jungnickel, Volker; Freund, Ronald

    2017-01-01

    In today's fiber-optic communication systems, the bandwidth of the photonic components, i.e. modulators and photo diodes, is way greater than that of their electrical counterparts, i.e. digital-to-analog converters (DACs) and analog-to-digital converters (ADCs). In order to increase the transmission capacity, the bandwidth limitations need to be overcome. We review the progress and the recent results in the field of high-speed DACs, which are desirable for software-defined transmitters. Furthermore, we evaluate interleaving concepts regarding their ability to overcome the above mentioned limitations and demonstrate recent experimental results for a bandwidth interleaved DAC with 40 GHz analog electrical bandwidth.

  8. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  9. Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh

    2015-09-01

    Full Text Available Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters, such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentio-dynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors (mechtrode rotational speed, substrate traverse speed, axial load on mechtrode and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.

  10. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  11. Storage and compression design of high speed CCD

    Science.gov (United States)

    Cai, Xichang; Zhai, LinPei

    2009-05-01

    In current field of CCD measurement, large area and high resolution CCD is used to obtain big measurement image, so that, speed and capacity of CCD requires high performance of later storage and process system. The paper discusses how to use SCSI hard disk to construct storage system and use DSPs and FPGA to realize image compression. As for storage subsystem, Because CCD is divided into multiplex output, SCSI array is used in RAID0 way. The storage system is com posed of high speed buffer, DM A controller, control M CU, SCSI protocol controller and SCSI hard disk. As for compression subsystem, according to requirement of communication and monitor system, the output is fixed resolution image and analog PA L signal. The compression means is JPEG 2000 standard, in which, 9/7 wavelets in lifting format is used. 2 DSPs and FPGA are used to com pose parallel compression system. The system is com posed of FPGA pre-processing module, DSP compression module, video decoder module, data buffer module and communication module. Firstly, discrete wavelet transform and quantization is realized in FPGA. Secondly, entropy coding and stream adaption is realized in DSPs. Last, analog PA L signal is output by Video decoder. Data buffer is realized in synchronous dual-port RAM and state of subsystem is transfer to controller. Through subjective and objective evaluation, the storage and compression system satisfies the requirement of system.

  12. High speed optical filtering using active resonant subwavelength gratings

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Ellis, A. R.; Marshall, L. H.; Carter, T. R.; Hunker, J. D.; Samora, S.

    2010-02-01

    In this work, we describe the most recent progress towards the device modeling, fabrication, testing and system integration of active resonant subwavelength grating (RSG) devices. Passive RSG devices have been a subject of interest in subwavelength-structured surfaces (SWS) in recent years due to their narrow spectral response and high quality filtering performance. Modulating the bias voltage of interdigitated metal electrodes over an electrooptic thin film material enables the RSG components to act as actively tunable high-speed optical filters. The filter characteristics of the device can be engineered using the geometry of the device grating and underlying materials. Using electron beam lithography and specialized etch techniques, we have fabricated interdigitated metal electrodes on an insulating layer and BaTiO3 thin film on sapphire substrate. With bias voltages of up to 100V, spectral red shifts of several nanometers are measured, as well as significant changes in the reflected and transmitted signal intensities around the 1.55um wavelength. Due to their small size and lack of moving parts, these devices are attractive for high speed spectral sensing applications. We will discuss the most recent device testing results as well as comment on the system integration aspects of this project.

  13. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  14. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  15. Role of the eye in high-speed motion analysis

    Science.gov (United States)

    Hyzer, William G.

    1997-05-01

    Prior to the investigation of the photographic process over 150 years ago, the analyses of rapid motions were limited by the dynamic efficacies of the human eye, which has a temporal resolution of approximately 1/10 sec and a maximum information acquisition rate estimated at 103 to 104 bits/sec. At high rates of object motion, only the simplest actions can be resolved, comprehended and retained in human memory. Advances in the field of high-speed photography drastically changed all this by providing us with the ability today to capture permanent images of transient events at acquisition rates in excess of 1012 bits/sec. As remarkable as these improvements in temporal resolution and image retention may be, the final step in correctly interpreting any image still rests largely upon the analyst's ability to process visual data. Those who enter the field of image analysis soon learn how capricious the eye can be in this task. It is incumbent upon anyone performing important image analyses to have at least a basic understanding of the eye's performance characteristics, especially its limitations and capricious anomalies. Exemplary data presented in this paper are drawn from the scientific literature and the author's forty years of experience as a researcher, author and educator in the field of high-speed imaging.

  16. Reflectively coupled waveguide photodetector for high speed optical interconnection.

    Science.gov (United States)

    Hsu, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  17. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  18. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  19. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    of the strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  20. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    Science.gov (United States)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  1. High-speed interaction of natural and technogenic particles with the brittle and plastic elements of spacecrafts

    Science.gov (United States)

    Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.

    2017-10-01

    The paper represents the results of a study concerning the high-speed interaction of natural and technogenic particles with aluminum, glass and glass-reinforced laminate targets of finite thickness. These materials are widely used as the structural elements of spacecrafts such as spacecraft bodies, tanks, windows, glass in optical devices, heat shields, etc. This paper considers the impact, deformation and fracture of aluminum, glass and asbestos-reinforced laminate samples with aluminum and steel particles which represent space debris and with ice and granite particles which represent the natural particles of space bodies

  2. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...... of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive...

  3. From the TRIP effect and Quenching and Partitioning steels concepts to the development of new high-performance, lean powder metallurgy steels

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, José M., E-mail: josemanuel.torralba@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid (Spain); Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain); Navarro, Alfonso; Campos, Mónica [Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain)

    2013-06-20

    A new method of developing lean powder metallurgy steel is proposed. The microstructure of the steel is tailored by combining two different prealloyed steel grades. These materials open a new niche in steel grades for high-performance applications by using a low-cost method of production. Moreover, an alternative route to developing microstructures suitable for manufacturing TRIP and/or Q and P steels is proposed avoiding some of the complex steps that must otherwise be taken to obtain the proper starting microstructure.

  4. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  5. Investigation of a Plasma Ball using a High Speed Camera

    Science.gov (United States)

    Laird, James; Zweben, Stewart; Raitses, Yevgeny; Zwicker, Andrew; Kaganovich, Igor

    2008-11-01

    The physics of how a plasma ball works is not clearly understood. A plasma ball is a commercial ``toy'' in which a center electrode is charged to a high voltage and lightning-like discharges fill the ball with many plasma filaments. The ball uses high voltage applied on the center electrode (˜5 kV) which is covered with glass and capacitively coupled to the plasma filaments. This voltage oscillates at a frequency of ˜26 kHz. A Nebula plasma ball from Edmund Scientific was filmed with a Phantom v7.3 camera, which can operate at speeds up to 150,000 frames per second (fps) with a limit of >=2 μsec exposure per frame. At 100,000 fps the filaments were only visible for ˜5 μsec every ˜40 μsec. When the plasma ball is first switched on, the filaments formed only after ˜800 μsec and initially had a much larger diameter with more chaotic behavior than when the ball reached its final plasma filament state at ˜30 msec. Measurements are also being made of the final filament diameter, the speed of the filament propagation, and the effect of thermal gradients on the filament density. An attempt will be made to explain these results from plasma theory and movies of these filaments will be shown. Possible theoretical models include streamer-like formation, thermal condensation instability, and dielectric barrier discharge instability.

  6. Control-Surface Instability on High-Speed Airplanes

    Science.gov (United States)

    Phillips, William H.

    1942-01-01

    Tests of several modern airplanes indicate that control surfaces with a high degree of aerodynamic balance are likely to possess characteristics which make them unsatisfactory or dangerous in high-speed flight. Dive tests made in the spring of 1940 at the NACA on a naval fighter-type airplane illustrate one form of instability that may be encountered. During a dive at an indicated airspeed of 365 miles per hour, the ailerons suddenly overbalanced. The efforts of the pilot to bring the ailerons back to neutral resulted in a violent oscillation of the control stick from side to side. Fortunately, the force required to return the ailerons to neutral was within the pilot's capabilities. A time history of the maneuver is given in figure1 and typical frames from motion pictures of the cockpit and of the wing, taken during the maneuver, are given in figure 2. In the illustrated case, the occurrence of aerodynamic overbalance was attributed to a slight bulge, approximately 1/16 inch thick, on the lower surface of the leading edges of the ailerons, caused by the installation of additional mass balance ahead of the hinge line. A drawing showing the shape of the bulge is given in figure 3. After this slight protuberance had been eliminated, dives were successfully made at higher speeds.

  7. Preliminary design of nine high speed civil transports

    Science.gov (United States)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  8. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  9. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  10. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  11. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Recent high-speed rail vehicles; Kosoku tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sone, S. [The University of Tokyo, Tokyo (Japan); Ishizu, K. [Central Japan Railway Company, Nagoya (Japan); Yoshie, N. [Nishi-Nippon Railroad Co. Ltd., Fukuoka (Japan); Hata, T. [East Japan Railway Co., Tokyo (Japan); Watanabe, T.; Hata, H. [Railway Technical Research Institute, Tokyo (Japan); Brun, D.

    1997-05-01

    This paper describes the latest progress in high speed rail vehicles. It was in 1981 when TGV has inaugurated commercial operation with a speed of 260 km/h. Japan is trying to recover from a setback by putting forward the 300-line vehicle of discrete motive force system, and the 500-line vehicle of complete discrete motive force system featured by reduced weight and a unique power collection system. Central Japan Railway is moving forward a 700-line train aimed at improving comfortability and reducing noise. The 500-line vehicle has vehicular features such as the sharpened head shape, weight reduction and adoption of vibration control, and also such features in electric circuits as centralized main circuit devices and improved monitoring devices. The vehicle`s running test verified stable run at 300 km/h. The Shinkansen vehicle designed by East Japan Railway adopted collective control on the main circuit system, and transferred to a system in which large capacity GTOs are used to drive three-phase induction motors. The Inter City Express has been put into practical use in Germany, with traction vehicles arranged on both ends of a train. Technological characteristics in TGV may be pointed out as avoidance of curves and high gradient. Exchange of electric train technologies is in progress between Japan and Europe. 19 refs., 27 figs., 6 tabs.

  13. High-speed digital video tracking system for generic applications

    Science.gov (United States)

    Walton, James S.; Hallamasek, Karen G.

    2001-04-01

    The value of high-speed imaging for making subjective assessments is widely recognized, but the inability to acquire useful data from image sequences in a timely fashion has severely limited the use of the technology. 4DVideo has created a foundation for a generic instrument that can capture kinematic data from high-speed images. The new system has been designed to acquire (1) two-dimensional trajectories of points; (2) three-dimensional kinematics of structures or linked rigid-bodies; and (3) morphological reconstructions of boundaries. The system has been designed to work with an unlimited number of cameras configured as nodes in a network, with each camera able to acquire images at 1000 frames per second (fps) or better, with a spatial resolution of 512 X 512 or better, and an 8-bit gray scale. However, less demanding configurations are anticipated. The critical technology is contained in the custom hardware that services the cameras. This hardware optimizes the amount of information stored, and maximizes the available bandwidth. The system identifies targets using an algorithm implemented in hardware. When complete, the system software will provide all of the functionality required to capture and process video data from multiple perspectives. Thereafter it will extract, edit and analyze the motions of finite targets and boundaries.

  14. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  15. High-Speed Solar Wind and Geomagnetic Activity

    Science.gov (United States)

    Olyak, M. R.

    2015-03-01

    The impact of high-speed solar wind disturbances on the occurrence of geomagnetic storms is analyzed. The solar wind velocity values, determined from scintillation observations at the UTR-2 and URAN-2 Ukrainian decameter radio telescopes are analyzed together with the solar wind parameters at the Earth’s orbit and geomagnetic indices Ap. The solar wind velocity increase during observations was chiefly caused by the high-speed streams from coronal holes. At the time of February 2011, the X-class solar flare, accompanied by coronal mass ejections, was also observed. It was found that the geomagnetic disturbances of that period occurred at negative daily values of the interplanetary magnetic field component being perpendicular to the ecliptic plane. It was shown that the increasing solar wind velocity observed with the UTR-2 and URAN-2 within a wide range of helio- latitudes leads to increase in geomagnetic index Ap and to geomagnetic disturbance. Whereas the increase of solar wind velocity in a narrow range of helio-latitudes near to the ecliptic plane was never accompanied by geomagnetic perturbations.

  16. High-speed visual feedback for realizing high-performance robotic manipulation

    Science.gov (United States)

    Huang, S.; Bergström, N.; Yamakawa, Y.; Senoo, T.; Ishikawa, M.

    2017-02-01

    High-speed vision sensing becomes a driving factor in developing new methods for robotic manipulation. In this paper we present two such methods in order to realize high-performance manipulation. First, we present a dynamic compensation approach which aims to achieve simultaneously fast and accurate positioning under various (from system to external environment) uncertainties. Second, a high-speed motion strategy for manipulating flexible objects is introduced to address the issue of deformation uncertainties. Both methods rely on high-speed visual feedback and are model independent, which we believe is essential to ensure good flexibility in a wide range of applications. The high-speed visual feedback tracks the relative error between the working tool and the target in image coordinates, which implies that there is no need for accurate calibrations of the vision system. Tasks for validating these methods were implemented and experimental results were provided to illustrate the effectiveness of the proposed methods.

  17. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  18. Variación de la rugosidad y de la dureza en el maquinado de formas complejas en aceros endurecidos utilizando altas velocidades de corte. // Variation of roughness and of the hardness in machining of complex forms in hardness steel using high speed cuttin

    Directory of Open Access Journals (Sweden)

    L. Cardoso Brandão

    2008-05-01

    Full Text Available Este trabajo evalúa la influencia de la variación de la velocidad de corte en el corte con altas velocidades en superficies conformas complejas. Fueron maquinados cuerpos de prueba con 1/4 de circunferencia en acero AISI D2 y H13 con dureza de53 y 50 HRC, respectivamente. Los experimentos fueron realizados utilizando la estrategia “raster” con herramientasesféricas (Ball Nose en un centro de maquinado de tres ejes. Los valores de rugosidad y dureza HRC fueron medidosperpendiculares a la dirección de corte en cuatro regiones diferentes. Los resultados demuestran que las regiones dediámetro mínimo, próximas a la línea central de la herramienta y en el punto de contacto del diámetro máximo, presentanlos menores valores de rugosidad. No ocurren modificaciones significativas en los valores de HRC y no hubo formación decapa blanca en ninguno de los dos materiales. Considerándose los valores de microdureza medidas radialmente en loscuerpos de prueba no se observa ninguna variación de la microdureza.Palabras claves: Rugosidad Ra; altas velocidades de corte; moldes y matrices; dureza HRC._____________________________________________________________________________Abstract.This work evaluated the influences of cutting speed variation in machining with High Speed Cutting on complex surface forms.Work pieces of AISI D 2 e AISI H13 with hardness of 53 and 50 HRC, respectively with a quarter of circumference was milled.Tests were carried out in a vertical machining centre using the raster strategy and Ball-Nose tool. The roughness values andhardness HRC were measured perpendicular the cutting direction in six different regions. The results show that the regions whereoccur the contact of minimum tool diameter, nearest to tool centre line and the maximum diameter contact point show the lowervalues of roughness. During the tests, it did not occur significantly modifications in the values of HRC hardness and the whitelayer not was formed

  19. A constitutive model for the anelastic behavior of Advanced High Strength Steels

    NARCIS (Netherlands)

    Torkabadi, Ali; van Liempt, P.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2015-01-01

    In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good

  20. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    Science.gov (United States)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  1. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  2. High Cycle Fatigue Behavior of Shot-Peened Steels

    Science.gov (United States)

    Mirzazadeh, M. M.; Plumtree, A.

    2012-08-01

    The uniaxial fully reversed (R = -1) long life fatigue behavior of four shot-peened engineering steels with approximately the same hardness was investigated. Shot-peening, air-cooled forged AISI 1141 and crackable AISI 1070 steels had little effect on their fatigue limits (+2.5 and -2.0 pct, respectively). In the case of a powder forged 0.5 pct C steel, an increase in the fatigue limit of 10.4 pct was observed, albeit with a large standard deviation. Shot-peening quench and tempered AISI 1151 steel decreased its fatigue limit 12.0 pct, as a result of cyclic softening. In general, the beneficial effects of shot-peening these smooth specimens were relatively small. Neither cyclic softening nor hardening occurred in the non-shot-peened steels cycled under the same conditions.

  3. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... that silicon can indeed be used to control Tbit/s serial data signals [2], perform 640 Gbit/s wavelength conversion [3] 640 Gbit/s serial-to-parallel conversion [4], 160 Gbit/s packet switching as well as all-optical regeneration [5]. We will also discuss the performance limitations of crystalline silicon...

  4. High speed MSM photodetector based on Ge nanowires network

    Science.gov (United States)

    Dhyani, Veerendra; Das, Samaresh

    2017-05-01

    This paper presents the photoresponse characteristics of a high speed Ge nanowires (NWs) network metal-semiconductor-metal photodetector. Ge NWs with different diameters (30 nm-100 nm) were grown by a vapour-liquid-solid method on SiO2/Si (100) wafers. Responsivity up to 1.75 A W-1 has been observed for a 30 nm NWs device compared to 0.5 A W-1 for a 100 nm NWs detector. A large population of surface states results in higher responsivity in a smaller diameter NWs device. The high gain in photocurrent has been explained using back-to-back Schottky junctions in a NWs network. The 30 nm NWs detector shows a fast photoresponse with a rise time of 95 μs and a fall time of 100 μs. The observed diameter-dependent time response in network NWs devices has been explained using barrier-dominant photo-conductance.

  5. Physiological consequences of military high-speed boat transits.

    Science.gov (United States)

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (boat transits.

  6. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  7. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  8. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  9. Propulsion challenges and opportunities for high-speed transport aircraft

    Science.gov (United States)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  10. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  11. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  12. Microstructure and mechanical property performance of commercial grade API pipeline steels in high pressure gaseous hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Douglas G. [DGS Metallurgical Solutions, Inc., Vancouver, WA, (United States); Boggess, Todd [Secat Inc., Lexington, KY, (United States); San Marchi, Chris; Somerday, Brian [Sandia National Laboratory, Livermore, CA, (United States); Jansto, Steve [Reference Metals Company, Bridgeville, PA, (United States); Muralidharan, Govindarajan [Oak Ridge National Laboratory, Oak Ridge, TN, (United States)

    2010-07-01

    The transportation of hydrogen by pipeline steels raises questions of the degradation of the mechanical properties of the steel. This study investigated the microstructure and mechanical property performance of pipeline steels in high pressure gaseous hydrogen. The performance of four commercially available pipeline steels have been tested in the presence of pressurized hydrogen gas at different pressures in the range of 5.5 MPa and 20.7 MPa. Microstructural characterizations, tensile testing, fracture testing and fatigue testing have been performed for each alloy. The results showed that the four pipeline steels perform differently in gaseous hydrogen. Yield strength does not seem to have a relevant effect on performance, which highlights the importance of the microstructure in determining the resistance of pipeline steels. Of the four microstructures, the polygonal ferrite/10% coarse acicular ferrite microstructure gave the best performance.

  13. Development of high nitrogen steels at Boehler Edelstahl GmbH Kapfenberg

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.; Lichtenegger, G.; Hochoertler, G.; Lenger, H. [Gebrueder Boehler und Co. AG, Kapfenberg (Austria). Forschungsanstalten

    1999-07-01

    The installation of a new protective gas/pressure electroslag remelting plant at Boehler Edelstahl GmbH Kapfenberg (Austria) has offered new possibilities in the development of nitrogen alloyed steels. Based on experiences of conventional nitrogen alloyed steel grades further activities on alloy development with nitrogen contents above the solubility limit have been done at Boehler Edelstahl, concentrating on three main areas: martensitic corrosion resistant steels, duplex stainless steels and austenitic stainless steels. This paper presents the new protective gas/pressure electroslag remelting plant and its main advantages. Furthermore the current developments of high nitrogen alloyed steels conceived for the manufacture via this plant and the facilities at Boehler Edelstahl are presented as well as practical examples and the transfer to large scale production. (orig.)

  14. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    OpenAIRE

    Oleg Shevchenko

    2016-01-01

    Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experie...

  15. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  16. High-speed single-pixel digital holography

    Science.gov (United States)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  17. Sample MMM manuscript for submission to AIP advances transient line starting analysis of the ultra-high speed PMSM

    Science.gov (United States)

    Cheng, Wenjie; Li, Wei; Xiao, ling; Li, Ming; Tian, Yongsheng; Sun, Yanhua; Yu, Lie

    2017-05-01

    Aiming at the ultra high speed permanent magnet synchronous motor (PMSM) supported by gas foil bearings (GFBs), this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method.

  18. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    of LC-oscillators with oscillator criteria, phase noise and different topologies are given as background. The theory of PLL circuits is also presented. Guidelines and suggestions for static divider, VCO, LA and CDR design are presented using static divider, 50-100 GHz VCO and 100Gb/s LA+CDR circuits......This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...

  19. Simplified Dynamic Model for High-Speed Checkweigher

    Science.gov (United States)

    Yamakawa, Yuji; Yamazaki, Takanori

    In this paper, we concern with the dynamic behaviors of a high speed mass measurement system with conveyor belt (a checkweigher). The goal of this paper is to construct a simple model of the measurement system so as to duplicate a response of the system. The checkweigher with electromagnetic force compensation can be approximated by the combined spring-mass-damper systems as the physical model, and the equation of motion is derived. The model parameters (a damping coefficient and a spring constant) can be obtained from the experimental data for open-loop system. Finally, the validity of the proposed model can be confirmed by comparison of the simulation results with the realistic responses. The simple dynamic model obtained offers practical and useful information to examine control scheme.

  20. AGAINTS AND FOR THE HIGH SPEED TRAINS’ MULTIMPLICATION

    Directory of Open Access Journals (Sweden)

    Benea Ciprian

    2008-05-01

    Full Text Available In this exposure we intend to make visible the situation in which global warming is given by road and air transport, how could be revitalized railways, and how high speed trains could become a preferred mode of transport. But there is manifesting an opposition to railway development, nurtured by different interests, ranking from governments themselves, to oil importing countries, oil exporting countries, oil companies with their colligate partners situated along the oil distribution chain. But, there could be identified some voices which could create themselves the possibility to speak lauder in order to promote railway transportation. The greens, NGOs, the epistemic communities, for example, could unite their force to make something in order to provide the framework for rail transportation’s development, and for road and air transport reduction, for the benefit of while humankind.

  1. Design implications of high-speed digital PPM

    Science.gov (United States)

    Sibley, Martin J. N.

    1993-11-01

    Work in the area of digital pulse position modulation (digital PPM) has shown that this type of modulation can yield sensitivities that are typically 4 - 5 dB better than an equivalent PCM system. Recent experimental work has shown that the receiver in a digital PPM system does not need to have a wide bandwidth. Instead, the bandwidth can be very low so that the receiver is effectively impulsed by the digital PPM signal. The advent of very high speed Si digital ICs, and fast lasers, means that digital PPM can now be used to code gigabit PCM signals. This paper presents original theoretical results for a digital PPM system coding 1 Gbit/s PCM signals into 8 Gbit/s digital PPM signals. The paper also addresses the difficulties that the system designer is likely to encounter, and discusses some possible solutions.

  2. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  3. Premiere in high speed materials inter-operability

    Energy Technology Data Exchange (ETDEWEB)

    Brun, D.

    1995-07-01

    The Eurostar trains have been designed to meet the safety requirements of the Channel Tunnel. In particular, ti must be possible to remove the train from the tunnel in most fault scenarios. The train design is based upon an optimal capacity/price ratio. As far as the installation of electrical equipment is concerned (power supply, power conversion, motor units), the variety of track configurations is another consideration in addition to the questions of safety. The original solutions adopted give traction and braking performance that are satisfactory by comparison with the high-speed trains (TGV) in service on appropriate track, and the best possible for the British track. The trains are heavier and less powerful, but they are capable of getting out of the tunnel with only one motor out of three in service. (author). 6 figs.

  4. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  5. Dynamic Control of High-speed Train Following Operation

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2014-08-01

    Full Text Available Both safety and efficiency should be considered in high-speed train following control. The real-time calculation of dynamic safety following distance is used by the following train to understand the quality of its own following behavior. A new velocity difference control law can help the following train to adjust its own behavior from a safe and efficient steady-following state to another one if the actual following distance is greater than the safe following distance. Meanwhile, the stopping control law would work for collision avoidance when the actual following distance is less than the safe following distance. The simulation shows that the dynamic control of actual inter-train distance can be well accomplished by the behavioral adjustment of the following train, and verifies the effectiveness and feasibility of our presented methods for train following control.

  6. High-speed counters in Fibonacci numerical system

    Science.gov (United States)

    Azarov, Olexiy; Chernyak, Olexandr; Komada, Paweł; Kozhambardiyeva, Miergul; Kalizhanova, Aliya

    2017-08-01

    Possibility of executing the carriers and borrowings by means of elementary additive transformations in the process of calculation in Fibonacci numerical system is substantiated. Methods of counting in the given numerical system, based on the usage of information redundancy are suggested. The methods consist in the fact that at every step executed all possible elementary addition transformations of code in the counter simultaneously with adding one. The suggested methods enable to construct up-, down- and up/down counters with high speed, independent on the data capacity and small hardware cost that linearly grow with the increase of the capacity. Schemes of structural organization of one digit for each of the suggested methods are given.

  7. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  8. Parallel scanning laser ophthalmoscope (PSLO) for high-speed retinal imaging

    NARCIS (Netherlands)

    Vienola, K.V.; Braaf, Boy; Damodaran, Mathi; Vermeer, Koenraad A.; de Boer, Johannes F.

    2014-01-01

    Purpose High-speed imaging of the retina is crucial for obtaining high quality images in the presence of eye motion. To improve the speed of traditional scanners, a high-speed ophthalmic device is presented using a digital micro-mirror device (DMD) for confocal imaging with multiple simultaneous

  9. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Science.gov (United States)

    2010-10-01

    ... by this subpart, and which have been utilized on high-speed rail systems with similar technical and... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  10. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  11. A comparative investigation of the efficacy of CO2 and high power diode lasers for the forming of EN3 mild steel sheets

    OpenAIRE

    Lawrence, Jonathan

    2002-01-01

    A comparative investigation of the effectiveness of a high power diode laser (HPDL) and a CO2 laser for the forming of thin section EN3 mild steel sheet has been conducted. The buckling mechanism was identified as the laser forming mechanism responsible for the induced bending. For both lasers it was found that the induced bending angles increased with an increasing number of irradiations and high laser powers, whilst decreasing as the traverse speed was increased. Also, it was apparent from ...

  12. Phase transformations during high-speed heat treatment of the system "carbide (M23C6)/(α-Fe) matrix"

    Science.gov (United States)

    Ivanov, Yurii; Klopotov, Anatolii; Petrikova, Elizaveta; Vlasov, Yurii; Kondratyuk, Alexey

    2017-11-01

    A brief thermodynamic analysis of phase transformations taking place during heat treatment of the system Fe-Cr-C, which is the basis of high-chromium steel, is performed. It is shown that formation of both, solid solutions based on α-iron (BCC crystalline lattice) and γ-iron (FCC crystalline lattice) and an entire spectrum of carbide phases of the complex element composition (M23C6, M7C3, M3C and M3C2, where the symbol M stands for atoms of metallic elements Fe and Cr) is possible in this material under equilibrium conditions. The irradiation of steel with an intense pulsed electron beam is carried out. It is shown that electron-beam treatment of steel in the melting mode and the subsequent high-speed crystallization is accompanied by transformation of the surface layer structure, consisting of (1) the dissolution of particles of the initial carbide phase; (2) formation of dendritic crystallization cells of submicron (80…200 nm) sizes; (3) the repeated isolation of nanosized (10-15 nm) particles of the carbide phase.

  13. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  14. The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents

    NARCIS (Netherlands)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    The cementite spheroidization process is investigated in hypereutectoid steels with different chromium (Cr) contents. A spheroidized structure in high-carbon steel is usually obtained by a divorced eutectoid transformation (DET) reaction, which occurs during slow cooling of austenite with fine

  15. Fatigue experiments on very high strength steel base material and transverse butt welds

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.

    2009-01-01

    Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes.

  16. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    Science.gov (United States)

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  17. High strength reinforcing steel bars : low-cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  18. High strength reinforcing steel bars : low cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  19. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  20. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  1. Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels

    Science.gov (United States)

    Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen

    2018-02-01

    The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.

  2. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  3. An Ultra-High Speed Whole Slide Image Viewing System

    Directory of Open Access Journals (Sweden)

    Yukako Yagi

    2012-01-01

    Full Text Available Background: One of the goals for a Whole Slide Imaging (WSI system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed.

  4. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  5. Contributions to understanding the high speed machining effects on aeronautic part surface integrity

    Science.gov (United States)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  6. Comportamiento del desgaste del flanco en el torneado en seco de alta velocidad del acero AISI 316L//Flank wear behavior in the dry high‐speed turning of AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Yoandrys Morales-Tamayo

    2013-09-01

    Full Text Available El presente estudio experimental se centra en investigar los efectos de los parámetros corte en el desgaste de flanco con dos insertos recubiertos durante el torneado de acabado en seco a altas velocidades del acero inoxidable AISI 316L. Los efectos de los parámetros de corte fueron determinados utilizando un análisis de varianza y de regresión simple. Como principal resultado se obtuvo el efectosignificativo del avance y del tiempo de maquinado en el desgaste del flanco. El inserto de tres capas no sobrepasó el criterio de fin de vida del desgaste, mientras que el inserto de una capa sufrió un desgaste catastrófico para la mayor velocidad de corte. El desgaste del flanco tuvo mejor comportamiento para el avance de 0,08 mm/rev en todas las velocidades empleadas en este estudio.Palabras claves: torneado de alta velocidad, desgaste de flanco, acero inoxidable AISI 316L, estudio experimental, análisis de varianza y regresión.______________________________________________________________________________AbstractThe current experimental study is focused on investigating the effects of cutting parameters on flank wear in two coated carbide inserts during dry high speed finish turning of AISI 316L stainless steel. The effects of cutting parameters were determinate using analysis of variance and simple regression. As a main resulta significant effect of cutting feed and the machining time on flank wear was found. The three coating layers insert did not exceed the criterion of end of life of wear while the insert with one layer suffered a catastrophic wear at the highest cutting speed. The flank wear showed the best performance for the cuttingfeed of 0,08 mm/rev at all the speeds used in the study.Key words: high speed turning; flank wear; AISI 316L stainless steel, experimental study; analysis of variance and regression.

  7. High-Speed, Low-Power Digitizer II (2007037) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future detectors and arrays for visible, IR, and submillimeter imaging and spectroscopy require much higher speed digitizers than are currently available. In...

  8. High-Speed, Low-Power Digitizer (9725) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future detectors and arrays for visible, IR, and submillimeter imaging and spectroscopy require much higher speed digitizers than are currently available. In...

  9. Phenomena Elucidation of High Brightness Fiber Laser Welding of Stainless Steel

    Science.gov (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    A high-brigthness fiber laser can produce an ultra-high peak power density of MW/mm2 level corresponding to a focused electron beam, and is promising as one of the desirable heat sources for deep-penetration welding. The objectives of this research are to elucidate the factors affecting weld penetration and defects formation mechanisms, to obtain a fundamental knowledge of interaction between a fiber laser beam and the laser-induced plume, and to assess laser absorption with water-calorimetric method in bead-on-plate welding of Type 304 austenitic stainless steel plates with a 10 kW fiber laser beam. Concerning the weldablity and defects, the penetration depth reached 18 mm at the maximum. At 50 mm/s or lower welding speeds, porosity was generated under the conventionally-focused and tightly-focused conditions. X-ray transmission in-site observation images demonstrated that pores were formed not only at the tip of the keyhole but also near the upper part. The keyhole behavior was stabilized by using nitrogen shielding gas, which led to the porosity prevention. As for the interaction under the normal Ar shielding gas conditions, the temperature and ionization degree of the laser-induced plumes were calculated to be 6,000 K and 0.02, respectively, by the Bolzman plots and Saha's equation. It was also found that the attenuation and the refraction between the 10-kW fiber laser beam and the short weakly-ionized plume were too small to exert the reduction in weld penetration. The laser absorption of the stainless steel plate was approximately 85 % high at 10 kW laser power and 50 mm/s welding speed. Compared X-ray transmission observation images of the keyhole with the focusing feature of the fiber laser beam, most of the incident laser passed through the keyhole inlet, and the center part of the beam was delivered directly to the tip of the deep keyhole. Consequently, as far as the adquate welding procedures were utilized on the basis of eclucidation of the welding

  10. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    Science.gov (United States)

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Exchange of information on use of special high-pressure steels of irregular composition

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1944-05-05

    Procedures to be followed in designation and usage of batches of steels with chemical compositions that did not quite match specifications are discussed. It seemed that because of the difficulties under which they were operating, steel works often supplied batches of such irregular steels. A special study commission set up to evaluate such steels used the following designations: suffix X (as in N 10 X) for irregular steel that was nevertheless fully usable in all usual applications for the particular type of steel involved, and suffix Z (as in N 0 Z) for irregular steel that should be limited to only the less demanding of the usual applications for the type of steel involved. For example, N 10 Z could be used for connecting pipes, including feed pipes, because they were not heated and did not have to withstand such high temperatures, or at most had to withstand up to 500/sup 0/C for short times (eg., 15 minute stretches). However, in hairpin tubes, N 10 Z should be used only for the less-heated positions designated for N 10, or else in the positions designated for N9. Finally, the report hinted that the designations N 10, N9, N8A, etc. represented a hierarchy of levels of quality in terms of appropriateness for use in high-pressure, high-temperature apparatus.

  12. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  13. Development of High Strength and High Toughness Steels for Reactor Vessel and Surgeline Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kim, M. C.; Yoon, J. H.; Kim, K. B.; Choi, K. J.; Cho, H. D.

    2010-07-15

    In addition to evaluating the effects of alloying elements, heat treatment conditions, weldability and neutron irradiation behavior were evaluated with 15 types of SA508 Gr.4N model alloys for reactor pressure vessel. The maximum yield strength of 630MPa were obtained by controlling chemical compositions and heat treatment conditions. Model alloys also showed excellent impact toughness and fracture toughness. The microstructure and mechanical properties of weld heat affected zone were evaluated by using simulated specimens and the effects of post weld heat treatment conditions were also investigated. Neutron irradiation behavior at high fluence level were characterized and then compared with commercial reactor pressure vessel steel. The value of transition temperature shift(TTS) was 22 .deg. C at 6.4x10{sup 19} n/cm{sup 2} which is similar to commercial RPV steel. However, its toughness after irradiation is much better than that of unirradiated commercial RPV steel due to the superior initial toughness. Leak-before-break(LBB) properties of type 316 stainless steel model alloys and their welds for surge line were evaluated as well as microstructure and mechanical properties. Tensile tests and J-R fracture resistance tests were carried out at RT and 316 .deg. C. The model alloys showed good tensile strength over standard value, except type 316L which has lower C/N. In the LBB safety analysis result, all of type 316 model alloys have higher allowable load than that of OPR1000 surge line

  14. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  15. High temperature hardness of steels and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Torres, H., E-mail: torres@ac2t.at; Varga, M.; Ripoll, M. Rodríguez

    2016-08-01

    Hot hardness, related to the mechanical strength and wear resistance of materials at high temperatures, has been measured from room temperature up to 800 °C for a comprehensive set of iron-based alloys having different microstructures and chemical compositions. The results obtained suggest the existence of several softening regimes with increasing temperatures, also with a massive hardness drop observed to begin at temperatures close to 0.5 times the melting temperature for most of the chosen alloys. Austenitic steel grades were also observed to show a significant softening behaviour at moderate temperatures compared to ferritic and martensitic alloys, attributed to the dislocation dynamics of face cubic centred alloys. The exact nature of the temperature dependence shown by hardness has been proposed to adopt the form of an exponential Arrhenius equation. Another model suggested in the available literature is also discussed within this context. Additionally, the role of alloying elements has been correlated to the softening behaviour. Molybdenum or boron were found to slow down the softening behaviour, while carbide-forming elements such as vanadium and tungsten were found to be beneficial for room temperature hardness.

  16. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl− and High SOx Environmen

    Directory of Open Access Journals (Sweden)

    Toshiyasu Nishimura

    2017-02-01

    Full Text Available Exposure tests were performed on low alloy steels in high Cl− and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy and Raman Spectroscopy. In the exposure test site, the concentrations of Cl− and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe showed higher corrosion resistance as compared to the carbon steel (SM, and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl− and high SOx environment.

  17. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl− and High SOx Environment

    Science.gov (United States)

    Nishimura, Toshiyasu

    2017-01-01

    Exposure tests were performed on low alloy steels in high Cl− and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy) and Raman Spectroscopy. In the exposure test site, the concentrations of Cl− and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe) showed higher corrosion resistance as compared to the carbon steel (SM), and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl− and high SOx environment. PMID:28772560

  18. Rust Formation Mechanism on Low Alloy Steels after Exposure Test in High Cl- and High SOx Environmen.

    Science.gov (United States)

    Nishimura, Toshiyasu

    2017-02-17

    Exposure tests were performed on low alloy steels in high Cl- and high SOx environment, and the structure of the rust were analyzed by TEM (Transmission Electron Microscopy) and Raman Spectroscopy. In the exposure test site, the concentrations of Cl- and SOx were found to be high, which caused the corrosion of the steels. The conventional weathering steel (SMA: 0.6% Cr-0.4% Cu-Fe) showed higher corrosion resistance as compared to the carbon steel (SM), and Ni bearing steel exhibited the highest one. Raman spectroscopy showed that the inner rust of Ni bearing steel was mainly composed of α-FeOOH and spinel oxides. On the other hand, SMA contained β- and γ-FeOOH in inner rust, which increased the corrosion. TEM showed that nano-scale complex iron oxides containing Ni or Cr were formed in the rust on the low alloy steels, which suppressed the corrosion of steels in high Cl- and high SOx environment.

  19. Towards real-time feedback in high performance speed skating

    NARCIS (Netherlands)

    van der Eb, Jeroen; Zandee, Willem; van den Bogaard, Timo; Geraets, Sjoerd; Veeger, H.E.J.; Beek, Peter; Potthast, Wolfgang; Niehoff, Anja; David, Sina

    2017-01-01

    The aim of the current study is to evaluate several performance indicators to be used as real-time feedback in the coming experiments to enhance performance of elite speeds skaters. Six speed skaters, wearing one IMU per skate, collected data over one full training season to evaluate and pinpoint

  20. Fire protection for high speed line tunnels; Risk analysis and exceptional robotic application results

    NARCIS (Netherlands)

    Linde, F.W.J. van de; Gijsbers, F.B.J.; Klok, G.J.

    2006-01-01

    The Green Hart Tunnel in The Netherlands is a 7 km long high speed railway tunnel with an exterior diameter of 14.5 metres. A separation wall devides the tunnel into two single tubes. High speed trains will pass the tunnel at speeds of more than 300 kph. Inside the tunnel 200,000 m2 fire resistant