WorldWideScience

Sample records for high speed rotating

  1. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  2. Dynamic of Friction Coupling Independently Rotating Wheels for High Speed

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2017-01-01

    Full Text Available A new lateral coupling structure with independently rotating wheels (IRW is proposed, and longitudinal creepage is obtained by replacing the gear pair with the friction pair to synchronize the rotation speed of left and right wheels. The auxiliary wheelset made up of two friction wheels can be placed either under the primary suspension or on the frame. Vehicles dynamics models with three different kinds of bogies are developed, including friction coupling bogie with independently rotating wheels (FCIRW-bogie, bogie with independently rotating wheels (IRW-bogie, and bogie with rigid wheelsets, and their guiding and resetting capability when negotiating large-radius curves are compared and analyzed. Results show that FCIRW has the advantages of both IRW and rigid wheelset. On the straight track, FCIRW has sufficient wheel-rail longitudinal creep force to assist the reset; its critical speed is much higher than that of the rigid wheelset. On the curved track, the whole vehicle wear power of FCIRW-bogie vehicle is about 2/3 of the rigid axle level.

  3. Composite reinforced metallic cylinder for high speed rotation

    Science.gov (United States)

    Pradhan, Sahadev

    2017-11-01

    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby improve the separation performance in a centrifugal gas separation processes through proper optimization of the internal parameters. According to Dirac equation (Cohen (1951)), the maximum separative work for a centrifugal gas separation process increase with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading. A detailed analysis is carried out to underline the basic hypothesis of each formulation. Further, we evaluate the steady state creep response of the rotating cylinder and analyze the stresses and strain rates in the cylinder.

  4. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    OpenAIRE

    Huang, J.W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S.N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250?350?ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion o...

  5. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction.

    Science.gov (United States)

    Huang, J W; E, J C; Huang, J Y; Sun, T; Fezzaa, K; Luo, S N

    2016-05-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250-350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction.

  6. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-03-30

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  7. Prediction Of Limit Rotational Speeds In A High-Speed Tool Bason FE Computed J-Integral Intensitiesed

    DEFF Research Database (Denmark)

    Hvejsel, Bjørn; Langmack, Lasse; Kristensen, Anders

    2002-01-01

    In order to obtain an estimate of the critical number of rotations for a high speed milling tool crack growth analysis has been performed. The crack growth is determined from stress intensities computed by J-integrals. The problem is solved in 3D using ANSYS. Boundary conditions arising from a co...

  8. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles

    Science.gov (United States)

    Riabouchinski, D

    1921-01-01

    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  9. A reference Pelton turbine - High speed visualization in the rotating frame

    Science.gov (United States)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  10. High-speed rotational angioplasty-induced echo contrast in vivo and in vitro optical analysis.

    Science.gov (United States)

    Zotz, R J; Erbel, R; Philipp, A; Judt, A; Wagner, H; Lauterborn, W; Meyer, J

    1992-06-01

    High-speed rotational angioplasty is being evaluated as an alternative interventional device for the endovascular treatment of chronic coronary occlusions. It has been postulated that this type of angioplasty device may produce particulate debris or cavitations that induce myocardial ischemia. To determine the clinical presence of myocardial ischemia during rotational angioplasty, echocardiographic monitoring for wall motion abnormalities was performed in 9 patients undergoing rotational atheroablation using the Auth Rotablator for 10-sec intervals at 150,000 and 170,000 rpm. No wall motion abnormalities were detected in 5 patients evaluated with transesophageal echocardiography or in 4 patients monitored transthoracically, although AV block developed in one patient. Video intensitometry of the myocardial contrast effect for rotation times ranging from 3 to 20 sec found transient contrast enhancement of the myocardium supplied by the treated vessel. Intensity varied over time with half-time decay between 5.6 and 40 sec, indicating the likelihood of microcavitation. An in vitro model was constructed to measure the cavitation potential of the Auth Rotablator. A burr of 1.25 mm diameter rotating at 160,000 rpm achieves a velocity in excess of the 14.7 m/sec critical cavitation velocity. Testing the device in fresh human blood and distilled water produced microcavitations responsible for the enhanced echo effect, with the intensity and longevity of cavitation more pronounced in blood and proportional to the rotation time and speed. The mean size of the microcavitation bubbles in water was 90 +/- 33 (52-145) microns measured from photographs taken with a copper vapour laser emitting light pulses of 50 nsec duration as light source. The mean velocity of bubbles was found to be 0.62 +/- 0.30 ranging from 0.23 to 1.04 m/sec. It was measured via the motion of the bubbles during 5 laser pulses within 800 nsec. Clearly, microcavitations are associated with enhanced myocardial

  11. Independently Rotating Wheels with Induction Motors for High-Speed Trains

    Directory of Open Access Journals (Sweden)

    B. Liang

    2011-01-01

    Full Text Available Railway vehicles with conventional wheelsets often experience problems of lateral instabilities or severe wear when running at high speed. The use of an independently rotating wheelset (IRW can potentially eliminate the cause of wheelset hunting and reduce wheel wear as the mechanical feedback mechanism causing the problem is decoupled. This paper presents an investigation into the design of a novel induction motor configuration and controller for IRW in order to provide the stability required to satisfy the performance requirements for railway vehicles. A computer model of the mechanical and electrical parts of the system was developed. Simulation and experiments of the wheelsets with active driving motor control have demonstrated that a wheelset with independently driven wheels has a good stability performance over a traditional wheelset. Controllers with indirect field orientation control for dynamic control of an induction motor have shown to be suitable for this application in both its response and its controllability.

  12. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  13. High-Speed Video-Oculography for Measuring Three-Dimensional Rotation Vectors of Eye Movements in Mice.

    Science.gov (United States)

    Imai, Takao; Takimoto, Yasumitsu; Takeda, Noriaki; Uno, Atsuhiko; Inohara, Hidenori; Shimada, Shoichi

    2016-01-01

    The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum's role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult. We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye's angular velocity around the axis of eye rotation. When mice were rotated at 0.5 Hz and 2.5 Hz around the earth's vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz. To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article.

  14. How Safe Is High-Speed Burring in Spine Surgery? An In Vitro Study on the Effect of Rotational Speed and Heat Generation in the Bovine Spine.

    Science.gov (United States)

    Singh, Taran Singh Pall; Yusoff, Abdul Halim; Chian, Yap Keat

    2015-08-01

    In vitro animal cadaveric study. To identify the appropriate rotational speed and safe bone distance from neural tissue during bone burring in spinal surgery. Bone burring is a common step in spinal surgery. Unwanted frictional heat produced during bone burring may result in thermal injury to the bone and adjacent neural structure. One of the important parameters influencing the bone temperature rise during bone burring is rotational speed. This laboratory-based animal study used bovine spine bones, and the tests were conducted using a steel round burr. The bone temperature was measured simultaneously with thermocouple at the distances of 1 mm, 3 mm, and 5 mm from the burring site during the burring process. The bone burring was done with 4 different rotational speeds of 35,000 revolutions per minute (rpm), 45,000 rpm, 65,000 rpm, and 75,000 rpm. This study showed that increasing the rotational speed significantly elevated bone temperature. The threshold temperature of 47°C was reached when bone was burred for 10 seconds, with a rotational speed of 45,000 rpm. The mean bone temperature measured at a distance 1 mm from the burring site for all 4 rotational speeds was always higher than that measured at a distance of 3 mm and 5 mm and this difference was statistically significant (P 0.05). Taking 47°C as the threshold temperature for causing significant impairment to the regenerative capacity of bone, a rotational speed of lower than 45,000 rpm is preferable so as to minimize thermal injury to bone tissue. We also concluded that a 3-mm distance between the site of burring and the neural tissue is a safe distance. N/A.

  15. Comparative study of the influence of cavity preparation with high-speed rotation or Er:YAG laser on infiltration of aesthetic restorations

    Science.gov (United States)

    Costa, D. P. T. S.; Beatrice, L. C. S.; Guerra, L. S. C.; Ribeiro, M. A.; Zanin, F. A. A.; Queiroga, A. S.; Limeira Júnior, F. A.; Gerbi, M. E. M. M.

    2010-04-01

    The aim of the present study was to compare marginal infiltration in Class V cavities prepared on extracted human premolars with either high-speed rotation or a Er:YAG laser. Class V cavities were executed on the vestibular and lingual faces of twelve premolars, with high-speed rotation or a Er:YAG laser (300 mJ, 4 Hz, and 3 W), and cavity surfaces were conditioned with 37% phosphoric acid combined with laser treatment (80 mJ, 5 Hz, 3 W) or without laser treatment in the following manner: G1—high-speed rotation + conditioning with phosphoric acid; G2—high-speed rotation + conditioning with laser and phosphoric acid; G3—laser + conditioning with phosphoric acid; and G4—laser + conditioning with laser and phosphoric acid. Specimens were restored with the composite resin, thermocycled and immersed in 0.5% basic fuchsin for 24 h. Specimens were then cross-cut and analyzed using a stereoscopic magnifying glass. Evaluations were submitted to the Kruskall-Wallis statistical test. No significant differences were found between the averages of the groups ( p > 0.05). High-speed rotation and Er:YAG laser for the confection of cavity preparation exhibited a similar performance with regard to marginal infiltration.

  16. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  17. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  18. An analysis of peak pelvis rotation speed, gluteus maximus and medius strength in high versus low handicap golfers during the golf swing.

    Science.gov (United States)

    Callaway, Sarahann; Glaws, Kate; Mitchell, Melissa; Scerbo, Heather; Voight, Michael; Sells, Pat

    2012-06-01

    The kinematic sequence of the golf swing is an established principle that occurs in a proximal-to-distal pattern with power generation beginning with rotation of the pelvis. Few studies have correlated the influence of peak pelvis rotation to the skill level of the golfer. Furthermore, minimal research exists on the strength of the gluteal musculature and their ability to generate power during the swing. The purpose of this study was to explore the relationship between peak pelvis rotation, gluteus medius and gluteus maximus strength, and a golfer's handicap. 56 healthy subjects. Each subject was assessed using a hand-held dynamometry device per standardized protocol to determine gluteus maximus and medius strength. The K-vest was placed on the subject with electromagnetic sensors at the pelvis, upper torso, and gloved lead hand to measure the rotational speed at each segment in degrees/second. After K-vest calibration and 5 practice swings, each subject hit 5 golf balls during which time, the sensors measured pelvic rotation speed. A one-way ANOVA was performed to determine the relationships between peak pelvis rotation, gluteus medius and gluteus maximus strength, and golf handicap. A significant difference was found between the following dependent variables and golf handicap: peak pelvis rotation (p=0.000), gluteus medius strength (p=0.000), and gluteus maximus strength (p=0.000). Golfers with a low handicap are more likely to have increased pelvis rotation speed as well as increased gluteus maximus and medius strength when compared to high handicap golfers. The relationships between increased peak pelvis rotation and gluteus maximus and medius strength in low handicap golfers may have implications in designing golf training programs. Further research needs to be conducted in order to further explore these relationships.

  19. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  20. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  1. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB{sub 2} coating on high speed steel

    Energy Technology Data Exchange (ETDEWEB)

    Panich, N. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)]. E-mail: panich@pmail.ntu.edu.sg; Sun, Y. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)

    2006-04-03

    Titanium diboride (TiB{sub 2}) coatings have been deposited on stationary and rotating high speed steel substrates by magnetron sputtering of a TiB{sub 2} target. The structure and hardness of the coatings and the coating-substrate adhesion have been investigated by X-ray diffraction, field emission scanning electron microscopy, nanoindentation and microscratch tests. The results show that substrate rotation has a significant effect on these structural and properties features. It was found that, with substrate rotation, the TiB{sub 2} coating exhibits a columnar structure with random orientation and relatively low hardness and coating-substrate adhesion. On the other hand, without substrate rotation, the TiB{sub 2} coating shows a strong (001) texture with dense, equiaxed grain structure. The hardness and coating-substrate adhesion of the coatings deposited on stationary substrates are much higher than those deposited on rotating substrates. The observed phenomena are discussed in terms of the energy of the sputtered flux, which varies with the substrate-target distance during deposition.

  2. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  3. Research of rotating machinery vibration parameters - Shaft speed relationship

    Science.gov (United States)

    Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.

    2017-08-01

    The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.

  4. Measuring Speed Of Rotation With Two Brushless Resolvers

    Science.gov (United States)

    Howard, David E.

    1995-01-01

    Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.

  5. A novel method for sensing rotational speed, linear displacement ...

    Indian Academy of Sciences (India)

    Unknown

    We further demonstrate that such HTSC based magnetic sensors are capable of sensing the rotational speed, small displacement and direct current with good resolution. The experimental methods and results obtained are discussed. Keywords. Magnetic sensor; superconductor; rotational speed sensor; displacement ...

  6. A Stock Propeller Design for the High Speed Sealift Hybrid Contra-Rotating Shaft-Pod, Model 5653-3A

    Science.gov (United States)

    2008-03-01

    and strut mounted propeller. The aft propeller is driven by a COTS tractor pod. The full power speed of this design is 39 knots. The final design has a...being manufactured at model scale for open water and powering tests. 16. SUBJECT TERMS 15. NUMBER OF PAGES PROPELLERS, CONTRA-ROTATING, PODS 54 16. PRICE...20 DESIGN POIN T

  7. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  8. Rotating mandrel speeds assembly of plastic inflatables

    Science.gov (United States)

    Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.

    1966-01-01

    Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.

  9. Data acquisition in a high-speed rotating frame for New Mexico Institute of Mining and Technology liquid sodium αω dynamo experiment.

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A; Li, Hui; Martinic, Joe; Westpfahl, David

    2013-10-01

    New Mexico Institute of Mining and Technology liquid sodium αω-dynamo experiment models the magnetic field generation in the universe as discussed in detail by Colgate, Li, and Pariev [Phys. Plasmas 8, 2425 (2001)]. To obtain a quasi-laminar flow with magnetic Reynolds number R(m) ~ 120, the dynamo experiment consists of two co-axial cylinders of 30.5 cm and 61 cm in diameter spinning up to 70 Hz and 17.5 Hz, respectively. During the experiment, the temperature of the cylinders must be maintained to 110 °C to ensure that the sodium remains fluid. This presents a challenge to implement a data acquisition (DAQ) system in such high temperature, high-speed rotating frame, in which the sensors (including 18 Hall sensors, 5 pressure sensors, and 5 temperature sensors, etc.) are under the centrifugal acceleration up to 376g. In addition, the data must be transmitted and stored in a computer 100 ft away for safety. The analog signals are digitized, converted to serial signals by an analog-to-digital converter and a field-programmable gate array. Power is provided through brush/ring sets. The serial signals are sent through ring/shoe sets capacitively, then reshaped with cross-talk noises removed. A microcontroller-based interface circuit is used to decode the serial signals and communicate with the data acquisition computer. The DAQ accommodates pressure up to 1000 psi, temperature up to more than 130 °C, and magnetic field up to 1000 G. First physics results have been analyzed and published. The next stage of the αω-dynamo experiment includes the DAQ system upgrade.

  10. Effect of rotational speed in rotary hammer forging process

    Directory of Open Access Journals (Sweden)

    Hamdy Muhammad M

    2015-01-01

    Full Text Available Rotary press forging (RPF has been used in the last century, but it produces many defects in the forgings. The author has invented the rotary hammer forging (RHF process to reduce such defects. RHF is a multi-axes compression process where the material is partially and incrementally deformed by the action of several repeated hammering blows, while the produced deformation region is swept through the whole area of the workpiece. The aim of the present work is to study the effects of rotational speed on the forgings produced by RPF and RHF to compare between the two processes. It has been found that as the rotational speed increases the mushroom effect is constant in RHF while it is greater and increases in RPF. As the rotational speed increases, the twist angle increases in both RHF and RPF, but it is bigger in RPF. These results demonstrate the benefits of using RHF instead of RPF.

  11. Design principles of a rotating medium speed mechanism

    Science.gov (United States)

    Hostenkamp, R. G.; Achtermann, E.; Bentall, R. H.

    1976-01-01

    Design principles of a medium speed mechanism (MSM) are presented, including discussion on the relative merits of beryllium and aluminium as structural materials. Rotating at a speed of 60 rpm, the application envisaged for the MSM was as a despin bearing for the despun platform or despun antenna of a spin stabilized satellite. The MSM was built and tested to qualification level and is currently undergoing real time life testing.

  12. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi

    2015-11-01

    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  13. High energy milling of alumina synthesized by combustion reaction using attritor mill vertical axis: influence of rotation speed; Moagem de alta energia de alumina sintetizada por reacao de combustao utilizando moinho atritor de eixo vertical: influencia da velocidade de rotacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.C. da; Silva, F.N.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Costa, G.B. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Producao; Freitas, N.L. de, E-mail: normanda@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2014-07-01

    The use of a reactive high energy milling for the synthesis of ceramic powders of metal oxides, carbides, borides, nitrides or mixtures of ceramics or ceramic and metal compounds have been widely reported. The objective of this study is to assess how high energy ball milling (not reactive) using different rotations, 300, 400 and 500 rpm, alter the structure and morphology of alpha-alumina powders synthesized by combustion reaction. Time and temperature of the combustion reaction has been reported for the synthesis of aluminas. The samples of unmilled and milled alumina were characterized by XRD, SEM and particle size analysis. The results showed that the maximum reaction temperature reached was 598°C. The variation of the rotation of the mill did not affect the majority alpha-Al2O3 by stable crystal phase all samples. The median particle diameter of the milled samples at different speeds decreased with respect to unground sample. (author)

  14. High speed preprocessing system

    Indian Academy of Sciences (India)

    (a) Digitizing and writing the video data in the memory at HR rate, and (b) once the data are ready in the memory, reading the data and generating the LR image. Thus the execution time mainly depends on (i) processor speed, and (ii) the time taken for fetching video information/data. Figure 1. Hardware block diagram. 514.

  15. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    Science.gov (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  16. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  17. Resistance and Stock Propulsion on the High Speed Sealift (HSS) Hybrid Contra-Rotating Shaft-Pod (HCRSP) Concept, Model 5653-3A

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Slutsky, Jonathan

    2008-01-01

    .... The HCRSP concept consists of two pairs of contra-rotating propellers, where the forward propellers are arranged on conventional shaftlines, and the aft propellers are powered by propulsion pods...

  18. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  19. Design Method for Contra-Rotating Propellers for High-Speed Crafts: Revising the Original Lerbs Theory in a Modern Perspective

    Directory of Open Access Journals (Sweden)

    Stefano Brizzolara

    2012-01-01

    Full Text Available The main theoretical and numerical aspects of a design method for optimum contrar-rotating (CR propellers for fast marine crafts are presented. We propose a reformulated version of a well-known design theory for contra-rotating propellers, by taking advantage of a new fully numerical algorithm for the calculation of the mutually induced velocities and introducing new features such as numerical lifting surface corrections, use of an integrated modern cavitation/strength criteria, a modified method to consider different numbers of blades among the two propellers, and to allow for an unloading function in the search for the optimal circulation distribution. The paper first introduces the main theoretical principles of the new methods and then discusses the influence of the main design parameters on an emblematic example of application in the case of counter rotating propellers for a pod propulsor designed for fast planing crafts (35 knots and above.

  20. High speed rail distribution study.

    Science.gov (United States)

    2016-08-01

    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...

  1. High-Speed Electrochemical Imaging.

    Science.gov (United States)

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  2. High Speed Compressor Study

    Science.gov (United States)

    2011-12-21

    Davey G. The Design and Testing of a Stirling Cycle Domestic Freezer. Proc. of Conference on Applications for Natural Refrigerants , held in Aarhus...carried out on a relatively old design of compressor, initially developed for use with a Stirling cycle domestic freezer12, and subsequently used in a...limit’, and is suitable for high cycle fatigue. Beryllium copper has been largely superseded by stainless steel, which is more readily available

  3. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  4. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions

    Science.gov (United States)

    Wang, Yi; Xu, Guanghua; Zhang, Qing; Liu, Dan; Jiang, Kuosheng

    2015-07-01

    During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications significantly. In order to extend the conventional diagnosis technique to speed variation cases, a rotating speed isolation method is proposed. This method consists of four main steps: (a) a low-pass filter is used to separate the rotating speed components and the resonance frequency band from the original signal; (b) the trend line of instantaneous rotating frequency (IRF) is extracted by ridge detection from the short-time spectrum of the low-pass filtered signal; (c) the envelope signal is obtained by fast kurtogram based resonance demodulation; (d) the trend line of instantaneous fault characteristic frequency (IFCF) is extracted by ridge detection from the short-time spectrum of the envelope signal; (e) the rotating speed is isolated and the instantaneous fault characteristic order (FCO), which is obtained by simply dividing the IFCF by IRF, can be used to identify the fault type. By rotating speed isolation, the bearing faults under speed variation conditions can be detected without additional tachometers. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals. The results show that the proposed method outperforms the conventional envelope analysis method and is effective in bearing diagnosis under speed variation conditions.

  5. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  6. High-speed OTDM switching

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders

    1998-01-01

    Optical TDM (OTDM) continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance fibre transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds. In conclusion, OTDM is emerging as an attracti...

  7. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  8. Self-mixing interferometry for rotational speed measurement of servo drives.

    Science.gov (United States)

    Sun, Hui; Liu, Ji-Gou; Zhang, Quan; Kennel, Ralph

    2016-01-10

    Self-mixing interferometry (SMI) is an efficient technique applied to measure distance, velocity, displacement, and vibration. In this work, a compact and low cost SMI is applied to measure the rotational speed of a servo drive up to 6000 RPM. The application of SMI to rotational speed measurement of servo drives instead of the usage of incremental encoders is proposed. The Doppler frequency is obtained via analysis on the power spectral density, which is estimated by the smoothing periodogram method based on the fast Fourier transformation. The signals are processed in MATLAB and LABVIEW, showing that the SMI can be applied to dynamic rotational speed measurement of servo drives. Results of experiments demonstrate that this system is implementable for rotational speed measurement over the whole range from 3 RPM to 6000 RPM. In addition, the system used to measure rotational speed can also accurately record changes in position without integrating the velocity.

  9. The Shapes of Teeth of Circular Saw Blade and Their Influence on its Critical Rotational Speed

    Directory of Open Access Journals (Sweden)

    Adam Droba

    2015-01-01

    Full Text Available The main problems during cutting with circular saw blade are inaccurate cut, low quality of surface, high level of noise. These adverse effects are related to oscillation of circular saw blade. This oscillation cause adverse effects not only on workpiece but also on tool. In some case the circular saw blade reaches the value of critical rotational speed which leads to its instability and cause the oscillation of blade which may leads to destruction of tool. So the reduction of the amplitude of oscillation is essential for removing the adverse effects. This paper deals about influence of shapes of teeth as a type of modification that has positive effect oncritical rotational speed of circular saw blade. The parameters of studied models of circular saw blade were 42 number of teeth and the height of teeth with slice from sintered carbide was 14 mm. The variable parameter was the ratio between surface of teeth and surface of teeth gap. In this study was used computer software Creo Parametric 1.0 for obtaining natural frequencies of studied models. This software uses in analysis finite element method (FEM. There were done some steps to idealize the models. For calculating static and dynamics natural frequencies of modelswere used modal analysis. The critical rotational speed was calculated from obtained results by Creo Parametric 1.0 and compared on 5 models of tool.

  10. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  11. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    1999-06-01

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  12. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.

    Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  13. INVESTIGATION OF THE INFLUENCE OF MOLD ROTATIONAL SPEED ON THE CAST WALL THICKNESS IN THE ROTATIONAL MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Jachowicz

    2013-09-01

    Full Text Available This paper presents the rotational molding process. The general principles of this polymer processing technology have been described. The main applications have been introduced and leading advantages and typical disadvantages of rotational molding process have been discussed. Based on the conducted experimental tests, the influence of changing one selected technological parameter, which characterized rotational molding process, on selected geometrical features of the polymer cast has been determined. Rotational mold’s speed around axes was changed and a thickness of cast walls has been measured. Laboratory test stand, processing properties of polymer, also test program and experimental test methodology have been described.

  14. Ultra high-speed sorting.

    Science.gov (United States)

    Leary, James F

    2005-10-01

    Cell sorting has a history dating back approximately 40 years. The main limitation has been that, although flow cytometry is a science, cell sorting has been an art during most of this time. Recent advances in assisting technologies have helped to decrease the amount of expertise necessary to perform sorting. Droplet-based sorting is based on a controlled disturbance of a jet stream dependent on surface tension. Sorting yield and purity are highly dependent on stable jet break-off position. System pressures and orifice diameters dictate the number of droplets per second, which is the sort rate limiting step because modern electronics can more than handle the higher cell signal processing rates. Cell sorting still requires considerable expertise. Complex multicolor sorting also requires new and more sophisticated sort decisions, especially when cell subpopulations are rare and need to be extracted from background. High-speed sorting continues to pose major problems in terms of biosafety due to the aerosols generated. Cell sorting has become more stable and predictable and requires less expertise to operate. However, the problems of aerosol containment continue to make droplet-based cell sorting problematical. Fluid physics and cell viability restraints pose practical limits for high-speed sorting that have almost been reached. Over the next 5 years there may be advances in fluidic switching sorting in lab-on-a-chip microfluidic systems that could not only solve the aerosol and viability problems but also make ultra high-speed sorting possible and practical through massively parallel and exponential staging microfluidic architectures.

  15. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns.

    Science.gov (United States)

    Khan, Sheraz Ali; Kim, Jong-Myon

    2016-04-01

    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.

  16. High-Current Rotating Contactor

    Science.gov (United States)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  17. A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis

    Science.gov (United States)

    Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo

    2017-06-01

    Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.

  18. Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®

    Directory of Open Access Journals (Sweden)

    Nancy Obregon

    2016-06-01

    Full Text Available Polycaprolactone (PCL fibers were produced using Forcespinning® (FS. The effects of PCL concentration, solvent mixture, and the spinneret rotational speed on fiber formation were evaluated. The concentration of the polymer in the solvents was a critical determinant of the solution viscosity. Lower PCL concentrations resulted in low solution viscosities with a correspondingly low fiber production rate with many beads. Bead-free fibers with high production rate and uniform fiber diameter distribution were obtained from the optimum PCL concentration (i.e., 12.5 wt% with tetrahydrofuran (THF as the solvent. The addition of N, N-dimethylformamide (DMF to the THF solvent promoted the gradual formation of beads, split fibers, and generally affected the distribution of fiber diameters. The crystallinity of PCL fibers was also affected by the processing conditions, spinning speed, and solvent mixture.

  19. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  20. High speed nanofluidic protein accumulator.

    Science.gov (United States)

    Wu, Dapeng; Steckl, Andrew J

    2009-07-07

    Highly efficient preconcentration is a crucial prerequisite to the identification of important protein biomarkers with extremely low abundance in target biofluids. In this work, poly(dimethylsiloxane) microchips integrated with 10 nm polycarbonate nanopore membranes were utilized as high-speed protein accumulators. Double-sided injection control of electrokinetic fluid flow in the sample channel resulted in highly localized protein accumulation at a very sharp point in the channel cross point. This greatly enhanced the ability to detect very low levels of initial protein concentration. Fluorescein labeled human serum albumin solutions of 30 and 300 pM accumulated to 3 and 30 microM in only 100 s. Initial solutions as low as 0.3 and 3 pM could be concentrated within 200 s to 0.3 and 3 microM, respectively. This demonstrates a approximately 10(5)-10(6) accumulation factor, and an accumulation rate as high as 5000/sec, yielding a >10x improvement over most results reported to date.

  1. Numerical Investigation on a Prototype Centrifugal Pump Subjected to Fluctuating Rotational Speed

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhang

    2014-01-01

    Full Text Available The rotational speed of pumps often encounters fluctuation in engineering for some reasons. In this paper, in order to study the transient response characteristic of a prototype centrifugal pump subjected to fluctuating rotational speed, a closed-loop pipe system including the pump is built to accomplish unsteady flow calculations in which the boundary conditions at the inlet and the outlet of the pump are not required to be set. The external performance results show that the head’s responsiveness to the fluctuating rotational speed is very good, while the flow rate’s responsiveness is slightly delayed. The variation tendencies of the static pressures at the inlet and the outlet of the pump are almost completely opposite, wherein the variation tendency of the static pressure at the outlet is identical with that of the rotational speed. The intensity of the turbulence energy in each impeller channel is relatively uniform in the transient flow calculations, while, in the quasi-steady flow calculation, it becomes weaker in a channel closed to the volute tongue. The nondimensional flow rate and head coefficients are dependent on the rotational speed, and their variation tendencies are opposite to that of the fluctuating rotational speed as a whole.

  2. Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization

    Science.gov (United States)

    Wu, T. Y.; Chen, J. C.; Wang, C. C.

    2012-07-01

    The objective of this research is to investigate the feasibility of utilizing the instantaneous dimensionless frequency (DLF) normalization and Hilbert-Huang Transform (HHT) to characterize the different gear faults in case of variable rotating speed. The normalized DLF of the vibration signals are calculated based on the rotating speed of shaft and the instantaneous frequencies of Intrinsic Mode Functions (IMFs) which are decomposed by Empirical Mode Decomposition (EMD) process. The faulty gear features on DLF-energy distribution of vibration signal can be extracted without the presence of shaft rotating speed, so that the proposed approach can be applied for characterizing the malfunctions of gearbox system under variable shaft rotating speed. A test rig of gear transmission system is performed to illustrate the gear faults, including worn tooth, broken tooth and gear unbalance. Different methods to determine the instantaneous frequency are employed to verify the consistence of characterization results. The DLF-energy distributions of vibration signals are investigated in different faulty gear conditions. The analysis results demonstrate the capability and effectiveness of the proposed approach for characterizing the gear malfunctions at the DLFs corresponding to the meshing frequency as well as the shaft rotating frequency. The support vector machine (SVM) is then employed to classify the vibration patterns of gear transmission system at different malfunctions. Using the energy distribution at the characteristic DLFs as the features, the different fault types of gear can be identified by SVM with high accuracy.

  3. High Speed Viterbi Decoder Architecture

    DEFF Research Database (Denmark)

    Paaske, Erik; Andersen, Jakob Dahl

    1998-01-01

    The fastest commercially available Viterbi decoders for the (171,133) standard rate 1/2 code operate with a decoding speed of 40-50 Mbit/s (net data rate). In this paper we present a suitable architecture for decoders operating with decoding speeds of 150-300 Mbit/s....

  4. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  5. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  6. Brushless tachometer gives speed and direction

    Science.gov (United States)

    Nola, F. J.

    1977-01-01

    Brushless electronic tachometer measures rotational speed and rotational direction, maintaining accuracy at high or low speeds. Unit is particularly useful in vacuum environments requiring low friction.

  7. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  8. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  9. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  10. High-speed imaging in fluids

    NARCIS (Netherlands)

    Versluis, Michel

    2013-01-01

    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining

  11. A Soft Sensor Development for the Rotational Speed Measurement of an Electric Propeller

    Directory of Open Access Journals (Sweden)

    Fengchao Ye

    2016-12-01

    Full Text Available In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s performance. This paper presents the development of a soft sensor for the rotational speed measurement of an electric propeller. An adaptive learning algorithm is derived for the soft sensor by using Popov hyperstability theory, based on which a one-step-delay adaptive learning algorithm is further proposed to solve the implementation problem of the soft sensor. It is important to note that only the input signal and the commutation instant of the motor are employed as inputs in the algorithm, which makes it possible to be easily implemented in real-time. The experimental test results have demonstrated the learning performance and the accuracy of the soft sensor.

  12. The rotated speeded-up robust features algorithm (R-SURF)

    OpenAIRE

    Jurgensen, Sean M.

    2014-01-01

    Approved for public release; distribution is unlimited Includes supplementary material Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features (SURF) algorithm are examined in this research. We evaluate the SURF algorithm to identify possible areas for improvement in the performance. A proposed alternative to the SURF detector is proposed called rotated SURF (R-SURF). This method utilizes filters that are rotated 45 degrees counter-clockwise, and this modifica...

  13. Use of double correlation techniques for the improvement of rotation speed measurement based on electrostatic sensors

    Science.gov (United States)

    Li, Lin; Wang, Xiaoxin; Hu, Hongli; Liu, Xiao

    2016-02-01

    Electrostatic sensing technology using correlation signal processing offers an approach to the measurement of rotational speed in the automatic control system of large generators and centrifugal machines. In this article, a double autocorrelation method was proposed to improve the accuracy and robustness of the measurement on the designed test rig. An electrostatic sensor was used to obtain signals from the rotor surface. Then, the rotational speed was determined from the period of rotational motion calculated from a double autocorrelation method. At the same time, experiments with sampling rates of 2ksps (kilo samples per second), 5ksps, 10ksps, 20ksps were carried out on a laboratory-scale test rig under a rotational speed range from 400 r min-1 to 4200 r min-1. The results show that the double autocorrelation method improves the accuracy and robustness. The measurement accuracy also improves with the sampling rate-the relative errors using 2ksps, 5ksps, 10ksps, and 20ksps are within 1.5%, 1%, 0.4%, and 0.3% respectively. The linearity of them is 1.47%, 0.61%, 0.28%, 0.17% correspondingly. The experiments also reveal that the measurement error has a tendency to increase with the rotational speed.

  14. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  15. High-speed cinematography of compressible mixing layers

    Science.gov (United States)

    Mahadevan, R.; Loth, Eric

    1994-07-01

    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  16. Diagnosis of traction electric motor at irregularity in speed of anchor rotation

    Directory of Open Access Journals (Sweden)

    D.V. Cyernyayev

    2013-06-01

    Full Text Available Purpose. To offer a complex diagnostic parameter (or system of parameters that would allow determining the fault of electric traction motor as well as electromagnetic and mechanical nature. Methodology. Technology transition to maintenance and repair of equipment in accordance with its actual condition are developed rapidly in the world practice in recent years. Control of equipment and forecasting of its technical condition with the use of non-destructive testing and diagnosis in-place methods is the basis of such technologies. In operation the reliability level of electrical machines including traction electric motor is very difficult to maintain. Analyzing failures of rolling stock, which arise from the operation, we can see that traction electric motors are the least reliable nodes. Diagnostics of traction electric motor at irregularity in speed of anchor rotation is proposed. A measurement device for irregularity in speed of anchor rotation was developed. Findings. An experimental research in order to determine the irregularity in speed of anchor armature shaft rotation and coupling of irregularity in speed of anchor rotation with traction electric motors nodes failures was executed. The experimental dependence of the waveform uneven rotation anchor for engines with different technical conditions. Originality. A method for diagnosis of traction electric motors at irregularity in speed of anchor armature shaft rotation was first proposed. This method after further improvement can be used at bench test of engines in their work without load and for the quality of the repair. Practical value. The device for detecting defects of the traction electric motor nodes as well as electromagnetic and mechanical nature without engine disassembly may be used for control of engine assembly after repair, and at testing of traction electric motor without load.

  17. Elasto-plastic deformation analysis of rotating disc beyond its limit speed

    Energy Technology Data Exchange (ETDEWEB)

    Ekhteraei Toussi, Hamid [Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Boulevard, Mashhad (Iran, Islamic Republic of); RezaeiFarimani, Mahdi, E-mail: ma_re974@stu-mail.um.ac.ir [Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Boulevard, Mashhad (Iran, Islamic Republic of)

    2012-01-15

    The development of new materials is leading to the production of more speedy rotating discs. The knowledge of elastic-plastic response of rotating discs may be helpful in the manufacture and development of discs. Using two types of material properties including the Elastic Perfectly Plastic (EPP) and Ramberg-Osgood models, the concepts of failure and limit speed of discs are studied. Different steps of solution consisting of discretization and imaging process are expounded. The effect of different parameters including the cross section profiles and material properties upon the limit speed is investigated. The study includes the analysis of the post failure mechanical behavior of the discs. It is seen that the hardening exponent in the Ramberg-Osgood equation controls the sensitivity of disc expansion relative to the increase of its rotational speed. For the special case of a disc with uniform thickness, the index of sensitivity is connected to the exponent of the Ramberg-Osgood equation. - Highlights: Black-Right-Pointing-Pointer The paper emphasizes the importance of the plastic limit speed of the rotating discs. Black-Right-Pointing-Pointer Two material models of elastic perfectly plastic (EPP) and Ramberg-Osgood are used in the analyses. Black-Right-Pointing-Pointer The analysis shows the difference between the material models in the prediction of rotating disc plastic failure. Black-Right-Pointing-Pointer Among the discs with similar thickness at the internal and external radii, the limit speed of a disc with linear cross section is the most. Black-Right-Pointing-Pointer Based on Ramberg-Osgood model, at velocities higher than the limit speed, the expansion of disc is not abrupt.

  18. High speed curving performance of rail vehicles

    Science.gov (United States)

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  19. A novel method for sensing rotational speed, linear displacement ...

    Indian Academy of Sciences (India)

    The second harmonic response of sintered superconducting BPSCCO pellet in an alternating magnetic field at 40 kHz and 77 K being a strong linear function of low d.c. magnetic field has been utilized for the development of highly sensitive magnetic field sensors. The noise limited resolution of the sensor is found to be ...

  20. Jane's high-speed marine transportation

    National Research Council Canada - National Science Library

    Phillips, S.J

    1998-01-01

    The purpose of this book is to provide a comprehensive reference yearbook covering the design, build and operation of high-speed marine transportation, worldwide, an annually updated reference book...

  1. Unsteady Flow Simulation of High-speed Turbopumps

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  2. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    July 2001 physics pp. 181–184. High spin rotational bands in. 65. Zn. B MUKHERJEE, S MURALITHAR, R P SINGH, R KUMAR, K RANI and. R K BHOWMIK. Nuclear Science Centre, Aruna Asaf Ali Marg, P.B. No. .... resolved due to poor resolution of the detectors used. The measured DCO ratios for the 835,. 988, 1074 ...

  3. The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation.

    Science.gov (United States)

    Iizuka, Kei; Nishinaka, Tomohiro; Takewa, Yoshiaki; Yamazaki, Kenji; Tatsumi, Eisuke

    2017-09-01

    Aortic valve regurgitation (AR) is a serious complication under left ventricular assist device (LVAD) support. AR causes LVAD-left ventricular (LV) recirculation, which makes it difficult to continue LVAD support. However, the hemodynamics and myocardial oxygen metabolism of LVAD support with AR have not been clarified, especially, how pump rotation speed influences them. An animal model of LVAD with AR was newly developed, and how pump rotation speed influences hemodynamics and myocardial oxygen metabolism was examined in acute animal experiments. Five goats (55 ± 9.3 kg) underwent centrifugal type LVAD, EVAHEART implantation. The AR model was established by placing a vena cava filter in the aortic valve. Hemodynamic values and the myocardial oxygen consumption, delivery, and oxygen extraction ratio (O 2 ER) were evaluated with changing pump rotation speeds with or without AR (AR+, AR-). AR+ was defined as Sellers classification 3 or greater. AR was successfully induced in five goats. Diastolic aortic pressure was significantly lower in AR+ than AR- (p = 0.026). Central venous pressure, mean left atrial pressure, and diastolic left ventricular pressure were significantly higher in AR+ than AR- (p = 0.010, 0.047, and 0.0083, respectively). Although systemic flow did not improve with increasing pump rotation speed, LVAD pump flow increased over systemic flow in AR+, which meant increasing pump rotation speed increased LVAD-LV recirculation and did not contribute to effective systemic circulation. O 2 ER in AR- decreased with increasing pump rotation speed, but O 2 ER in AR+ was hard to decrease. The O 2 ER in AR+ correlated positively with the flow rate of LVAD-LV recirculation (p = 0.012). AR caused LVAD-LV recirculation that interfered with the cardiac assistance of LVAD support and made it ineffective to manage with high pump rotation speed.

  4. High speed rail : challenges for the high speed rail project in Norway

    OpenAIRE

    Ringstad, Vidar

    2012-01-01

    This Master Thesis has focus on parts of the public transport system in Norway. The main topic in this thesis is: What variables must be calculated for the decision concerning the construction and implementation of the Norwegian High Speed Rail project, and how are the variables calculated? High Speed Rail does not have a single standard definition. High Speed Rail definition, given in the European Union definition, Directive 96/48 is suitable for many different systems of rolling stock...

  5. Scientific Visualization in High Speed Network Environments

    Science.gov (United States)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  6. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  7. Research on Power Calculation Method of High Speed Rotary Device under Wind Loads Crystals

    Science.gov (United States)

    Ji, M. S.; Xue, Y.; Wu, N.

    2017-10-01

    The wind load has a great influence on the power of large rotary devices working outdoors. In the power calculation formula of the rotary devices, the static air pressure is often used as the wind resistance of the whole device. But in fact, the rotating device bears the dynamic wind pressure during the rotation. This method of calculation will lead to large deviation. Based on this, this paper emphatically studied the dynamic wind load of the rotating device under rotation, and gave a more accurate formula for the calculation of the rotating power. This formula solves the problem of power calculation of the rotating device in high speed rotation. It can be widely used in all kinds of rotating devices.

  8. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  9. Brandaris ultra high-speed imaging facility

    NARCIS (Netherlands)

    Lajoinie, Guillaume; de Jong, Nico; Versluis, Michel; Tsuji, K.

    2017-01-01

    High-speed imaging is in popular demand for a broad range of scientific applications, including fluid physics, and bubble and droplet dynamics. It allows for a detailed visualization of the event under study by acquiring a series of images captured at high temporal and spatial resolution. The

  10. High Speed Digital Camera Technology Review

    Science.gov (United States)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  11. Study on the influence of the rotational speed of polishing disk on material removal in aspheric surface compliant polishing

    Directory of Open Access Journals (Sweden)

    Liyong Hu

    2015-03-01

    Full Text Available When a soft polishing tool is compressed on a stiff workpiece of curved surface, the contact area is a piece of the curved surface. In the process of aspheric surface polishing, the machining speed is always provided by the rotational speed of the spindle of a computer numerical control lathe. Yet, the polishing tool is usually made rotating to remove cutting scraps and broken abrasives from the contact area. The rotational speed of the polishing tool would change the distribution state of the relative speed in the whole contact area, and it would definitely change the volume of material removal in the surface of the workpiece. This article studies how the rotational speed of the polishing tool changes the distribution state of the relative speed in the whole contact area and material removal in the volume of the surface of the workpiece. The computing results show that the volume of material removal increases with the increase in both the rotational speed of polishing disk and the rotational speed of lathe spindle, but the polishing quality is totally not in this case.

  12. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation.......We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  13. Optical communication equalized technique suitable for high-speed transmission

    Science.gov (United States)

    Zhu, Yaolin; Guan, Hao

    2017-07-01

    To solve the phase distortion and high error rate in optical signal transmission, an equalized technique is proposed, which aims to improve the constant modulus algorithm (CMA). In order to correct phase rotating and reduce the error rate with 64 quadrature amplitude modulation (QAM), the method takes the mean square error as the judgment and utilizes the time-varying step size. Simulation results demonstrate that the proposed algorithm can improve the convergence speed of constellation points, make the eye opening larger, and the signal noise ratio (SNR) can be increased by 4 dB under the same bit error rate (BER), which is efficient for the recovery of information in high-speed transmission.

  14. High-speed dynamic-clamp interface

    Science.gov (United States)

    Yang, Yang; Adowski, Timothy; Ramamurthy, Bina; Neef, Andreas

    2015-01-01

    The dynamic-clamp technique is highly useful for mimicking synaptic or voltage-gated conductances. However, its use remains rare in part because there are few systems, and they can be expensive and difficult for less-experienced programmers to implement. Furthermore, some conductances (such as sodium channels) can be quite rapid or may have complex voltage sensitivity, so high speeds are necessary. To address these issues, we have developed a new interface that uses a common personal computer platform with National Instruments data acquisition and WaveMetrics IGOR to provide a simple user interface. This dynamic clamp implements leak and linear synaptic conductances as well as a voltage-dependent synaptic conductance and kinetic channel conductances based on Hodgkin-Huxley or Markov models. The speed of the system can be assayed using a testing mode, and currently speeds of >100 kHz (10 μs per cycle) are achievable with short latency and little jitter. PMID:25632075

  15. A quick-retrieval high-speed digital framing camera

    OpenAIRE

    Sato, A.H.; Yee, J; Bellan, P. M.

    1993-01-01

    A new high-speed digital framing camera is described. The design is built around a rotating polygon mirror that provides a framing rate of 24 000 frames/s. The camera electronics digitizes an image into a 32×104 grid of pixels, where the second dimension of the grid can be varied and is determined by the 8 bit computer-aided measurement and control digitizer sampling rate. Available digitizer memory provides for 314 frames at this horizontal resolution. The advantages over other available hig...

  16. High-Speed Rail & Air Transport Competition

    NARCIS (Netherlands)

    Adler, Nicole; Nash, Chris; Pels, Eric

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers,

  17. High-speed Rail & air transport competition

    NARCIS (Netherlands)

    Adler, N; Nash, C.; Pels, E.

    2010-01-01

    This research develops a methodology to assess infrastructure investments and their effects on transport equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub-and-spoke legacy airlines and regional low-cost

  18. Crew Rostering for the High Speed Train

    NARCIS (Netherlands)

    R.M. Lentink (Ramon); M.A. Odijk; E. van Rijn

    2002-01-01

    textabstractAt the time of writing we entered the final stage of implementing the crew rostering system Harmony CDR to facilitate the planning of catering crews on board of the Thalys, the High Speed Train connecting Paris, Cologne, Brussels, Amsterdam, and Geneva. Harmony CDR optimally supports the

  19. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  20. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  1. Motion-induced eddy current thermography for high-speed inspection

    Science.gov (United States)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  2. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance

    Science.gov (United States)

    Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.

    2017-04-01

    Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.

  3. Double-reflection polygon mirror for high-speed optical coherence microscopy.

    Science.gov (United States)

    Liu, Linbo; Chen, Nanguang; Sheppard, C J R

    2007-12-15

    We report on a high-speed, high-efficiency, high-duty-cycle, path-length-maintaining and linear beam scanner suitable for en face scanning optical coherence microscopy. Fast transverse beam scanning is achieved by use of a double-reflection polygon mirror (DRPM) rotating at a constant speed. With a motor speed of 18,000 rpm and a scanner diameter of 50 mm, the DRPM provides a line rate up to 3 kHz, +/-1.8 degrees scanning range, and 90% duty cycle. A much higher scanning speed and much larger scanning range can be readily achieved by increasing the scanner diameter.

  4. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  5. High speed, high current pulsed driver circuit

    Science.gov (United States)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  6. Radiation-Tolerant High-Speed Camera

    Science.gov (United States)

    2017-03-01

    Radiation -Tolerant High-Speed Camera Esko Mikkola, Andrew Levy, Matt Engelman Alphacore, Inc. Tempe, AZ 85281 Abstract: As part of an... radiation -hardened CMOS image sensor and camera system. Radiation -hardened cameras with frame rates as high as 10 kfps and resolution of 1Mpixel are not...camera solution that is under development with a similar architecture. It also includes a brief description of the radiation -hardened camera that

  7. On the Speed of Rotation of the Isotropic Space (the Home of Photons)

    Science.gov (United States)

    Rabounski, Dmitri

    2009-10-01

    This paper applies the mathematical method of chronometric invariants, which are physical observable quantities in the General Theory of Relativity (Zelmanov A.L., Soviet Physics Doklady, 1956, v.1, 227-230). The isotropic region of the four-dimensional space-time is considered. This is the home for massless light-like particles (e.g. photons). It is shown that the isotropic space rotates, at each its point, with a linear velocity equal to the velocity of light. Even if the problem is tackled in the simplified conditions of Special Relativity, the same result is obtained. It is shown that the light-speed rotation of the isotropic space has a purely geometrical origin due to the space-time metric, where time is presented as the fourth coordinate, expressed through the velocity of light. This presentation is dedicated to Hermann Minkowski, on the 100th anniversary of his ``Raum und Zeit''.

  8. PMSM sensorless control with separate control strategies and smooth switch from low speed to high speed.

    Science.gov (United States)

    Chen, SiYi; Luo, Ying; Pi, YouGuo

    2015-09-01

    This paper proposes a smooth switching scheme with separate control strategies on low speed mode and high speed mode for permanent magnet synchronous motor (PMSM) sensorless control to improve the overall performance in full speed range. Constant voltage/frequency tuning method is used on low speed mode because the rotor position can hardly be estimated precisely at low speed. Along with the increasing speed, the control strategy can be switched to high speed mode smoothly when current and speed meet the given requirements. In this high speed mode, the current tracking with a sliding mode observer (SMO) and speed tracking with a sliding mode controller (SMC) are handled, respectively. Experimental demonstration is presented to show the desired performance in full speed range of the PMSM sensorless control using the proposed control scheme in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Suitable Stimuli to Obtain (No) Gender Differences in the Speed of Cognitive Processes Involved in Mental Rotation

    Science.gov (United States)

    Jansen-Osmann, Petra; Heil, Martin

    2007-01-01

    Gender differences in speed of perceptual comparison, of picture-plane mental rotation, and in switching costs between trials that do and do not require mental rotation, were investigated as a function of stimulus material with a total sample size of N=360. Alphanumeric characters, PMA symbols, animal drawings, polygons and 3D cube figures were…

  10. Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.

    Science.gov (United States)

    Miyagoshi, Takehiro; Hamano, Yozo

    2013-09-20

    We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.

  11. A parametric approach for the estimation of the instantaneous speed of rotating machinery

    Science.gov (United States)

    Rodopoulos, Konstantinos; Yiakopoulos, Christos; Antoniadis, Ioannis

    2014-02-01

    A parametric method is proposed for the estimation of the instantaneous speed of rotating machines. The method belongs typically to the class of eigenvalue based parametric signal processing methods. The major advantage of parametric methods over frequency domain or time-frequency domain based methods, is their increased resolution and their reduced computational cost. Moreover, advantages of eigenvalue based methods over other parametric methods include their robustness to noise. Sensitivity analysis for the key parameters of the proposed method is performed, including the sampling frequency, the signal length and the robustness to noise. The effectiveness of the method is demonstrated in vibration measurements from a test rig during start-up and run-down, as well as during variations of the speed of a motorcycle engine. Compared to the Hilbert Transform and to the Discrete Energy Separation Algorithm (DESA), the proposed approach exhibits a better behavior, while it simultaneously presents computational simplicity, being able to be implemented analytically, even online.

  12. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  13. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  14. Developing course lecture notes on high-speed rail.

    Science.gov (United States)

    2017-07-15

    1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...

  15. Gas turbine for high speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Chenard, J.-L. [Turbomeca (France)

    1994-12-31

    This presentation will show how the gas turbine engines can be the right compromise to face the challenges raised by the demand for high speed trains through out the world. From the steam locomotive still in use in China to the TGV or ICE in Europe and Shinkensen in Japan able to run at more than 300 kms/hour, the modes of traction for trains have been greatly improved during the last fifty years. Even more faster trains are under studies for the future with the magnetic levitation system. Three main propulsion system, diesel, electric and gas turbines are actually competing in the high speed train market. They will have to comply with the new environmental regulations, better efficiency and customers` requirements for the developed countries, and with the necessity to use the existing tracks for most of the applications

  16. High-Speed Rail & Air Transport Competition

    OpenAIRE

    Nicole Adler; Chris Nash; Eric Pels

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers, maximize profit functions via prices, frequency and train/plane sizes, given infrastructure provision and costs and environmental charges. The methodology is subsequently applied to all 27 Europea...

  17. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  18. Role of Strain-Hardening Law on the Bursting Speed of a Rotating Thin-Walled Shaft

    Science.gov (United States)

    Güven, U.

    2009-02-01

    In the present work, the bursting speed of a rotating thin-walled shaft is considered. Under usual assumptions, the roles of modified Ludwik and Ramberg-Osgood stress-strain laws on the bursting speed are discussed. It can be seen from the present analysis that the strain hardening law plays a significant role.

  19. All aboard for high-speed rail

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  20. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  1. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    Science.gov (United States)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  2. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    Science.gov (United States)

    2016-04-30

    liquid rocket engines, studied the concept of rotating detonation rocket engine in both gaseous and two-phase propellants . Recently, there have been...AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER

  3. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  4. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  5. High-speed multispectral confocal biomedical imaging.

    Science.gov (United States)

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  6. Theory Of High-Speed Stereophotogrammetry

    Science.gov (United States)

    Hongxun, Song; Junren, Chen

    1989-06-01

    The general equations of direct linear transformation (DLT) are derived according to the actual process of high-speed stereophotogrammetry. The equations are not only applicable to the ordinary photographic system, but also to the photographic system with reflectors or stereo-reflectors. The equations are also suitable to the enlarged, copied and projected measurements of photographic film. The linear and non-linear errors in photogrammetric process can be corrected. Finally, the equations of right angle intersection photogrammetry are given and the merits and demerits of this method are discussed.

  7. CONSIDERATION OF AERODYNAMIC IMPACT IN SETTING THE MAXIMUM PERMISSIBLE SPEEDS OF HIGH-SPEED TRAIN

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2017-10-01

    Full Text Available Purpose. Studies of the effect of aerodynamic pressure on the maximum permissible speeds of a high-speed train on the existing railway infrastructure. Methodology. The study of the magnitude and direction of the aerodynamic pressure, its effect on the maximum speeds of a high-speed train was carried out on a train model composed of axisymmetric bodies with conical forms of head and tail parts. Findings. Determined the values of the aerodynamic pressure at different distances from the train are, when the high-speed train moves at a speed of 200 km/h or more. The maximum speeds of a high-speed train are determined taking into account the state of the infrastructure of the existing railway, ensuring the safe operation of a high-speed railway. Originality. Theoretical studies of aerodynamic pressure from secondary air currents formed during the movement of high-speed trains are performed on a model of a train composed of identical axisymmetric bodies with conical forms of head and tail moving in a compressible medium. The results of the research allow the regularity of the change in aerodynamic pressure during the movement of a high-speed train. Practical value. The obtained results allow to establish: 1 the maximum permissible speeds of a high-speed train taking into account the technical condition of permanent devices and structures of the existing railway infrastructure; 2 technical parameters of individual objects and structural elements of the infrastructure of high-speed iron subjected to the effect of aerodynamic pressure for a given maximum speed of high-speed trains.

  8. Study of high-speed civil transports

    Science.gov (United States)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  9. Shoulder Rotator Muscle Dynamometry Characteristics: Side Asymmetry and Correlations with Ball-Throwing Speed in Adolescent Handball Players

    Science.gov (United States)

    Pontaga, Inese; Zidens, Janis

    2014-01-01

    The aim of the investigation was to: 1) compare shoulder external/internal rotator muscles’ peak torques and average power values and their ratios in the dominant and non-dominant arm; 2) determine correlations between shoulder rotator muscles’ peak torques, average power and ball-throwing speed in handball players. Fourteen 14 to 15-year-old male athletes with injury-free shoulders participated in the study (body height: 176 ± 7 cm, body mass 63 ± 9 kg). The tests were carried out by an isokinetic dynamometer system in the shoulder internal and external rotation movements at angular velocities of 60°/s, 90°/s and 240°/s during concentric contractions. The eccentric external– concentric internal rotator muscle contractions were performed at the velocity of 90°/s. The player threw a ball at maximal speed keeping both feet on the floor. The speed was recorded with reflected light rays. Training in handball does not cause significant side asymmetry in shoulder external/internal rotator muscle peak torques or the average power ratio. Positive correlations between isokinetic characteristics of the shoulder internal and external rotator muscles and ball-throwing speed were determined. The power produced by internal rotator muscles during concentric contractions after eccentric contractions of external rotator muscles was significantly greater in the dominant than in the non-dominant arm. Thus, it may be concluded that the shoulder eccentric external/concentric internal rotator muscle power ratio is significantly greater than this ratio in the concentric contractions of these muscles. PMID:25414738

  10. Laser beam welding by high-speed beam deflection; Laserstrahlschweissen durch High-Speed-Strahlbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbach, A.; Morgenthal, L.; Beyer, E. [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik, Dresden (Germany)

    1999-04-01

    The beam deflection system developed at Fraunhofer IWS can be used for rapid moving of a high power laser beam over the workpiece surface. Therefore it is possible to scan even rather small paths with high speed. The system contents two galvanometer scanner with specially designed lightweight mirrors in combination with a beam focusing unit. (Fig. 1). The high-speed welding of contours with small diameter is favorably done with both focusing optics and workpiece fixed (Fig. 2,3). Thus all notorius problems of conventional handling systems, as limited velocity and accuracy resulting from the inertia of the moved focusing head or workpiece, vanish. (orig.)

  11. ACTS High-Speed VSAT Demonstrated

    Science.gov (United States)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  12. Accurate Extraction of the Self-Rotational Speed for Cells in an Electrokinetics Force Field by an Image Matching Algorithm

    Directory of Open Access Journals (Sweden)

    Xieliu Yang

    2017-09-01

    Full Text Available We present an image-matching-based automated algorithm capable of accurately determining the self-rotational speed of cancer cells in an optically-induced electrokinetics-based microfluidic chip. To automatically track a specific cell in a video featuring more than one cell, a background subtraction technique was used. To determine the rotational speeds of cells, a reference frame was automatically selected and curve fitting was performed to improve the stability and accuracy. Results show that the algorithm was able to accurately calculate the self-rotational speeds of cells up to ~150 rpm. In addition, the algorithm could be used to determine the motion trajectories of the cells. Potential applications for the developed algorithm include the differentiation of cell morphology and characterization of cell electrical properties.

  13. High-speed analog CMOS pipeline system

    Science.gov (United States)

    Möschen, J.; Caldwell, A.; Hervas, L.; Hosticka, B.; Kötz, U.; Sippach, B.

    1990-03-01

    We present a switched-capacitor readout system for high speed analog signals. It consists of a 10 MHz four-channel delay-line chip with 58 samples per channel and a 12 channel buffer chip with a sampling rate of 1 MHz and a depth of nine samples. In addition the buffer chip includes an analog multiplexer with 25 inputs for the buffer channels and for 13 additional unbuffered signals. Both chips have been fabricated in CMOS-technology and will be used for the readout of the ZEUS high resolution calorimeter. The circuit and chip concept will be presented and some design optimizations will be discussed. Measurements from integrated prototypes will be given including some experimental data from irradiated chips.

  14. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  15. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  16. High-speed ground transportation noise and vibration impact assessment.

    Science.gov (United States)

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  17. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  18. South Carolina southeast high speed rail corridor improvement study

    Science.gov (United States)

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  19. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  20. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  1. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.

    2010-08-15

    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  2. Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    Ugender Singarapu

    2015-12-01

    Full Text Available In this investigation, the effect of friction stir welding (FSW parameters such as tool material rotational speed, and welding speed on the mechanical properties of tensile strength, hardness and impact energy of magnesium alloy AZ31B was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA, was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that rotational speed (RS and traverse speed (TS are the most significant factors, followed by tool material (TM, in deciding the mechanical properties of friction stir processed magnesium alloy. In addition, mathematical models were developed to establish relationship between different process variables and mechanical properties.

  3. The effect of dissolution medium, rotation speed and compaction pressure on the intrinsic dissolution rate of amlodipine besylate, using the rotating disk method

    Directory of Open Access Journals (Sweden)

    Leandro Giorgetti

    2014-09-01

    Full Text Available The aim of this study was to evaluate the effect of dissolution medium, rotation speed and compaction pressure on the intrinsic dissolution rate (IDR of the antihypertensive drug amlodipine besylate, using the rotating disk method. Accordingly, a fractional factorial design (33-1 was used, employing dissolution media (water, phosphate buffer pH 6.8 and HCl 0.1 M, rotation speed (50, 75 and 100 rpm, and compaction pressure (1000, 1500 and 2000 psi as independent variables. The assays were randomized and statistically compared using the Statistica(r 11 software program. Significance testing (ANOVA indicated that the dissolution medium had a considerable impact on the IDR of amlodipine besylate. Analysis of the linear and quadratic components of the variables led to the proposition of a mathematical model that describes the IDR as a function of the parameters studied. Conversely, the levels of compaction pressure and rotation speed employed during experimental planning were less relevant, especially when the assay was conducted in the HCl 0.1 M medium.

  4. High-speed electrical motor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  5. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  6. Limits, modeling and design of high-speed permanent magnet machines

    NARCIS (Netherlands)

    Borisavljevic, A.

    2011-01-01

    There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched (TU Delft Microfactory project). The thesis focuses on analysis and design of high-speed PM machines and

  7. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  8. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  9. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  10. High-tech maintenance for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Javier Rutz [Nertus Mantenimiento Ferroviario, S.A., Madrid (Spain); Hofmann, Manfred [Siemens AG, Erlangen (Germany). Mobility Div., Integrated Services

    2011-03-15

    Reliable, punctual trains cannot do without professional maintenance. Nertus S.A., a joint subsidiary of Siemens and Renfe, is responsible for providing precisely this for the Spanish high-speed train, Velaro E (AVE S103), which operates between Madrid and Barcelona. (orig.)

  11. Cleveland-Columbus-Cincinnati high-speed rail study

    Science.gov (United States)

    2001-07-01

    In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...

  12. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  13. Analysis of coupling between high-speed railway and common speed railway system in transportation corridor

    Science.gov (United States)

    Zhou, Hongchang; Li, Haijun; Chen, Xiaohong; Zhu, Changfeng

    2017-04-01

    The high-speed railway and common speed railway subsystems as important components of the railway transportation system, can make railway traffic organization more orderly, when there are a rational division and balance development between them. In order to quantitatively evaluate the coordinate relations between high-speed railway subsystem and common speed railway subsystem, this paper takes the railway transportation corridor from Baoji to Lanzhou as an example. Firstly, using Logit model and grey forecasting model predict the passenger volume, passenger turnover and time value of high-speed railway and common speed railway in the Baoji-Lanzhou corridor. And then, the coupling forecast model of these two subsystems is established. Lastly, the coupling and coupling coordination of these two subsystems using are predicted and analyzed at theatrically level.

  14. Nonlinear Adaptive Rotational Speed Control Design and Experiment of the Propeller of an Electric Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2016-01-01

    Full Text Available Micro Air Vehicles (MAVs driven by electric propellers are of interest for military and civilian applications. The rotational speed control of such electric propellers is an important factor for improving the flight performance of the vehicles, such as their positioning accuracy and stability. Therefore, this paper presents a nonlinear adaptive control scheme for the electric propulsion system of a certain MAV, which can not only speed up the convergence rates of adjustable parameters, but can also ensure the overall stability of the adjustable parameters. The significant improvement of the dynamic tracking accuracy of the rotational speed can be easily achieved through the combination of the proposed control algorithm and linear control methods. The experimental test results have also demonstrated the positive effect of the nonlinear adaptive control scheme on the flight performance of the MAV.

  15. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  16. Alignment of Electrospun Nanofibers and Prediction of Electrospinning Linear Speed Using a Rotating Jet

    Directory of Open Access Journals (Sweden)

    M. Khamforoush

    2009-12-01

    Full Text Available Anew and effective electrospinning method has been developed for producing aligned polymer nanofibers. The conventional electrospinning technique has been modified to fabricate nanofibers as uniaxially aligned array. The key to the success of this technique is the creation of a rotating jet by using a cylindrical collector in which the needle tip is located at its center. The unique advantage of this method among the current methods is the ability of apparatus to weave continuously nanofibers in uniaxially aligned form. Fibers produced by this method are well-aligned, with several meters in length, and can be spread over a large area. We have employed a voltage range of (6-16 kV, a collector diameter in the range of 20-50 cm and various concentrations of PAN solutions ranging from 15 wt% to 19 wt %. The electrospun nanofibers could be conveniently formed onto the surface of any thin substrate such as glass sampling plate for subsequent treatments and other applications. Therefore, the linear speed of electrospinning process is determined experimentally as a function of cylindrical collector diameter, polymer concentration and field potential  difference.

  17. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  18. Acoustic measurements on aerofoils moving in a circle at high speed

    Science.gov (United States)

    Wright, S. E.; Crosby, W.; Lee, D. L.

    1982-01-01

    Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.

  19. High Speed Link Radiated Emission Reduction

    Science.gov (United States)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  20. High speed flow cytometric separation of viable cells

    Science.gov (United States)

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  1. Water Containment Systems for Testing High-Speed Flywheels

    Science.gov (United States)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  2. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  3. The response of a high-speed train wheel to a harmonic wheel-rail force

    Science.gov (United States)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-09-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel.

  4. High-speed Stochastic Fatigue Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Sørensen, John Dalsgaard

    1990-01-01

    testing, quite unacceptable errors are introduced. Usually this problem is solved by running the tests at very low speeds and by editing the load history in order to reduce the duration of the test. In this paper a new method for control of stochastic fatigue tests is proposed. It is based on letting...

  5. High-speed rail-coming to America?

    Science.gov (United States)

    Cameron, David Ossian

    2009-01-01

    The United States lags many parts of the world when it comes to high-speed rail. But investing in high-speed rail could help us through current problems. Funds- $8 billion-in the economic stimulus package passed by Congress are designated for high-speed rail. Other funds in the pipeline total approximately $15.5 billion. High-speed rail can relieve congestion, free up national airspace, provide reliable transportation and positive economic development, create jobs, and is more energy efficient than other modes of travel.

  6. The high-speed train and its spatial effects

    OpenAIRE

    Javier Gutiérrez Puebla

    2004-01-01

    This paper analyses the high-speed train from a spatial point of view. The basic characteristics of this transportation mode,the evolution of high-speed networks in several countries and the building of a trans-European high-speed railway network are studied.The paper analyses also the process of space-time convergence and its consequences on competitivity and cohesion;the tunel effect;the impact of the high speed-train on transportation demand;and the impacts on the city.

  7. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  8. Preliminary Investigation of the Thermal Behavior of High-Speed Helical Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Kilmain, Charles J.

    2002-01-01

    A preliminary experimental investigation of the thermal behavior of high-speed helical gears will be presented. A full-scale torque regenerative test stand has been built to test a representative helical gear train as that used in tiltrotor aircraft. Power loss and temperature data from a wide range of operating conditions were measured. Loop power ranged up to 3730 kW (5000 hp). Drive system components representative of flight quality hardware were used in the test program. The results attained in this initial study indicated that windage losses due to the high rotational speeds that were tested were far more important than the losses due to the gear meshing losses.

  9. Effect of the rotational speed of on the surface quality of 6061 Al-alloy welded joint using friction stir welding

    Science.gov (United States)

    Feng, T. T.; Zhang, X. H.; Fan, G. J.; Xu, L. F.

    2017-06-01

    The rotational speed of the stir-welding head is an important technological parameter in friction stir welding (FSW) process. For investigating the effect of the rotational speed of the stir-welding head on the surface quality of the welded joint, in this study, the weld tests were conducted under different rotational speeds (in which the welding speed was fixed), and then the effects were analyzed using the heat-fluid analysis model established. The test results revealed that cracks or grooves could be observed on the welded joint at small rotational speeds; with the increase of rotational speed, the weld surface became bright and clean; as the rotational speed further increased, the surface of the welded joint may be over burnt. Through analysis, it can be observed that appropriate increasing the rotational speed of the stir-welding joint increased the heat input in welding; meanwhile, fewer materials participated in the formation of weld, the material’s flowability was improved, and the resistance that impeded the advance of the stir-welding needle was reduced, thereby improving the quality of the welded joint.

  10. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CT??) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  11. Use of a rotational bench viscometer to study the influence of temperature and agitation speed on vinasse viscosity

    Directory of Open Access Journals (Sweden)

    L.E. Brossard Perez

    2000-06-01

    Full Text Available Brookfield R.V.T. apparent viscosity measurements of 31.1 to 73º Brix vinasses, with and without nondissolved solids (N.D.S., were carried out at varying rotation speeds (N and temperatures (T. A regression analysis of this data was carried out to select the corresponding mathematical models. It was concluded that apparent Brookfield viscosity for low concentration vinasses (up to 52.4º Brix depends only on linear and quadratic temperature terms. At higher concentrations (66º and 73º Brix regression models for apparent viscosity, must also include quadratic as well as rotation speed-temperature interaction terms. This behavior is discussed, identifying two types of rheological behaviors and advancing a preliminary hypothesis about the role of solutes, N.D.S. and temperature.

  12. Time optimal paths for high speed maneuvering

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  13. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  14. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  15. The selection of convertible engines with current gas generator technology for high speed rotorcraft

    Science.gov (United States)

    Eisenberg, Joseph D.

    1990-01-01

    NASA-Lewis has sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and VIGV fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

  16. Evaluation of the lubrication mechanism at various rotation speeds and granule filling levels in a container mixer using a thermal effusivity sensor.

    Science.gov (United States)

    Uchiyama, Jumpei; Aoki, Shigeru

    2015-01-01

    To research the detailed mechanism of the lubrication process using the thermal effusivity sensor, the relationships of the lubrication progress with the pattern of powder flow, the rotation speed and the filling level were investigated. The thermal effusivity profile was studied as a function of the number of rotations at various rotation speeds. It was observed that at lower rotation speeds, the profiles of the lubrication progress were almost the same, regardless of the rotation speed. In this region, the highest speed was defined as the critical rotation speed (CRS), which was found to be one of the important factors. The CRS had close relations with avalanche flow in the blender. The first and the second phases were observed in the lubrication process. The first phase was influenced by the CRS and the filling level in the blender. The second phase was influenced by the rotation speed. The mechanism of two-phase process was proposed as a macro progression of the dispersion of the lubricant (first phase) and micro progression of the coating of the powder particles with lubricant (second phase). The accurate monitoring by the thermal effusivity sensor was able to help a better understanding in the lubrication process.

  17. Florida High Speed Rail Authority - 2003 report to the legislature

    Science.gov (United States)

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  18. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  19. Optical Systems for Ultra-High-Speed TDM Networking

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Mulvad, Hans Christian Hansen

    2014-01-01

    This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification...... and detection of ultra-high-speed optical signals....

  20. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili

    2014-04-01

    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  1. Rounding Technique for High-Speed Digital Signal Processing

    Science.gov (United States)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  2. CMOS Image Sensors for High Speed Applications

    OpenAIRE

    Jamal Deen, M.; Qiyin Fang; Louis Liu; Frances Tse; David Armstrong; Munir El-Desouki

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm) due to ...

  3. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  4. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  5. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  6. HIGH SPEED SHIP TOTAL RESISTANCE CALCULATION (AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Dimas Endro W

    2014-02-01

    Full Text Available High speed design studies became very intense studies. One of the subject that can be explore is obtaining total resistace. A high speed ship has four stages of condition when she operates. Starting from low speed condition until developent of dinamics lift force. These four states that happened on high speed ship when she cuise on her operational speed, make a specific consideration on predicting her total resistance.  As high speed ship become more widely built and operate in Indonesia, the study of the state of art of high speed vessel  especially for obtaining total resistance has became more challenging In this paper is foccused on proposing an applicative methods for high speed resistance calculation based on savitsky method. Result which obtained form empirical study is compared to numerical software. Result of this study shows that there are no significant differences between empirical method and result form software application. Considering of sea margin would be effective to made the empirical method would be applicable. There is a 128,0812 KN of total resistance using empirical method, by considering sea margine factor, and a 128,512 KN of total resistance resulted form software calculation

  7. Parametric Optimization for High Speed FLIM Implementation

    Directory of Open Access Journals (Sweden)

    Kim Jayul

    2015-01-01

    Full Text Available FLIM (Fluorescence Lifetime Imaging Microscopy has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. To increase the FLIM speed, many methodologies have been developed and applied to the system. One of the recent methodologies is an analogue mean delay based FLIM using a PMT and digitizer for image reconstruction. In this system, however, imaging time is largely dependent upon several parameters such as data transfer rate, sampling rate of an A/D converter, and signal width etc. In this paper, such parametric optimization method is introduced for faster acquisition of the image.

  8. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  9. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  10. Rotations

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  11. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.

    2017-08-01

    The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ

  12. High-performance rotation invariant multiview face detection.

    Science.gov (United States)

    Huang, Chang; Ai, Haizhou; Li, Yuan; Lao, Shihong

    2007-04-01

    Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotation-off-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are seldom upright and frontal unless they are taken cooperatively. In this paper, we propose a series of innovative methods to construct a high-performance rotation invariant multiview face detector, including the Width-First-Search (WFS) tree detector structure, the Vector Boosting algorithm for learning vector-output strong classifiers, the domain-partition-based weak learning method, the sparse feature in granular space, and the heuristic search for sparse feature selection. As a result of that, our multiview face detector achieves low computational complexity, broad detection scope, and high detection accuracy on both standard testing sets and real-life images.

  13. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  14. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    Science.gov (United States)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  15. Buoyancy effect on heat transfer in rotating smooth square U-duct at high rotation number

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-09-01

    Full Text Available The buoyancy effect on heat transfer in a rotating, two-pass, square channel is experimentally investigated in current work. The classical copper plate technique is performed to measure the regional averaged heat transfer coefficients. In order to perform a fundamental research, all turbulators are removed away. Two approaches of altering Buoyancy numbers are selected: varying rotation number from 0 to 2.08 at Reynolds number ranges of 10000 to 70000, and varying inlet density ratio from 0.07 to 0.16 at Reynolds number of 10000. And thus, Buoyancy numbers range from 0 to 12.9 for both cases. According to the experimental results, the relationships between heat transfer and Buoyancy numbers are in accord with those obtained under different rotation numbers. For both leading and trailing surface, a critical Buoyancy number exists for each X/D location. Before the critical point, the effect of Buoyancy number on heat transfer is limited; but after that, the Nusselt number ratios show different increase rate. Given the same rotation number, higher wall temperature ratios with its corresponding higher Buoyancy numbers substantially enhance heat transfer on both passages. And the critical exceed-point that heat transfer from trailing surface higher than leading surface happens at the same Buoyancy number for different wall temperature ratios in the second passage. Thus, the stronger buoyancy effect promotes heat transfer enhancement at high rotation number condition.

  16. On-line high-speed rail defect detection.

    Science.gov (United States)

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  17. High speed electromechanical response of ionic microactuators

    Science.gov (United States)

    Maziz, Ali; Plesse, Cedric; Soyer, Caroline; Cattan, Eric; Vidal, Frederic

    2015-04-01

    This paper presents the synthesis and characterization of thin and ultra-fast conducting polymer microactuators which can operate in the open air. Compared to all previous existing electronic conducting polymer based microactuators, this approach deals with the synthesis of robust interpenetrating polymer networks (IPNs) combined with a spincoating technique in order to tune and drastically reduce the thickness of conducting IPN microactuators using a so-called "trilayer" configuration. Patterning of electroactive materials has been performed with existing technologies, such as standard photolithography and dry etching. The smallest air-operating microbeam actuator based on conducting polymer is then described with dimensions as low as 160x30x6 μm3. Under electrical stimulation the translations of small ion motion into bending deformations are used as tools to demonstrate that small ion vibrations can still occur at frequency as several hundreds of Hz. Conducting IPN microactuators are then promising candidates to develop new MEMS combining downscaling, softness, low driving voltage, and fast response speed.

  18. High speed high dynamic range high accuracy measurement system

    Science.gov (United States)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  19. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  20. The Paris - Strasbourg high-speed line; Hochgeschwindigkeitsstrecke Paris - Strassburg

    Energy Technology Data Exchange (ETDEWEB)

    Brux, G.

    2007-07-01

    On 10th June 2007, TGV high-speed trains operated by French state railways SNCF, and ICE high-speed trains of Deutsche Bahn, will commence operations of France's eastern highspeed line Paris - Strasbourg, running services from Paris to Luxembourg, Frankfurt am Main and Stuttgart, and also to Basel and Zurich. As from the start of the new timetable on 9th December 2007, the service will also extend to Munich. The new high-speed line will shorten rail travels on these connections by several hours. (orig.)

  1. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    Science.gov (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  2. Full Dynamic Ball Bearing Model with Elastic Outer Ring for High Speed Applications

    Directory of Open Access Journals (Sweden)

    Christian Wagner

    2017-06-01

    Full Text Available Ball bearings are commonly used in high speed turbomachinery and have a critical influence on the rotordynamic behavior. Therefore, a simulation model of the bearing to predict the dynamic influence is essential. The presented model is a further step to develop an accurate and efficient characterization of the ball bearing’s rotor dynamic parameters such as stiffness and deflections as well as vibrational excitations induced by the discrete rolling elements. To make it applicable to high speed turbomachinery, the model considers centrifugal forces, gyroscopic effects and ball spinning. The consideration of an elastic outer ring makes the bearing model suitable for integrated lightweight bearing constructions used in modern aircraft turbines. In order to include transient rotordynamic behavior, the model is built as a full dynamic multibody simulation with time integration. To investigate the influence of the elasticity of the outer ring, a comparison with a rigid formulation for several rotational speeds and loads is presented.

  3. FPGA Flash Memory High Speed Data Acquisition

    Science.gov (United States)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  4. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    Science.gov (United States)

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  5. The effect of changing disk parameters on whirling frequency of high speed rotor system

    Science.gov (United States)

    Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor; Yakub, F.

    2017-12-01

    The requirement for efficiency improvement of machines has caused machine rotor to be designed to rotate at high speeds. It is known that whirling natural frequency of a shaft changes with the change of shaft speed and the design needs to avoid points of resonance where the whirling frequency equals the shaft speed. At high speeds, a shaft may have to carry a huge torque along and this torsional effect has been neglected in past shaft analyses. Whirling behaviour of high speed rotating shaft is investigated in this study with consideration of the torsional effect of the shaft. The shaft system under study consists of a shaft, discs and two bearings, and the focus is on the effect of the disc parameters. A finite element formulation is developed based on Nelson’s 5 degrees of freedom (DOF) per node element that includes the torsional degree of freedom. Bolotin’s method is applied to the derived Mathieu-Hill type of equation to get quadratic eigenvalues problem that gives the forward and backward frequencies of the shaft. Campbell’s diagrams are drawn in studying the effect of discs on the whirling behaviour of the shaft. It is found that the addition of disks on the shaft decreases the whirling frequency of the shaft and the frequency is lower for mass located at the centre of the shaft compared to the one located near to the end. The effect of torsional motion is found to be significant where the difference between critical speed of 4DOF and 5DOF models can be as high as 15%.

  6. Effects of High-Speed Power Training on Muscle Performance and Braking Speed in Older Adults

    Directory of Open Access Journals (Sweden)

    Stephen P. Sayers

    2012-01-01

    Full Text Available We examined whether high-speed power training (HSPT improved muscle performance and braking speed using a driving simulator. 72 older adults (22 m, 50 f; age = 70.6 ± 7.3 yrs were randomized to HSPT at 40% one-repetition maximum (1RM (HSPT: n=25; 3 sets of 12–14 repetitions, slow-speed strength training at 80%1RM (SSST: n=25; 3 sets of 8–10 repetitions, or control (CON: n=22; stretching 3 times/week for 12 weeks. Leg press and knee extension peak power, peak power velocity, peak power force/torque, and braking speed were obtained at baseline and 12 weeks. HSPT increased peak power and peak power velocity across a range of external resistances (40–90% 1RM; P<0.05 and improved braking speed (P<0.05. Work was similar between groups, but perceived exertion was lower in HSPT (P<0.05. Thus, the less strenuous HSPT exerted a broader training effect and improved braking speed compared to SSST.

  7. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...

  8. Parallelism and pipelining in high-speed digital simulators

    Science.gov (United States)

    Karplus, W. J.

    1983-01-01

    The attainment of high computing speed as measured by the computational throughput is seen as one of the most challenging requirements. It is noted that high speed is cardinal in several distinct classes of applications. These classes are then discussed; they comprise (1) the real-time simulation of dynamic systems , (2) distributed parameter systems, and (3) mixed lumped and distributed systems. From the 1950s on, the quest for high speed in digital simulators concentrated on overcoming the limitations imposed by the so-called von Neumann bottleneck. Two major architectural approaches have made ig possible to circumvent this bottleneck and attain high speeds. These are pipelining and parallelism. Supercomputers, peripheral array processors, and microcomputer networks are then discussed.

  9. Railroad Embankment Stabilization Demonstration for High-Speed Rail Corridors

    Science.gov (United States)

    2003-02-09

    The development of high-speed railroad corridors in the United States is being considered by Congress as a fuel efficient and economical alternative to air or highway passenger travel. The exisiting infrastructure is, in many ways, suitable for freig...

  10. Promoting intermodal connectivity at California's high-speed rail stations.

    Science.gov (United States)

    2015-07-01

    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a : profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and othe...

  11. Florida High Speed Rail Authority - 2002 report to the legislature

    Science.gov (United States)

    2002-01-01

    This report addresses a legislative requirement that the Authority issue a report of its actions, findings and recommendations. Previous high speed ground transportation studies were reviewed as part of the preparation of this report. Independent ana...

  12. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  13. Safety evaluation of high-speed rail bogie concepts.

    Science.gov (United States)

    2013-10-01

    The study defines the basic design concepts required to provide a safe, reliable, high-speed bogie for the next generation PRIIA passenger locomotive. The requirements and conditions for the U.S. market create unique design challenges that currently ...

  14. High-Speed-/-Hypersonic-Weapon-Development-Tool Integration

    National Research Council Canada - National Science Library

    Duchow, Erin M; Munson, Michael J; Alonge, Jr, Frank A

    2006-01-01

    Multiple tools exist to aid in the design and evaluation of high-speed weapons. This paper documents efforts to integrate several existing tools, including the Integrated Hypersonic Aeromechanics Tool (IHAT)1-7...

  15. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  16. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  17. Modern trends in designing high-speed trains

    National Research Council Canada - National Science Library

    Golubović, Snežana D; Rašuo, Boško P; Lučanin, Vojkan J

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains...

  18. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  19. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available -1 SABO 2013 TME Workshop Alkantpan Characterising Argon-bomb balloons for High-speed Photography M Olivier and FJ Mostert Landward Sciences, Defence Peace Safety and Security, CSIR, Meiring Naude Road, Pretoria, RSA. Abstract A...

  20. Engineering Data on Selected High Speed Passenger Trucks

    Science.gov (United States)

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  1. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent R&D associated with designing high speed rotorcraft has been greatly hampered by a lack of test data and confidence in predictions for rotors operating...

  2. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  3. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  4. From periphery to core: economic adjustments to high speed rail

    OpenAIRE

    Ahlfeldt, Gabriel M.; Feddersen, Arne

    2010-01-01

    This paper presents evidence that high speed rail systems, by bringing economic agents closer together, sustainably promote economic activity within regions that enjoy an increase in accessibility. Our results on the one hand confirm expectations that have led to huge public investments into high speed rail all over the world. On the other hand, they confirm theoretical predictions arising from a consolidate body of (New) Economic Geography literature taking a positive, man-made and reproduci...

  5. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  6. High COP rotating wheel solid desiccant system

    Energy Technology Data Exchange (ETDEWEB)

    Macriss, R.A.; Zawacki, T.S.

    1982-01-01

    Solar and solar-gas activated desiccant space-conditioning systems can be reasonably compact, simple and void of high technology components, with operation that is intrinsically safe, of potentially long-life, and with moderate servicing demands. They can, further, operate in any US climate and utilize, even under maximum design conditions, low-grade thermal input, typical of low-cost, flat-plate collectors. A technical assessment is presented of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio (EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh make-up air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third advanced unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the advanced and earlier models are also presented for three climatic regions.

  7. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  8. Nanotechnology: high-speed integrated nanowire circuits.

    Science.gov (United States)

    Friedman, Robin S; McAlpine, Michael C; Ricketts, David S; Ham, Donhee; Lieber, Charles M

    2005-04-28

    Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.

  9. Optimization Based High-Speed Railway Train Rescheduling with Speed Restriction

    Directory of Open Access Journals (Sweden)

    Li Wang

    2014-01-01

    Full Text Available A decision support framework with four components is proposed for high-speed railway timetable rescheduling in case of speed restriction. The first module provides the speed restriction information. The capacity evaluation module is used to evaluate whether the capacity can fulfill the demand before rescheduling timetable based on deduction factor method. The bilayer rescheduling module is the key of the decision support framework. In the bilayer rescheduling module, the upper-layer objective is to make an optimal rerouting plan with selected rerouting actions. Given a specific rerouting plan, the lower-layer focuses on minimizing the total delay as well as the number of seriously impacted trains. The result assessment module is designed to invoke the rescheduling model iteratively with different settings. There are three prominent features of the framework, such as realized interaction with dispatchers, emphasized passengers’ satisfaction, and reduced computation complexity with a bilayer modeling approach. The proposed rescheduling model is simulated on the busiest part of Beijing to Shanghai high-speed railway in China. The case study shows the significance of rerouting strategy and utilization of the railway network capacity in case of speed restriction.

  10. High COP rotating wheel solid desiccant system

    Energy Technology Data Exchange (ETDEWEB)

    Macriss, R.A.; Zawacki, T.S.

    1982-06-01

    This paper presents a technical assessment of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio(EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh makeup air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third ''advanced'' unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the ''advanced'' and earlier models are also presented for three climatic regions.

  11. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  12. High-speed quantum networking by ship.

    Science.gov (United States)

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  13. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    Science.gov (United States)

    Chen, T.; Sun, Y. B.; Liu, Y. L.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated.

  14. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  15. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig

    2015-01-01

    In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario for the b......In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario...... for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  16. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  17. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  18. Modern trends in designing high-speed trains

    OpenAIRE

    Golubović Snežana D.; Rašuo Boško P.; Lučanin Vojkan J.

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself...

  19. Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Lali; Taheri, Morteza; Khodabandeh, Alireza [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The main purpose of this study was to investigate the effect of welding parameters on the failure mode and stir zone characteristics of aluminum alloy 2024-T3 joined by friction stir spot welding. The welding parameters in this work are tool rotational speed, plunge depths of shoulder, and pin geometry. In accordance with the methods of previous investigations, the rotational speeds were set to 630 rpm to 2000 rpm. Two pin geometries with concave shoulder were used: triangular and cylindrical. The plunge depths of the shoulder were 0.3, 0.5 and 0.7 mm. The shoulder diameter and pin height for both geometries were 14 and 2.4 mm, respectively. The diameter of the cylindrical and triangular pins was 5 mm. Results show that the parameters mentioned earlier influence fracture mode under tension shear loading. Two different fracture modes were observed during the examinations. Low-penetration depths and low-rotational speeds lead to shear fracture, whereas high values of these factors cause the tension-shear fracture mode. Fracture of the lower sheet sometimes occurs at high rotational speeds.

  20. Extremely high-speed imaging based on tubeless technology

    Science.gov (United States)

    Li, Jingzhen

    2008-11-01

    This contribution focuses on the tubeless imaging, the extreme-high speed imaging. A detail discussion is presented on how and why to make them, which would be the most important in the high speed imaging field in the future. Tubeless extreme-high speed imaging can not only be used to observe the transient processes like collision, detonating, and high voltage discharge, but also to research the processes like disintegration and transfer of phonon and exacton in solid, photosynthesis primitive reaction, and electron dynamics inside atom shell. Its imaging frequency is about 107~1015fps. For this kind of imaging, the mechanism of how forming both high speed and framing would better make fine use of the light speed, the light parallelism, the parameters of light wave such as its amplitude, phase, polarization and wave length, and even quantum characteristics of photons. In the cascade connection system of electromagnetic wave and particle wave, it is able to simultaneously realize high level both the temporal resolution and the spatial resolution, and it would be possible to break through the limit of the Heisenberg uncertainty correlation of the optical frequency band.

  1. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  2. HDR {sup 192}Ir source speed measurements using a high speed video camera

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P. [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Viana, Rodrigo S. S.; Yoriyaz, Hélio [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil); Podesta, Mark [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Rubo, Rodrigo A.; Sales, Camila P. de [Hospital das Clínicas da Universidade de São Paulo—HC/FMUSP, São Paulo 05508-000 (Brazil); Reniers, Brigitte [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, Frank, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  3. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    Science.gov (United States)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  4. The DC Motor Speed Controller Using AT89S52 Microcontroller to Rotate Stepper Motor Attached into Potentiometer in Variable Regulated Power Supply

    Directory of Open Access Journals (Sweden)

    Marhaposan Situmorang

    2011-06-01

    Full Text Available The DC motor speed controller using AT89S52 microcontroller with stepper motor attached into potentiometer in variable regulated power supply had been evaluated. The voltage across DC motor is varied using program subroutine in microcontroller. The reference speed was determined using keypad and actual speed measured using rotating disc with holes in optocoupler sensor. The actual speed in rpm was determined after running time base 1 second and substracted with reference speed. The error was used to turn right stepper motor if actual speed less than reference speed and vice versa. The number of step of stepper motor rotation in one cycle execution was varied using subroutine starting from 1 step, 3 step, 5 step and using approximation of difference value between actual speed and reference speed. It was observed that the best performance of controller was achieved if number of step of turning stepper motor was not constant but depending on the difference between actual speed and reference speed.

  5. Holistic design in high-speed optical interconnects

    Science.gov (United States)

    Saeedi, Saman

    receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

  6. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    Science.gov (United States)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  7. High-Resolution Rotational Spectroscopy of a Molecular Rotary Motor

    Science.gov (United States)

    Domingos, Sergio R.; Cnossen, Arjen; Perez, Cristobal; Buma, Wybren Jan; Browne, Wesley R.; Feringa, Ben L.; Schnell, Melanie

    2017-06-01

    To develop synthetic molecular motors and machinery that can mimic their biological counterparts has become a stimulating quest in modern synthetic chemistry. Gas phase studies of these simpler synthetic model systems provide the necessary isolated conditions that facilitate the elucidation of their structural intricacies. We report the first high-resolution rotational study of a synthetic molecular rotary motor based on chiral overcrowded alkenes using chirp-pulsed Fourier transform microwave spectroscopy. Rotational constants and quartic centrifugal distortion constants were determined based on a fit using more than two hundred rotational transitions spanning 5≤J≤21 in the 2-4 GHz frequency range. Despite the lack of polar groups, the rotor's asymmetry produces strong a- and b-type rotational transitions arising from a single predominant conformer. Evidence for fragmentation of the rotor allows for unambiguous identification of the isolated rotor components. The experimental spectroscopic parameters of the rotor are compared and discussed against current high-level ab initio and density functional theory methods. Vicario et al. Chem. Commun., 5910-5912 (2005) Brown et al. Rev. Sci. Instrum., 79, 053103 (2008)

  8. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  9. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  10. High-speed T-38A landing gear extension loads

    Science.gov (United States)

    Schmitt, A. L.

    1980-01-01

    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  11. Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data

    Directory of Open Access Journals (Sweden)

    Aleš Janota

    2015-03-01

    Full Text Available This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their computational efficiency and accuracy of Euler angles estimation. If attitude of the object is computed only from data obtained by the gyroscope, the quaternion-based algorithm seems to be most suitable (having similar accuracy as the matrix-based algorithm, but taking approx. 30% less clock cycles on the 8-bit microcomputer. Integration of the Euler angles’ time derivations has a singularity, therefore is not accurate at full range of object’s attitude. Since the error in every real gyroscope system tends to increase with time due to its offset and thermal drift, we also propose some measures based on compensation by additional sensors (a magnetic compass and accelerometer. Vector data of mentioned secondary sensors has to be transformed into the inertial frame of reference. While transformation of the vector by the matrix is slightly faster than doing the same by quaternion, the compensated sensor system utilizing a matrix-based algorithm can be approximately 10% faster than the system utilizing quaternions (depending on implementation and hardware.

  12. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats.

    Science.gov (United States)

    Bahník, Štěpán; Stuchlík, Aleš

    2015-01-01

    The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidance must be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark.

  13. High-speed modulation of vertical cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.

    1998-03-01

    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  14. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  15. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  16. Influence of the relative rotational speed on component features in micro rotary swaging

    Directory of Open Access Journals (Sweden)

    Ishkina Svetlana

    2015-01-01

    Full Text Available Micro rotary swaging is a cold forming process for production of micro components with determined geometry and surface. It is also possible to change the microstructure of wires and hence the material properties. Swaging dies revolve around the work piece with an overlaid radial oscillation. Newly developed tools (Flat Surface Dies, FSD feature plain surfaces and do not represent the geometry of the formed part as in conventional swaging. Using these tools allows for producing wires with triangle geometry (cross section as well as a circular shape. To test the influence of FSD on material properties by micro swaging a new method is investigated: the variation of the relative speed between the specimen and dies in infeed rotary swaging. During this specific process copper (C11000 and steel (304 Alloy wires with diameter d0 = 1 mm are formed. It is noticed that the mechanical characteristics such as ductility and strength differ from the characteristics after conventional swaging. Moreover this approach enables new possibilities to influence the geometry and the surface quality of wires. The impact of the relative speed on the processed wire features is described in this paper.

  17. Effects of high sound speed confiners on ANFO detonations

    Science.gov (United States)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  18. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  19. High-resolution imaging of hypervelocity metal jets using advanced high-speed photographic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, L.L.; Muelder, S.A.

    1995-08-29

    It is now possible to obtain high resolution sequential photographs of the initial formation and evolution of hypervelocity metal jets formed by shaped charge devices fired in air. Researchers have been frustrated by the high velocity of the jet material and the luminous sheath of hot gases cloaking the jet that made detailed observation of the jet body extremely difficult. The camera system that provides the photographs is a large format multi-frame electro-optic camera, referred to as an IC camera (IC stands for image converter), that utilizes electro-optic shuttering, monochromatic pulsed laser illumination and bandpass filtering to provide sequential pictures (in 3D if desired) with minimal degradation due to luminous air shocks or motion blur. The large format (75mm image plane), short exposure (15 ns minimum), ruby laser illumination and bandpass filtering (monochromatic illumination while excluding extraneous light) produces clear, sharp, images of the detailed surface structure of a metal shaped charge jet during early jet formation, elongation of the jet body, jet tip evolution and subsequent particulation (breakup) of the jet body. By utilizing the new camera system in conjunction with the more traditional rotating mirror high speed cameras, pulsed radiography, and electrical sensors, a maximum amount of, often unique, data can be extracted from a single experiment. This paper was intended primarily as an oral presentation. For purposes of continuity and simplicity in these proceedings, the authors have chosen to concentrate on the development of the IC camera system and its impact on the photography of high speed shaped chargejets.

  20. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    Science.gov (United States)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  1. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    Science.gov (United States)

    2015-04-27

    Jiming, et al. "Optical properties of rotationally twinned InP nanowire heterostructures ." Nano letters 8.3 (2008): 836-841. 19. Shtrikman, Hadas, et...confinement heterostructure (SCH) as shown in Fig 7. 1.5μm thick n: InP( 5 × 1017cm−3) and 150nm thick InGaAsP( λg = 1.15μm) lattice-matched to InP...context of nanowire (NW) growth in the literature, originated from the coexistence of zinc blende(ZB) and wurtzite(WZ) crystal structure when grown

  2. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States)

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  3. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  4. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  5. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    Magnetic Levitation (Maglev) ...............................................................................................5 High Speed Rail In...conventional steel wheel on steel rail technology, or magnetic levitation (in which superconducting magnets levitate a train above a guide rail...transported.14 Magnetic Levitation (Maglev) Maglev train technology was developed in the United States in the 1960s. It uses electromagnets to suspend

  6. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  7. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  8. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  9. Research notes : high-speed rail survey results.

    Science.gov (United States)

    2010-08-01

    The survey was conducted from April 2010 to June 2010 using both a print and a web version with identical questions. The print version of the survey was distributed at open house meetings on high-speed rail held in Eugene, Junction City, Albany, Sale...

  10. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  11. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  12. High-speed photodiodes in standard CMOS technology

    NARCIS (Netherlands)

    Radovanovic, S.

    2004-01-01

    This thesis describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. The electronics for (multiple users) long-haul communication is very expensive (InP, GaAs), but the usage is justified by the large number of

  13. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Optimization and performance of a high-speed plasma position digital control system. M Emami A R Babazadeh H Rasouli. Research Articles Volume 62 Issue 1 January 2004 pp 53-60 ...

  14. Faster than "g", Revisited with High-Speed Imaging

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  15. High speed ultrafast laser surface processing (Conference Presentation)

    Science.gov (United States)

    Mincuzzi, Girolamo; Kling, Rainer; Lopez, John; Hoenninger, Clemens; Audouard, Eric; Mottay, Eric P.

    2017-03-01

    Surface functionalization is a rapidly growing application for industrial ultrafast lasers. There is an increasing interest for high throughput surface processing, especially for texturing and engraving large manufacturing tools for different industrial fields such as injection molding, embossing and printing. Hydrophobic and hydrophilic surfaces, colored or deep black metal surfaces can now be industrially produced. The engraving speed is continuously improving following improvements in beam scanning technology and high average power industrial ultrafast lasers. Several tenths of MHz for the laser repetition rate and several hundreds of meter per second for the beam speed are available. More than 100 m/s scanning speed is then possible for laser surface structuring. But these surfaces are quite hard to produce since it is necessary to have a good compromise between high removal rate and high surface quality (low roughness, burr-free, narrow heat affected zone). In this work, we apply a simple engineering model based on the two temperature description of ultra-fast ablation to estimate key processing parameters. In particular, the pulse-to-pulse overlap which depends on the scanning velocity, the spot size, and the laser repetition rate all have to be adjusted to optimize the depth and roughness, otherwise heat accumulation and heat affected zone may appear. Optimal sequences of time and spatial superposition of pulses are determined and applied with a polygonal scanner. Ablation depth and processing speed obtained are compared with experimental results.

  16. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    a time domain of the order of few milliseconds. In order to achieve maximum performance it is essential to optimize the control system. In this paper plasma position measurement and the details of implementing high-speed PID controllers based on a TMS320c25 digital signal processor along with the system optimization ...

  17. Parallel and distributed processing in high speed traffic monitoring

    NARCIS (Netherlands)

    Cristea, Mihai Lucian

    2008-01-01

    This thesis presents a parallel and distributed approach for the purpose of processing network traffic at high speeds. The proposed architecture provides the processing power required to run one or more traffic processing applications at line rates by means of processing full packets at

  18. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  19. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  20. Investigations in high speed blanking: cutting forces and microscopic observations

    Directory of Open Access Journals (Sweden)

    Larue A.

    2010-06-01

    Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.

  1. Speed Acquisition Methods for High-Bandwidth Servo Drives

    OpenAIRE

    Bähr, Alexander

    2005-01-01

    A servo control needs the actual values of speed and position.Usually, the latter is computed from the signals of a position encoder; its 1st derivative is smoothed by a low-pass filter and used as actual speed signal. A number of enhanced and alternative methods is experimentally investigated in this thesis. Based on an equal steady-state behavior, the controlled servo's dynamic stiffness is used as the performance measure. The used setup has a special feature: because of its rather high res...

  2. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  3. Imaging acoustic sources moving at high-speed

    Science.gov (United States)

    Bodony, Daniel; Papanicolaou, George

    2006-11-01

    In the quantification of the noise radiated by a turbulent flow the source motion is important. It is well known that moving acoustic sources radiate sound preferrentially in the direction of motion in a phenomenon termed `convective amplification.' Modern acoustic theories have utilized this behavior in their predictions. In the inverse problem the imaging of noise sources, by techniques such as beam forming, the source motion is not explicitly taken into account. In this talk we consider the imaging of acoustic sources moving at speeds on the order of the the ambient speed of sound, as typical of high-speed jets, for which the D"oppler shift approximation is not appropriate. An analysis will be presented that can be used to estimate the source motion based on the radiated acoustic field.

  4. Modeling Compressibility Effects in High-Speed Turbulent Flows

    Science.gov (United States)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  5. Sound transmission loss of windows on high speed trains

    Science.gov (United States)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  6. Percutaneous vertebroplasty with a high-quality rotational angiographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Pedicelli, Alessandro [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: apedicelli@rm.unicatt.it; Rollo, Massimo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mrollo@rm.unicatt.it; Piano, Mariangela [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mariangela.piano@gmail.com; Re, Thomas J. [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: tomjre@gmail.com; Cipriani, Maria C. [Department of Gerontology, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: alexped@yahoo.com; Colosimo, Cesare [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: colosimo@rm.unicatt.it; Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: lbonomo@rm.unicatt.it

    2009-02-15

    We evaluated the reliability of a rotational angiographic unit (RA) with flat-panel detector as a single technique to guide percutaneous vertebroplasty (PVP) and for post-procedure assessment by 2D and 3D reformatted images. Fifty-five consecutive patients (104 vertebral bodies) were treated under RA fluoroscopy. Rotational acquisitions with 2D and 3D reconstruction were obtained in all patients for immediate post-procedure assessment. In complex cases, this technique was also used to evaluate the needle position during the procedure. All patients underwent CT scan after the procedure. RA and CT findings were compared. In all cases, a safe trans-pedicular access and an accurate control of the bone-cement injection were successfully performed with high-quality fluoroscopy, even at the thoracic levels and in case of vertebra plana. 2D and 3D rotational reconstructions permitted CT-like images that clearly showed needle position and were similar to CT findings in depicting intrasomatic implant-distribution. RA detected 40 cement leakages compared to 42 demonstrated by CT and showed overall 95% sensitivity and 100% specificity compared to CT for final post-procedure assessment. Our preliminary results suggest that high-quality RA is reliable and safe as a single technique for PVP guidance, control and post-procedure assessment. It permits fast and cost-effective procedures avoiding multi-modality imaging.

  7. Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders

    Science.gov (United States)

    Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.

    2017-12-01

    Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.

  8. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  9. High speed tracking control of ball screw drives

    Science.gov (United States)

    Liu, Chao-Yi; Huang, Ruei-Yu; Lee, An-Chen

    2017-10-01

    This paper presents a new method to achieve the requirement of high speed and high precision for ball screw drive. First, a PI controller is adopted to increase the equivalent structural damping in the velocity loop. Next, the design of the position controller is implemented by a two-stage method. The Doubly Coprime Factorization Disturbance Observer (DCFDOB) is developed to suppress disturbance and resist modelling error in the inner loop, while the outer loop is then designed based on method to extend the system bandwidth over first resonant frequency so that high speed and high accuracy can be achieved. Finally, a feedforward controller is implemented to improve tracking performance. The experiment results showed that the proposed method has smaller tracking error and better performance for suppressing disturbance when compared to the conventional cascaded P-PI control.

  10. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly......, a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hitting position. Benefiting from the high-speed visual feedback, the hitting position and thus the motion planning...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  11. Development of Industrial High-Speed Transfer Parallel Robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2013-08-15

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

  12. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    Science.gov (United States)

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  13. High-spin rotational bands in 123I

    Science.gov (United States)

    Singh, Purnima; Singh, A. K.; Wilson, A. N.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Carpenter, M. P.; Chmel, S.; Fallon, P.; Hagemann, G. B.; Herskind, B.; Ha, Hoa; Janssens, R. V. F.; Juhász, K.; Kardan, A.; Khoo, T. L.; Kondev, G.; Korichi, A.; Lauritsen, T.; Nyakó, B. M.; Rogers, J.; Sletten, G.; Timár, J.; Zhu, S.

    2012-12-01

    High-spin states in 123I were populated in the reaction 80Se(48Ca,p4n)123I at a beam energy of 207 MeV and γ-ray coincidence events were measured using the Gammasphere spectrometer. Three weakly populated, high-spin rotational bands have been discovered with characteristics similar to those of the long collective bands recently observed in other nuclei of this mass region. Configuration assignments are proposed based on calculations within the framework of the cranked Nilsson-Strutinsky approach.

  14. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA; Keller, J. [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. This paper examined wind turbine gearbox high-speed shaft bearing loads and stresses through modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.

  15. High-speed gears for gas turbine drive

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.

    1995-06-01

    Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

  16. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    Science.gov (United States)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  17. Difference in muscle activation patterns during high-speed versus standard-speed yoga: A randomized sequence crossover study.

    Science.gov (United States)

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2017-02-01

    To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (pyoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Performance analysis of WAVE communication under high-speed driving

    Directory of Open Access Journals (Sweden)

    Bo-young Kang

    2017-12-01

    Full Text Available Although WAVE (Wireless Access in Vehicular Environments is a technology designed for the high-speed mobile environments, WAVE communication performance in a real road environment is highly dependent on the surrounding environments such as moving vehicles, road shape, and topography. In particular, when a vehicle moves at high speed, the location of the vehicle and its proximity to the road-side device are rapidly changed and thus affect communication performance. Accordingly, we build a performance evaluation system based on the WAVE-LTE network cooperative operation. We also analyzed the performance differences based on external environmental factors, such as information volume and velocity, from the data acquired through actual vehicle tests.

  19. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    Science.gov (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  20. Quantification of the uncertainties of high-speed camera measurements

    Directory of Open Access Journals (Sweden)

    Robbe C.

    2014-01-01

    Full Text Available This article proposes a combined theoretical and experimental approach to assess and quantify the global uncertainty of a high-speed camera velocity measurement. The study is divided in five sections: firstly, different sources of measurement uncertainties performed by a high-speed camera are identified and quantified. They consist of geometrical uncertainties, pixel discretisation uncertainties or optical uncertainties. Secondly, a global uncertainty factor, taking into account the previously identified sources of uncertainties, is computed. Thirdly, a sensibility study of the camera set-up parameters is performed, allowing the experimenter to optimize these parameters in order to minimize the final uncertainties. Fourthly, the theoretical computed uncertainty is compared with experimental measurements. Good concordance has been found. Finally, the velocity measurement uncertainty study is extended to continuous displacement measurements as a function of time. The purpose of this article is to propose all the mathematical tools necessary to quantify the individual and global uncertainties, to highlight the important aspects of the experimental set-up, and to give recommendations on how to improve a specific set-up in order to minimize the global uncertainty. Taking all these into account, it has been shown that highly dynamic phenomena such as a ballistic phenomenon can be measured using a high-speed camera with a global uncertainty of less than 2%.

  1. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  2. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  3. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  4. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  5. Clinical application of high speed B mode echocardiography.

    Science.gov (United States)

    Kambe, T; Nishimura, K; Hibi, N; Sakakibara, T; Kato, T

    1977-06-01

    This study discusses the clinical application of high speed B mode echocardiography to a wide variety of heart diseases. We used a rapid mechanical sector scan at 30 frames per second and 120 scanning lines per frame, resulting in real time observation of cardiac structures. The sector angle was relatively wide (maximum 90 degrees). The tomograms were synchronized with the electrocardiogram and recorded on ordinary 35 mm or Polaroid film in conjunction with 8 mm cinematography. Heart cross sections could be recorded even in the presence of arrhythmia. We used a flat or focused, 10 mm diameter transducer made of lead zirconate-titanate with a resonant frequency of 2 or 3 MHz at a repetition rate of 3.6 kHz. High speed B mode echocardiography is a means of observing cross sections of the heart that can contribute to the improvement of accuracy in cardiac diagnosis.

  6. HIPO: a high-speed imaging photometer for occultations

    Science.gov (United States)

    Dunham, Edward W.; Elliot, James L.; Bida, Thomas A.; Taylor, Brian W.

    2004-09-01

    HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed, imaging photometer that will be used for a variety of time-resolved precise photometry observations, including stellar occultations by solar system objects and transits by extrasolar planets. HIPO has two independent CCD detectors and can also co-mount with FLITECAM, an InSb imager and spectrometer, making simultaneous photometry at three wavelengths possible. HIPO's flexible design and high-speed imaging capability make it well suited to carry out initial test observations on the completed SOFIA system, and to this end a number of additional features have been incorporated. Earlier papers have discussed the design requirements and optical design of HIPO. This paper provides an overview of the instrument, describes the instrument's features, and reviews the actual performance, in most areas, of the completed instrument.

  7. Embedded function methods for compressible high speed turbulent flow

    Science.gov (United States)

    Walker, J. D. A.

    1994-09-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  8. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  9. Comparison of high-speed rail and maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering; Nassar, F.E. [Keith and Schnars, Fort Lauderdale, FL (United States)

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, the German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).

  10. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  11. High-speed FPGA-based phase measuring profilometry architecture.

    Science.gov (United States)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng; Wang, Congjun

    2017-05-01

    This paper proposes a high-speed FPGA architecture for the phase measuring profilometry (PMP) algorithm. The whole PMP algorithm is designed and implemented based on the principle of full-pipeline and parallelism. The results show that the accuracy of the FPGA system is comparable with those of current top-performing software implementations. The FPGA system achieves 3D sharp reconstruction using 12 phase-shifting images and completes in 21 ms with 1024 × 768 pixel resolution. To the best of our knowledge, this is the first fully pipelined architecture for PMP systems, and this makes the PMP system very suitable for high-speed embedded 3D shape measurement applications.

  12. High-speed cell sorting: fundamentals and recent advances.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2003-02-01

    Cell sorters have undergone dramatic technological improvements in recent years. Driven by the increased ability to differentiate between cell types, modern advances have yielded a new generation of cytometers, known as high-speed cell sorters. These instruments are capable of higher throughput than traditional sorters and can distinguish subtler differences between particles by measuring and processing more optical parameters in parallel. These advances have expanded their use to facilitate genomic and proteomic discovery, and as vehicles for many emerging cell-based therapies. High-speed cell sorting is becoming established as an essential research tool across a broad range of scientific fields and is poised to play a pivotal role in the latest therapeutic modalities.

  13. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    Science.gov (United States)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  14. Robust adaptive cruise control of high speed trains.

    Science.gov (United States)

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  16. Laser ablated hydantoin: A high resolution rotational study

    Science.gov (United States)

    Alonso, Elena R.; Kolesniková, Lucie; Alonso, José L.

    2017-09-01

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  17. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  18. Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

    Science.gov (United States)

    Schmoll, Tilman; Leitgeb, Rainer A.

    The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman's layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.

  19. High-speed deformation processing of a titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisakandala, S.; Medeiros, S.C.; Malas, J.C. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Yellapregada, P.V.R.K. [Department of Metallurgy, Indian Institute of Science Bangalore, Karnataka 560 012 (India); Frazier, W.G. [NCPA Coliseum Drive, University, MS 38677 (United States); Dutta, B. [Department of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2003-09-01

    The deformation rate is the critical parameter for the phase transforming mechanism and subsequently the morphology of Ti-Al-V alloys, which in turn determines the feasibility of high-speed deformation. The evolution of defect-free equiaxed microstructures is due to dislocation-induced heterogeneous nucleation and growth. The Figure shows a microstructure of a Ti-6Al-4V specimen deformed at 1000 C in a backscattered SEM image. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Design and specification of a high speed transport protocol

    OpenAIRE

    McArthur, Robert C.

    1992-01-01

    Approved for public release; distribution is unlimited Due to the increase in data throughput potential provided by high speed (fiber optic) networks, existing transport protocols are becoming increasingly incapable of providing reli­able and timely transfer of data. Whereas in networks of the past it was the transmission medium that caused the greatest communications delay, it is the case today that the transport protocols themselves have become the bottleneck. This thesis provides de...

  1. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  2. Study and improvement of a high speed hydraulic jack

    Science.gov (United States)

    Garcia, M. S.; Nouillant, M.; Viot, P.

    2006-08-01

    This paper describes the control problem of a high speed hydraulic jack. We shall estimate the performances of a servo-control with a classic controlled correction of type PD (Proportional Derivate). The study will be performed from a model (servo valve + jack + load), whose simulation will be performed in the Matlab-SimulinK environment. The aim of this article is to characterize, by simulating, the interdependence between the experimental apparatus and the tested object.

  3. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  4. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  5. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  6. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  7. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    Science.gov (United States)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  8. Model Based Research of Dynamic Performance of Shaft-Bearing System in High-Speed Field

    Directory of Open Access Journals (Sweden)

    Teng Hu

    2014-01-01

    Full Text Available Dynamic performance of the high-speed running shaft-bearing system (SBS is different from that of idle state system due to the high-speed effects (HSE, including shaft centrifugal force, gyroscopic moment, and nonlinear bearing operational stiffness. In this paper, aiming at improving the operation stability, dynamic performance of SBS operating in high-speed field is investigated based on a finite element (FE dynamic model. Firstly, the Timoshenko beam elements are applied to develop the SBS FE model with full consideration of HSE. Secondly, idle state frequency response function at the front tip is obtained analytically and experimentally to validate that the FE model can illustrate the system dynamic behaviors in static condition. Finally, by substituting various rotational velocities into the FE model, the HSE on system natural frequencies are studied one by one as well as together. The results show that, when bearing is being extremely light preloaded, SBS frequencies are affected by the HSE of shaft more than bearing, especially where the gyroscopic moment effect of shaft is the most influential factor. Moreover, the nonmonotonic variation of bearing operational stiffness is analyzed. The “stiffen” phenomenon explained in this paper provides a more comprehensive understanding of the nonlinear bearing operational stiffness.

  9. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Mursula, K.; Holappa, L. [ReSoLVE Centre of Excellence, Department of Physics, University of Oulu (Finland); Lukianova, R., E-mail: kalevi.mursula@oulu.fi [Geophysical Center of Russian Academy of Science, Moscow (Russian Federation)

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  10. Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing

    Science.gov (United States)

    DeWitt, Kenneth

    2005-01-01

    The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.

  11. Development of High-speed Machining Database with Case-based Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining data...

  12. Numerical analysis of dipole sound source around high speed trains.

    Science.gov (United States)

    Takaishi, Takehisa; Sagawa, Akio; Nagakura, Kiyoshi; Maeda, Tatsuo

    2002-06-01

    As the maximum speed of high speed trains increases, the effect of aeroacoustic noise on the sound level on the ground becomes increasingly important. In this paper, the distribution of dipole sound sources at the bogie section of high speed trains is predicted numerically. The three-dimensional unsteady flow around a train is solved by the large eddy simulation technique. The time history of vortices shows that unstable shear layer separation at the leading edge of the bogie section sheds vortices periodically. These vortices travel downstream while growing to finally impinge upon the trailing edge of the section. The wavelength of sound produced by these vortices is large compared to the representative length of the bogie section, so that the source region can be regarded as acoustically compact. Thus a compact Green's function adapted to the shape can be used to determine the sound. By coupling the instantaneous flow properties with the compact Green's function, the distribution of dipole sources is obtained. The results reveal a strong dipole source at the trailing edge of the bogie section where the shape changes greatly and the variation of flow with time is also great. On the other hand, the bottom of the bogie section where the shape does not change, or the leading edge and boundary layer where the variation of flow with time is small, cannot generate a strong dipole source.

  13. Propeller charts for the determination of the rotational speed for the maximum ratio of the propulsive efficiency to the specific fuel consumption

    Science.gov (United States)

    Biermann, David; Conway, Robert N

    1942-01-01

    A set of propeller operating efficiency charts, based on a coefficient from which the propeller rotational speed has been eliminated, is presented. These charts were prepared with data obtained from tests of full-size metal propellers in the NACA propeller-research tunnel. Working charts for nine propeller-body combinations are presented, including results from tests of dual-rotating propellers. These charts are to be used in the calculation of the range and the endurance of airplanes equipped with constant-speed propellers in which, for given flight conditions, it is desired to determine the propeller revolution speed that gives the maximum ratio of the propulsive efficiency to the specific fuel consumption. The coefficient on which the charts are based may be written in the form of a thrust coefficient or a thrust-power coefficient. A method of using the charts is outlined and sample computations for a typical airplane are included.

  14. Phoenix: Preliminary design of a high speed civil transport

    Science.gov (United States)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  15. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  16. Analog parallel processor hardware for high speed pattern recognition

    Science.gov (United States)

    Daud, T.; Tawel, R.; Langenbacher, H.; Eberhardt, S. P.; Thakoor, A. P.

    1990-01-01

    A VLSI-based analog processor for fully parallel, associative, high-speed pattern matching is reported. The processor consists of two main components: an analog memory matrix for storage of a library of patterns, and a winner-take-all (WTA) circuit for selection of the stored pattern that best matches an input pattern. An inner product is generated between the input vector and each of the stored memories. The resulting values are applied to a WTA network for determination of the closest match. Patterns with up to 22 percent overlap are successfully classified with a WTA settling time of less than 10 microsec. Applications such as star pattern recognition and mineral classification with bounded overlap patterns have been successfully demonstrated. This architecture has a potential for an overall pattern matching speed in excess of 10 exp 9 bits per second for a large memory.

  17. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  18. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    Science.gov (United States)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  19. Adaptations to speed endurance training in highly trained soccer players

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Fiorenza, Matteo; Lund, Anders

    2016-01-01

    PURPOSE: The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I...... and II muscle fibers. METHODS: During the last nine weeks of the season, thirteen semi-professional soccer players performed additional speed endurance training sessions consisting of 2-3 sets of 8 - 10 repetitions of 30 m sprints with 10 s of passive recovery (SET). Before and after SET, subjects......-Yo Intermittent Recovery Test level 1 (YYIRT-1) was performed and a muscle biopsy was obtained at rest. RESULTS: YYIRT-1 performance was 11.6±6.4% (mean±SD) better (2803±330 vs. 3127±383 m, P

  20. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  1. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  2. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  3. Design and Analysis of High Speed Capacitive Pipeline DACs

    OpenAIRE

    Duong, Quoc-Tai; Dabrowski, Jerzy; Alvandpour, Atila

    2014-01-01

    Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the capacitor array imperfections. While it is possible to design a highly linear output driver with HD3 < -70 dB and HD2 < -90 dB over 0.55 GHz band as we show, the maxi...

  4. High-speed optical links for UAV applications

    Science.gov (United States)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  5. Development of FPGA-based High-Speed serial links for High Energy Physics Experiments

    OpenAIRE

    Perrella, Sabrina

    2016-01-01

    High Energy Physics (HEP) experiments generate high volumes of data which need to be transferred over long distance. Then, for data read out, reliable and high-speed links are necessary. Over the years, due to their extreme high bandwidth, serial links (especially optical) have been preferred over the parallel ones. So that, now, high-speed serial links are commonly used in Trigger and Data Acquisition (TDAQ) systems of HEP experiments, not only for data transfer, but also for the distributio...

  6. Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator

    Science.gov (United States)

    Saulescu, R.; Neagoe, M.; Munteanu, O.; Cretescu, N.

    2016-08-01

    The paper presents a study on the kinematic and static performances of a new type of 1DOF (Degree Of Freedom) planetary speed increaser to be implemented in wind turbines, a transmission with three operating cases: a) one input and one output, b) one input and two outputs, in which the speed of the secondary output is equal to the input speed, and c) with one input and two outputs, where the secondary output speed is higher than the input speed. The proposed speed increaser contains two sun gears and a double satellite, allowing operation with an output connected to the fixed stator of a classic generator (case I) or with two counterrotating outputs that drive a counter-rotating generator (with a mobile stator). A new variant of planetary transmission capable of providing the speed increase of the generator stator and, thus, the increase of the relative speed between the generator rotor and stator is obtained by the parallel connection of the speed increaser with a planetary gear. The three conceptual variants of planetary transmission are analytically modelled and comparatively analysed based on a set of kinematic and static parameters. The proposed transmission has higher performances compared to the same transmission with one input and one output, the increase of the kinematic amplification ratio and efficiency being achieved simultaneously.

  7. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  8. AC_ICAP: A Flexible High Speed ICAP Controller

    Directory of Open Access Journals (Sweden)

    Luis Andres Cardona

    2015-01-01

    Full Text Available The Internal Configuration Access Port (ICAP is the core component of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs. We developed a new high speed ICAP controller, named AC_ICAP, completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were implemented to evaluate its performance when connected to Peripheral Local Bus (PLB, Fast Simplex Link (FSL, and AXI interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 μs which implies a speed-up of more than 380x compared to the Xilinx XPS_HWICAP controller.

  9. Radio Polarisation Study of High Rotation Measure AGNs

    Directory of Open Access Journals (Sweden)

    Yik Ki Ma

    2017-10-01

    Full Text Available As radio polarised emission from astrophysical objects traverse through foreground magnetised plasma, the physical conditions along the lines of sight are encrypted in the form of rotation measure (RM. We performed broadband spectro-polarimetric observations of high rotation measure ( | RM | ≳ 300 rad m − 2 sources away from the Galactic plane ( | b | > 10 ∘ selected from the NVSS RM catalogue. The main goals are to verify the NVSS RM values, which could be susceptible to n π -ambiguity, as well as to identify the origin of the extreme RM values. We show that 40 % of our sample suffer from n π -ambiguity in the NVSS RM catalogue. There are also hints of RM variabilities over ∼20 years epoch for most of our sources, as revealed by comparing the RM values of the two studies in the same frequency ranges after correcting for n π -ambiguity. At last, we demonstrate the possibility of applying QU-fitting to study the ambient media of AGNs.

  10. How sand grains stop a high speed intruder

    Science.gov (United States)

    Behringer, Robert

    When a speeding intruder impacts on a granular material, it comes rapidly to rest after penetrating only a modest distance. Empirical dynamical models, dating to the 19th century (if not earlier), describe the drag on the intruder in terms of two types of depth-dependent forces: one a static force, which also includes gravity, and the other a collisional force proportional to the square of the instantaneous speed of the intruder. What processes occur in the material to so quickly decelerate the intruder? We address this question through experiments and simulations (work of Lou Kondic and collaborators). We first probe the granular response using quasi-two-dimensional granular materials consisting of photoelastic discs. When such a particle experiences a force, it appears bright under cross-polarized illumination. High speed video reveals dynamic force transmission into the material along force chains that form in response to the intruder motion. These chains are nearly normal to the intruder surface, implying that collisional rather than frictional forces dominate the momentum transfer from intruder to grains. These observations allow the formation of a collision-based model that correctly captures the collisional drag force for both 2D and 3D intruders of a variety of shapes. This talk will develop a collisional picture of impact, and also explore the change in the system response as the impact speed increases. Experimental collaborators include Abe Clark, Cacey Stevens Bester, and Alec Petersen. This work supported by DTRA, NSF Grant DMR1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  11. Systems and assemblies for transferring high power laser energy through a rotating junction

    Science.gov (United States)

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  12. High-sensitivity, high-speed continuous imaging system

    Science.gov (United States)

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  13. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  14. High-speed signal processing using highly nonlinear optical fibres

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2009-01-01

    We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...... relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......-state phase shift keying (D8PSK) signals....

  15. Generation of an Optimum High Speed High Accuracy Operational Amplifier.

    Science.gov (United States)

    1985-09-01

    certainly will have gains and emitter resistances that are not identical. In mono- lithic op-amps, it is highly desirable that all of the tran- sistors on a...external resistances ( a and K . altered). In general, w and Q are functions of a and K. p .p , "It is desirable to select these values such that the...220),OMEGA(220) COMPLEX HH,S,DENOM REAL K,ANUM c THE FOLLOWING ARE CONSTANTS TO BE UTILIZED:A01=>DC GAIN OF FIRST c OPAMP ;A02=>DC GAIN OF SECOND OPAMP

  16. Exploring THz band for high speed wireless communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Hangkai; Jia, Shi

    2016-01-01

    We overview recent trend in developing high speed wireless communication systems by exploring large bandwidth available in the THz band, and we also present our recent experimental achievements on 400 GHz wireless transmission with a data rate of up to 60 Gbit/s by using a uni-travelling carrier...... photodiode (UTC-PD) as emitter and a Schottky diode as receiver. This system is foreseen to be capable of accommodating faster data rates beyond 100 Gbit/s, and would find application in bandwidth hungry scenarios....

  17. HORNET: High-speed Onion Routing at the Network Layer

    OpenAIRE

    Chen, Chen; Asoni, Daniele Enrico; Barrera, David; Danezis, George; Perrig, Adrian

    2015-01-01

    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as requ...

  18. An adaptive finite element method for high speed flows

    Science.gov (United States)

    Peraire, J.; Morgan, K.; Peiro, J.; Zienkiewicz, O. C.

    1987-01-01

    The solution of the equations of compressible high speed flow, on unstructured triangular grids in 2D and tetrahedral grids in 3D, is considered. Solution methods based upon both Taylor-Galerkin and Runge-Kutta time-stepping techniques are presented and the incorporation of the ideas of flux corrected transport (FCT) is discussed. These methods are combined with an adaptive mesh regeneration procedure and are employed in the solution of several examples, consisting of Euler flows in both 2D and 3D and Navier-Stokes flows in 2D.

  19. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  20. 3D high-speed cinematography and its problems

    Science.gov (United States)

    Eisfeld, Fritz

    1999-06-01

    Many fast events are three dimensional but the normal high- speed cameras are only suitable for 2-D images. Therefore it was investigated which stereoscopic methods could be used to study three dimensional processes. The choice of the optimal method is dependent on the investigated event. To record the 3-D spreading of an injection jet in a laboratory has to use other methods as to record an explosion from a smoke bomb in open air. Three methods are described and critically compared. Furthermore it is shown how from films with double pictures a cinematographic film can be made.

  1. High-Speed EMU TCMS Design and LCC Technology Research

    Directory of Open Access Journals (Sweden)

    Hongwei Zhao

    2017-02-01

    Full Text Available This paper introduces the high-speed electrical multiple unit (EMU life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC system. Each platform facilitates EMU LCC management and is an important part of the system.

  2. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    OpenAIRE

    Barry, Andrew J.; Tedrake, Russ

    2014-01-01

    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile ARM processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a local depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, sma...

  3. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  4. Preliminary results from the High Speed Airframe Integration Research project

    Science.gov (United States)

    Coen, Peter G.; Sobieszczanski-Sobieski, Jaroslaw; Dollyhigh, Samuel M.

    1992-01-01

    A review is presented of the accomplishment of the near term objectives of developing an analysis system and optimization methods during the first year of the NASA Langley High Speed Airframe Integration Research (HiSAIR) project. The characteristics of a Mach 3 HSCT transport have been analyzed utilizing the newly developed process. In addition to showing more detailed information about the aerodynamic and structural coupling for this type of vehicle, this exercise aided in further refining the data requirements for the analysis process.

  5. High-speed digital-to-analog converter concepts

    Science.gov (United States)

    Schmidt, Christian; Kottke, Christoph; Jungnickel, Volker; Freund, Ronald

    2017-01-01

    In today's fiber-optic communication systems, the bandwidth of the photonic components, i.e. modulators and photo diodes, is way greater than that of their electrical counterparts, i.e. digital-to-analog converters (DACs) and analog-to-digital converters (ADCs). In order to increase the transmission capacity, the bandwidth limitations need to be overcome. We review the progress and the recent results in the field of high-speed DACs, which are desirable for software-defined transmitters. Furthermore, we evaluate interleaving concepts regarding their ability to overcome the above mentioned limitations and demonstrate recent experimental results for a bandwidth interleaved DAC with 40 GHz analog electrical bandwidth.

  6. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  7. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  8. Storage and compression design of high speed CCD

    Science.gov (United States)

    Cai, Xichang; Zhai, LinPei

    2009-05-01

    In current field of CCD measurement, large area and high resolution CCD is used to obtain big measurement image, so that, speed and capacity of CCD requires high performance of later storage and process system. The paper discusses how to use SCSI hard disk to construct storage system and use DSPs and FPGA to realize image compression. As for storage subsystem, Because CCD is divided into multiplex output, SCSI array is used in RAID0 way. The storage system is com posed of high speed buffer, DM A controller, control M CU, SCSI protocol controller and SCSI hard disk. As for compression subsystem, according to requirement of communication and monitor system, the output is fixed resolution image and analog PA L signal. The compression means is JPEG 2000 standard, in which, 9/7 wavelets in lifting format is used. 2 DSPs and FPGA are used to com pose parallel compression system. The system is com posed of FPGA pre-processing module, DSP compression module, video decoder module, data buffer module and communication module. Firstly, discrete wavelet transform and quantization is realized in FPGA. Secondly, entropy coding and stream adaption is realized in DSPs. Last, analog PA L signal is output by Video decoder. Data buffer is realized in synchronous dual-port RAM and state of subsystem is transfer to controller. Through subjective and objective evaluation, the storage and compression system satisfies the requirement of system.

  9. High speed optical filtering using active resonant subwavelength gratings

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Ellis, A. R.; Marshall, L. H.; Carter, T. R.; Hunker, J. D.; Samora, S.

    2010-02-01

    In this work, we describe the most recent progress towards the device modeling, fabrication, testing and system integration of active resonant subwavelength grating (RSG) devices. Passive RSG devices have been a subject of interest in subwavelength-structured surfaces (SWS) in recent years due to their narrow spectral response and high quality filtering performance. Modulating the bias voltage of interdigitated metal electrodes over an electrooptic thin film material enables the RSG components to act as actively tunable high-speed optical filters. The filter characteristics of the device can be engineered using the geometry of the device grating and underlying materials. Using electron beam lithography and specialized etch techniques, we have fabricated interdigitated metal electrodes on an insulating layer and BaTiO3 thin film on sapphire substrate. With bias voltages of up to 100V, spectral red shifts of several nanometers are measured, as well as significant changes in the reflected and transmitted signal intensities around the 1.55um wavelength. Due to their small size and lack of moving parts, these devices are attractive for high speed spectral sensing applications. We will discuss the most recent device testing results as well as comment on the system integration aspects of this project.

  10. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  11. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  12. Role of the eye in high-speed motion analysis

    Science.gov (United States)

    Hyzer, William G.

    1997-05-01

    Prior to the investigation of the photographic process over 150 years ago, the analyses of rapid motions were limited by the dynamic efficacies of the human eye, which has a temporal resolution of approximately 1/10 sec and a maximum information acquisition rate estimated at 103 to 104 bits/sec. At high rates of object motion, only the simplest actions can be resolved, comprehended and retained in human memory. Advances in the field of high-speed photography drastically changed all this by providing us with the ability today to capture permanent images of transient events at acquisition rates in excess of 1012 bits/sec. As remarkable as these improvements in temporal resolution and image retention may be, the final step in correctly interpreting any image still rests largely upon the analyst's ability to process visual data. Those who enter the field of image analysis soon learn how capricious the eye can be in this task. It is incumbent upon anyone performing important image analyses to have at least a basic understanding of the eye's performance characteristics, especially its limitations and capricious anomalies. Exemplary data presented in this paper are drawn from the scientific literature and the author's forty years of experience as a researcher, author and educator in the field of high-speed imaging.

  13. Reflectively coupled waveguide photodetector for high speed optical interconnection.

    Science.gov (United States)

    Hsu, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  14. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  15. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  16. Investigation of a Plasma Ball using a High Speed Camera

    Science.gov (United States)

    Laird, James; Zweben, Stewart; Raitses, Yevgeny; Zwicker, Andrew; Kaganovich, Igor

    2008-11-01

    The physics of how a plasma ball works is not clearly understood. A plasma ball is a commercial ``toy'' in which a center electrode is charged to a high voltage and lightning-like discharges fill the ball with many plasma filaments. The ball uses high voltage applied on the center electrode (˜5 kV) which is covered with glass and capacitively coupled to the plasma filaments. This voltage oscillates at a frequency of ˜26 kHz. A Nebula plasma ball from Edmund Scientific was filmed with a Phantom v7.3 camera, which can operate at speeds up to 150,000 frames per second (fps) with a limit of >=2 μsec exposure per frame. At 100,000 fps the filaments were only visible for ˜5 μsec every ˜40 μsec. When the plasma ball is first switched on, the filaments formed only after ˜800 μsec and initially had a much larger diameter with more chaotic behavior than when the ball reached its final plasma filament state at ˜30 msec. Measurements are also being made of the final filament diameter, the speed of the filament propagation, and the effect of thermal gradients on the filament density. An attempt will be made to explain these results from plasma theory and movies of these filaments will be shown. Possible theoretical models include streamer-like formation, thermal condensation instability, and dielectric barrier discharge instability.

  17. Control-Surface Instability on High-Speed Airplanes

    Science.gov (United States)

    Phillips, William H.

    1942-01-01

    Tests of several modern airplanes indicate that control surfaces with a high degree of aerodynamic balance are likely to possess characteristics which make them unsatisfactory or dangerous in high-speed flight. Dive tests made in the spring of 1940 at the NACA on a naval fighter-type airplane illustrate one form of instability that may be encountered. During a dive at an indicated airspeed of 365 miles per hour, the ailerons suddenly overbalanced. The efforts of the pilot to bring the ailerons back to neutral resulted in a violent oscillation of the control stick from side to side. Fortunately, the force required to return the ailerons to neutral was within the pilot's capabilities. A time history of the maneuver is given in figure1 and typical frames from motion pictures of the cockpit and of the wing, taken during the maneuver, are given in figure 2. In the illustrated case, the occurrence of aerodynamic overbalance was attributed to a slight bulge, approximately 1/16 inch thick, on the lower surface of the leading edges of the ailerons, caused by the installation of additional mass balance ahead of the hinge line. A drawing showing the shape of the bulge is given in figure 3. After this slight protuberance had been eliminated, dives were successfully made at higher speeds.

  18. Preliminary design of nine high speed civil transports

    Science.gov (United States)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  19. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  20. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  1. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  2. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Recent high-speed rail vehicles; Kosoku tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sone, S. [The University of Tokyo, Tokyo (Japan); Ishizu, K. [Central Japan Railway Company, Nagoya (Japan); Yoshie, N. [Nishi-Nippon Railroad Co. Ltd., Fukuoka (Japan); Hata, T. [East Japan Railway Co., Tokyo (Japan); Watanabe, T.; Hata, H. [Railway Technical Research Institute, Tokyo (Japan); Brun, D.

    1997-05-01

    This paper describes the latest progress in high speed rail vehicles. It was in 1981 when TGV has inaugurated commercial operation with a speed of 260 km/h. Japan is trying to recover from a setback by putting forward the 300-line vehicle of discrete motive force system, and the 500-line vehicle of complete discrete motive force system featured by reduced weight and a unique power collection system. Central Japan Railway is moving forward a 700-line train aimed at improving comfortability and reducing noise. The 500-line vehicle has vehicular features such as the sharpened head shape, weight reduction and adoption of vibration control, and also such features in electric circuits as centralized main circuit devices and improved monitoring devices. The vehicle`s running test verified stable run at 300 km/h. The Shinkansen vehicle designed by East Japan Railway adopted collective control on the main circuit system, and transferred to a system in which large capacity GTOs are used to drive three-phase induction motors. The Inter City Express has been put into practical use in Germany, with traction vehicles arranged on both ends of a train. Technological characteristics in TGV may be pointed out as avoidance of curves and high gradient. Exchange of electric train technologies is in progress between Japan and Europe. 19 refs., 27 figs., 6 tabs.

  4. High-speed digital video tracking system for generic applications

    Science.gov (United States)

    Walton, James S.; Hallamasek, Karen G.

    2001-04-01

    The value of high-speed imaging for making subjective assessments is widely recognized, but the inability to acquire useful data from image sequences in a timely fashion has severely limited the use of the technology. 4DVideo has created a foundation for a generic instrument that can capture kinematic data from high-speed images. The new system has been designed to acquire (1) two-dimensional trajectories of points; (2) three-dimensional kinematics of structures or linked rigid-bodies; and (3) morphological reconstructions of boundaries. The system has been designed to work with an unlimited number of cameras configured as nodes in a network, with each camera able to acquire images at 1000 frames per second (fps) or better, with a spatial resolution of 512 X 512 or better, and an 8-bit gray scale. However, less demanding configurations are anticipated. The critical technology is contained in the custom hardware that services the cameras. This hardware optimizes the amount of information stored, and maximizes the available bandwidth. The system identifies targets using an algorithm implemented in hardware. When complete, the system software will provide all of the functionality required to capture and process video data from multiple perspectives. Thereafter it will extract, edit and analyze the motions of finite targets and boundaries.

  5. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  6. High-Speed Solar Wind and Geomagnetic Activity

    Science.gov (United States)

    Olyak, M. R.

    2015-03-01

    The impact of high-speed solar wind disturbances on the occurrence of geomagnetic storms is analyzed. The solar wind velocity values, determined from scintillation observations at the UTR-2 and URAN-2 Ukrainian decameter radio telescopes are analyzed together with the solar wind parameters at the Earth’s orbit and geomagnetic indices Ap. The solar wind velocity increase during observations was chiefly caused by the high-speed streams from coronal holes. At the time of February 2011, the X-class solar flare, accompanied by coronal mass ejections, was also observed. It was found that the geomagnetic disturbances of that period occurred at negative daily values of the interplanetary magnetic field component being perpendicular to the ecliptic plane. It was shown that the increasing solar wind velocity observed with the UTR-2 and URAN-2 within a wide range of helio- latitudes leads to increase in geomagnetic index Ap and to geomagnetic disturbance. Whereas the increase of solar wind velocity in a narrow range of helio-latitudes near to the ecliptic plane was never accompanied by geomagnetic perturbations.

  7. High-speed visual feedback for realizing high-performance robotic manipulation

    Science.gov (United States)

    Huang, S.; Bergström, N.; Yamakawa, Y.; Senoo, T.; Ishikawa, M.

    2017-02-01

    High-speed vision sensing becomes a driving factor in developing new methods for robotic manipulation. In this paper we present two such methods in order to realize high-performance manipulation. First, we present a dynamic compensation approach which aims to achieve simultaneously fast and accurate positioning under various (from system to external environment) uncertainties. Second, a high-speed motion strategy for manipulating flexible objects is introduced to address the issue of deformation uncertainties. Both methods rely on high-speed visual feedback and are model independent, which we believe is essential to ensure good flexibility in a wide range of applications. The high-speed visual feedback tracks the relative error between the working tool and the target in image coordinates, which implies that there is no need for accurate calibrations of the vision system. Tasks for validating these methods were implemented and experimental results were provided to illustrate the effectiveness of the proposed methods.

  8. Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension.

    Science.gov (United States)

    Lebel, Paul; Basu, Aakash; Oberstrass, Florian C; Tretter, Elsa M; Bryant, Zev

    2014-04-01

    Single-molecule measurements of DNA twist and extension have been used to reveal physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with high rotational drag, which prevents detection of short-lived intermediates or small angular steps. We introduce gold rotor bead tracking (AuRBT), which yields >100× improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, which are monitored by instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. Our analysis of high-speed structural dynamics of DNA gyrase using AuRBT revealed an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50× shorter integration times than previous techniques; we demonstrated high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence.

  9. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  10. MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri

    2013-09-03

    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.

  11. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... that silicon can indeed be used to control Tbit/s serial data signals [2], perform 640 Gbit/s wavelength conversion [3] 640 Gbit/s serial-to-parallel conversion [4], 160 Gbit/s packet switching as well as all-optical regeneration [5]. We will also discuss the performance limitations of crystalline silicon...

  12. High speed MSM photodetector based on Ge nanowires network

    Science.gov (United States)

    Dhyani, Veerendra; Das, Samaresh

    2017-05-01

    This paper presents the photoresponse characteristics of a high speed Ge nanowires (NWs) network metal-semiconductor-metal photodetector. Ge NWs with different diameters (30 nm-100 nm) were grown by a vapour-liquid-solid method on SiO2/Si (100) wafers. Responsivity up to 1.75 A W-1 has been observed for a 30 nm NWs device compared to 0.5 A W-1 for a 100 nm NWs detector. A large population of surface states results in higher responsivity in a smaller diameter NWs device. The high gain in photocurrent has been explained using back-to-back Schottky junctions in a NWs network. The 30 nm NWs detector shows a fast photoresponse with a rise time of 95 μs and a fall time of 100 μs. The observed diameter-dependent time response in network NWs devices has been explained using barrier-dominant photo-conductance.

  13. Physiological consequences of military high-speed boat transits.

    Science.gov (United States)

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (boat transits.

  14. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  15. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  16. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  17. Propulsion challenges and opportunities for high-speed transport aircraft

    Science.gov (United States)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  18. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  19. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  20. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    OpenAIRE

    Oleg Shevchenko

    2016-01-01

    Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experie...

  1. High-Speed Rotor Analytical Dynamics on Flexible Foundation Subjected to Internal and External Excitation

    Science.gov (United States)

    Jivkov, Venelin S.; Zahariev, Evtim V.

    2016-12-01

    The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.

  2. Dental preparation with sonic vs high-speed finishing: analysis of microleakage in bonded veneer restorations.

    Science.gov (United States)

    Faus-Matoses, Ignacio; Solá-Ruiz, Fernanda

    2014-02-01

    To compare marginal microleakage in porcelain veneer restorations following dental finishing using two types of instruments to test the hypothesis that microleakage will be less when teeth are prepared with sonic oscillating burs than when prepared with high-speed rotating burs. Fifty-six extracted human maxillary central incisors were selected and divided randomly into two groups. Group 1 samples underwent dental finishing using high-speed rotating diamond burs, while group 2 used sonic oscillating diamond burs. Buccal chamfer preparation was carried out for both groups. Forty eight of the samples (24 per group) were restored using IPS Empress ceramic veneers. 2% methylene blue was used to evaluate microleakage at the tooth/composite veneer interface. Teeth were sectioned lengthwise into three parts and microleakage was measured at two points - cervical and incisal - on each section. Before bonding, four teeth per group underwent SEM examination. Evaluation of microleakage at the cervical dentin margin showed a value of 10.5% in group 1 and 6.6% in group 2, which was statistically significantly different (p microleakage was 1.3% for group 1 and 1.2% for group 2, which was not significantly different. SEM revealed different patterns of surface texture in both areas according to the instrument used. Group 1 exhibited parallel horizontal abrasion grooves with a milled effect and thick smear layers; group 2 showed abrasive erosion, discontinuous perpendicular depressions, and thin smear layers. Tooth preparations finished with sonic burs produced significantly less microleakage in the cervical dentin area of bonded veneer restorations. No differences were found in the incisal enamel area.

  3. High-speed single-pixel digital holography

    Science.gov (United States)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  4. Expressions For Total Energy And Relativistic Kinetic Energy At Low Speeds In Special Relativity Must Include Rotational And Vibrational As Well As Linear Kinetic Energies

    Science.gov (United States)

    Brekke, Stewart

    2017-09-01

    Einstein calculated the total energy at low speeds in the Special Theory of Relativity to be Etotal =m0c2 + 1 / 2m0v2 . However, the total energy must include the rotational and vibrational kinetic energies as well as the linear kinetic energies. If 1 / 2 Iω2 is the expression for the rotational kinetic energy of mass and 1 / 2 kx02 is the vibrational kinetic energy expression of a typical mass, the expression for the total energy of a mass at low speeds must be Etotal =m0c2 + 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 . If this expression is correct, the relativistic kinetic energy of a mass. at low speeds must include the rotational and vibrational kinetic energies as well as the linear kinetic energies since according to Einstein K = (m -m0) c2 and therefore, K = 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 .

  5. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

    Science.gov (United States)

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela

    2017-10-01

    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  6. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  7. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    of LC-oscillators with oscillator criteria, phase noise and different topologies are given as background. The theory of PLL circuits is also presented. Guidelines and suggestions for static divider, VCO, LA and CDR design are presented using static divider, 50-100 GHz VCO and 100Gb/s LA+CDR circuits......This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...

  8. Simplified Dynamic Model for High-Speed Checkweigher

    Science.gov (United States)

    Yamakawa, Yuji; Yamazaki, Takanori

    In this paper, we concern with the dynamic behaviors of a high speed mass measurement system with conveyor belt (a checkweigher). The goal of this paper is to construct a simple model of the measurement system so as to duplicate a response of the system. The checkweigher with electromagnetic force compensation can be approximated by the combined spring-mass-damper systems as the physical model, and the equation of motion is derived. The model parameters (a damping coefficient and a spring constant) can be obtained from the experimental data for open-loop system. Finally, the validity of the proposed model can be confirmed by comparison of the simulation results with the realistic responses. The simple dynamic model obtained offers practical and useful information to examine control scheme.

  9. AGAINTS AND FOR THE HIGH SPEED TRAINS’ MULTIMPLICATION

    Directory of Open Access Journals (Sweden)

    Benea Ciprian

    2008-05-01

    Full Text Available In this exposure we intend to make visible the situation in which global warming is given by road and air transport, how could be revitalized railways, and how high speed trains could become a preferred mode of transport. But there is manifesting an opposition to railway development, nurtured by different interests, ranking from governments themselves, to oil importing countries, oil exporting countries, oil companies with their colligate partners situated along the oil distribution chain. But, there could be identified some voices which could create themselves the possibility to speak lauder in order to promote railway transportation. The greens, NGOs, the epistemic communities, for example, could unite their force to make something in order to provide the framework for rail transportation’s development, and for road and air transport reduction, for the benefit of while humankind.

  10. Design implications of high-speed digital PPM

    Science.gov (United States)

    Sibley, Martin J. N.

    1993-11-01

    Work in the area of digital pulse position modulation (digital PPM) has shown that this type of modulation can yield sensitivities that are typically 4 - 5 dB better than an equivalent PCM system. Recent experimental work has shown that the receiver in a digital PPM system does not need to have a wide bandwidth. Instead, the bandwidth can be very low so that the receiver is effectively impulsed by the digital PPM signal. The advent of very high speed Si digital ICs, and fast lasers, means that digital PPM can now be used to code gigabit PCM signals. This paper presents original theoretical results for a digital PPM system coding 1 Gbit/s PCM signals into 8 Gbit/s digital PPM signals. The paper also addresses the difficulties that the system designer is likely to encounter, and discusses some possible solutions.

  11. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  12. Premiere in high speed materials inter-operability

    Energy Technology Data Exchange (ETDEWEB)

    Brun, D.

    1995-07-01

    The Eurostar trains have been designed to meet the safety requirements of the Channel Tunnel. In particular, ti must be possible to remove the train from the tunnel in most fault scenarios. The train design is based upon an optimal capacity/price ratio. As far as the installation of electrical equipment is concerned (power supply, power conversion, motor units), the variety of track configurations is another consideration in addition to the questions of safety. The original solutions adopted give traction and braking performance that are satisfactory by comparison with the high-speed trains (TGV) in service on appropriate track, and the best possible for the British track. The trains are heavier and less powerful, but they are capable of getting out of the tunnel with only one motor out of three in service. (author). 6 figs.

  13. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  14. Dynamic Control of High-speed Train Following Operation

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2014-08-01

    Full Text Available Both safety and efficiency should be considered in high-speed train following control. The real-time calculation of dynamic safety following distance is used by the following train to understand the quality of its own following behavior. A new velocity difference control law can help the following train to adjust its own behavior from a safe and efficient steady-following state to another one if the actual following distance is greater than the safe following distance. Meanwhile, the stopping control law would work for collision avoidance when the actual following distance is less than the safe following distance. The simulation shows that the dynamic control of actual inter-train distance can be well accomplished by the behavioral adjustment of the following train, and verifies the effectiveness and feasibility of our presented methods for train following control.

  15. High-speed counters in Fibonacci numerical system

    Science.gov (United States)

    Azarov, Olexiy; Chernyak, Olexandr; Komada, Paweł; Kozhambardiyeva, Miergul; Kalizhanova, Aliya

    2017-08-01

    Possibility of executing the carriers and borrowings by means of elementary additive transformations in the process of calculation in Fibonacci numerical system is substantiated. Methods of counting in the given numerical system, based on the usage of information redundancy are suggested. The methods consist in the fact that at every step executed all possible elementary addition transformations of code in the counter simultaneously with adding one. The suggested methods enable to construct up-, down- and up/down counters with high speed, independent on the data capacity and small hardware cost that linearly grow with the increase of the capacity. Schemes of structural organization of one digit for each of the suggested methods are given.

  16. Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level

    NARCIS (Netherlands)

    Arntz, M.M.H.D.; Otter, W.K. den; Briels, W.J.; Bussmann, P.J.T.; Beeltink, H.H.; Boom, R.M.

    2008-01-01

    The rich phase behavior of granular beds of bidisperse hard spherical particles in a rotating horizontal drum is studied by Discrete Element Method (DEM) simulations. Several flow regimes and various forms of radial segregation, as well as mixing, are observed by systematically varying the

  17. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  18. Parallel scanning laser ophthalmoscope (PSLO) for high-speed retinal imaging

    NARCIS (Netherlands)

    Vienola, K.V.; Braaf, Boy; Damodaran, Mathi; Vermeer, Koenraad A.; de Boer, Johannes F.

    2014-01-01

    Purpose High-speed imaging of the retina is crucial for obtaining high quality images in the presence of eye motion. To improve the speed of traditional scanners, a high-speed ophthalmic device is presented using a digital micro-mirror device (DMD) for confocal imaging with multiple simultaneous

  19. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Science.gov (United States)

    2010-10-01

    ... by this subpart, and which have been utilized on high-speed rail systems with similar technical and... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  20. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  1. Saccadic eye movements in a high-speed bimanual stacking task: changes of attentional control during learning and automatization.

    Science.gov (United States)

    Foerster, Rebecca M; Carbone, Elena; Koesling, Hendrik; Schneider, Werner X

    2011-06-10

    Principles of saccadic eye movement control in the real world have been derived by the study of self-paced well-known tasks such as sandwich or tea making. Little is known whether these principles generalize to high-speed sensorimotor tasks and how they are affected by learning and automatization. In the present study, right-handers practiced the speed-stacking task in 14 consecutive daily training sessions, while their eye movements were recorded. Speed stacking is a high-speed sensorimotor task that requires grasping, moving, rotating, and placing of objects. The following main results emerged. Throughout practice, the eyes led the hands, displayed by a positive eye-hand time span. Moreover, visual information was gathered for the subsequent manual sub-action, displayed by a positive eye-hand unit span. With automatization, the eye-hand time span became shorter, yet it increased when corrected by the decreasing trial duration. In addition, fixations were mainly allocated to the goal positions of the right hand or objects in the right hand. The number of fixations decreased while the fixation rate remained constant. Importantly, all participants fixated on the same task-relevant locations in a similar scan path across training days, revealing a long-term memory-based mode of attention control after automatization of a high-speed sensorimotor task.

  2. An Ultra-High Speed Whole Slide Image Viewing System

    Directory of Open Access Journals (Sweden)

    Yukako Yagi

    2012-01-01

    Full Text Available Background: One of the goals for a Whole Slide Imaging (WSI system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed.

  3. Highly efficient light-emitting diodes based on intramolecular rotation

    CERN Document Server

    Di, Dawei; Yang, Le; Jones, Saul; Friend, Richard H; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2016-01-01

    The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quant...

  4. High-Speed, Low-Power Digitizer II (2007037) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future detectors and arrays for visible, IR, and submillimeter imaging and spectroscopy require much higher speed digitizers than are currently available. In...

  5. High-Speed, Low-Power Digitizer (9725) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future detectors and arrays for visible, IR, and submillimeter imaging and spectroscopy require much higher speed digitizers than are currently available. In...

  6. Progress Towards High-Speed Operation of the Magnetorotational Instability Experiment and Diagnostic Development

    Science.gov (United States)

    Gilson, E. P.; Caspary, K.; Choi, D.; Ebrahimi, F.; Goodman, J.; Ji, H.; Lysandrou, M.; Sloboda, P.; Tabbutt, M.

    2017-10-01

    Estimates and simulations both suggest that the Princeton MRI experiment must operate with inner cylinder rotation rates > 1,500 rpm, corresponding to magnetic Reynolds numbers Rm > 3 , in order for the flow to be unstable to the MRI. Results will be presented demonstrating progress towards high-speed operation while avoiding adverse effects from large dynamic pressure and heat. Recent studies show that conductive end caps increase the magnitude of the saturated MRI signal, enabling easier detection. However, motor control feedback and pneumatically-driven brakes must be used to maintain control when forces arise from the interaction between induced currents in the rotating end caps and the 3,000 G applied magnetic field. The use of Hall probes and strain gauges to measure the azimuthal magnetic field and the torque at the inner cylinder will be discussed. Results from the Spectral Finite Element and Navier Stokes code have been used to better understand the expected shape of the MRI threshold curve with conducting end caps, the nature of the forces on the end caps, and to predict the magnetic fields and torques at the inner cylinder that result from the onset of the MRI.

  7. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  8. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  9. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    Science.gov (United States)

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Towards real-time feedback in high performance speed skating

    NARCIS (Netherlands)

    van der Eb, Jeroen; Zandee, Willem; van den Bogaard, Timo; Geraets, Sjoerd; Veeger, H.E.J.; Beek, Peter; Potthast, Wolfgang; Niehoff, Anja; David, Sina

    2017-01-01

    The aim of the current study is to evaluate several performance indicators to be used as real-time feedback in the coming experiments to enhance performance of elite speeds skaters. Six speed skaters, wearing one IMU per skate, collected data over one full training season to evaluate and pinpoint

  11. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  12. Fire protection for high speed line tunnels; Risk analysis and exceptional robotic application results

    NARCIS (Netherlands)

    Linde, F.W.J. van de; Gijsbers, F.B.J.; Klok, G.J.

    2006-01-01

    The Green Hart Tunnel in The Netherlands is a 7 km long high speed railway tunnel with an exterior diameter of 14.5 metres. A separation wall devides the tunnel into two single tubes. High speed trains will pass the tunnel at speeds of more than 300 kph. Inside the tunnel 200,000 m2 fire resistant

  13. Improvement of vocal pathologies diagnosis using high-speed videolaryngoscopy.

    Science.gov (United States)

    Tsuji, Domingos Hiroshi; Hachiya, Adriana; Dajer, Maria Eugenia; Ishikawa, Camila Cristina; Takahashi, Marystella Tomoe; Montagnoli, Arlindo Neto

    2014-07-01

    Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV) has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia). The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases) were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  14. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Directory of Open Access Journals (Sweden)

    Tsuji, Domingos Hiroshi

    2014-04-01

    Full Text Available Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia. The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  15. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  16. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  17. Prototype high speed optical delay line for stellar interferometry

    Science.gov (United States)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-01-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  18. The Kaye effect revisited: High speed imaging of leaping shampoo

    Science.gov (United States)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  19. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  20. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    Science.gov (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  1. Materials, structures, and devices for high-speed electronics

    Science.gov (United States)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  2. New Drive Train Concept with Multiple High Speed Generator

    Science.gov (United States)

    Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.

  3. Development and Performance of the ACTS High Speed VSAT

    Science.gov (United States)

    Quintana, J.; Tran, Q.; Dendy, R.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst

  4. A Novel High Dimensional and High Speed Data Streams Algorithm: HSDStream

    OpenAIRE

    Irshad Ahmed; Irfan Ahmed; Waseem Shahzad

    2016-01-01

    This paper presents a novel high speed clustering scheme for high-dimensional data stream. Data stream clustering has gained importance in different applications, for example, network monitoring, intrusion detection, and real-time sensing. High dimensional stream data is inherently more complex when used for clustering because the evolving nature of the stream data and high dimensionality make it non-trivial. In order to tackle this problem, projected subspace within the high dimensions and l...

  5. Hall thruster plume measurements from High-speed Dual Langmuir Probes with Ion Saturation Reference

    Science.gov (United States)

    Sekerak, M.; McDonald, M.; Hofer, R.; Gallimore, A.

    The plasma plume of a 6 kW Hall Effect Thruster (HET) has been investigated in order to determine time-averaged and time-resolved plasma properties in a 2-D plane. HETs are steady-state devices with a multitude of kilohertz and faster plasma oscillations that are poorly understood yet impact their performance and may interact with spacecraft subsystems. HETs are known to operate in different modes with differing efficiencies and plasma characteristics, particularly the axial breathing mode and the azimuthal spoke mode. In order to investigate these phenomena, high-speed diagnostics are needed to observe time-resolved plasma properties and correlate them to thruster operating conditions. A new technique called the High-speed Dual Langmuir Probe with Ion Saturation Reference (HDLP-ISR) builds on recent results using an active and an insulated or null probe in conjunction with a third, fixed-bias electrode maintained in ion saturation for ion density measurements. The HDLP-ISR was used to measure the plume of a 6-kW-class single-channel HET called the H6 operated at 300 V and 20 A at 200 kHz. Time-averaged maps of electron density, electron temperature and plasma potential were determined in a rectangular region from the exit plane to over five channel radii downstream and from the centrally mounted cathode radially out to over three channel radii. The power spectral density (PSD) of the time-resolved plasma density oscillations showed four discrete peaks between 16 and 28 kHz which were above the broad breathing mode peak between 10 and 15 kHz. Using a high-speed camera called FastCam imaging at 87,500 frames per second, the plasma oscillations were correlated with visible rotating spokes in the discharge channel. Probes were vertically spaced in order to identify azimuthal plasma transients around the discharge channel where density delays of 14.4 μ s were observed correlating to a spoke velocity of 1800 m/s in the E× B direction. The results presented- here are

  6. Stable Levitation System for a High Speed Rotating Shaft Levitated by a High Temperature Superconductor and Method for Passing through Critical Speeds by Using Rotating Magnetic Damper

    OpenAIRE

    長屋, 幸助; 林, 乃生幸; 大関, 健一郎

    2000-01-01

    This article presents a new levitation technique, which uses a small superconductor and a set of permanent magnets. In the system, a small superconductor is connected to the bottom of the vertical shaft. The gravity force and axial vibration force are supported by the superconductor. A circular permanent magnet is attched to the top of the shaft, and the other circular permanent magnet lies at the frame. The N-pole of one of the magnets faces to the S-pole of the other magnet, so a drag force...

  7. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  8. High speed QWIP FPAs on InP substrates

    Science.gov (United States)

    Eker, S. U.; Arslan, Y.; Besikci, C.

    2011-05-01

    Quantum well infrared photodetector (QWIP) technology has allowed the realization of low cost staring focal plane arrays (FPAs). However, AlGaAs/(In)GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate and/or low background conditions. We extensively discuss the effect of sensor gain on the FPA performance under various operating conditions, and highlight the superiority of the InP/InGaAs material system with respect to AlGaAs/GaAs for high speed/low background thermal imaging applications. InP/InGaAs QWIPs, providing a bias adjustable gain in a wide range, offer the flexibility of adapting the FPA to strict operating conditions. We also present an experimental comparison of large format AlGaAs/GaAs and (strained) InP/InGaAs QWIP FPAs under different operating conditions. A 640 × 512 QWIP FPA constructed with the 40-well strained InP/In 0.48Ga 0.52As material system displays a cut-off wavelength of 9.7 μm ( λ p = 8.9 μm) with a BLIP temperature higher than 65 K ( f/2), and a peak quantum efficiency as high as 12% with a broad spectral response (Δ λ/ λ p = 17%). The conversion efficiency of the FPA pixels is as high as 20% under large bias (4 V) where the detectivity is reasonably high (˜3 × 10 10 cm Hz 1/2/W, f/2, 65 K). While providing a considerably higher quantum efficiency than the pixels of a similar AlGaAs/GaAs FPA, the InP/InGaAs QWIP provides similar NETD values with much shorter integration times and, being less sensitive to the read noise, successfully operates with sub-millisecond integration times. The results clearly demonstrate that InP based material systems display high potential for single- and dual-band QWIP FPAs by overcoming the limitations of the standard GaAs based QWIPs under high frame rate and/or low background conditions.

  9. Yonjung High-Speed Railway Bridge Assessment Using Output-Only Structural Health Monitoring Measurements under Train Speed Changing

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Yonjung Bridge is a hybrid multispan bridge that is designed to transport high-speed trains (HEMU-430X with maximum operating speed of 430 km/h. The bridge consists of simply supported prestressed concrete (PSC and composite steel girders to carry double railway tracks. The structural health monitoring system (SHM is designed and installed to investigate and assess the performance of the bridge in terms of acceleration and deformation measurements under different speeds of the passing train. The SHM measurements are investigated in both time and frequency domains; in addition, several identification models are examined to assess the performance of the bridge. The drawn conclusions show that the maximum deflection and acceleration of the bridge are within the design limits that are specified by the Korean and European codes. The parameters evaluation of the model identification depicts the quasistatic and dynamic deformations of PSC and steel girders to be different and less correlated when higher speeds of the passing trains are considered. Finally, the variation of the frequency content of the dynamic deformations of the girders is negligible when high speeds are considered.

  10. In defence of high-speed memory scanning.

    Science.gov (United States)

    Sternberg, Saul

    2016-10-01

    This paper reviews some of the evidence that bears on the existence of a mental high-speed serial exhaustive scanning process (SES) used by humans to interrogate the active memory of a set of items to determine whether it contains a test item. First proposed in the 1960s, based on patterns of reaction times (RTs), numerous later studies supported, elaborated, extended, and limited the generality of SES, while critics claimed that SES never occurred, that predictions from SES were violated, and that other mechanisms produced the RT patterns that led to the idea. I show that some of these claims result from ignoring variations in experimental procedure that produce superficially similar but quantitatively different RT patterns and that, for the original procedures, the most frequently repeated claims that predictions are violated are false. I also discuss evidence against the generality of competing theories of active-memory interrogation, especially those that depend on discrimination of directly accessible "memory-strength". Some of this evidence has been available since the 1960s but has been ignored by some proponents of alternative theories. Other evidence presented herein is derived from results of one relevant experiment described for the first time, results of another described in more detail than heretofore, and new analyses of old data. Knowledge of brain function acquired during the past half century has increased the plausibility of SES. SES is alive and well, but many associated puzzles merit further investigation, suggestions for which are offered.

  11. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  12. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    Lee, Jae Moon; Gupta, Anurag; Mueller, Craig; Morrisette, Monica; Dec, John; Brewer, Jason; Donofrio, Kevin; Sturisky, Hilton; Smick, Doug; An, Meng Lin

    1994-01-01

    In June 1992, the School of Aerospace Engineering at Georgia Tech was awarded a three year NASA University Space Research Association (USRA) Advanced Design Program (ADP) grant to address issues associated with the Integrated Design and Manufacturing of High Speed Civil Transport (HSCT) configurations in its graduate Aerospace Systems Design courses. This report provides an overview of the on-going Georgia Tech initiative to address these design/manufacturing issues during the preliminary design phases of an HSCT concept. The new design methodology presented here has been incorporated in the graduate aerospace design curriculum and is based on the concept of Integrated Product and Process Development (IPPD). The selection of the HSCT as a pilot project was motivated by its potential global transportation payoffs; its technological, environmental, and economic challenges; and its impact on U.S. global competitiveness. This pilot project was the focus of each of the five design courses that form the graduate level aerospace systems design curriculum. This year's main objective was the development of a systematic approach to preliminary design and optimization and its implementation to an HSCT wing/propulsion configuration. The new methodology, based on the Taguchi Parameter Design Optimization Method (PDOM), was established and was used to carry out a parametric study where various feasible alternative configurations were evaluated. The comparison criterion selected for this evaluation was the economic impact of this aircraft, measured in terms of average yield per revenue passenger mile ($/RPM).

  13. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  14. A high-speed linear algebra library with automatic parallelism

    Science.gov (United States)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  15. Entrainment characteristics of fine particles under high speed airflow

    Directory of Open Access Journals (Sweden)

    Yin Shaowu

    2017-01-01

    Full Text Available Fine silicon particles (mean size of 2.7 μm are used as entrained materials, and the entrainment characteristics of fine particles are investigated in a cylindrical fluidized-bed (inner diameter of 28 mm and height of 1000 mm under high speed airflow. The effects of the volume flow of gas (Q, 1 m3/h to 2.5 m3/h, the number of holes (N, 1 to 4, the size of holes (D, 1 mm to 3 mm, and the distance between holes and the upper surface of the material layer (H, -100 mm to 200 mm on the entrainment characteristics (entrainment rate W and entrained powder-gas ratio R are experimentally studied through orthogonal experiment. The experimental results show that an increase in Q and H constantly improves the entrainment characteristics; a decrease in D enhances such characteristics, whereas the number of holes N has no significant effect on the entrainment characteristics. An optimal operating condition can result in optimal entrainment characteristics (W, 3.1 g/min and R, 0.058 g/g, which can be achieved with a Q of 2.5 m3/h, N of 1, D of 2 mm and H of 200 mm.

  16. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  17. Increasing the life of high-speed steel cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, Y.G.

    1984-05-01

    The paper describes work on determining the rational area of use, mastering of production operations, and introduction into the plants of the industry of various methods of increasing the life of high-speed tools. Among these methods are carbonitriding, treatment of the tool by shock cooling and by application of a magnetic field, and the application of wear resistant coatings by the method of cathodic-ionic bombardment. The article briefly characterizes each method. Experience in the introduction of the carbonitriding process has shown that the greatest increase in life is obtained for relatively large cutting tools such as hubs and large diameter drills. The effectiveness of shock cooling depends to a great degree upon the original structure of the tool material and upon the requirements imposed on it in service (for stability). Experience in the magnetic treatment of drills and end mills up to 30mm in diameter has shown that the life of a magnetically treated tool with subsequent demagnetization increases by 1.2-1.4 times and without demagnetization by 1.7-2 times. The effectiveness of magnetic hardening depends not only upon the correctly selected strength of the magnetic field and time of application, but also upon the time of postmagnetic aging. Wear resistant coatings applied by the cathodic-ionic bombardment method increases by 2-5 times the life of a cutting tool. However, careful preparation of the tool surface is required as well as careful control of the temperature and thickness of the coating.

  18. An Early Evaluation of Italian High Speed Rail Projects

    Directory of Open Access Journals (Sweden)

    Paolo Beria

    2011-10-01

    Full Text Available Italy has undergone, in the last 15 years, an exceptional public financial effort to build approximately 1,000 km of high speed rail lines. Further extensions are under construction or planned, especially in the most important international relations. This network is widely considered as fundamental to comply the European vision of a continental-wide transport system.The paper analyses the past and the future of such network, where possible from a quantitative point of view. The first part of the article reviews the history of the Alta Velocità scheme, particularly focusing on the issues related to the economic regulation of the investments and the financial troubles at first and then on the present issues related to the regulation of rail services.The analysis of the supply, the time gains, the demand and the costs allows to build a simple but independent evaluation of the past projects from an ex-post perspective, pointing out the successes, but also important critical issues.The second part of the paper analyses the future expansion plans looking at the costs, the existing and expected demand and derives some policy indications and cost reduction strategies capable both to control public expenditure in a period of crisis and not to abandon the idea of a modern and effective rail network.

  19. Spiral Tube Assembly for High-Speed Countercurrent Chromatography

    Science.gov (United States)

    Ito, Y.; Clary, R.; Powell, J.; Knight, M.; Finn, T. M.

    2009-01-01

    Optimal elution modes were determined for four typical two-phase solvent systems each with different physical parameters to achieve the best peak resolution and retention of the stationary phase by spiral tube high-speed countercurrent chromatography using a suitable set of test samples. Both retention of the stationary phase and partition efficiency are governed by an interplay between two forces, i.e., Archimedean Screw force and radial centrifugal force gradient of the spiral channel. In the polar solvent system represented by 1-butanol./acetic acid/water (4:1:5, v/v/v) with settling time of over 30 s, the effect by the radial centrifugal gradient force dominates giving the best separation of dipeptides either by pumping the lower phase from the inner terminal or the upper phase from the outer terminal of the spiral channel. In the moderately hydrophobic two-phase solvent system represented by hexane/ethyl acetate/methanol/0.1 M HCl (1:1:1:1) with settling time of 19 s, and two hydrophobic solvent systems of hexane/ethanol/water (5:4:1, v/v/v) and non-aqueous binary system of hexane/acetonitrile both having settling time of 9, the effect of the Archimedean screw force play a major role in hydrodynamic equilibrium, giving the best separations by pumping the lower phase from the head or the upper phase from the tail of the spiral channel. PMID:19343107

  20. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    Science.gov (United States)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base

  1. Horizontal high speed stacking for batteries with prismatic cans

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  2. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  3. Method and apparatus for high speed data acquisition and processing

    Science.gov (United States)

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  4. Contact freezing observed with a high speed video camera

    Science.gov (United States)

    Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2017-04-01

    Freezing of supercooled cloud droplets on collision with ice nucleating particle (INP) has been considered as one of the most effective heterogeneous freezing mechanisms. Potentially, it could play an important role in rapid glaciation of a mixed phase cloud especially if coupled with ice multiplication mechanism active at moderate subzero temperatures. The necessary condition for such coupling would be, among others, the presence of very efficient INPs capable of inducing ice nucleation of the supercooled drizzle droplets in the temperature range of -5°C to -20°C. Some mineral dust particles (K-feldspar) and biogenic INPs (pseudomonas bacteria, birch pollen) have been recently identified as such very efficient INPs. However, if observed with a high speed video (HSV) camera, the contact nucleation induced by these two classes of INPs exhibits a very different behavior. Whereas bacterial INPs can induce freezing within a millisecond after initial contact with supercooled water, birch pollen need much more time to initiate freezing. The mineral dust particles seem to induce ice nucleation faster than birch pollen but slower than bacterial INPs. In this contribution we show the HSV records of individual supercooled droplets suspended in an electrodynamic balance and colliding with airborne INPs of various types. The HSV camera is coupled with a long-working-distance microscope, allowing us to observe the contact nucleation of ice at very high spatial and temporal resolution. The average time needed to initiate freezing has been measured depending on the INP species. This time do not necessarily correlate with the contact freezing efficiency of the ice nucleating particles. We discuss possible mechanisms explaining this behavior and potential implications for future ice nucleation research.

  5. Very High Speed Discrete Time Optical Signal Generation and Filtering

    Science.gov (United States)

    Narayan, Vishwa

    Optical lattice filters constitute a class of devices that generate and operate upon high bandwidth optical signals. This dissertation describes the design, analysis, construction and testing of such devices. We derive elegant z-transform based filter transfer functions and develop a convenient state variable based scattering matrix filter description. A variety of filters are designed and analyzed. We also design locally optimal optical lattice filters with mirror imperfections such as losses and finite reflectivity round-off error. We conduct a quantitative sensitivity analysis of the degrading effects of these imperfections on system performance, and study the distorting effects of phase error on pulse train shape. Experimentally, we use mirror based optical lattice filters to generate 667 GHz repetition rate pulse bursts with step and ramp envelopes, and coded pulse bursts. We also demonstrate the quadrupling and octupling of the 76 MHz repetition rate of a mode-locked laser. We demonstrate the low pass filtering property of optical lattice filters by realizing a high speed discrete time optical integrator. Step functions are integrated to ramps, and ramps to quadratics, at 667 GHz. We also constructed a mechanical variable repetition rate filter with a tuning range of 2.14 to 100 GHz. We design and analyze a gain based mirror filter with active gain elements. Small signal linear constant gain tends to improve filter performance by increasing the output, and reducing fluctuations in the frequency response. We study the behavior of these filters at the stability limit, characterized by large fluctuations in the frequency response. Optical lattice filters may be used as wavelength multiplexers/demultiplexers in lightwave systems, as variable repetition rate pulse train generators for tunable repetition rate optical spectroscopy, as optical clock generators, and as discrete time/analog optical signal filters.

  6. The Comparison of the Effect of Mental Rotation and Phonological Awareness Training on Accuracy, Speed and Comprehension in Students with Dyslexia in City of Tabriz, 2015-2016

    Directory of Open Access Journals (Sweden)

    Ramin Habibi-Kaleybar

    2017-05-01

    Full Text Available Abstract Background: The problem of learning disabilities is the reason of academic backwardness of students and dyslexia is considered the most common of these disorders.Therefore, the present study aimed to investigate the comparison of the effectiveness of mental rotation and phonological awareness training on reading performance of students with dyslexia. Materials and Methods: The design of the study was quasi-experimental in pre-test and post- test with control group. Statistical population composed of all dyslexic students in the city of Tabriz in 2015-2016. The sample of present research consisted of 45 students with dyslexia who were selected via available sampling and then were assigned randomly to experimental phonological awareness and mental rotation training and control groups(n=15 in each. To collect data, revised Wechsler intelligence scale for children and reading improvement and dyslexia test were used. Multivariate Covariance (MANCOVA was used to analyze the data. Results: Findings indicated that scores of mental rotation and phonological awareness training have a significant effect on reading performance of dyslexic students compared with control group (p0.05. Conclusion: It can be concluded that mental rotation and phonological awareness training are effective on accuracy, speed and comprehension of reading in students with dyslexia.

  7. Experimental Measurement of Speeds of Sound in Liquid Carbon Monoxide and Development of High-Pressure, High-Temperature Equations of State

    Science.gov (United States)

    Zaug, Joseph; Carter, Jeffrey; Bastea, Sorin; Armstrong, Michael; Laurence, Fried

    2013-06-01

    We report the adiabatic sound speeds for supercritical fluid carbon monoxide along two isotherms, from 0.17 to 2.13 GPa at 297 K and from 0.31 to 3.2 GPa at 600 K. The carbon monoxide was confined in a resistively heated diamond-anvil cell and the sound speed measurements were conducted in situ using a recently reported variant of the photoacoustic light scattering effect. The measured sound speeds were then used to parameterize a single site dipolar exponential-6 intermolecular potential for carbon monoxide. PT thermodynamic states, sound speeds, and shock Hugoniots were calculated using the newly parameterized intermolecular potential and compared to previously reported experimental results. Additionally, we generated an analytical equation of state for carbon monoxide by fitting to a grid of calculated PT states over a range of 0.1-10 GPa and 150-2000 K. A 2 percent mean variation was found between computed high-pressure solid-phase densities and measured data -a surprising result for a spherical interaction potential. We further computed a rotationally dependent fluid to beta-solid phase boundary; results signal the relative magnitude of short-range rotational disorder under conditions that span existing phase boundary measurements. This research was partly funded by the Joint D0D/DOE Munitions Program, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  9. Experimental Study on the Dynamic Performance of a New High-Speed Spindle Supported by Water-Lubricated Hybrid Bearings

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2016-01-01

    Full Text Available The dynamic performance of a new high-speed spindle supported by water-lubricated hybrid bearings is experimentally studied on a test rig. The present design allows the speed of the spindle up to 30,000 rpm, with a bearing internal diameter of 40 mm, which makes it possible to simulate many actual machining processes. Some experiments have been presented to study the mechanical and thermal behaviors of the spindle and its supporting hybrid bearings. The maximum temperature rise is less than 15°C with a speed of 30,000 rpm and a water supply pressure of 2.5 MPa. The spindle radial run-out of the rotational frequency is about 1 µm. Stability of the spindle system has been improved. The experimental results indicate that water-lubricated hybrid bearings are valuable choices to replace ceramic bearings and air bearings as support for spindles under high-speed, high-precision, and heavy-load machining conditions.

  10. Knowing the speed limit: weighing the benefits and risks of rehabilitation progression after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Thigpen, Charles A; Shaffer, Michael A; Kissenberth, Michael J

    2015-04-01

    Rotator cuff repairs have increased. Although clinical trials have examined the effect of immobilization and timing of passive range of motion (ROM) on patient outcomes and structural integrity, there is controversy as to the timing and progression for therapy. Primary goals are restoring function while maintaining the structural integrity of the repair. We advocate for a protocol of 4 to 6 weeks of immobilization, followed by protected passive ROM, which is followed by a gradual progression to active ROM and then appropriate resistance exercise program for most all rotator cuff repairs. The rate of progression should be adjusted individually. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A high precision, compact electromechanical ground rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, V., E-mail: volodya@caltech.edu [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); DeSalvo, R. [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); University of Sannio, C.so Garibaldi 107, Benevento 82100 (Italy); Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street, Pasadena, California 91105 (United States); Oklahoma State University, 219 Student Union, Stillwater, Oklahoma 74074 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205 (United States); Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, New York 10027 (United States); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientifica  1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia); University of Melbourne Grattan Street, Parkville VIC 3010 (Australia); O' Toole, A. [University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan 49931 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  12. Salivary hormonal values from high-speed resistive exercise workouts.

    Science.gov (United States)

    Caruso, John F; Lutz, Brant M; Davidson, Mark E; Wilson, Kyle; Crane, Chris S; Craig, Chrsity E; Nissen, Tim E; Mason, Melissa L; Coday, Michael A; Sheaff, Robert J; Potter, William T

    2012-03-01

    Our study purpose examined salivary hormonal responses to high-speed resistive exercise. Healthy subjects (n = 45) performed 2 elbow flexor workouts on a novel (inertial kinetic exercise; Oconomowoc, WI, USA) strength training device. Our methods included saliva sample collection at both preexercise and immediately postexercise; workouts entailed two 60-second sets separated by a 90-second rest period. The samples were analyzed in duplicate for their testosterone and cortisol concentrations ([T], [C]). Average and maximum elbow flexor torque were measured from each exercise bout; they were later analyzed with a 2(gender) × 2(workout) analysis of variance (ANOVA) with repeated measures for workout. The [T] and [C] each underwent a 2(gender) × 2(time) ANOVA with repeated measures for time. A within-subject design was used to limit error variance. Average and maximum torque each had gender (men > women; p time, but women's values were unchanged. Yet multivariate regression revealed that 3 predictor variables (body mass and average and maximum torques) did not account for a significant amount of variance associated with the rise in male [T]. Changes in [C] were not significant. In conclusion, changes in [T] concur with the results from other studies that showed significant elevations in male [T], despite the brevity of current workouts and the rather modest volume of muscle mass engaged. Practical applications imply that salivary assays may be a viable alternative to blood draws from athletes, yet coaches and others who may administer this treatment should know that our results may have produced greater pre-post hormonal changes if postexercise sample collection had occurred at a later time point.

  13. High quality yarns from high speed roller ginning of upland cotton

    Science.gov (United States)

    The highest quality yarns from upland cotton are typically produced by using combing in the textile mill. Combing is a resource-intensive process in which short fibers are removed from cotton before spinning. The improvement in fiber length and length uniformity of upland cotton when high speed ro...

  14. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, N. van de; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  15. High performance multi-channel high-speed I/O circuits

    CERN Document Server

    Oh, Taehyoun

    2013-01-01

    This book describes design techniques that can be used to mitigate crosstalk in high-speed I/O circuits. The focus of the book is in developing compact and low power integrated circuits for crosstalk cancellation, inter-symbol interference (ISI) mitigation and improved bit error rates (BER) at higher speeds. This book is one of the first to discuss in detail the problem of crosstalk and ISI mitigation encountered as data rates have continued beyond 10Gb/s. Readers will learn to avoid the data performance cliff, with circuits and design techniques described for novel, low power crosstalk cancel

  16. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  17. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  18. Broadband rotary joint for high-speed ultrahigh-resolution endoscopic OCT imaging at 800  nm.

    Science.gov (United States)

    Park, Hyeon-Cheol; Mavadia-Shukla, Jessica; Yuan, Wu; Alemohammad, Milad; Li, Xingde

    2017-12-01

    We report the development of a broadband rotary joint for high-speed ultrahigh-resolution endoscopic optical coherence tomography (OCT) imaging in the 800 nm spectral range. This rotary joint features a pair of achromatic doublets in order to achieve broadband operation for a 3 dB bandwidth over 150 nm. The measured one-way throughput of the rotary joint is greater than 80%, while the fluctuation of the double-pass coupling efficiency during 360 deg rotation is less than ±5% at a near video-rate speed of 20 revolutions/s (rps). The rotary joint is used in conjunction with a diffractive-optics-based endoscope and 800 nm spectral domain OCT system and achieved an ultrahigh axial resolution of ∼2.4  μm in air. The imaging performance is demonstrated by 3D circumferential imaging of a mouse colon in vivo.

  19. Adaptive wall technology for three-dimensional models at high subsonic speeds and aerofoil testing through the speed of sound

    Science.gov (United States)

    Lewis, M. C.; Taylor, N. J.; Goodyer, M. J.

    1992-01-01

    Adaptive wall research at the University of Southampton has been directed towards the development of testing techniques for use in nonporous test sections where two flexible walls are profiled in single curvature. This paper highlights the recent advances that have been made in the testing of 2D airfoils through the speed of sound and the testing of 3D models at high subsonic speeds. Techniques have been developed to accommodate the variety of flow regimes encountered in near sonic airfoil tests. The experimental evidence to date suggests that the new techniques coupled with established procedures allow airfoil data, free from top and bottom wall interference, to be gathered from adaptive flexible walled test sections throughout the entire subsonic, transonic and supersonic speed ranges. Techniques applicable to the testing of 3D models have evolved primarily from experience gained by testing sidewall mounted half-wings. Emphasis has been placed upon models with planforms similar to those of current transport wings. Techniques for high subsonic speeds have now been developed to the point where the residual levels of interference are low.

  20. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  1. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  2. 3D-CT of the temporal bone area with high-speed processing

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Taku [Nagoya Univ. (Japan). Branch Hospital

    1994-12-01

    Three-dimentional (3D)-CT was introduced to represent abnormal findings in the temporal bone area utilizing a SOMATOM DRH CT scanner with accessory 3D reconstruction software and an exclusive high-speed 3D processing system, VOXEL FLINGER. In a patient with eosinophilic granuloma, a defect in the squamous part of the temporal bone was demonstrated suggesting exposure of the dura mater during surgery. In a patient with a normal ear, well-developed mastoid cavity, a part of the handle and the head of the malleus, the incudomalleal joint, the short limb, body and a part of the long limb of the incus and the round window niche were demonstrated. In a case of chronic otitis media, poorly developed mastoid cavity and a possible defect of the tip of the long limb of the incus were demonstrated, in contrast to the patient with the normal ear. 3D-CT yields objective and solid images which are useful for diagnosis, treatment planning and explanation of the pathology to patients and their family. To obtain convincing 3D images, physicians themselves have to choose exact rotation angles. It is not adequate to reconstruct original CT data using a CT computer with accessory 3D software whose processing capability is not good enough for this purpose. The conclusion is as follows: (1) it is necessary and effective to transfer original CT data into the memory of the exclusive high-speed 3D processing system and (2) process the data by the voxel memory method to establish a clinically valuable 3D-CT imaging system. (author).

  3. High-field Faraday rotation in II-VI-based semimagnetic semiconductors

    NARCIS (Netherlands)

    Savchuk, AI; Fediv, [No Value; Nikitin, PI; Perrone, A; Tatzenko, OM; Platonov, VV

    The effects of d-d exchange interaction have been studied by measuring high-field Faraday rotation in II-VI-based semimagnetic semiconductors. For Cd1-xMnxTe crystals with x = 0.43 and at room temperature a saturation in magnetic field dependence of the Faraday rotation has been observed. In the

  4. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  5. A Review on High-Speed Machining of Titanium Alloys

    National Research Council Canada - National Science Library

    RAHMAN, Mustafizur; WANG, Zhi-Gang; WONG, Yoke-San

    2006-01-01

    .... However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min...

  6. Laser synchronized high-speed shutter for spectroscopic application

    Science.gov (United States)

    Miles, Paul C.; Porter, Eldon L.; Prast, Thomas L.; Sunnarborg, Duane A.

    2002-01-01

    A fast mechanical shutter, based on rotating chopper wheels, has been designed and implemented to shutter the entrance slit of a spectrograph. This device enables an exposure time of 9 .mu.s to be achieved for a 0.8 mm wide spectrograph entrance slit, achieves 100% transmission in the open state, and an essentially infinite extinction ratio. The device further incorporates chopper wheel position sensing electronics to permit the synchronous triggering of a laser source.

  7. Prospects of high-speed traffic development on international routes to ukraine. an experience of other countries in establishing high-speed passenger traffic

    Directory of Open Access Journals (Sweden)

    Віта Валеріївна Якименко

    2015-10-01

    Full Text Available Prospects and directions of high-speed traffic development on international railway communication, possible ways of solving the mismatch problem of the railway track width are described and analyzed in the article. An experience of other countries in addressing the issue of international high-speed passenger traffic, ways to overcome negative influences on the number of passengers and direction of their solution is analyzed and reviewed

  8. High-speed non-intrusive measurements of fuel velocity fields at high-pressure injectors

    Science.gov (United States)

    Gürtler, Johannes; Schlüßler, Raimund; Fischer, Andreas; Czarske, Jürgen

    2017-03-01

    Using a single high-speed camera and a frequency modulated laser, a novel approach is presented for fast velocity field measurements in unsteady spray flows. The velocity range is from zero up to several 100 m/s, which requires a high measurement rate and a large dynamic. Typically, flow measurements require to seed tracer particles to the fluid. A paradigm shift to seeding-free measurements is presented. The light scattered at the phase boundaries of the fluid droplets is evaluated. In order to validate the high-speed measurement system, a detailed uncertainty analysis is performed by means of measurements as well as simulations. Thereby, variations of the scattered light intensity, which are based on the high temporal velocity gradients, are found to be the main contribution to the uncertainty. The eventually measurement results, obtained at a measurement rate of 500 kHz, exhibit spray velocities ranging from 0 m/s up to 400 m/s in less than 1 ms, and the detection of unsteady and irregular flow phenomena with a characteristic time of several μs is achieved. This demonstrates the high measurement rate, the high temporal resolution and the large measurement range of the proposed high-speed measurement system.

  9. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  10. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  11. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  12. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  13. HIGH-RESOLUTION ULTRASONOGRAPHY OF SHOULDER FOR ROTATOR CUFF TEAR: CORRELATION WITH ARTHROSCOPIC FINDINGS

    Directory of Open Access Journals (Sweden)

    Vishnumurthy H. Y

    2016-09-01

    Full Text Available INTRODUCTION Rotator cuff disease is the most common cause of shoulder pain. Ultrasonography being non-invasive, widely available, more cost-effective method and is the first choice in imaging of rotator cuff tears. Arthroscopy of shoulder is considered as the gold standard for diagnosis of rotator cuff tears. Objective of this study was to compare the diagnostic accuracy of high-resolution ultrasonography of shoulder for rotator cuff tears with arthroscopy of shoulder. METHODS Thirty patients clinically suspected to have rotator cuff tear who underwent ultrasonography and arthroscopy of shoulder were included in the study. Duration of study was for two years. All ultrasonography examinations were conducted in ultrasound machine using GE Voluson 730 PRO high frequency (10-12 MHz linear array transducer done by two experienced radiologists. Arthroscopies were done by two experienced shoulder arthroscopic surgeons. RESULTS Age of the patients with rotator cuff tears ranged from 40 to 80 years. 57% were females and 43% were males among the patients who had rotator cuff tears. 71.43% of the rotator cuff tears were found in the dominant arm. 64.28% of patients with rotator cuff tear had given history of fall or trauma to the corresponding shoulder within 6 months prior to presentation. 39.28% of patients who had rotator cuff tears were known diabetics. Supraspinatus tendon was the most commonly affected tendon, followed by infraspinatus and subscapularis tendons. For overall detection of rotator cuff tears, ultrasonography in comparison with the arthroscopy has sensitivity and specificity of 92.85% and 100%. For detection of full thickness rotator cuff tear, its sensitivity and specificity was 94.73% and 100% and for partial thickness rotator cuff tears 76.92% and 100%. Ultrasonography has 100% sensitivity and specificity for detection of supraspinatus full thickness tear. For supraspinatus partial thickness tear, sensitivity and specificity was 88

  14. High-speed laser speckle photography. Part 1: repetitively Q-switched ruby laser light source

    Science.gov (United States)

    Huntley, Jonathan M.

    1994-05-01

    A system to record laser speckle photographs at framing rates in the range of 105 to 106 frames/s has been developed, based on a repetitively Q- switched ruby laser and rotating mirror high-speed camera. The laser and electro-optic modulator are described. The circuit diagram for an inexpensive high-voltage amplifier, capable of switching 2.5 kV at up to 1 MHz with fall and rise times of 100 and 200 ns, respectively, is given. The resulting optical pulse trains have pulse energy fluctuations at half the driving frequency. We show how these may be suppressed by reducing the time the Q- switch is left open. Both the subharmonic component and its suppression are explained from limiting cases of the laser rate equations. Representative pulse trains over a range of repetition rates are given; pulse energies greater than 20 mJ with pulse energy fluctuations of less than plus or minus one-half of a stop are obtained at rates of up to 500 kHz.

  15. In vivo imaging of ocular blood flow using high-speed ultrasound

    Science.gov (United States)

    Ketterling, Jeffrey A.; Urs, Raksha; Silverman, Ronald H.

    2017-01-01

    Clinical ophthalmic ultrasound is currently performed with mechanically scanned, single-element probes, but these are unable to provide useful information about blood flow with Doppler techniques. Linear arrays are well-suited for the detection of blood flow, but commercial systems generally exceed FDA ophthalmic safety limits. A high-speed plane-wave ultrasound approach with an 18-MHz linear array was utilized to characterize blood flow in the orbit and choroid. Acoustic intensity was measured and the plane-wave mode was within FDA limits. Data were acquired for up to 2 sec and up to 20,000 frames/s with sets of steered plane-wave transmissions that spanned 2*θ degrees where 0 degrees was normal to the array. Lateral resolution was characterized using compounding from 1 to 50 transmissions and -6-dB lateral beamwidths ranged from 320 to 180 μm, respectively. Compounded high-frame-rate data were post-processed using a singular value decomposition spatiotemporal filter and then flow was estimated at each pixel using standard Doppler processing methods. A 1-cm diameter rotating scattering phantom and a 2-mm diameter tube with a flow of blood-mimicking fluid were utilized to validate the flow-estimation algorithms. In vivo data were obtained from the posterior pole of the human eye which revealed regions of flow in the choroid and major orbital vessels supplying the eye. PMID:28275423

  16. High-speed velocity measurements on an EFI-system

    Science.gov (United States)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  17. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  18. A New High-Speed Low Distortion Switched-Current Cell

    DEFF Research Database (Denmark)

    Shah, Peter Jivan; Toumazou, Christofer

    1996-01-01

    A new switched-current cell is presented which simultaneously offers high speed, low distortion, low gain error, and a virtual ground input. In a simulation example 0.01% distortion was achieved at 50MHz sampling rate which makes the cell very well suited for high accuracy high speed filtering...

  19. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  20. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a