WorldWideScience

Sample records for high speed scintillator

  1. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    Science.gov (United States)

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  2. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery

    International Nuclear Information System (INIS)

    Ranade, Manisha K.; Lynch, Bart D.; Li, Jonathan G.; Dempsey, James F.

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd 2 O 2 S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files

  3. Study on fluorescence-sensitization of 3 variations of scintillators in high speed autoradiography

    International Nuclear Information System (INIS)

    Wang Zhenli; Liu Guimin

    1993-01-01

    The sensitizing effects of POPOP, PBD and PPO were compared in 3 H-TdR incorporation experiment, 3 H-TdR low and high concentration twice labelling experiment and a cell migration tracer experiment. The results indicate that 7.5% PPO in xylene with an exposure time of 48 h is most satisfactory. The efficiency was increased for 15-20 times

  4. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  5. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    International Nuclear Information System (INIS)

    Goddu, S; Sun, B; Grantham, K; Zhao, T; Zhang, T; Bradley, J; Mutic, S

    2016-01-01

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range and SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal

  6. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    Energy Technology Data Exchange (ETDEWEB)

    Goddu, S; Sun, B; Grantham, K; Zhao, T; Zhang, T; Bradley, J; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range and SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.

  7. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  8. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  9. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  10. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  11. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  12. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  13. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  14. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  15. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  16. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  17. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    Science.gov (United States)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  18. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  19. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-03-13

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  20. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  1. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  2. High-Z organic-scintillation solution

    International Nuclear Information System (INIS)

    Berlman, I.B.; Fluornoy, J.M.; Ashford, C.B.; Lyons, P.B.

    1983-01-01

    In the present experiment, an attempt is made to raise the average Z of a scintillation solution with as little attendant quenching as possible. Since high-Z atoms quench by means of a close encounter, such encounters are minimized by the use of alkyl groups substituted on the solvent, solute, and heavy atoms. The aromatic compound 1,2,4-trimethylbenzene (pseudocumene) is used as the solvent; 4,4''-di(5-tridecyl)-p-terphenyl (SC-180) as the solute; and tetrabutyltin as the high-Z material. To establish the validity of our ideas, various experiments have been performed with less protected solvents, and heavy atoms. These include benzene, toluene, p-terphenyl, bromobutane, and bromobenzene

  3. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers......, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling...... to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between...

  4. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  5. High Speed Photomicrography

    Science.gov (United States)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  6. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  7. Liquid Scintillation High Resolution Spectral Analysis

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2010-01-01

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  8. High-speed motion neutron radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Barton, J.P.; Robinson, A.H.

    1982-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is about 4 X 10 11 n/cm 2 X s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability

  9. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1978-01-01

    The invention described relates to a scintillation camera used for clinical medical diagnosis. Advanced recognition of many unacceptable pulses allows the scintillation camera to discard such pulses at an early stage in processing. This frees the camera to process a greater number of pulses of interest within a given period of time. Temporary buffer storage allows the camera to accommodate pulses received at a rate in excess of its maximum rated capability due to statistical fluctuations in the level of radioactivity of the radiation source measured. (U.K.)

  10. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1976-01-01

    A scintillation camera is provided with electrical components which expand the intrinsic maximum rate of acceptance for processing of pulses emanating from detected radioactive events. Buffer storage is provided to accommodate temporary increases in the level of radioactivity. An early provisional determination of acceptability of pulses allows many unacceptable pulses to be discarded at an early stage

  11. High speed metal removal

    Science.gov (United States)

    Pugh, R. F.; Pohl, R. F.

    1982-10-01

    Four types of steel (AISI 1340, 4140, 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined at different hardness ranges representing the as-forged and the heat treated condition with various ceramic tools using ceramic coated tungsten carbide as a reference. Results show that machining speeds can be increased significantly using present available tooling.

  12. Development of High-Resolution Scintillator Systems

    International Nuclear Information System (INIS)

    Larry A. Franks; Warnick J. Kernan

    2007-01-01

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma-rays; however, the largest volume achievable is limited by the thickness of the detector which needs to be a small fraction of the average trapping length for electrons. We report results of using HgI2 crystals to fabricate photocells used in the readout of scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Nuclear response from an HgI2 photocell that was optically matched to a cerium-activated scintillator is presented and discussed. Further improvements can be expected by optimizing the transparent contact technology

  13. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  14. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  15. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    Science.gov (United States)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  16. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  17. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  18. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  19. Response function measurement of plastic scintillator for high energy neutrons

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Takahashi, Kazutoshi; Takada, Masashi

    2003-01-01

    The response function and detection efficiency of 2''φ x 2''L plastic (PilotU) and NE213 liquid (2''NE213) scintillators, which were used for the measurement of secondary neutrons from high energy electron induced reactions, were measured at Heavy Ion Medical Accelerator in Chiba (HIMAC). High energy neutrons were produced via 400 MeV/n C beam bombardment on a thick graphite target. The detectors were placed at 15 deg with respect to C beam axis, 5 m away from the target. As standard, a 5''φ x 5''L NE213 liquid scintillator (5''NE213) was also placed at same position. Neutron energy was determined by the time-of-flight method with the beam pickup scintillator in front of the target. In front of the detectors, veto scintillators were placed to remove charged particle events. All detector signals were corrected with list mode event by event. We deduce neutron spectrum for each detectors. The efficiency curves for pilotU and 2''NE213 were determined on the bases of 5 N E213 neutron spectrum and its efficiency calculated by CECIL code. (author)

  20. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  1. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  2. High energy gamma ray response of liquid scintillator

    International Nuclear Information System (INIS)

    Shigyo, N.; Ishibashi, K.; Matsufuji, N.; Nakamoto, T.; Numajiri, M.

    1994-01-01

    We made the experiment on the spallation reaction. NE213 organic liquid scintillators were used for measuring neutrons and γ rays. To produce the γ ray emission cross section, we used the response functions by EGS4 code. The response functions look like uniform above γ ray energies of 60 MeV. The experimental data of the γ ray emission cross section are different from the data of High Energy Transport Code. (author)

  3. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  4. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  5. High speed computer assisted tomography

    International Nuclear Information System (INIS)

    Maydan, D.; Shepp, L.A.

    1980-01-01

    X-ray generation and detection apparatus for use in a computer assisted tomography system which permits relatively high speed scanning. A large x-ray tube having a circular anode (3) surrounds the patient area. A movable electron gun (8) orbits adjacent to the anode. The anode directs into the patient area xrays which are delimited into a fan beam by a pair of collimating rings (21). After passing through the patient, x-rays are detected by an array (22) of movable detectors. Detector subarrays (23) are synchronously movable out of the x-ray plane to permit the passage of the fan beam

  6. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  7. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    International Nuclear Information System (INIS)

    Jing, T.; Lawrence Berkeley Lab., CA

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ∼20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micros. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth

  8. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Tao [Univ. of California, Berkeley, CA (United States). Dept. of Engineering-Nuclear Engineering

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  9. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  10. High-speed data search

    Science.gov (United States)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  11. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  12. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  13. Experimental high-speed network

    Science.gov (United States)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  14. High speed all optical networks

    Science.gov (United States)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  15. Real time data compactor (sparsifier) and 8 megabyte high speed FIFO for HEP

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.; Knickerbocker, K.L.; Wegner, C.R.; Baumbaugh, B.W.; Ruchti, R.

    1985-10-01

    A Video-Data-Acquisition-System (VDAS) has been developed to record image data from a scintillating glass fiber-optic target developed for High Energy Physics. The major components of the VDAS are a flash ADC, a ''real time'' high speed data compactor, and high speed 8 megabyte FIFO memory. The data rates through the system are in excess of 30 megabytes/second. The compactor is capable of reducing the amount of data needed to reconstruct typical images by as much as a factor of 20. The FIFO uses only standard NMOS DRAMS and TTL components to achieve its large size and high speed at relatively low power and cost

  16. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  17. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  18. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  19. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  20. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  1. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  2. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  3. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  4. High effective atomic number polymer scintillators for gamma ray spectroscopy

    Science.gov (United States)

    Cherepy, Nerine Jane; Sanner, Robert Dean; Payne, Stephen Anthony; Rupert, Benjamin Lee; Sturm, Benjamin Walter

    2014-04-15

    A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.

  5. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  6. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  7. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A.

    2010-01-01

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  8. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  9. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  10. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  11. SPAD electronics for high-speed quantum communications

    Science.gov (United States)

    Bienfang, Joshua C.; Restelli, Alessandro; Migdall, Alan

    2011-01-01

    We discuss high-speed electronics that support the use of single-photon avalanche diodes (SPADs) in gigahertz singlephoton communications systems. For InGaAs/InP SPADs, recent work has demonstrated reduced afterpulsing and count rates approaching 500 MHz can be achieved with gigahertz periodic-gating techniques designed to minimize the total avalanche charge to less than 100 fC. We investigate afterpulsing in this regime and establish a connection to observations using more conventional techniques. For Si SPADs, we report the benefits of improved timing electronics that enhance the temporal resolution of Si SPADs used in a free-space quantum key distribution (QKD) system operating in the GHz regime. We establish that the effects of count-rate fluctuations induced by daytime turbulent scintillation are significantly reduced, benefitting the performance of the QKD system.

  12. High-Speed Videography Instrumentation And Procedures

    Science.gov (United States)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  13. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  14. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  15. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    Science.gov (United States)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  16. Performance of a highly segmented scintillating fibres electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Asmone, A.; Bertino, M.; Bini, C.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Garufi, F.; Gauzzi, P.; Zanello, D.

    1993-01-01

    A prototype of scintillating fibres electromagnetic calorimeter has been constructed and tested with 2, 4 and 8 GeV electron beams at the CERN PS. The calorimeter modules consist of a Bi-Pb-Sn alloy and scintillating fibres. The fibres are parallel to the modules longer axis, and nearly parallel to the incident electrons direction. The calorimeter has two different segmentation regions of 24x24 mm 2 and 8x24 mm 2 cross area respectively. Results on energy and impact point space resolution are obtained and compared for the two different granularities. (orig.)

  17. Scintillator Evaluation for High-Energy X-Ray Diagnostics

    International Nuclear Information System (INIS)

    Lutz, S. S.; Baker, S. A.

    2001-01-01

    This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm -1

  18. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  19. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    International Nuclear Information System (INIS)

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  20. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  1. Scintillation and ionization yields produced by α-particles in high-density gaseous xenon

    International Nuclear Information System (INIS)

    Kusano, H.; Ishikawa, T.; Lopes, J.A.M.; Miyajima, M.; Shibamura, E.; Hasebe, N.

    2012-01-01

    The average numbers of scintillation photons and liberated electrons produced by 5.49-MeV α-particles were measured in high-density gaseous xenon. The density range is 0.12–1.32 g/cm 3 for scintillation measurements at zero electric field, and 0.12–1.03 g/cm 3 for the scintillation and ionization measurements under various electric fields. The density dependence of scintillation yield at zero electric field was observed. The W s -value, which is defined as the average energy expended per photon, increases with density and becomes almost constant in the density range above 1.0 g/cm 3 . Anti-correlations between average numbers of scintillation photons and liberated electrons were found to vary with density. It was also found that the total number of scintillation photons and liberated electrons decreases with increasing density. Several possible reasons for the variation in scintillation and ionization yields with density are discussed.

  2. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  3. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  4. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  5. Laser micromachining of cadmium tungstate scintillator for high energy X-ray imaging

    Science.gov (United States)

    Richards, Sion Andreas

    Pulsed laser ablation has been investigated as a method for the creation of thick segmented scintillator arrays for high-energy X-ray radiography. Thick scintillators are needed to improve the X-ray absorption at high energies, while segmentation is required for spatial resolution. Monte-Carlo simulations predicted that reflections at the inter-segment walls were the greatest source of loss of scintillation photons. As a result of this, fine pitched arrays would be inefficient as the number of reflections would be significantly higher than in large pitch arrays. Nanosecond and femtosecond pulsed laser ablation was investigated as a method to segment cadmium tungstate (CdWO_4). The effect of laser parameters on the ablation mechanisms, laser induced material changes and debris produced were investigated using optical and electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy for both types of lasers. It was determined that nanosecond ablation was unsuitable due to the large amount of cracking and a heat affected zone created during the ablation process. Femtosecond pulsed laser ablation was found to induce less damage. The optimised laser parameters for a 1028 nm laser was found to be a pulse energy of 54 μJ corresponding to a fluence of 5.3 J cm. -2 a pulse duration of 190 fs, a repetition rate of 78.3 kHz and a laser scan speed of 707 mm s. -1 achieving a normalised pulse overlap of 0.8. A serpentine scan pattern was found to minimise damage caused by anisotropic thermal expansion. Femtosecond pulsed ablation was also found to create a layer of tungsten and cadmium sub-oxides on the surface of the crystals. The CdWO_4 could be cleaned by immersing the CdWO_4 in ammonium hydroxide at 45°C for 15 minutes. However, XPS indicated that the ammonium hydroxide formed a thin layer of CdCO_3 and Cd(OH)_2 on the surface. Prototype arrays were shown to be able to resolve features as small as 0.5 mm using keV energy X-rays. The most

  6. High-speed photography. Technique and evolution

    International Nuclear Information System (INIS)

    Sanchez-Tembleque, R.

    1981-01-01

    It is intended to present some general considerations about ''Higg-speed photography'' as a tool of work common in mos research laboratories in the world. ''High-speed photography'' relies on the principles of photography of actions, that change rapidly with the time. The evolution of this technique goes along with the discovering of new phenomena in wich higher speeds are involved. At present is normal to deal with changing rates involving picoseconds times (10 -12 s) and new developments on the field of femtosecond (10 -15 s) theoretically are contemplated. (author)

  7. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  8. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  9. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  10. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  11. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  12. High-speed cryptography and cryptanalysis

    NARCIS (Netherlands)

    Schwabe, P.

    2011-01-01

    Modern digital communication relies heavily on cryptographic protection to ensure data integrity and privacy. In order to deploy state-of-the art cryptographic primitives and protocols in real-world scenarios, one needs to highly optimize software for both speed and security. This requires careful

  13. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  14. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  15. High speed CAMAC differential branch highway driver

    International Nuclear Information System (INIS)

    McMillan, D.E.; Nelson, R.O.; Poore, R.V.; Sunier, J.W.; Ross, J.J.

    1979-01-01

    A new CAMAC branch driver is described that incorporates several unusual features which combine to give reliable, high-speed performance. These include balanced line driver/receivers, stored CAMAC command lists, 8 DMA channels, pseudo LAMS, hardware priority encoding of LAMS, and hardware-implemented Q-controlled block transfers. 3 figures

  16. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  17. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  18. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  19. High-speed Maglev studies in Canada

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.

    1974-01-01

    This paper reports on Canadian studies of superconducting magnetic levitation and variable-speed linear synchronous motor propulsion for high-speed inter-city guided ground transport. Levitation is obtained by the interaction of vehicle-mounted superconducting magnets and the eddy currents induced in aluminium strip conductors on the guideway. Non-contact propulsion by linear synchronous motor (LSM) is obtained by using vehicle-borne superconducting magnets and powered guideway coils. A suggested guidance scheme uses a flat guideway with 'null-flux' loops overlying the LSM windings. The propulsion magnets interact with the loops and the edges of the levitation strips to provide lateral stabilization. The test facility is a 7.6m wheel, rotating with a peripheral speed of 33m/s. (author)

  20. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  1. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  2. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  3. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  4. A new digital method for high precision neutron-gamma discrimination with liquid scintillation detectors

    International Nuclear Information System (INIS)

    Nakhostin, M

    2013-01-01

    A new pulse-shape discrimination algorithm for neutron and gamma (n/γ) discrimination with liquid scintillation detectors has been developed, leading to a considerable improvement of n/γ separation quality. The method is based on triangular pulse shaping which offers a high sensitivity to the shape of input pulses, as well as, excellent noise filtering characteristics. A clear separation of neutrons and γ-rays down to a scintillation light yield of about 65 keVee (electron equivalent energy) with a dynamic range of 45:1 was achieved. The method can potentially operate at high counting rates and is well suited for real-time measurements.

  5. An instrument for the high-statistics measurement of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Buontempo, S.; Ereditato, A.; Marchetti-Stasi, F.; Riccardi, F.; Strolin, P.

    1994-01-01

    There is today widespread use of plastic scintillating fibers in particle physics, mainly for calorimetric and tracking applications. In the case of calorimeters, we have to cope with very massive detectors and a large quantity of scintillating fibers. The CHORUS Collaboration has built a new detector to search for ν μ -ν τ oscillations in the CERN neutrino beam. A crucial task of the detector is ruled by the high-energy resolution calorimeter. For its construction more than 400 000 scintillating plastic fibers have been used. In this paper we report on the design and performance of a new instrument for the high-statistics measurement of the fiber properties, in terms of light yield and light attenuation length. The instrument has been successfully used to test about 3% of the total number of fibers before the construction of the calorimeter. ((orig.))

  6. Trigger and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance

  7. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  8. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  9. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm 10691 (Sweden)

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  10. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  11. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  12. Comparative measurements between a Li-6 glass and a He-3 high-pressure gas scintillator

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Fischer, P.; Harz, U.; Soldner, B.

    1983-01-01

    The He-3 high-pressure gas scintillation neutron detector commercially available as LND 800, has been compated to a Li-6 glass scintillator type NE 912. (n,γ) pulse height discrimination capabilities and neutron detection efficiencies have been determined. The objective of these measurements was to try to improve the Kiel Fast-Chopper TOF detector system by using a gasscintillator, which could cover the neutron beam geometry and by which gamma ray background contributions could be reduced. The time response always meets the requirements of a chopper experiment, but the neutron detection efficiency of the Li-6 glasses now used had to be maintained. (orig./HP) [de

  13. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  14. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  15. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  16. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  17. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  18. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. High luminosity operation of large solid angle scintillator arrays in Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Ran Shneor

    2003-01-01

    This thesis describes selected aspects of high luminosity operation of large solid angle scintillator arrays in Hall A of the CEBAF (Central Electron Beam Accelerator Facility) at TJNAF (Thomas Jefferson National Accelerator Facility ). CEBAF is a high current, high duty factor electron accelerator with a maximum beam energy of about 6 GeV and a maximum current of 200 (micro)A. Operating large solid angle scintillator arrays in high luminosity environment presents several problems such as high singles rates, low signal to noise ratios and shielding requirements. To demonstrate the need for large solid angle and momentum acceptance detectors as a third arm in Hall A, we will give a brief overview of the physics motivating five approved experiments, which utilize scintillator arrays. We will then focus on the design and assembly of these scintillator arrays, with special focus on the two new detector packages built for the Short Range Correlation experiment E01-015. This thesis also contains the description and results of different tests and calibrations which where conducted for these arrays. We also present the description of a number of tests which were done in order to estimate the singles rates, data reconstruction, filtering techniques and shielding required for these counters

  1. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  2. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the laser Mega Joule

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Normand, Stephane; Turk, Gregory; Darbon, Stephane

    2012-01-01

    The scope of this project intends to record spatially resolved images of core shape and size of a deuterium-tritium micro-balloon during inertial confinement fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an x-ray imaging system which can operate in the hard radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties. Most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low x-ray photoelectric absorption in the 10 to 40 keV range. This does not enable the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12 wt% Pb. Thus, incorporation ratio up to 27 wt% Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z(eff) close to 50. X-rays in the 10 to 40 keV range can thus interact with a higher probability of photoelectric effect than for classic organic scintillators, such as NE-102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by gamma-ray absorption in glass parts of the imaging system. Characteristic decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  3. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  4. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  5. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  6. Light Collection in the High Energy X-ray Detector with the Pixelated CdWO4 Scintillator using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Moon, Myung-Kook; Lee, Suhyun; Kim, Jongyul; Kim, Jeongho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Won [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-05-15

    The performance of indirect detectors, which use the scintillator as CdWO{sub 4}, BGO, CsI, NaI, etc., are effected by optical properties of scintillator and geometrical condition of scintillator. Some of generated lights by interaction between x-ray photons and scintillator are collected at the photo-sensor and others are absorbed in scintillator or escape out of detector. In order to make the high performance image detector, detector should be able to gather the generated lights as much as possible. To minimize the loss of generated lights, thickness of scintillator is to be chosen appropriately. Therefore, the quality of the image detector using the pixelated scintillator is determined by scintillator size, reflectance of scintillator surface, electric noise, etc. In this study, we carried out a study the correlation between the number of collected light and the change of thickness of scintillator using Monte Carlo method. As shown in results, the optimal thickness of a scintillator should be properly selected depending on the incident x-ray energy. In case of without reflector, the scintillator thickness range for x-ray detection is thinner than other cases (with reflector). In the case of a scintillator with reflector, number of collected light and the optima thickness of a scintillator is higher and thicker than scintillator without reflector.

  7. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  8. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  9. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  10. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  11. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  12. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu [German Aerospace Center (DLR), Neustrelitz (Germany). Inst. of Communications and Navigation; Mersha, Mogese Wassaie [Bahir Dar Univ. (Ethiopia). Washera Geospace and Radar Science Lab.

    2017-04-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, smallscale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6 N, 37.4 E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement setup and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  13. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  14. Continuous QKD and high speed data encryption

    Science.gov (United States)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  15. High speed UNIBUS-VME interface

    International Nuclear Information System (INIS)

    Olmos, P.

    1987-01-01

    An interface between VME an the UNIBUS of PDP or VAX computer is presented. The system supports high speed parallel communication (up to 1MB/S) and is composed of two modules. One of these is a commercial DR11M board which performs DMA transfers between UNIBUS and the external word. The other is a VME module specifically developed for this application. The interface has been tested under VMS operating system in VAX and VALET-PLUS system for the VME Bus. We describe in detail the VME module and its connection with the DR11M. Software, both in WMS and VALET, is also described. (Author) 7 refs

  16. A Low Speed BIST Framework for High Speed Circuit Testing

    NARCIS (Netherlands)

    Speek, H.; Kerkhoff, Hans G.; Shashaani, M.; Sachdev, M.

    2000-01-01

    Testing of high performance integrated circuits is becoming increasingly a challenging task owing to high clock frequencies. Often testers are not able to test such devices due to their limited high frequency capabilities. In this article we outline a design-for-test methodology such that high

  17. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  18. Liquid scintillator for 2D dosimetry for high-energy photon beams

    International Nuclear Information System (INIS)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T.

    2009-01-01

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  19. Liquid scintillator for 2D dosimetry for high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard., Unit 94, Houston, Texas 77030 (United States)

    2009-05-15

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  20. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  1. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  2. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry

    International Nuclear Information System (INIS)

    Drobychev, G.

    2000-01-01

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  3. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  4. Florida intercity high speed rail passenger service

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T.; Watford, S.; Moore, G.; Des, A. [Florida Univ., Gainesville, FL (United States). Dept. of Civil Engineering

    1997-10-01

    Plans for a new high-speed rail (HSR) transportation system in Florida were reviewed. HSR is believed to be the least expensive, most energy-efficient and least environmentally harmful alternative to air and highway travel. The system in Florida will be used as a case study to determine its overall impact on the environment, people and economy. The 300-plus mile system will move travelers at speeds of over 200 mph between Miami, Orlando, and Tampa. The study will identify the impacts of a HSR system on existing transportation networks, environment, energy, growth and growth distribution, safety, economy, travel time, and tourism. Transportation problems and the innovative mechanisms needed to realize the joint public and private venture approach to planning, locating, permitting, managing, financing, constructing and maintaining an inter-regional HSR line for the state were studied. The all-electric train would greatly help the environment in two ways: (1) zero emissions from the train itself, and (2) the reduction of trips by automobile and aircraft would reduce the amount of fuel and energy being used. 4 refs., 1 fig.

  5. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  6. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  7. High speed operation of permanent magnet machines

    Science.gov (United States)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  8. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  9. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  10. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  11. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter

    CERN Document Server

    Adloff, C.; Blaising, J.J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Dauncey, P.D.; Magnan, A.M.; Bartsch, V.; Wing, M.; Salvatore, F.; Alamillo, E.Calvo; Fouz, M.C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Gotze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  12. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  13. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    CERN Document Server

    Quittnat, Milena Eleonore

    2015-01-01

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measu...

  14. High-speed cineradiographies acquisition and processing

    International Nuclear Information System (INIS)

    Kahn, E.; Nourrissat, Yves; Viguier, Philippe

    A high-speed cineradiography installation provides dimensional informations recorded either on a film, or on a magnetic tape. In the event of the film, the imperfection of our visual sense leads us to look for a method of measurement which allows us to extract the information from a noisy image; the association of an optical flying spot scanner with a computer is adapted to this use and allows us, for instance, to determine the inside and outside diameters of a sphere during its implosion. On the other hand, the radiographic recording on magnetic tape is processed, after numerisation by the computer, in the same way as the numeric tape generated after the optical scanner. We compare the results achieved by the two recording methods [fr

  15. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  16. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  17. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  18. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    Science.gov (United States)

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  19. High-speed railways in Japan

    International Nuclear Information System (INIS)

    Kyotani, Y.

    1974-01-01

    This paper reviews the development of conventional railways in Japan, leading up to the Shinkansen line, which at present runs at speeds up to 210km/h, and will in the future be speeded up to 260km/h. It then goes on to review the development of a superconductive, magnetically levitated train, which will constitute the next generation of railways, running at speeds of up to 500km/h. (author)

  20. Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    Science.gov (United States)

    Repond, J.; Xia, L.; Eigen, G.; Price, T.; Watson, N. K.; Winter, A.; Thomson, M. A.; Cârloganu, C.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Reinecke, M.; Sefkow, F.; Sudo, Y.; Tran, H. L.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Bilki, B.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sekiya, I.; Suehara, T.; Yamashiro, H.; Yoshioka, T.; Alamillo, E. Calvo; Fouz, M. C.; Marin, J.; Navarrete, J.; Pelayo, J. Puerta; Verdugo, A.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; Kolk, N. Van Der; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.; Choi, W.; Kotera, K.; Nishiyama, M.; Sakuma, T.; Takeshita, T.; Tozuka, S.; Tsubokawa, T.; Uozumi, S.; Jeans, D.; Ootani, W.; Liu, L.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Ikuno, T.; Sudo, Y.; Takahashi, Y.; Götze, M.; Calice Collaboration

    2018-04-01

    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 X0 depth and 180 × 180mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3mm3 scintillator strips. This prototype was tested using electrons of 2-32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12 . 5 ± 0 . 1(stat.) ± 0 . 4(syst.)) % /√{ E [ GeV ] } ⊕(1.2 ± 0.1 (stat.)-0.7+0.6 (syst.)) %, where the uncertainties correspond to statistical and systematic sources, respectively.

  1. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  2. High-speed Stochastic Fatigue Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Sørensen, John Dalsgaard

    1990-01-01

    Good stochastic fatigue tests are difficult to perform. One of the major reasons is that ordinary servohydraulic loading systems realize the prescribed load history accurately at very low testing speeds only. If the speeds used for constant amplitude testing are applied to stochastic fatigue...

  3. Application of high speed photography for high current vacuum arcs

    NARCIS (Netherlands)

    Damstra, G.C.; Merck, W.F.H.; Vossen, J.W.G.L.; Janssen, M.F.P.; Bouwmeester, C.E.

    1998-01-01

    A high speed image detection system for 106 frames per second or 107 streaks per second has been developed for the testing of vacuum circuit breakers, using 10×16 optical fibres for light transfer to 160 fast photo diodes. The output of these diodes is multiplexed, AD converted in a 4 bit

  4. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  5. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  6. Simulations of High Speed Fragment Trajectories

    Science.gov (United States)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  7. High speed all-silicon optical modulator

    International Nuclear Information System (INIS)

    Marris-Morini, Delphine; Le Roux, Xavier; Pascal, Daniel; Vivien, Laurent; Cassan, Eric; Fedeli, Jean Marc; Damlencourt, Jean Francois; Bouville, David; Palomo, Jose; Laval, Suzanne

    2006-01-01

    Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P + layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P + layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product V π L π , determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that V π L π as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps

  8. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  9. A new approach to film dosimetry for high-energy photon beams using organic plastic scintillators

    International Nuclear Information System (INIS)

    Yeo, I.J.; Wang, C.-K.C.; Burch, S.E.

    1999-01-01

    Successful radiotherapy relies on accurate dose measurement. Traditional dosimeters such as ion chambers, TLDs and diodes have disadvantages such as relatively long measurement time and poor spatial resolution. These drawbacks become more serious problems for dynamic beams (i.e. with the use of dynamic wedges or even the intensity modulation technique). X-ray film, an integrating dosimeter, may not be associated with the above disadvantages and problems. However, there are several major issues regarding use of x-ray film for routine dosimetry, including the over-response of the film to low-energy photons, variations in the dose response curve (nonlinearity), lack of reproducibility due to variation in processing, etc. This paper addresses the first problem. That is, x-ray film over-responds to low-energy photons (energies below 400 keV), and thus generates unacceptably inaccurate dosimetric data compared with ion-chamber data. To overcome the over-response problem of x-ray film in a phantom, a scintillation method has been investigated. In this method, a film is sandwiched by two plastic scintillation screens to enhance the film response to upstream electrons, and therefore minimize the over-response caused by low-energy photons. The sandwiched system was tested with a 4 MV linac beam. The result shows that, depending on the uniformity of the scintillation screens, the depth-dose distribution obtained from the sandwich system can be made to agree well with that obtained from ion chambers. However, the required high degree of uniformity remains a challenge for the scintillation screen manufacturers. (author)

  10. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  11. Porous silicon phantoms for high-resolution scintillation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Francia, G. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Scafe, R. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy)]. E-mail: scafe@casaccia.enea.it; De Vincentis, G. [Department of Radiological Sciences, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); La Ferrara, V. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Iurlaro, G. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Nasti, I. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Montani, L. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Pellegrini, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Betti, M. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Martucciello, N. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Pani, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy)

    2006-12-20

    High resolution radionuclide imaging requires phantoms with precise geometries and known activities using either Anger cameras equipped with pinhole collimators or dedicated small animal devices. Porous silicon samples, having areas of different shape and size, can be made and loaded with a radioactive material, obtaining: (a) precise radio-emitting figures corresponding to the porous areas geometry (b) a radioactivity of each figure depending on the pore's specifications, and (c) the same emission energy to be used in true exams. To this aim a sample with porous circular areas has been made and loaded with a {sup 99m}TcO{sub 4} {sup -} solution. Imaging has been obtained using both general purpose and pinhole collimators. This first sample shows some defects that are analyzed and discussed.

  12. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  13. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  14. The high speed civil transport and NASA's High Speed Research (HSR) program

    Science.gov (United States)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  15. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  16. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  17. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  18. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  19. Scintillating fibres

    International Nuclear Information System (INIS)

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  20. Scintillating fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  1. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry; Optimisation des parametres de scintillation des cristaux de tungstate de plomb pour leur application dans la calorimetrie electromagnetique de haute precision

    Energy Technology Data Exchange (ETDEWEB)

    Drobychev, G

    2000-04-12

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals (PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  2. High Speed impedance tomography for cardiac imaging

    International Nuclear Information System (INIS)

    Tehrani, J.N.; Jin, C.; Schaik, Andre

    2010-01-01

    Full text: Electrical Impedance Tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. Previous investigation has shown that optimizing electrode placement can give better information about the stroke volume and better separation between the ventricles and atria than with the electrodes attached in the transverse plane. In our investigation we are developing fast three dimensional imaging of the heart (two planes of 16 electrodes) including internal electrodes in esophagus. The reconstruction speed in EIT is one of the main limitations for real time imaging when using a detailed three dimensional finite element mesh. For that reason we investigated new iterative algorithms for solving large scale LJ regularization. In this research we compare these algorithms on noise reliability and speed for 2D cardiac models. The four methods were as follows: (I) an interior point method for solving Ll-regularized least squares problems (Ll-LS); (2) total variation using a Lagrangian multiplier (TV AL3); (3) a two step iterative shrinkage/thresholding method (TWIST) for solving the Lo-regularized least squares problem; (4) The Least Absolute Shrinkage and Selection Operator (LASSO). In our investigation, using 1600 elements, we found all four algorithms provided an improvement over the best conventional EIT reconstruction method, Total Variation, in three important areas: robustness to noise, increased computational speed of at least 40 x and a visually apparent improvement in spatial resolution. Out of the four algorithms we found TWIST was the fastest with at least a 1 00 x speed increase. (author)

  3. Concept for high speed computer printer

    Science.gov (United States)

    Stephens, J. W.

    1970-01-01

    Printer uses Kerr cell as light shutter for controlling the print on photosensitive paper. Applied to output data transfer, the information transfer rate of graphic computer printers could be increased to speeds approaching the data transfer rate of computer central processors /5000 to 10,000 lines per minute/.

  4. Chicago-St. Louis high speed rail plan

    International Nuclear Information System (INIS)

    Stead, M.E.

    1994-01-01

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team's analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor

  5. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  6. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  7. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  8. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  9. A high resolution scintillating fibre (SCIFI) tracking device with CCD readout

    International Nuclear Information System (INIS)

    Atkinson, M.N.; Crennell, D.J.; Fisher, C.M.; Hughes, P.T.; Kirkby, J.; Fent, J.; Freund, P.; Osthoff, A.; Pretzl, K.

    1987-06-01

    The authors present initial test beam measurements of a high resolution scintillating fibre detector with charge coupled device readout. The analysis procedure is discussed and the performance of the detector and its readout assembly is evaluated. A detected photon density is found along minimum ionising tracks of 2.0 mm -1 , with a straight-line RMS residual of 19.3 +- 2.9 μm, giving rise to a track impact parameter precision of 8.8 +- 2.0 μm. The two-track resolution is found to be 52 μm. (author)

  10. Tests of a Fast Plastic Scintillator for High-Precision Half-Life Measurements

    Science.gov (United States)

    Laffoley, A. T.; Dunlop, R.; Finlay, P.; Leach, K. G.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Grinyer, G. F.; Thomas, J. C.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Orce, J. N.; Triambak, S.; Williams, S. J.; Andreoiu, C.; Cross, D.

    2013-03-01

    A fast plastic scintillator detector is evaluated for possible use in an ongoing program of high-precision half-life measurements of short lived β emitters. Using data taken at TRI-UMF's Isotope Separator and Accelerator Facility with a radioactive 26Na beam, a detailed investigation of potential systematic effects with this new detector setup is being performed. The technique will then be applied to other β-decay half-life measurements including the superallowed Fermi β emitters 10C, 14O, and T = 1/2 decay of 15O.

  11. Grooved windows for scintillation crystals and light pipes of high refractive index

    International Nuclear Information System (INIS)

    Swinehart, C.F.

    1975-01-01

    Scintillation crystals are disclosed which have improved resolution and pulse height. An improved crystal has shallow grooves or spot depressions cut in the window, usually an end surface. Typical grooves are about 1.5 mm wide and about .1 mm deep. The grooves may be either horizontal, generally parallel grooves in spaced apart relationship, or concentric rings in radially spaced apart relationship. A light pipe of high refractive index, such as a crystal of pure sodium iodide, may also be improved with shallow grooves or spot depressions cut in an end surface

  12. Time optimal paths for high speed maneuvering

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  13. Development and Studies of Novel Microfabricated Radiation Hard Scintillation Detectors With High Spatial Resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P; Vico Triviño, N

    2011-01-01

    A new type of scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by coupling microfluidic channels filled with a liquid scintillator to photodetectors. Easy manipulation of liquid scintillators inside microfluidic devices allow their flushing, renewal, and exchange making the active medium intrinsically radiation hard. Prototype detectors have been fabricated by photostructuration of a radiation hard epoxy resin (SU-8) deposited on silicon wafers and coupled to a multi-anode photomultiplier tube (MAPMT) to read-out the scintillation light. They have been characterized by exciting the liquid scintillator in the 200 micrometers thick microchannels with electrons from a 90Sr yielding approximately 1 photoelectron per impinging Minimum Ionizing Particle (MIP). These promising results demonstrate the concept of microfluidic scintillating detection and are very encouraging for future developments.

  14. Plastic scintillators with {beta}-diketone Eu complexes for high ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine); Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N. [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine)

    2011-10-15

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with {beta}-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if {beta}-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: > Fluorescent properties of polystyrene scintillators with {beta}-diketone complexes of Eu were studied. > Scintillating efficiency is increased with the number of phenyl groups in Eu complex. > This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  15. Plastic scintillators with β-diketone Eu complexes for high ionizing radiation detection

    International Nuclear Information System (INIS)

    Adadurov, A.F.; Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N.

    2011-01-01

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with β-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if β-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: → Fluorescent properties of polystyrene scintillators with β-diketone complexes of Eu were studied. → Scintillating efficiency is increased with the number of phenyl groups in Eu complex. → This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  16. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  17. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    Science.gov (United States)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  18. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  19. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  20. Speed

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Speed. The rate of information transferred per second is the speed of the information. Measured in bits per second. Need for speed on the net: You-Tube phenomenon; IPTV; 3D Video telephony. Online gaming; HDTV.

  1. High capacity, high speed histogramming data acquisition memory

    International Nuclear Information System (INIS)

    Epstein, A.; Boulin, C.

    1996-01-01

    A double width CAMAC DRAM store module was developed for use as a histogramming memory in fast time-resolved synchrotron radiation applications to molecular biology. High speed direct memory modify (3 MHz) is accomplished by using a discrete DRAM controller and fast page mode access. The module can be configured using standard SIMMs to sizes of up to 64M-words. The word width is 16 bit and the module can handle overflows by storing the overflow addresses in a dedicated FIFO. Simultaneous front panel DMM/DMI access and CAMAC readout of the overflow addresses is supported

  2. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  3. Theoretical investigations on the high light yield of the LuI3:Ce scintillator

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Iskandarova, I.M.; Scherbinin, A.V.; Markov, I.A.; Bagatur'yants, A.A.; Potapkin, B.V.; Srivastava, A.M.; Vartuli, J.S.; Duclos, S.J.

    2009-01-01

    The extremely high scintillation efficiency of lutetium iodide doped by cerium is explained as a result of at least three factors controlling the energy transfer from the host matrix to activator. We propose and theoretically validate the possibility of a new channel of energy transfer to excitons and directly to cerium, namely the Auger process when Lu 4f hole relaxes to the valence band hole with simultaneous creation of additional exciton or excitation of cerium. This process should be efficient in LuI 3 , and inefficient in LuCl 3 . To justify this channel, we perform calculations of density of states using a periodic plane-wave density functional approach. The second factor is the increase of the efficiency of valence hole capture by cerium in the row LuCl 3 -LuBr 3 -LuI 3 . The third one is the increase of the efficiency of energy transfer from self-trapped excitons to cerium ions in the same row. The latter two factors are verified by cluster ab initio calculations. We estimate either the relaxation of these excitations and barriers for the diffusion of self-trapped holes (STH) and self-trapped exciton (STE). The performed estimations theoretically justify the high LuI 3 :Ce 3+ scintillator yield.

  4. High speed all-optical networks

    Science.gov (United States)

    Chlamtac, Imrich

    1993-01-01

    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  5. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  6. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  7. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  8. Scintillator performance at low dose rates and low temperatures for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Ricci-Tam, Francesca

    2018-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance, especially for forward calorimetry, and highlights the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. The upgrade includes both electromagnetic and hadronic components, with the latter using a mixture of silicon sensors (in the highest radiation regions at high pseudorapidity) and scintillator as its active components. The scintillator will nevertheless receive large doses accumulated at low dose rates, and will have to operate at low temperature - around -30 degrees Celsius. We discuss measurements of scintillator radiation tolerance, from in-situ measurements from the current CMS endcap calorimeters, and from measurements at low temperature and low dose-rate at gamma sources in the laboratory.

  9. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  10. Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

    CERN Document Server

    Kamae, T; Isobe, N; Kokubun, M; Kubota, A; Osone, S; Takahashi, T; Tsuchida, N; Ishibashi, H

    2002-01-01

    Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cmx4.5phi cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5x5x5 mm sup 3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtaine...

  11. Clinical dosimetry with plastic scintillators - Almost energy independent, direct absorbed dose reading with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Fluehs, D [Department of Radiotherapy, Essen (Germany). Div. of Clinical Radiation Physics; Fluehs, D; Kolanoski, H [Dortmund Univ. (Germany). Inst. fuer Physik

    1996-08-01

    Clinical dosimetry is still far behind the goal to measure any spatial or temporal distribution of absorbed dose fast and precise without disturbing the physical situation by the dosimetry procedure. NE 102A plastic scintillators overcome this border. These tissue substituting dosemeter probes open a wide range of new clinical applications of dosimetry. This versatile new dosimetry system enables fast measurement of the absorbed dose to water in water also in regions with a steep dose gradient, close to interfaces, or in partly shielded regions. It allows direct reading dosimetry in the energy range of all clinically used external photon and electron beams, or around all branchytherapy sources. Thin detector arrays permit fast and high resolution measurements in quality assurance, such as in-vivo dosimetry or even afterloading dose monitoring. A main field of application is the dosimetric treatment planning, the individual optimization of brachytherapy applicators. Thus, plastic scintillator dosemeters cover optimally all difficult fields of clinical dosimetry. An overview about its characteristics and applications is given here. 20 refs, 1 fig.

  12. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  13. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  14. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  15. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  16. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  17. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  18. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  19. Characterizing speed-independence of high-level designs

    DEFF Research Database (Denmark)

    Kishinevsky, Michael; Staunstrup, Jørgen

    1994-01-01

    This paper characterizes the speed-independence of high-level designs. The characterization is a condition on the design description ensuring that the behavior of the design is independent of the speeds of its components. The behavior of a circuit is modeled as a transition system, that allows data...... types, and internal as well as external non-determinism. This makes it possible to verify the speed-independence of a design without providing an explicit realization of the environment. The verification can be done mechanically. A number of experimental designs have been verified including a speed-independent...

  20. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  1. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  2. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  3. A high granularity scintillator hadronic — calorimeter with SiPM readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Balagura, V.; Bobchenko, B.; Cvach, Jaroslav; Janata, Milan; Kacl, Ivan; Němeček, Stanislav; Polák, Ivo; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2005-01-01

    Roč. 540, - (2005), s. 368-380 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LN00A006 Institutional research plan: CEZ:AV0Z10100502 Keywords : linear collider detector * analog calorimeter * semiconductor detectors * scintillator * high granularity Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  4. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  5. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  6. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  7. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  8. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  9. Determination of Np, Pu and Am in high level radioactive waste with extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    Yang Dazhu; Zhu Yongjun; Jiao Rongzhou

    1994-01-01

    A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products ( 90 Sr, 137 Cs etc.) are 10 4 -10 6 . Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of α-activity is >99% and the rejection of β-counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste. (author) 7 refs.; 7 figs.; 4 tabs

  10. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  11. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  12. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  13. FPGA Flash Memory High Speed Data Acquisition

    Science.gov (United States)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  14. Development of radiophotometric dosemeters with high sensitivity using plastic scintillators as a light intensifier

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-01-01

    Rectangular plates of plastic scintillators are developed and their effect as light converter evaluated, when used as film-holder in conventional photography dosemeters. In this dosemeter, the radiation that not interacts in the photographic film can be detected by light photons generation in the plastic scintillators, sensitizing the film. (C.G.C.) [pt

  15. Development of nuclear counting system for plateau high voltage scintillation detector test facilities

    International Nuclear Information System (INIS)

    Sarizah Mohamed Nor; Siti Hawa Md Zain; Muhd Izham Ahmad; Izuhan Ismail

    2010-01-01

    Nuclear counter system is a system monitoring and analysis of radioactivity used in scientific and technical research and development in the Malaysian Nuclear Agency. It consists of three basic parts, namely sensors, signal conditioning and monitoring. Nuclear counter system set up for use in the testing of nuclear detectors using radioactive sources such as 60 Co and 137 Cs and other radioactive sources. It can determine the types of scintillation detectors and the equivalent function properly, always operate in the range plateau high voltage and meet the specifications. Hence, it should be implemented on all systems in the Nuclear Nuclear counter Malaysia and documented as Standard Working Procedure (SWP) is a reference to the technicians, trainees IPTA / IPTS and related workers. (author)

  16. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  17. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  18. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  19. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  20. Progress in the development of niobium alloyed high speed steel

    International Nuclear Information System (INIS)

    Guimaraes, J.R.C.

    1987-01-01

    The development of economy-grades of niobium alloyed high speed steel is described. Both the metallurgical concepts behind the steel design and the results of performance tests are presented. (Author) [pt

  1. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  2. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  3. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    announced that it will expand the capacity on its aging high speed line between Tokyo and Osaka, the most heavily traveled intercity rail segment in the...United States, in most of these countries intercity rail travel (including both conventional and high speed rail) represents less than 10% of all...that is sometimes mentioned by its advocates. Intercity passenger rail transport is relatively safe, at least compared with highway travel . And HSR in

  4. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  5. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  6. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  7. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  8. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  9. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  10. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  11. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  12. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  13. High-speed precision motion control

    CERN Document Server

    Yamaguchi, Takashi; Pang, Chee Khiang

    2011-01-01

    Written for researchers and postgraduate students in Control Engineering, as well as professionals in the Hard Disk Drive industry, this book discusses high-precision and fast servo controls in Hard Disk Drives (HDDs). The editors present a number of control algorithms that enable fast seeking and high precision positioning, and propose problems from commercial products, making the book valuable to researchers in HDDs. Each chapter is self contained, and progresses from concept to technique, present application examples that can be used within automotive, aerospace, aeronautical, and manufactu

  14. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    scintillation record was used to examine the material stability under long time application. Here, the light yield Y of the targets was nearly constant or decreased only in the range of 10-15 %, relative to the initial value. For the targets with single crystal characteristic (P46, YAG:Ce), Y even increased slightly and than saturated, offering an enhanced mobility of charge carriers under irradiation. The emission spectra were reproduced continuously and the beam profiles showed good accordance to the reference methods. Within all performed beam times, the targets offered a great stability. Non-linear characteristics, e.g. due to quenching during irradiation at high beam intensities, were not observed. The light yield Y showed a decreasing tendency as function of calculated electronic energy loss dE/dx. The characteristics of the calculated beam profiles, as well as the recorded emission spectra did not change significantly. So a material degradation in the investigated materials was not verified. This observation is confirmed by the performed material characterization measurements. The need of target replacement, e.g. due to damage, did not occur and was thus not performed during the complete investigations. As material for future beam diagnostics of FAIR cerium-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal with a thickness in the range of 300 μm is recommended in cross-points between different storage sections, due to the stable imaging properties for high energy ion beams, even under long-time irradiation. For beam alignment to experimental and research areas, common Al{sub 2}O{sub 3}:Cr is recommended due to the cost advantage.

  15. A high-speed analog neural processor

    NARCIS (Netherlands)

    Masa, P.; Masa, Peter; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    Targeted at high-energy physics research applications, our special-purpose analog neural processor can classify up to 70 dimensional vectors within 50 nanoseconds. The decision-making process of the implemented feedforward neural network enables this type of computation to tolerate weight

  16. Scintillation counter and wire chamber front end modules for high energy physics experiments

    International Nuclear Information System (INIS)

    Baldin, Boris; DalMonte, Lou

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of ∼20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with ∼100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of ∼4 (micro)s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of ∼0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  17. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  18. High-speed quantum networking by ship

    Science.gov (United States)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  19. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  20. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  1. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Super-resolution processing for pulsed neutron imaging system using a high-speed camera

    International Nuclear Information System (INIS)

    Ishizuka, Ken; Kai, Tetsuya; Shinohara, Takenao; Segawa, Mariko; Mochiki, Koichi

    2015-01-01

    Super-resolution and center-of-gravity processing improve the resolution of neutron-transmitted images. These processing methods calculate the center-of-gravity pixel or sub-pixel of the neutron point converted into light by a scintillator. The conventional neutron-transmitted image is acquired using a high-speed camera by integrating many frames when a transmitted image with one frame is not provided. It succeeds in acquiring the transmitted image and calculating a spectrum by integrating frames of the same energy. However, because a high frame rate is required for neutron resonance absorption imaging, the number of pixels of the transmitted image decreases, and the resolution decreases to the limit of the camera performance. Therefore, we attempt to improve the resolution by integrating the frames after applying super-resolution or center-of-gravity processing. The processed results indicate that center-of-gravity processing can be effective in pulsed-neutron imaging with a high-speed camera. In addition, the results show that super-resolution processing is effective indirectly. A project to develop a real-time image data processing system has begun, and this system will be used at J-PARC in JAEA. (author)

  3. Sphinx, the high speed flash radiography

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Sphinx (Nanosecond Pulse X-Photon Source) is the most compact (0.1 m 3 ) existing system which can generates short pulses (10 to 30 nanoseconds) of 5 to 180 keV X-photon radiation with a repeating cadence of 100 pulses per second and doses which can reach 2 mR at 1 m. This system was developed by the Research Group on Energetics of Ionized Media (GREMI) from the CNRS (French National Center for Scientific Research) and the University of Orleans (France). Sphinx is the smallest device from a series of compact X-ray sources ranging from 5 to 400 keV. These devices can have several possible applications such as the study of ultra-fast phenomena, the high cadence flash radiography in medicine, biology, materials studies, pre-ionizing of gas lasers, self-excitation and photo-ionization of atoms, molecules or aggregates. (J.S.)

  4. Control structures for high speed processors

    Science.gov (United States)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  5. Design optimization of high speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Maad, Rachid

    2009-01-01

    This thesis concerns research and development of efficient gamma-ray systems for high speed tomographic imaging of hydrocarbon flow dynamics with a particular focus on gas liquid imaging. The Bergen HSGT (High Speed Gamma-ray Tomograph) based on instant imaging with a fixed source-detector geometry setup, has been thoroughly characterized with a variety of image reconstruction algorithms and flow conditions. Experiments in flow loops have been carried out for reliable characterization and error analysis, static flow phantoms have been applied for the majority of experiments to provide accurate imaging references. A semi-empirical model has been developed for estimation of the contribution of scattered radiation to each HSGT detector and further for correction of this contribution prior to data reconstruction. The Bergen FGGT (Flexible Geometry Gamma-ray Tomograph) has been further developed, particularly on the software side. The system emulates any fan beam tomography. Based on user input of geometry and other conditions, the new software perform scanning, data acquisition and storage, and also weight matrix calculation and image reconstruction with the desired method. The FGGT has been used for experiments supporting those carried out with the HSGT, and in addition for research on other fan beam geometries suitable for hydrocarbon flow imaging applications. An instant no-scanning tomograph like the HSGT has no flexibility with respect to change of geometry, which usually is necessary when applying the tomograph for a new application. A computer controlled FGGT has been designed and built at the UoB. The software developed for the FGGT controls the scanning procedure, the data acquisition, calculates the weight matrix necessary for the image reconstruction, reconstructs the image using standard reconstruction algorithms, and calculates the error of the reconstructed image. The performance of the geometry has been investigated using a 100 mCi 241 Am disk source, a

  6. Search for new scintillators for high-energy resolution electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.

    1999-01-01

    Some opportunities of creation of radiation-resistant heterogeneous electro-magnetic-calorimeters with an energy resolution of about σ/E≅4-5%/√E is given in this article. Investigation results of 2scintillation and radiation characteristics for thin molded plates and new heavy scintillators based on the polystyrene and containing metalloorganic additives are presented. The radiation resistance of thin molded scintillator plates of about 1.1 mm thick containing 2% pTP+0.05% POPOP has reached a level of about 15-20 kGy

  7. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  8. High speed motion-picture photography. Instrumentation and application

    International Nuclear Information System (INIS)

    Bertin-Maghit, G.; Delli, C.; Falgayrettes, M.

    1981-01-01

    Filming technology at 5,000 frames/second is presented in this paper for the determination of the volume and the expension speed of a gas bubble in water. The high speed 16 mm movie camera, fitted with ultra-wide angle lenses, is placed in front of a side light facing the bubble. Ten 60 ms fast flashes, released in succession, illuminate the bubble [fr

  9. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    Science.gov (United States)

    2013-12-01

    wave absorbing beach at the other. The carriage has electro-hydraulic drive and a regenerative braking system with a maximum carriage speed of 20...Carderock Division To: Commander, Naval Sea Systems Command (PMS3 85) Subj FORWARDING OF REPORT Encl: (1) NSWCCD-80-TR-2013/015, "High Speed Trimaran...and verify the system processes and capability. Your comments will be reviewed and are appreciated. JUDE F. BROWN By direction Copy to: NAVSEA

  10. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  11. An ultra-high speed whole slide image viewing system.

    Science.gov (United States)

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  12. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  13. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  14. Development of radiophotometric dosemeters of high sensitivity using plastic scintillators as light intensifiers

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-01-01

    The use of rectangular plates of plastic scintillators as film holders in conventional photographic dosemeters is reported. The efficiency of their use as light converters for increase the sensitivity of these dosemeters are studied. (M.A.C.) [pt

  15. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  16. HDR 192Ir source speed measurements using a high speed video camera

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio; Podesta, Mark; Rubo, Rodrigo A.; Sales, Camila P. de; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Purpose: The dose delivered with a HDR 192 Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a 192 Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases

  17. Scintillation screen materials for beam profile measurements of high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Renuka

    2016-06-22

    For the application as a transverse ion beam diagnostics device, various scintillation screen materials were analysed. The properties of the materials such as light output, image reproduction and radiation stability were investigated with the ion beams extracted from heavy ion synchrotron SIS-18. The ion species (C, Ne, Ar, Ta and U) were chosen to cover the large range of elements in the periodic table. The ions were accelerated to the kinetic energies of 200 MeV/u and 300 MeV/u extracted with 300 ms pulse duration and applied to the screens. The particle intensity of the ion beam was varied from 10{sup 4} to 10{sup 9} particles per pulse. The screens were irradiated with typically 40 beam pulses and the scintillation light was captured using a CCD camera followed by characterization of the beam spot. The radiation hardness of the screens was estimated with high intensity Uranium ion irradiation. In the study, a linear light output for 5 orders of magnitude of particle intensities was observed from sensitive scintillators and ceramic screens such as Al{sub 2}O{sub 3}:Cr and Al{sub 2}O{sub 3}. The highest light output was recorded by CsI:Tl and the lowest one by Herasil. At higher beam intensity saturation of light output was noticed from Y and Mg doped ZrO{sub 2} screens. The light output from the screen depends not only on the particle intensity but also on the ion species used for irradiation. The light yield (i.e. the light intensity normalised to the energy deposition in the material by the ion) is calculated from the experimental data for each ion beam setting. It is shown that the light yield for light ions is about a factor 2 larger than the one of heavy ions. The image widths recorded exhibit a dependence on the screens material and differences up to 50 % were registered. On radiation stability analysis with high particle intensity of Uranium ions of about 6 x 10{sup 8} ppp, a stable performance in light output and image reproduction was documented from Al

  18. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.

  19. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  20. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  1. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  2. Preliminary tests of a high speed vertical axis windmill model

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S

    1971-01-01

    This report discusses a fixed-pitch vertical axis windmill that combines the inherent simplicity of this type of machine with a high aerodynamic efficiency and a high relative velocity. A three-bladed rotor was selected as the basic design, having constant chord symmetric airfoil blades configured in a catenary curve such that the rotor diameter is equal to the rotor height. In wind tunnel tests using a 30 inch scale model, it was found that once this rotor was given a very low rotational speed, it picked up speed and ran at a rotor tip velocity/wind speed ratio greater than 1. The number of blades was varied in the testing. A maximum power coefficient of 0.67 was achieved at 17 ft/s wind speed at a tip speed/wind speed ratio of 7.25 for a 2-bladed rotor. Increasing the number of blades above 3 did not result in higher power. The rotor could operate in gusts which double the mean wind velocity. Examination of Reynolds number effects, and taking into account the scale of the model, it was concluded that a full-scale windmill could run at lower velocity ratios than those predicted by the model tests, and that it could self-start under no-load conditions if the cut-in rpm are at least half the rpm for maximum power at the prevailing wind speed. Preliminary estimates show that a 15 ft diameter windmill of this design, designed to operate with a safety factor of 2.5 up to a maximum wind speed of 60 ft/s, would weigh ca 150 lb and could be marketed for ca $60.00, excluding the driven unit, if sufficient quantities were produced to make tooling costs negligible. Similarly, a 30 ft windmill would weigh ca 1000 lb and cost ca $400.00. 2 refs., 6 figs.

  3. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iikura, H., E-mail: Iikura.hiroshi@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Tsutsui, N. [Chichibu Fuji Co., Ltd., Ogano, Chichibu, Saitama 368-0193 (Japan); Nakamura, T.; Katagiri, M.; Kureta, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Kubo, J. [Nissan Motor Co., Ltd., Atsugi, Kanagawa 243-0126 (Japan); Matsubayashi, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2011-09-21

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/{sup 6}Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  4. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Tobin, M.J.; Vives-Batlle, J.; Yoon, S.R.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min. This paper presents the design features, operational methods, calibration, and detector applications. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    Science.gov (United States)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  6. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Vives-Batlle, J.; Yoon, S.R; Tobin, M.J.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, operational methods, calibration, and detector applications

  7. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  8. Adaptations to speed endurance training in highly trained soccer players

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Fiorenza, Matteo; Lund, Anders

    2016-01-01

    PURPOSE: The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I...... and II muscle fibers. METHODS: During the last nine weeks of the season, thirteen semi-professional soccer players performed additional speed endurance training sessions consisting of 2-3 sets of 8 - 10 repetitions of 30 m sprints with 10 s of passive recovery (SET). Before and after SET, subjects...... in type I and II fibers did not change. CONCLUSION: In highly trained soccer players, additional speed endurance training is associated with an improved ability to perform repeated high-intensity work. To what extent the training-induced changes in V˙O2 kinetics and mechanical efficiency in type I fibers...

  9. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  10. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  11. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  12. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  13. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  14. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  15. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  16. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  17. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  18. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  19. A high-resolution tracking hodoscope based on capillary layers filled with liquid scintillator

    CERN Document Server

    Bay, A; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Ekimov, A V; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Frekers, D; Frenkel, A; Golovkin, S V; Govorun, V N; Harrison, K; Koppenburg, P; Kozarenko, E N; Kreslo, I E; Liberti, B; Martellotti, G; Medvedkov, A M; Mondardini, M R; Penso, G; Siegmund, W P; Vasilchenko, V G; Vilain, P; Wilquet, G; Winter, Klaus; Wörtche, H J

    2001-01-01

    Results are given on tests of a high-resolution tracking hodoscope based on layers of \\hbox{26-$\\mu$m-bore} glass capillaries filled with organic liquid scintillator (1-methylnaphthalene doped with R39). The detector prototype consisted of three 2-mm-thick parallel layers, with surface areas of $2.1 \\times 21$~cm$^2$. The layers had a centre-to-centre spacing of 6~mm, and were read by an optoelectronic chain comprising two electrostatically focused image intensifiers and an Electron-Bombarded Charge-Coupled Device (EBCCD). Tracks of cosmic-ray particles were recorded and analysed. The observed hit density was 6.6~hits/mm for particles crossing the layers perpendicularly, at a distance of 1~cm from the capillaries' readout end, and 4.2~hits/mm for particles at a distance of 20~cm. A track segment reconstructed in a single layer had an rms residual of $\\sim$~20~$\\mu$m, and allowed determination of the track position in a neighbouring layer with a precision of $\\sim$~170~$\\mu$m. This latter value corresponded to...

  20. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    Science.gov (United States)

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  1. A High-Speed Design of Montgomery Multiplier

    Science.gov (United States)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  2. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  3. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  4. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  5. High resolution time-of-flight measurements in small and large scintillation counters

    International Nuclear Information System (INIS)

    D'Agostini, G.; Marini, G.; Martellotti, G.; Massa, F.; Rambaldi, A.; Sciubba, A.

    1981-01-01

    In a test run, the experimental time-of-flight resolution was measured for several different scintillation counters of small (10 x 5 cm 2 ) and large (100 x 15 cm 2 and 75 x 25 cm 2 ) area. The design characteristics were decided on the basis of theoretical Monte Carlo calculations. We report results using twisted, fish-tail, and rectangular light- guides and different types of scintillator (NE 114 and PILOT U). Time resolution up to approx. equal to 130-150 ps fwhm for the small counters and up to approx. equal to 280-300 ps fwhm for the large counters were obtained. The spatial resolution from time measurements in the large counters is also reported. The results of Monte Carlo calculations on the type of scintillator, the shape and dimensions of the light-guides, and the nature of the external wrapping surfaces - to be used in order to optimize the time resolution - are also summarized. (orig.)

  6. High-speed photography application to pulsed hot plasma investigation

    International Nuclear Information System (INIS)

    Borov'etskij, M.; Koz'yarkevich, V.; Skrzhechanovskij, V.; Socha, R.

    1986-01-01

    Plasma focus is investigated using an electron-optical chamber for high-speed photography (KSK-1). Experimental devices for studying dynamics and structure of a plasma layer in the chosen interval, recording plasma spectra with time resolution as well as for studying the dynamics and structure of a plasma layer by Schlieren- and shadow methods are briefly described. Experimental results are presented

  7. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  8. Intel Legend and CERN would build up high speed Internet

    CERN Multimedia

    2002-01-01

    Intel, Legend and China Education and Research Network jointly announced on the 25th of April that they will be cooperating with each other to build up the new generation high speed internet, over the next three years (1/2 page).

  9. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  10. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  11. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  12. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  13. Research in high speed fiber optics local area networks

    Science.gov (United States)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  14. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  15. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  16. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  17. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  18. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  19. High-Frequency Technical Trading: The Importance of Speed

    NARCIS (Netherlands)

    M.L. Scholtus (Martin); D.J.C. van Dijk (Dick)

    2012-01-01

    textabstractThis paper investigates the importance of speed for technical trading rule performance for three highly liquid ETFs listed on NASDAQ over the period January 6, 2009 up to September 30, 2009. In addition we examine the characteristics of market activity over the day and within subperiods

  20. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  1. High-Speed Railways and Urban Networks in China

    NARCIS (Netherlands)

    Yang, Haoran

    2018-01-01

    Worldwide, High-Speed Railway (HSR) networks have been developed intensely over the last few decades, such as Tokyo-Osaka, the first HSR corridor in Japan, the TGV in France and the ICE in Germany. HSR has also experienced exponential growth in China so that currently China’s HSR networks are the

  2. A data-acquisition system for high speed linear CCD

    International Nuclear Information System (INIS)

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  3. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  4. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  5. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  6. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  7. Optimum Design of High Speed Prop-Rotors

    Science.gov (United States)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  8. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    International Nuclear Information System (INIS)

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  9. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  10. Design of a high speed rotating mechanical shutter

    International Nuclear Information System (INIS)

    Stowers, I.F.; Merritt, B.T.; McFann, C.B.

    1979-01-01

    A high-speed rotating shutter was designed to operate in a 10 -6 Torr vacuum at the optical focus of a laser spatial filter. The shutter is basically a wheel, with a single 3 x 10-mm slot at the perimeter, which rotates with a peripheral speed of 1 km/s. The motor to drive the rotating wheel is magnetically suspended and synchronously wound. The wheel achieves a 4 μs opening time and a timing accuracy of better than 0.2 μs

  11. Error mapping of high-speed AFM systems

    Science.gov (United States)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  12. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  13. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  14. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  15. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  16. Superconducting magnet suspensions in high speed ground transport

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  17. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  18. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  19. A high-granularity scintillator hadronic-calorimeter with SiPM readout for a linear collider detector

    International Nuclear Information System (INIS)

    Andreev, V.; Balagura, V; Bobchenko, B.

    2004-01-01

    We report upon the design, construction and operation of a prototype for a high-granularity tile hadronic calorimeter for a future international linear collider(ILC) detector. Scintillating tiles are read out via wavelength-shifting fibers which guides the scintillation light to a novel photodetector, the Silicon Photomultiplier. The prototype has been tested at DESY using a positron test beam. The results are compared with a reference prototype equipped with multichannel vacuum photomultipliers. Detector calibration, noise, linearity and stability are discussed, and the energy response in a 1-6 GeV positron beam is compared with simulation. The work presented serves to establish the application of SiPM for calorimetry, and leads to the choice of this device for the construction of a 1m 3 calorimeter prototype for tests in hadron beams. (orig.)

  20. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  1. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  2. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  3. Multivariable Techniques for High-Speed Research Flight Control Systems

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  4. Calculation of efficiency of high-energy neutron detection by plastic scintillators

    International Nuclear Information System (INIS)

    Telegin, Yu.N.

    1977-01-01

    A computer was used to calculate neutron (5-30O MeV) registration effeciencies with plastic scintillators 2,5,10, 20,30,40 and 50 cm thick. The results are shown in the form of tables. The contributions to efficiency of various processes have been analysed. The calculation results may be used in planning experiments with neutron counters

  5. Luminescence and scintillation of Eu.sup.2+./sup.-doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Chen, D.; Yu, B.; Zhang, Q.; Shen, Y.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 40-42 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : glasses * Eu 2+ * luminescence * scintillation * time-resolved luminescence * porous materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  6. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  7. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  8. Design, construction and beam tests of the high resolution uranium scintillator calorimeter for ZEUS

    International Nuclear Information System (INIS)

    Straver, J.A.

    1991-01-01

    HERA will collide protons and electrons with energies up to 820 GeV and 30 GeV respectively. Therefore it allows measurements at momentum transfers (Q) which greatly surpass the investigations carried out so far. This extended range in Q will allow investigation of the interactions between the quarks and leptons at a distance scale of the order of 10 -18 cm. Two detectors are foreseen at HERA H1 and ZEUS. The design of the ZEUS detector is optimized for the study of neutral and charged current interactions. A calorimeter is a detector which absorbs the total incident energy of a particle while generating a signal proportional to this energy. The ZEUS calorimeter is built of alternating layers of dense absorber plates ( 238 U) and active layers of scintillator material with a fast readout system via wavelength shifters, light guides and photomultiplyers. The main subject of this thesis is the description of this calorimeter and its performance. After a short introduction to HERA and the physics topics, the importance of the quality of a calorimeter is pointed out and a brief overview of the ZEUS detector is given. In ch. 3 the principles of high resolution hadron calorimetry and the studies which led to the design of the ZEUS-calorimeter are discussed. Ch. 4 describes the mechanical design of the ZEUS forward calorimeter, the mechanical finite element calculations, and the production of the calorimeter modules at NIKHEF. Finally ch. 6 and 5 show the results of beam tests of the ZEUS forward calorimeter prototypes and the final full size forward calorimeter modules. (author). 59 refs.; 115 figs.; 29 tabs

  9. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Science.gov (United States)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than

  10. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-01-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr 3 :Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr 3 :Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is systematically

  11. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F., E-mail: Peter.Bloser@unh.edu; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr{sub 3}:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr{sub 3}:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is

  12. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  13. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    Energy Technology Data Exchange (ETDEWEB)

    Kagaya, M., E-mail: 13nd401n@vc.ibaraki.ac.jp [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Katagiri, H. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Enomoto, R. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582 (Japan); Open-It consortium (Japan); Hanafusa, R.; Hosokawa, M.; Itoh, Y. [Fuji Electric, 1 Fujimachi, Hino City, Tokyo 191-8502 (Japan); Muraishi, H. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Nakayama, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Satoh, K. [Shinsei Corporation, 4-9-1 Nihonbashi-honcho, Chuo-ku, Tokyo 103-0023 (Japan); Takeda, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Tanaka, M.M.; Uchida, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba City, Ibaraki 305-0801 (Japan); Open-It consortium (Japan); Watanabe, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Yanagita, S.; Yoshida, T.; Umehara, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan)

    2015-12-21

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m{sup 2} radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  14. Highball: A high speed, reserved-access, wide area network

    Science.gov (United States)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  15. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  16. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  17. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  18. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  19. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  20. High-speed nonvolatile CMOS/MNOS RAM

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Dodson, W.D.; Sokel, R.J.

    1979-01-01

    A bulk silicon technology for a high-speed static CMOS/MNOS RAM has been developed. Radiation-hardened, high voltage CMOS circuits have been fabricated for the memory array driving circuits and the enhancement-mode p-channel MNOS memory transistors have been fabricated using a native tunneling oxide with a 45 nm CVD Si 3 N 4 insulator deposited at 750 0 C. Read cycle times less than 350 ns and write cycle times of 1 μs are projected for the final 1Kx1 design. The CMOS circuits provide adequate speed for the write and read cycles and minimize the standby power dissipation. Retention times well in excess of 30 min are projected

  1. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  2. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  3. High speed movies of turbulence in Alcator C-Mod

    International Nuclear Information System (INIS)

    Terry, J.L.; Zweben, S.J.; Bose, B.; Grulke, O.; Marmar, E.S.; Lowrance, J.; Mastrocola, V.; Renda, G.

    2004-01-01

    A high speed (250 kHz), 300 frame charge coupled device camera has been used to image turbulence in the Alcator C-Mod Tokamak. The camera system is described and some of its important characteristics are measured, including time response and uniformity over the field-of-view. The diagnostic has been used in two applications. One uses gas-puff imaging to illuminate the turbulence in the edge/scrape-off-layer region, where D 2 gas puffs localize the emission in a plane perpendicular to the magnetic field when viewed by the camera system. The dynamics of the underlying turbulence around and outside the separatrix are detected in this manner. In a second diagnostic application, the light from an injected, ablating, high speed Li pellet is observed radially from the outer midplane, and fast poloidal motion of toroidal striations are seen in the Li + light well inside the separatrix

  4. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  5. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  6. Wetting dynamics at high values of contact line speed

    OpenAIRE

    Пономарев, К. О.; Феоктистов, Дмитрий Владимирович; Орлова, Евгения Георгиевна

    2015-01-01

    Experimental results analyses of dynamic contact angle change under the conditions of substrate wetting by distilled water at high values of the contact line speed was conducted. Three spreading modes for copper substrates with different roughness were selected: drop formation, spreading and equilibrium contact angle formation. Peculiarity of droplet spreading on superhydrophobic surface is found. It consists in a monotonic increase of the advancing dynamic contact angle. The effect of the dr...

  7. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  8. Aero-Mechanical Coupling in a High-Speed Compressor

    Science.gov (United States)

    2010-02-01

    freedom mass-spring- damper system as χ = ς 2 √ κµ . (51) ς represents the viscous damping, κ is the system stiffness and µ the system mass. χ expresses...between the fluid and structures which are common in modern, high-speed axial compressors. There were two major areas of focus. The first was the...development of measurement technique specifically for the study of these phenomena, termed Blade Image Velocimetry (BIV). The technique can measure fluid and

  9. Modeling and simulation of high-speed milling centers dynamics

    OpenAIRE

    Msaddek , El Bechir; Bouaziz , Zoubeir; Baili , Maher; Dessein , Gilles

    2011-01-01

    International audience; High-speed machining is a milling operation in industrial production of aeronautic parts, molds, and dies. The parts production is being reduced because of the slowing down of the machining resulting from the tool path discontinuity machining strategy. In this article, we propose a simulation tool of the machine dynamic behavior, in complex parts machining. For doing this, analytic models have been developed expressing the cutting tool feed rate. Afterwards, a simulati...

  10. The economic effects of high speed rail investment

    OpenAIRE

    de Rus, Ginés

    2008-01-01

    The allocation of traffic between different transport modes follows transport user decisions which depend on the generalized cost of travel in the available alternatives. High Speed Rail (HSR) investment is a government decision with significant effects on the generalized cost of rail transport; and therefore on the modal split in corridors where private operators compete for traffic and charge prices close to total producer costs (infrastructure included). The rationale for HSR investment is...

  11. Kinematic and Kinetic Evaluation of High Speed Backward Running

    Science.gov (United States)

    1999-06-30

    Designed using Perform Pro , WHS/DIOR, Oct 94 KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING by ALAN WAYNE ARATA A DISSERTATION...Project Manager, Engineering Division, Kelly Air Force Base, Texas, 1983-86 AWARDS AND HONORS: All-American, 50yd Freestyle , 1979 Winner, Rocky...redirection #include <stdlib.h> // for exit #include <iomanip.h> // for set precision #include <string.h> // for string copy const int NUMPOINTS

  12. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    CHENG Qiang; LIU Jin-jiang; CHENG Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  13. High speed trains Velaro for Russia; Hochgeschwindigkeitszuege Velaro fuer Russland

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Andreas; John, David [Siemens AG, I MO TR HI RUS, Erlangen (Germany); Mangler, Ruediger [Siemens AG, I MO TR DH, Krefeld (Germany); Nazarov, Aleksander S. [OAO RZD, Moscow (Russian Federation). Dept. of Technical Policy; Nazarov, Oleg N. [VNIIZhT Moscow (Russian Federation); Shilkin, Vitali P. [OAO RZD, Moscow (Russian Federation)

    2008-07-01

    From December 2008 on, eight ten-piece high-speed trains from the Velaro family from Siemens will be delivered to Russia. The two electrical multiple unit versions - single and double system trains equipped with distributed traction - will be put into service on the existing Moscow - St. Petersburg and Moscow - Nizhni Novgorod lines. The technical design and the special features for deployment in Russia are described. (orig.)

  14. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  15. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  16. Noise factor of a high-speed cinematography system

    International Nuclear Information System (INIS)

    Secroun, A.

    2000-01-01

    Inertial confinement fusion simulates in a laboratory the thermodynamic state of the center of stars, thus leading to the determination of stellar parameters. In order to reach that aim, high-speed cinematography brings up instruments specifically adapted to picosecond measurement, for which it is necessary to know the final precision. A model of the noise factor of the instruments under study is introduced and confronted to the experimental results obtained. (authors)

  17. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  18. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  19. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  20. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  1. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  2. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  3. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  4. Luminescence and scintillation of Ce.sup.3+./sup.- doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Shen, Y.; Chen, D.; Yu, B.; Průša, Petr; Nikl, Martin; Beitlerová, Alena; Wanarak, C.

    2012-01-01

    Roč. 34, č. 11 (2012), s. 1762-1766 ISSN 0925-3467 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ce 3+ * luminescence * porous materials * scintillation * photoluminescence decay Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012 http://dx.doi.org/10.1016/j.optmat.2012.04.012

  5. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    International Nuclear Information System (INIS)

    Anelli, M.; Bisogni, G.; Ceccarelli, A.

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a 'barrel', closed at both ends with an 'end-cap'. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described

  6. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  7. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bisogni, G; Ceccarelli, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); and others

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a `barrel`, closed at both ends with an `end-cap`. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described.

  8. ECONOMIC REASONING MAXIMUM SLOPE IN DESIGN HIGH-SPEED LINES

    Directory of Open Access Journals (Sweden)

    CHERNYSHOVA O. S.

    2016-04-01

    Full Text Available Raising of problem The worldwide design standards high-speed lines are somewhat different. This is due to several reasons: different levels of design speed, differences of characteristics of rolling stock and, in particular, the features of the design plan and longitudinal profile, that are associated primarily with the conditions of the relief. In the design of high-speed railways in Ukraine should take into account these features and determine what the maximum slope values can be used in difficult conditions, as well as how it will affect the operational and capital costs. Purpose. To determine the optimal design parameters of the longitudinal profile. Conclusion. The results are based not only on technical, but also economic indicators and allow the assessment of the necessary capital expenditures and expected cost of the railway in the future. Analytical dependences, to predict the expected operating costs of the railway, depending on the maximum slope, its length and the total length of the section.

  9. High speed TV-towing system for exploration manganese nodules

    International Nuclear Information System (INIS)

    Hartmann, P.

    1977-12-01

    For the oceanographic, special for the manganese nodules exploration in the deep sea a high speed-TV-towing system is to design on base of existing TV-towing systems to get better efficiency during the exploration phase. It is planned to increase to towing speed at the time of 2 knots up to 6-8 knots. The essential points of developments in this direction are 1) to decrease the hydrodynamical drag of the long towing cable with fairings. 2) To seperate to towing system into two units the passiv controlled towing cable end point 'SEP' with negativ buoyancy (weight) and the activ controlled TV-fish. With this separation it is possible to tow the TV-fish within a defined accuracy parallel to the sea floor without an influence to the overall system. 3) To adapt the TV- and photo stobe light unit for these towing conditions (high speed). 4) To design the control concept, the operating equipment, the energy and data transmission system, the towed body concept, the hydrodynamical calculation of towing phase and the other towed components. The results of this study is the definition of a two body towing system which is able towed by a research vessel to make continously TV-observation of the sea floor in depth down to 6,000 meters. (orig.) [de

  10. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  11. Liquid scintillation systems and apparatus for measuring high-energy radiation emitted by samples in standard laboratory test tubes

    International Nuclear Information System (INIS)

    Benvenutti, R.A.

    1976-01-01

    Liquid scintillation detection system employs improved sample holders in which the cap of a glass vial is provided with a well for receiving a standard laboratory test tube containing a radioactive sample. The well is immersed in a liquid scintillator in the vial, the scintillator containing lead acetate solution to enhance its efficiency. A commercially available beta-counting liquid scintillation apparatus is modified to provide gamma-counting with the improved sample holders

  12. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  13. Electron curing for high speed paper, film and foil converting

    International Nuclear Information System (INIS)

    Nablo, S.V.; Tripp, E.P.

    1979-01-01

    The status of self-shielded, compact electron processors for flexible web converting applications is reviewed. The uses of these units for a variety of laminating applications are described, with emphasis on the application techniques appropriate for low weight, (1 to 2 gm/m 2 ) 100% convertible adhesives. Performance data for electron cured adhesives with polyester/polyethylene systems is presented and compared with conventional urethane systems. The unique surface features of electron cured gravure coatings applied and cured at high speed are discussed, with reference to both paper and film substrates. An important advantage of electron curing of buried adhesive layers is the process quality control permitted by this 'all-electric' system. The performance characteristics of curing atmosphere control (inerting) for coatings are reviewed. Industrial experience with these processors has shown that effective inerting of coated flexible webs at speeds to 250 m/minute is both practical and economical. (author)

  14. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  15. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  16. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  17. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  18. Gate Drive For High Speed, High Power IGBTs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  19. Gate Drive For High Speed, High Power IGBTs

    International Nuclear Information System (INIS)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; SLAC

    2007-01-01

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3(micro)S with a rate of current rise of more than 10000A/(micro)S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt

  20. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  1. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  2. High-speed uncooled MWIR hostile fire indication sensor

    Science.gov (United States)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  3. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  4. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  5. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  6. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  7. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  8. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  9. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  10. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  11. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    This work describes the development of flexible tactile sensor shoe inlays for humanoid robots. Their design is based on a sandwich structure of flexible layers with a thin sheet of piezoresistive rubber as main transducer element. The layout and patterning of top and bottom electrodes give 1024...... pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  12. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  13. Development of {sup 100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Armengaud, E.; Gros, M.; Herve, S.; Magnier, P.; Navick, X.F.; Nones, C.; Paul, B.; Penichot, Y.; Zolotarova, A.S. [Universite Paris-Saclay, IRFU, CEA, Gif-sur-Yvette (France); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne (France); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [National Research Centre Kurchatov Institute, Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Beeman, J.W. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bekker, T.B. [V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS, Novosibirsk (Russian Federation); Bellini, F.; Ferroni, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Benoit, A.; Camus, P. [CNRS-Neel, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Humbert, V.; Le Sueur, H.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Novati, V.; Olivieri, E.; Plantevin, O. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bergmann, T.; Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruhe Institute of Technology, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Boiko, R.S.; Danevich, F.A.; Kobychev, V.V.; Nikolaichuk, M.O.; Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Brudanin, V.; Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Capelli, S.; Gironi, L.; Pavan, M.; Pessina, G. [Universita di Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Tomei, C.; Vignati, M. [INFN, Sezione di Roma, Rome (Italy); Chernyak, D.M. [Institute for Nuclear Research, Kyiv (Ukraine); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba (Japan); Combarieu, M. de; Pari, P. [Universite Paris-Saclay, IRAMIS, CEA, Gif-sur-Yvette (France); Coron, N.; Redon, T. [Universite Paris-Sud, IAS, CNRS, Orsay (France); Devoyon, L.; Koskas, F.; Strazzer, O. [Universite Paris-Saclay, Orphee, CEA, Gif-sur-Yvette (France); Di Domizio, S. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN Sezione di Genova, Genoa (Italy); Eitel, K.; Siebenborn, B. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Enss, C.; Fleischmann, A.; Gastaldo, L. [Heidelberg University, Kirchhoff Institute for Physics, Heidelberg (Germany); Foerster, N.; Kozlov, V. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Giuliani, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Grigorieva, V.D.; Ivannikova, N.V.; Ivanov, I.M.; Makarov, E.P.; Shlegel, V.N.; Vasiliev, Ya.V. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Hehn, L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis (France); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Laubenstein, M.; Nagorny, S.; Pattavina, L.; Pirro, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Loidl, M.; Rodrigues, M. [CEA-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette Cedex (France); Mancuso, M. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Max-Planck-Institut fuer Physik, Munich (Germany); Pagnanini, L.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); INFN, Gran Sasso Science Institute, L' Aquila (Italy); Piperno, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Poda, D.V. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Institute for Nuclear Research, Kyiv (Ukraine); Rusconi, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Scorza, S. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); SNOLAB, Lively, ON (Canada); Velazquez, M. [Universite de Bordeaux, ICMCB, CNRS, Pessac (France)

    2017-11-15

    This paper reports on the development of a technology involving {sup 100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∝ 1 kg), high optical quality, radiopure {sup 100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of {sup 100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8σ. Less than 10 μBq/kg activity of {sup 232}Th({sup 228}Th) and {sup 226}Ra in the crystals is ensured by boule recrystallization. The potential of {sup 100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg x d exposure: the two neutrino double-beta decay half-life of {sup 100}Mo has been measured with the up-to-date highest accuracy as T{sub 1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] x 10{sup 18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of {sup 100}Mo. (orig.)

  14. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  15. Application of high speed machining technology in aviation

    Science.gov (United States)

    Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert

    2018-05-01

    Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.

  16. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  17. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  18. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  19. High speed laser cutting machine. Kosoku reza kakoki

    Energy Technology Data Exchange (ETDEWEB)

    Shinno, N. (Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan))

    1993-11-01

    The carbon dioxide gas laser cutting machine is being used widely for from cutting soft steel and stainless steel, etc. to intermetallic welding and in the field of cutting in particular, concerning sheet cutting, it has been changing the existing monopoly of the turret punch press, and as for medium and thick plate cutting, that of the gas plasma fusing device. This article is the general description of high speed laser cutting machine. Concerning the laser cutting (sheet cutting in particular), as the essential items for securing severe cutting accuracy and, at the same time, improving the cutting speed, the following matters are picked up for respective explanation; improvement of stationary machine accuracy, improvement of dynamic machine accuracy, improvement of quality of laser beam as well as optimization of cutting conditions, and shortening of piercing time. Also explanation is given to the respective items, namely speeding-up of medium and thick plate cutting, and reduction of load onto the operator by improved operation. Finally, feeding and removing of a sheet only, and feeding and removing with a pallet are mentioned as the efforts for automation and energy saving. 3 figs., 1 tab.

  20. The Effects of Gouge Accumulation on High Speed Rock Friction

    Science.gov (United States)

    Barbery, M. R.; Chester, F. M.; Chester, J. S.; Saber, O.

    2016-12-01

    Previous experiments demonstrate that a significant reduction in the coefficient of sliding friction typically occurs as sliding velocity approaches seismic slip rates and that weakening may reflect flash heating of surface contacts. Experiments also show differences in the weakening behavior of bare rock and gouge-lined surfaces across different rock types. We conducted high-speed velocity-step (VS) experiments on ground surfaces of granite (Westerly) and quartzite (Sioux) using a double-direct shear (DDS) configuration, with a sliding area of 75cm2, to investigate the effects of gouge generation and accumulation on frictional weakening behavior. Sliding surface temperatures were measured using a high-speed infrared camera. Experiments were conducted at 7-9 MPa normal stress and achieved VS from 1 mm/s up to 1 m/s at high acceleration (100g) over a small distance ( 2 mm), and with sustained high-speed sliding for 30 mm. Successive experiments were run without disassembling the blocks or disturbing the sliding surfaces to generate and accumulate gouge for cumulative displacements up to 0.5 m. Locally high temperatures were observed correlating to corrugated structures within the gouge. For VS tests on bare granite, we observed an abrupt decrease in the coefficient of friction from 0.7 at quasi-static slip rates to 0.5 at m/s slip rates, and a typical weakening distance, dc, of 3 mm. This observation is consistent with rotary shear experiments conducted at similar displacements, accelerations, and sliding velocities. With the accumulation of gouge along the sliding surface, dc progressively increases to 2 cm. In contrast, VS tests on bare quartzite produce an abrupt increase in friction, from 0.65 to 0.7 within 1 mm of slip, followed by gradual weakening for the duration of high-speed sliding. With the accumulation of quartz gouge, similar behavior is observed, but with a slightly greater magnitude of strengthening. The results for quartzite are unlike those

  1. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  2. A user's guide to scintillation

    International Nuclear Information System (INIS)

    Hewish, A.

    1989-01-01

    During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation. (author)

  3. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  4. Technology of high-speed combined machining with brush electrode

    Science.gov (United States)

    Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.

    2018-03-01

    The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.

  5. UCLA High Speed, High Volume Laboratory Network for Infectious Diseases

    Science.gov (United States)

    2008-04-01

    of Human Influenza A( H1N2 ) Reassortant Viruses during the 2001–2002 Influenza Season. Journal Infectious Diseases 2002;186:1490–1493...X, Smith CB, Mungall BA, Lindstrom SE, Hall HE, Subbarao K, et al. Intercontinental circulation of human influenza A( H1N2 ) reas- sortant viruses...numerous samples containing highly pathologic avian influenza and other select agents (dual-use). With FY07 (available), FY08 (available) and FY 09

  6. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  7. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  8. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  9. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  10. High speed digital TDC for D0 vertex reconstruction

    International Nuclear Information System (INIS)

    Gao Guosheng; Partridge, R.

    1992-01-01

    A high speed digital TDC has been built as part of the Level 0 trigger for the D0 experiment at Fermilab. The digital TDC is used to make a fast determination of the primary vertex position by timing the arrival time of beam jets detected in the Level 0 counters. The vertex position is then used by the Level 1 trigger to determine the proper sinθ weighting factors for calculation transverse energies. Commercial GaAs integrated circuits are used in the digital TDC to obtain a time resolution of σ t == 226 ps

  11. High speed fiber optics local area networks: Design and implementation

    Science.gov (United States)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  12. Magnetic suspension and guidance of high speed vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A; Clark, J M; Hayden, J T

    1972-12-01

    Technical and economical assessments of magnetic suspensions for high speed vehicles and transport systems are reported. In these suspensions the suspending magnet takes the form of a powerful superconducting electromagnet that induces currents while it moves over conducting sheets or loops. A number of vehicle track designs are evaluated for operating cost effectiveness. It is shown that propulsion systems using power collected from the track are more expensive than those using power generated onboard the vehicle, and that the conducting sheet suspension is slightly more expensive than the null flux suspension.

  13. High speed electronic imaging application in aeroballistic research

    International Nuclear Information System (INIS)

    Brown, R.R.; Parker, J.R.

    1984-01-01

    Physical and temporal restrictions imposed by modern aeroballistics have pushed imaging technology to the point where special photoconductive surfaces and high-speed support electronics are dictated. Specifications for these devices can be formulated by a methodical analysis of critical parameters and how they interact. In terms of system theory, system transfer functions and state equations can be used in optimal coupling of devices to maximize system performance. Application of these methods to electronic imaging at the Eglin Aeroballistics Research Facility is described in this report. 7 references, 14 figures, 1 table

  14. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  15. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  16. High speed capacitor-inverter based carbon nanotube full adder.

    Science.gov (United States)

    Navi, K; Rashtian, M; Khatir, A; Keshavarzian, P; Hashemipour, O

    2010-03-18

    Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  17. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  18. OMNET - high speed data communications for PDP-11 computers

    International Nuclear Information System (INIS)

    Parkman, C.F.; Lee, J.G.

    1979-12-01

    Omnet is a high speed data communications network designed at CERN for PDP-11 computers. It has grown from a link multiplexor system built for a CII 10070 computer into a full multi-point network, to which some fifty computers are now connected. It provides communications facilities for several large experimental installations as well as many smaller systems and has connections to all parts of the CERN site. The transmission protocol is discussed and brief details are given of the hardware and software used in its implementation. Also described is the gateway interface to the CERN packet switching network, 'Cernet'. (orig.)

  19. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  20. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  1. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  2. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  3. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  4. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  5. Teaching high-speed photography and photo-instrumentation

    Science.gov (United States)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  6. A fast, high light output scintillator for gamma ray and neutron detection. Fifth Semi-Annual Report

    International Nuclear Information System (INIS)

    Entine, Gerald; Kanai, S.; Shah, M.S.; Leonard Cirignano, M.S.; Jarek Glodo; Van Loef, Edgar V.

    2003-01-01

    In view of the attractive properties of RbGd2Br7:Ce for gamma-ray and thermal neutron detection, and the lack of larger volume crystals, the goal of the Phase I project was to perform a rigorous investigation of the crystal growth of this exciting material and explore its capabilities for gamma-ray and thermal neutron detection. The Phase I research was very successful. All technical objectives were met and in many cases exceeded expectations. We were able to produce large (>1 cm3) RbGd2Br7:Ce crystals with excellent scintillation properties and demonstrated the possibility to detect thermal neutrons. As far as we are aware, our Phase I experiment was the first to demonstrate thermal neutron detection with RbGd2Br7:Ce. Clearly, the feasibility of the proposed research was adequately proven. The Phase II research builds on the successful results obtained during Phase I. Phase II will initially focus on optimizing the RbGd2Br7:Ce growth process to produce high quality, larger volume RbGd2Br7:Ce crystals. We will continue to use the versatile Bridgman technique. During this process, crystal growth parameters will be adjusted for optimal growth conditions. Our goal is to produce high quality RbGd2Br7:Ce crystals of size 1 inch x 1 inch x 1 inch (∼16 cm3). We will work on packaging aspects that allow efficient light collection and prevent crystal degradation. We will study and measure emission spectra, light yield, scintillation decay, energy and time resolution. The effects of variation in Ce concentration on the scintillation properties of RbGd2Br7:Ce will be examined in detail. Comprehensive gamma-ray spectroscopic and imaging studies will be conducted. Also, optimization of RbGd2Br7:Ce for thermal neutron detection will be addressed. Our initial studies will determine the optimal geometry of the RbGd2Br7:Ce crystals for neutron detection. For thermal neutron detection experiments, we will produce large area, thin samples in order to minimize gamma-ray sensitivity

  7. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  8. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    Science.gov (United States)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  9. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  10. Application Of CO2 Lasers To High Speed Blanking

    Science.gov (United States)

    Grenier, L. E.

    1986-11-01

    While laser cutting of sheetmetal has attained wide acceptance in the automotive industry for the purposes of prototyping and very limited preproduction work, the production rates possible with currently available systems have precluded the use of this technique in a production environment. The device design to be described embodies a high speed X-Y positioner carrying a cutting head with limited Z-axis capability. This approach confers two main benefits, first, production rate is limited only by laser power, since the positioner technology selected will permit movement at rates up to 1.5 m/s (60 in/s), second, the use of a high speed non-contact surface follower to control the Z-axis movement reduces the need to clamp the workpiece rigidly to a precision reference surface. The realized reduction of the clamping requirement permits some latitude in the feed methods that can be employed, allowing the use of coil or sheet feeding as appropriate. The author will provide estimated production rates for the proposed design and demonstrate that a suitable choice of laser source and material feed will permit the production of parts at a rate and cost comparable to conventional blanking with the advantage of much greater flexibility and reduced retooling time.

  11. Recent Developments In High Speed Lens Design At The NPRL

    Science.gov (United States)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  12. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  13. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  14. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  15. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  16. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  17. Dark matter phenomenology of high-speed galaxy cluster collisions

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-01-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 "c"i"r"c"l"e. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  18. Innovative technology summary report: High-speed clamshell pipe cutter

    International Nuclear Information System (INIS)

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19

  19. High speed subfractional HP-motor with permanent magnets

    International Nuclear Information System (INIS)

    Hanitsch, R.; Frenzel, B.

    1998-01-01

    During the last years an increasing demand for small permanent magnet motors can be detected, especially in the fields of medical applications. For heart assist devices there is the request to have small high speed devices operating at low voltage supply with almost no overtemperature. The design of a special hollow shaft motor for the speed range of 15000..25000 rpm and a torque of 4 to 8 mNm will be outlined. The low noise requirements and the high efficiency request lead to a design with an airgap winding. A thermal analysis is also done in order to meet the conditions given by the medical specialists. The features of the prototype will be presented and also the sensorless control strategy will be outlined. Measured and calculated data show good agreement. Focus will be on the magnetic circuit and the thermal behaviour and not on the control aspects of the motor. Specific parameters demonstrate the good quality of the drive system. (orig.)

  20. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  1. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  2. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  3. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  4. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  5. High-speed instrumentation complex for car crash testing

    Science.gov (United States)

    Baranov, S. V.; Gorin, I. M.; Drozhbin, Yu. A.; Kuznetsov, A. A.; Ponomaryov, A. M.; Semyonov, V. B.; Udalov, V. V.

    1993-01-01

    One of the most important car checking problems consists in safety testing which includes trials for different types of collision, e.g., frontal and lateral. This allows us to study deformations of the automobile and its parts during the impact. To obtain reliable data on overloading, acceleration, deformation, force load on the car's body as well as on the anthropomorphic dummies inside it, use is made of rather a great number of different techniques. Highly informative among them is high-speed cine recording which allows us to register variations that occur during a fraction of a second, and then to reproduce with variable rate the frame images obtained. This makes it possible to study the impact parameters variations much more accurately.

  6. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  7. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi

    2010-01-01

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  8. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  9. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  10. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  11. High-pressure 3He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    International Nuclear Information System (INIS)

    Tornow, W.; Esterline, J.H.; Leckey, C.A.; Weisel, G.J.

    2011-01-01

    We report on features of high-pressure 3 He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of γ-rays as well. Furthermore, 3 He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy γ-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the 3 He(n,p) 3 H reaction, neutron and γ-ray energies can easily be determined in this high-energy regime.

  12. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  13. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  14. Grade Crossing Protection in High-Speed, High-Density, Passenger-Service Rail Corridors

    Science.gov (United States)

    1973-01-01

    The report is a preliminary examination of special aspects of grade crossing protection for operation of high-speed passenger trains in rail corridors for which complete grade separation is not possible. Overall system needs and constraints are indic...

  15. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  16. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  17. Development of large-volume, high-resolution tracking detectors based on capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Buontempo, S.; Fabre, J.P.; Frenkel, A.; Gregoire, G.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Kushnirenko, A.; Martellotti, G.; Michel, L.; Mondardini, M.R.; Penso, G.; Siegmund, W.P.; Strack, R.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.; Zymin, K.

    1995-01-01

    Searches for the decay of short-lived particles require real time, high-resolution tracking in active targets, which in the case of neutrino physics should be of large volume. The possibility of achieving this by using glass capillaries filled with organic liquid scintillator is being investigated in the framework of the CHORUS experiment at CERN. In this paper, after outlining the application foreseen, advances in the tracking technique are discussed and results from tests are reported. An active target of dimensions 180x2x2 cm 3 has been assembled from capillaries with 20 μm diameter pores. The readout scheme currently in operation allows the reading of similar 5x10 5 channels using a single chain of image intensifiers having a resolution of σ similar 20 μm. Following the development of new liquid scintillators and purification methods an attenuation length of similar 3 m has been obtained. This translates into a hit density of 3.5 per mm for a minimum-ionizing particle that crosses the active target at a distance of 1 m from the readout end. (orig.)

  18. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  19. R&D on scintillation materials for novel ionizing radiation detectors for High Energy Physics, medical imaging and industrial applications

    CERN Multimedia

    Chipaux, R; Rinaldi, D; Boursier, Y M; Vasilyev, A; Tikhomirov, V; Morel, C; Choi, Y; Tamulaitis, G

    2002-01-01

    The Crystal Clear Collaboration (CCC) was approved by the Detector R&D Committee as RD18 in 1990 with the objective of developing new inorganic scintillators suitable for crystal electromagnetic calorimeters of LHC experiments. From 1990 to 1994, CCC made an intensive investigation for the quest of the most adequate ideal scintillator for the LHC; three main candidates were identified and extensively studied : CeF$_{3}$, PbWO$_{4}$ and heavy scintillating glasses. Lead tungstate was chosen by CMS and ALICE as the most cost effective crystal compliant to LHC conditions. Today 76648 PWO crystals are installed in CMS and 17920 in ALICE. After this success Crystal clear has continued its investigation on new scintillators and the understanding of scintillation mechanisms and light transfer properties in particular : The understanding of cerium ion as activator, The development of LuAP, LuYAP crystals for medical imaging applications, (CERN patent) Investigation of Ytterbium based scintillators for solar ne...

  20. Scintillating camera

    International Nuclear Information System (INIS)

    Vlasbloem, H.

    1976-01-01

    The invention relates to a scintillating camera and in particular to an apparatus for determining the position coordinates of a light pulse emitting point on the anode of an image intensifier tube which forms part of a scintillating camera, comprising at least three photomultipliers which are positioned to receive light emitted by the anode screen on their photocathodes, circuit means for processing the output voltages of the photomultipliers to derive voltages that are representative of the position coordinates; a pulse-height discriminator circuit adapted to be fed with the sum voltage of the output voltages of the photomultipliers for gating the output of the processing circuit when the amplitude of the sum voltage of the output voltages of the photomultipliers lies in a predetermined amplitude range, and means for compensating the distortion introduced in the image on the anode screen

  1. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  2. Observation of the dynamic movement of fragmentations by high-speed camera and high-speed video

    Science.gov (United States)

    Suk, Chul-Gi; Ogata, Yuji; Wada, Yuji; Katsuyama, Kunihisa

    1995-05-01

    The experiments of blastings using mortal concrete blocks and model concrete columns were carried out in order to obtain technical information on fragmentation caused by the blasting demolition. The dimensions of mortal concrete blocks were 1,000 X 1,000 X 1,000 mm. Six kinds of experimental blastings were carried out using mortal concrete blocks. In these experiments precision detonators and No. 6 electric detonators with 10 cm detonating fuse were used and discussed the control of fragmentation. As the results of experiment it was clear that the flying distance of fragmentation can be controlled using a precise blasting system. The reinforced concrete model columns for typical apartment houses in Japan were applied to the experiments. The dimension of concrete test column was 800 X 800 X 2400 mm and buried 400 mm in the ground. The specified design strength of the concrete was 210 kgf/cm2. These columns were exploded by the blasting with internal loading of dynamite. The fragmentation were observed by two kinds of high speed camera with 500 and 2000 FPS and a high speed video with 400 FPS. As one of the results in the experiments, the velocity of fragmentation, blasted 330 g of explosive with the minimum resisting length of 0.32 m, was measured as much as about 40 m/s.

  3. Benefits of sequential turbocharging in improving high torque/low speed operation of medium speed diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Danyluk, P.; Gutoski, G. [Coltec Industries Inc., Fairbanks Morse Engine Division (United States); Chen, S.K. [PEI Consultants (United States)

    1998-12-31

    This paper describes the benefits of sequential turbocharging in improving the operating envelope of a medium speed diesel engine. In particular, the high torque, low speed performance envelope can be greatly extended over that of a standard medium speed engine and, in addition, can offer improved operating range over what has been achieved with compressor air bypass/waste gate systems. This paper compares the three approaches on the basis of possible operating envelopes for a specific application, the new U.S. Navy LPD-17 amphibious assault ship, which has a very demanding requirement for high torque at low engine speed and low ambient temperatures. Comparison is made to the earlier approach to extend the operating envelope on the U.S. Navy LSD-41 class engines. The LSD-41 fleet has been in service since 1985 running with a compressor air bypass system developed jointly by Lockheed Shipyard and Coltec Industries for the U.S. Navy. (au)

  4. Development of high performance and very low radioactivity scintillation counters for the SuperNEMO calorimeter

    International Nuclear Information System (INIS)

    Chauveau, E.

    2010-11-01

    SuperNEMO is a next generation double beta decay experiment which will extend the successful 'tracko-calo' technique employed in NEMO 3. The main characteristic of this type of detector is to identify not only double beta decays, but also to measure its own background components. The project aims to reach a sensitivity up to 10 26 years on the half-life of 82 Se. One of the main challenge of the Research and Development is to achieve an unprecedented energy resolution for the electron calorimeter, better than 8 % FWHM at 1 MeV. This thesis contributes to improve scintillators and photomultipliers performances and reduce their radioactivity, including in particular the development of a new photomultiplier in collaboration with Photonis. (author)

  5. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  6. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  7. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  8. High speed radiometric measurements of IED detonation fireballs

    Science.gov (United States)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  9. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  10. Numerical optimization of circulation control airfoil at high subsonic speed

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.

    1984-01-01

    A numerical procedure for optimizing the design of the circulation control airfoil for use at high subsonic speeds is presented. The procedure consists of an optimization scheme coupled with a viscous potential flow analysis for the blowing jet. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse and cambered ellipse with drooped and spiraled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the airfoil, optimized at free-stream Mach 0.54 and alpha = -2 degrees can be characterized as a cambered ellipse with a drooped trailing edge. Experimental tests support the performance improvement predicted by numerical optimization.

  11. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  12. High-speed rotary atherectomy under fluoroscopic and angioscopic guidance

    International Nuclear Information System (INIS)

    Deutsch, L.S.; Ahn, S.S.; Yeatman, L.A.; Marcus, D.R.; Auth, D.P.; Moore, W.S.

    1988-01-01

    This paper describes thirteen stenotic arteries treated by high-speed rotary abrasive burr atherectomy performed in the operating room under fluoroscopic-angioscopic control by a multidisciplinary team consisting of a vascular surgeon, an interventional radiologist, and an interventional cardiologist. Incrementally sized atherectomy burrs were used in each patient (1.75-4.0 mm in diameter). Rotary artherectomy was successful in 11 of 13 arteries ranging from 1 to 40 cm (median, 5 cm) with stenoses ranging from 50% to 99% (median, 90%), which improved to less than 30% in all 11 successfully atherectomized segments. Two early posttreatment failures (intimal dissection, burr shaft disruption), two posttreatment thromboses (unrelated to atherectomy), and two late failures (restenosis) occurred

  13. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, J.; Flores Juan, P.; Cuesta Borges, J.; Damera Martinez, A.; Ramos Espinosa, K. A

    2005-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one with Low Residence Time (BTR), both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented. Several trials performed at the two Clarifiers demonstrated that the one identified as BTR was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The radiotracer method was able to detect certain differences between the two clear juice outlet of the BTR Clarifier, probably due some problems in the construction of this equipment

  14. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  15. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  16. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  17. High speed diesel consumption and economic growth in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sajal [Management Development Institute (MDI), Gurgaon 122001 (India)

    2010-04-15

    This study probes the long-term equilibrium relationship among High Speed Diesel (HSD) consumption, real GDP and price of HSD in India using autoregressive distributed lag (ARDL) bounds testing approach of cointegration for the time span 1972-1973 to 2005-2006. Empirical results reveal that the series are cointegrated and long term income elasticity for HSD demand in India is 1.27 while that for short-run is 0.46. Both long-run and short-run price elasticities are found to be statistically insignificant. The study also establishes a short-run bi-directional causality between economic growth and HSD consumption and the existence of a long-run unidirectional causality running from economic growth to HSD consumption. Finally, a set of policy prescriptions have been suggested to reduce the consumption of HSD, which should have no adverse impact on economy in the long-run. (author)

  18. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  19. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  20. Role of cavitation in high-speed droplet impact problems

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2014-11-01

    High-speed droplet impact is found in physical cleaning using liquid jets, but its mechanisms for particle removal from target surfaces are yet unclear. In this study, we explore the possibility of having cavitation inside the droplet. The pressure evolution within a droplet colliding with a flat surface of deformable materials is determined by multicomponent Euler equations. Dynamics of cavitation bubbles heterogeneously nucleated from preexisting nuclei are determined from Rayleigh-Plesset calculations according to the pressure evolution within the droplet in one-way-coupling manner. The simulation shows that cavitation indeed occurs due to tension that arises from the water hammer shock reflection at the droplet interface. The role of cavitation including pressure emission from its collapse is to be discussed based on the one-way-coupling computations.