WorldWideScience

Sample records for high speed maglev

  1. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  2. Prospects of China's High-speed Railroad considering the Debate on "Maglev" and "On-the-Trail" Contributions

    Directory of Open Access Journals (Sweden)

    Run Sha

    2012-10-01

    Full Text Available Considering the fierce debate on whether "maglev" or"on-the-trail" system should be applied to China's first high-speed railroad, this paper makes prospects about China's high--speed railroads. As at the initial stage, careful considerationsshould be given to the framework of China's high-speed railroads.Combining China's specific national conditions, the paperdemonstrates that maglev train can be well applied in theeast and the regions of the middle and lower reaches of theYangtze River where there is developed economy, lwge anddense population, limited land use, concentrated big cities andrail transport shortage. The maglev system is the world's mostadvanced technology, China should take the best to catch upwith the world in this transportation field.

  3. Side-suspended High- Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    International Nuclear Information System (INIS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-01-01

    High- T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 10 3 Pa. (paper)

  4. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  5. Perspectives in high-speed transport: Maglev and/or wheel-and-rail techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hochbruck, H

    1985-03-01

    Proceeding from a consideration of possible system structures, a technically and economically meaning-full top speed for a railway system is developed which offers, in competition with the airplane and the private car, good chances of winning an appropriate share of the traffic where the distances are in the range of about 400 to 600 km. It is deduced from the present state of developments in high-speed wheel/rail systems and in maglev technology that the wheel/rail mode has clear advantages where a network is concerned. Maglev technology is now being brought to the stage of operational readiness and its first applications are likely to be for point-to-point or direct-line links.

  6. Dynamic response analysis of single-span guideway caused by high speed maglev train

    Directory of Open Access Journals (Sweden)

    Jin Shi

    Full Text Available High speed maglev is one of the most important reformations in the ground transportation systems because of its no physical contact nature. This paper intends to study the dynamic response of the single-span guideway induced by moving maglev train. The dynamic model of the maglev train-guideway system is established. In this model, a maglev train consists of three vehicles and each vehicle is regarded as a multibody system with 34 degrees-of-freedom. The guideway is modeled as a simply supported beam. Considering the motion-dependent nature of electromagnetic forces in the maglev system, an iterative approach is presented to compute the dynamic response of a maglev train-guideway system. The histories of the train traversing the guideways are simulated and the dynamic responses of the guideway and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis. The resonant conditions of single-span guideway are analyzed. The results show that all the dynamic indexes of train-guideway system are far less than permissive values of railway and maglev system, the vertical resonant of guideways caused by periodical excitations of the train will not happen.

  7. State control of translational movement in high-speed Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnieder, E

    1981-01-01

    The combination of state control with cascade control satisfies all demands made on train movements in a high-speed Maglev transportation system. The inner control loop compensates nonlinearities and disturbances and limits the acceleration. The dynamics of the control loop are determined by the riding characteristics. The superposed speed state control provides for running without overshoot within permissible limits. In order to reach a target point in the shortest possible time, the control signal for initiating the retardation is issued as late as possible and the speed is output as a function of position. The subsequent structure changeover to a position state control causes the train to come to a smooth halt at its destination in an almost optimal time.

  8. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    Science.gov (United States)

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  9. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Junge Zhang

    2012-08-01

    Full Text Available This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  10. The present status of the high temperature superconducting Maglev vehicle in China

    International Nuclear Information System (INIS)

    Wang, J S; Wang, S Y; Zeng, Y W; Deng, C Y; Ren, Z Y; Wang, X R; Song, H H; Wang, X Z; Zheng, J; Zhao, Y

    2005-01-01

    Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27,000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing

  11. The present status of the high temperature superconducting Maglev vehicle in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J S; Wang, S Y; Zeng, Y W; Deng, C Y; Ren, Z Y; Wang, X R; Song, H H; Wang, X Z; Zheng, J; Zhao, Y [Superconductivity R and D Center, Mail Stop: 152, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2005-02-01

    Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27,000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing.

  12. Development of Propulsion Inverter Control System for High-Speed Maglev based on Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jeong-Min Jo

    2017-02-01

    Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.

  13. Maglev

    International Nuclear Information System (INIS)

    Johnson, L.R.; Giese, R.F.

    1988-01-01

    This paper discusses the potential for magnetically levitated (maglev) vehicles as a means of both inter-city travel and a technology option to relieve the growing problem of air traffic congestion. It begins with a brief summary of the two primary maglev concepts: (1) the attractive-force, electromagnetic system (EMS) and (2) the repulsive-force, electrodynamic system (EDS), and continues with a discussion of the advantages, potential for reduced costs and higher reliability, that the newly discovered, high-temperature superconductors offer for EDS maglev vehicles. A summary of the current status of worldwide maglev research is presented, followed by a discussion of the resurgence of U.S. interest in maglev. An analysis of air-traffic congestion suggests that maglev can substitute for short-to-medium distance air travel. By promoting maglev as an airline technology, airlines can retain their familiar hub-and-spoke systems with maglevs an integral part of the spoke portion. Maglev energy consumption would be significantly less and would not have the emissions associated with petroleum fuel. Because maglev vehicles, cruising at speeds of 300 mi/h, are essentially a fuselage without wings, aircraft manufacturers could be the logical industry to build them. Finally, passengers should benefit from maglev technology: travel options will be extended, delays will be reduced, and costs for inter-city travel will be reduced

  14. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system

    Science.gov (United States)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang

    2017-12-01

    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  15. High-Speed Maglev Trains; German Safety Requirements

    Science.gov (United States)

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  16. Japanese superconducting maglev: Present state and future perspective

    Science.gov (United States)

    Takeda, Hiroshi

    1990-06-01

    Maglev (magnetic levitation vehicle) being developed as a new transportation means running at a speed of 500 km/h has various advantages in safety, mass transportation and less environment polution as well as high-speed. The development of this system is rapidly advancing into the practical stage, that is, the commercial stage of the maglev train as a mass transportation system for intercity high-speed service. This paper describes the present state of research and development as well as future prospects of maglev.

  17. General atomics low speed Maglev technology development program (Supplemental #3)

    Science.gov (United States)

    2005-05-01

    This report details accomplishments of the Low Speed Maglev Technology Development Program, Supplemental #3. The 4 major tasks included: guideway foundation construction, fabrication and installation of 7 guideway modules, system integration and test...

  18. Will maglev lift off

    Energy Technology Data Exchange (ETDEWEB)

    Riches, E

    1988-12-01

    Work on magnetic levitation (maglev) as a basis for ground transport systems has been going on since the 1960s. Many maglev systems have been proposed, of which two basic types have reached full-scale track testing of over 400 km/h in West Germany and Japan. Two low speed maglev systems, suitable for use in town centres, airports and shopping complexes, are already in public service. Although the future of maglev land transport is still uncertain, this article gives an assessment of progress. It considers first the simpler low-speed systems. Development has actively progressed in West Germany and the UK, and Japan has the potential knowledge to develop such systems. The technology of a number of different systems is described. The article then considers the high-speed systems on which decisions on implementation of projects for public-service use will be taken in the near future. The commercial viability of such systems is also considered.

  19. FTA low-speed urban Maglev research program : updated lessons learned.

    Science.gov (United States)

    2012-11-01

    In 1999, the Federal Transit Administration (FTA) initiated the Low-Speed Urban Magnetic Levitation (Urban Maglev) Program to develop magnetic levitation technology that offers a cost-effective, reliable, and environmentally-sound transit option for ...

  20. Magnetic levitation Maglev technology and applications

    CERN Document Server

    Han, Hyung-Suk

    2016-01-01

    This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportat...

  1. Fault tolerant computer control for a Maglev transportation system

    Science.gov (United States)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  2. Transrapid MagLev system

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, K [MVP Versuchs- und Planungsgesellschaft fuer Magnetbahnsysteme mbH, Muenchen (Germany); Kretzschmar, R [Transrapid International Gesellschaft fuer Magnetbahnsysteme, Muenchen (Germany); eds.

    1989-01-01

    The Transrapid MagLev System is a new world leader in advanced technology which opens up novel possibilities in tracked high-speed transport. At speeds of 400 kmph and beyond the Transrapid hovers above its guideway. It is driven by a linear motor. Electromagnets provide guidance and support. In 22 chapters a large number of highly qualified engineers offer a detailed and comprehensive description in this book of a radically new transport system, which uses a startling alternative of the wheel, the prime mover of mankind for many thousands of years. They introduce their subjects with a survey of the development and of the practical possibilities of this novel high-speed transport system, and go on to describe in detail the various types of guideway. The contributions about the high-speed switch and the demands of the geometry of the guideway are followed by a chapter on the guideway equipment. The contactless propulsion technology, the drive, and its power supply are dealt with in detail. The designers of the Transrapid MagLev railway also describe all the functions and installations serving the safety, supervision, and control of the running operation. A large space is devoted also to the description of the support- and guidance system and of the vehicle. Needless to say the complete description of this new transport system deals in great detail with the practical possibilities and with the trial operation on the Emsland Transrapid Test Facility. This unique publication concludes with a contribution on maglev developments abroad and with a chronology of the Transrapid MagLev System. (GL).

  3. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    Science.gov (United States)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  4. Survey of foreign maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1992-07-01

    Magnetic levitation (maglev) transportation systems represent an innovative technology that promises to provide pollution-free, contact-free, high-speed ground transportation for the twenty-first century. Great interest in maglev systems has been developing in the United States over the past two years under the auspices of the US National Maglev Initiative. The objective of the survey presented in this report is to provide the US maglev community with information on various maglev concepts that were developed in foreign countries over the past two decades. The main maglev systems included in the survey are the German Transrapid series and the M-Bahn, the Japanese HSST and MLU series, and the British Birmingham. Each maglev system is introduced and discussed according to its type, historical development, unique features, current status, and future prospects. Advantages and disadvantages of each system are briefly noted.

  5. Assessment of CHSST maglev for U.S. urban transportation

    Science.gov (United States)

    2002-07-01

    This report provides an assessment of the Urban Maglev system proposed by the Maglev Urban Systems Associates MUSA team for application in the United States. The proposed system is the Japanese Chubu high speed surface transportation (HSST) Maglev wh...

  6. Workshop on technology issues of superconducting Maglev transportation systems

    International Nuclear Information System (INIS)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-01-01

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration

  7. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    Science.gov (United States)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  8. High temperature superconducting Maglev equipment on vehicle

    Science.gov (United States)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  9. A National MagLev Transportation System

    Science.gov (United States)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  10. Implementation of cargo MagLev in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Chris R [Los Alamos National Laboratory; Peterson, Dean E [Los Alamos National Laboratory; Leung, Eddie M [MAGTEC ENGINEERING

    2008-01-01

    Numerous studies have been completed in the United States, but no commercial MagLev systems have been deployed. Outside the U.S., MagLev continues to attract funding for research, development and implementation. A brief review of recent global developments in MagLev technology is given followed by the status of MagLev in the U.S. The paper compares the cost of existing MagLev systems with other modes of transport, notes that the near-term focus of MagLev development in the U.S. should be for cargo, and suggests that future MagLev systems should be for very high speed cargo. The Los Angeles to Port of Los Angeles corridor is suggested as a first site for implementation. The benefits of MagLev are described along with suggestions on how to obtain funding.

  11. Applications of YBCO melt textured bulks in Maglev technology

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, J.S.; Wang, S.Y.; Ren, Z.Y.; Song, H.H.; Wang, X.R.; Cheng, C.H.

    2004-01-01

    In this paper we report the present status and progress of HTS Maglev project undertaken at the Southwest Jiaotong University. The efforts and results towards solving the material-related issues in HTS Maglev system are emphasized, including the levitation and guidance forces, the magnetic and thermal stabilities related to the ac loss of YBCO superconducting material during a high speed movement, and the low stiffness of HTS Maglev system

  12. Analysis and design of a speed and position system for maglev vehicles.

    Science.gov (United States)

    Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang

    2012-01-01

    This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.

  13. Analysis and Design of a Speed and Position System for Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiqiang Long

    2012-06-01

    Full Text Available This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn’t have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.

  14. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  15. Present status of computational tools for maglev development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Chen, S.S.; Rote, D.M.

    1991-10-01

    High-speed vehicles that employ magnetic levitation (maglev) have received great attention worldwide as a means of relieving both highway and air-traffic congestion. At this time, Japan and Germany are leading the development of maglev. After fifteen years of inactivity that is attributed to technical policy decisions, the federal government of the United States has reconsidered the possibility of using maglev in the United States. The National Maglev Initiative (NMI) was established in May 1990 to assess the potential of maglev in the United States. One of the tasks of the NMI, which is also the objective of this report, is to determine the status of existing computer software that can be applied to maglev-related problems. The computational problems involved in maglev assessment, research, and development can be classified into two categories: electromagnetic and mechanical. Because most maglev problems are complicated and difficult to solve analytically, proper numerical methods are needed to find solutions. To determine the status of maglev-related software, developers and users of computer codes were surveyed. The results of the survey are described in this report. 25 refs.

  16. Issues Associated with a Hypersonic Maglev Sled

    Science.gov (United States)

    Haney, Joseph W.; Lenzo, J.

    1996-01-01

    Magnetic levitation has been explored for application from motors to transportation. All of these applications have been at velocities where the physics of the air or operating fluids are fairly well known. Application of Maglev to hypersonic velocities (Mach greater than 5) presents many opportunities, but also issues that require understanding and resolution. Use of Maglev to upgrade the High Speed Test Track at Holloman Air Force Base in Alamogordo New Mexico is an actual hypersonic application that provides the opportunity to improve test capabilities. However, there are several design issues that require investigation. This paper presents an overview of the application of Maglev to the test track and the issues associated with developing a hypersonic Maglev sled. The focus of this paper is to address the issues with the Maglev sled design, rather than the issues with the development of superconducting magnets of the sled system.

  17. Toronto to Montreal: 90 minutes by maglev

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L; Eastham, A R

    1978-10-01

    The technical feasibility of a lightweight magnetically levitated (maglev) vehicle for inter-city transit is examined. The conceptual design of a 100 passenger vehicle with crusing speeds up to 300 mph is shown. The vehicle is propelled by a super conducting linear synchronous motor and controlled by modern high power semiconductors. Facilities for testing the maglev system and components are described. An economic evaluation of the system is in underway.

  18. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  19. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  20. High-speed Maglev studies in Canada

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.

    1974-01-01

    This paper reports on Canadian studies of superconducting magnetic levitation and variable-speed linear synchronous motor propulsion for high-speed inter-city guided ground transport. Levitation is obtained by the interaction of vehicle-mounted superconducting magnets and the eddy currents induced in aluminium strip conductors on the guideway. Non-contact propulsion by linear synchronous motor (LSM) is obtained by using vehicle-borne superconducting magnets and powered guideway coils. A suggested guidance scheme uses a flat guideway with 'null-flux' loops overlying the LSM windings. The propulsion magnets interact with the loops and the edges of the levitation strips to provide lateral stabilization. The test facility is a 7.6m wheel, rotating with a peripheral speed of 33m/s. (author)

  1. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    Science.gov (United States)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  2. New York state high-speed surface transportation study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    In 1990, New York State Governor Mario M. Cuomo created an interagency task force under the leadership of Lt. Governor Stan Lundine to investigate the potential of high speed ground transportation (HSGT) systems. Building on information from previous agency activities, including consultant efforts contracted by the New York State Energy Research and Development Authority (NYSERDA), the New York State Thruway Authority (NYSTA), and in-house analyses performed by New York State Department of Transportation (NYSDOT), the task force focused on the corridor between New York City and the Niagara Frontier. In December 1991, NYSERDA issued a contract for a study of high speed ground transportation options for New York State. The study`s objective was to assess potential rights-of-way, ridership, energy and environmental impacts, economic benefits, capital, operating, and maintenance costs, and financial viability of HSGT systems. This study builds upon and supplements previous and on-going HSGT activities conducted by the members of the interagency task force. These activities include: Maglev Technical and Economic Feasibility Study (NYSERDA); Maglev Demonstration Site Investigation (NYSTA); and New York/Massachusetts High Speed Ground Transportation Study (NYSDOT). This study is intended to verify and refine previous information and analyses and provide supplemental information and insights to be used in determining if additional investigation and activities involving HSGT are desirable for New York State. This study evaluates HSGT technologies capable of speeds significantly higher than those achieved with the present rail system. Three HSGT categories are used in this study: incremental rail improvement, very high-speed rail, and Maglev.

  3. Agile Port and High Speed Ship Technologies, Vol 1: FY05 Projects 3-6 and 8-10

    Science.gov (United States)

    2008-07-02

    Evaluation and Implementation Plan for Southern California Maglev Freight System..........................................................11 Project...accomplishments achieved in the technical projects. 1.1 Project 05-3: The Evaluation and Implementation Plan for Southern California Maglev ...Freight System This project builds upon work performed in the previous study that determined the technical feasibility of a high-speed Maglev system to

  4. Optimal design of a for middle-low-speed maglev trains

    Science.gov (United States)

    Xiao, Song; Zhang, Kunlun; Liu, Guoqing; Jing, Yongzhi; Sykulski, Jan K.

    2018-04-01

    A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM) and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  5. Optimal design of a for middle-low-speed maglev trains

    Directory of Open Access Journals (Sweden)

    Xiao Song

    2018-04-01

    Full Text Available A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  6. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    Science.gov (United States)

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  7. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    Directory of Open Access Journals (Sweden)

    Song Xue

    2012-05-01

    Full Text Available The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT and the New Equivalent Source (NES method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA. The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  8. Superspeed Maglev system Transrapid. System decription

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L [Thyssen Henschel AG,, Maglev Transportation Technology, Muenchen (Germany)

    1996-12-31

    The superspeed maglev system Transrapid is a track-bound transportation system for passengern and priority freight transport. The transrapid trainsets are composed of self-sufficient vehicle section coupled together. The superspeed maglev system Transrapid is capable of revenue operation at speeds of 100 to 500 km/h. Besides the description of the system concept and system characteristics safety and availability are discussed. (HW)

  9. Transrapid (the first high-speed Maglev train system certified ready for application): Development status and prospects for deployment

    Science.gov (United States)

    Luerken, Reinhard F.

    1994-01-01

    The Transrapid maglev technology is at the threshold of commercial deployment and technologically all prerequisites for the successful operation of the system in public service are given. In post unification Germany the domestic maglev technology is envisioned to be applied in the Berlin-Hamburg project. At present, a public-private funding concept is being prepared and the lengthy planning process is about to be initiated. In the USA the AMG has presented a program to Americanize the technology and to make it available for commercial use in the U.S. in the very near future. The paramount features of this program are to generate economic development, provide a basis for transportation technology development, create opportunities for U.S. industry, improve the U.S. transportation infrastructure, and improve the environment and traveler safety. Maglev is ready for the U.S.; is the U.S. ready for maglev?

  10. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Science.gov (United States)

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  11. Status of the Maglev development in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Kun [Korea Inst. of Machinery and Metals (KIMM), Daejon (Korea, Republic of); Chung, Hyun-Kap [Korea Inst. of Machinery and Metals (KIMM), Daejon (Korea, Republic of); Yoo, Moon-Hwan [Korea Inst. of Machinery and Metals (KIMM), Daejon (Korea, Republic of)

    1996-12-31

    The status of the Korean maglev development activities is reported. The EMS/LIM driven system with a max. design speed of 100 Km/Hr targets LRT type urban transit applications. The maglev system called UTM (Urban Transit Maglev) will be tested on a test track with a total length of 1.1 Km. The test track will be completed by the end of this year but bogie test will start in october on partially completed track. The four year program will produce two prototype vehicles by 1998. (orig.)

  12. Characteristic study of high-Tc superconducting maglev under side-loading

    International Nuclear Information System (INIS)

    Wang Wei; Wang Jiasu; Liu Wei; Zheng Jun; Lin Qunxu; Pan Siting; Deng Zigang; Ma Guangtong; Wang Suyu

    2009-01-01

    In practical application of High-T c Superconducting (HTS) maglev, slant is an observable defect. It was caused by constantly one side on and off the vehicle by passengers. So far, this phenomenon has not been reported yet. In order to understand its influence on the stability of the HTS maglev, we experimentally studied the dynamic characteristic and slant effect of HTS maglev under center-load and side-load. It was found that load destabilizes the vehicle, and the side-load can obviously slant the vehicle body. In the end, the pre-load method was proposed to enhance the dynamic stability and suppress the slant, which proved to be considerably effective. These results are critical in practical running of HTS maglev

  13. Vibration analysis of continuous maglev guideways with a moving distributed load model

    International Nuclear Information System (INIS)

    Teng, N G; Qiao, B P

    2008-01-01

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed

  14. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    Science.gov (United States)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  15. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2008-02-15

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  16. Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds

    Science.gov (United States)

    Kim, Ki-Jung; Han, Jong-Boo; Han, Hyung-Suk; Yang, Seok-Jo

    2015-04-01

    Dynamic instability, that is, resonance, may occur on an electromagnetic suspension-type Maglev that runs over the elevated guideway, particularly at very low speeds, due to the flexibility of the guideway. An analysis of the dynamic interaction between the vehicle and guideway is required at the design stage to investigate such instability, setting slender guideway in design direction for reducing construction costs. In addition, it is essential to design an effective control algorithm to solve the problem of instability. In this article, a more detailed model for the dynamic interaction of vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on virtual prototyping, flexible guideway by a modal superposition method and levitation electromagnets including feedback controller into an integrated model. By applying the proposed model to an urban Maglev vehicle newly developed for commercial application, an analysis of the instability phenomenon and an investigation of air gap control performance are carried out through a simulation.

  17. Levitation characteristics of a high-temperature superconducting Maglev system for launching space vehicles

    International Nuclear Information System (INIS)

    Yang Wenjiang; Liu Yu; Chen Xiaodong; Wen Zheng; Duan Yi; Qiu Ming

    2007-01-01

    Maglev launch assist is viewed as an effective method to reduce the cost of space launch. The primary aerodynamic characteristics of the Maglev launch vehicle and the space vehicle are discussed by analyzing their aerodynamic shapes and testing a scale mode in a standard wind tunnel. After analyzing several popular Maglev systems, we present a no-controlling Maglev system with bulk YBaCuO high-temperature superconductors (HTSs). We tested a HTS Maglev system unit, and obtained the levitation force density of 3.3 N/cm 2 and the lateral force density of 2.0 N/cm 2 . We also fabricated a freely levitated test platform to investigate the levitation characteristics of the HTS Maglev system in load changing processes. We found that the HTS system could provide the strong self-stable levitation performance due to the magnetic flux trapped in superconductors. The HTS Maglev system provided feasibility for application in the launch vehicle

  18. Maglev deployment program : final programmatic environmental impact statement, volume 1

    Science.gov (United States)

    2001-04-01

    In order to comply with the TEA -21 legislation, the Federal Railroad Administration (FRA) conducted a seven-state competition to : select a project for the purpose of demonstrating the use of Maglev technology as a next generation of high-speed grou...

  19. Maglev deployment program : final programmatic environmental impact statement, volume 2

    Science.gov (United States)

    2001-04-01

    In order to comply with the TEA -21 legislation, the Federal Railroad Administration (FRA) conducted a seven-state competition to : select a project for the purpose of demonstrating the use of Maglev technology as a next generation of high-speed grou...

  20. Studies on the levitation height decay of the high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Deng, Z.G.; Zheng, J.; Zhang, J.; Wang, J.S.; Wang, S.Y.; Zhang, Y.; Liu, L.

    2007-01-01

    The levitation height decay was found in the high temperature superconducting (HTS) Maglev test vehicle system during man-loading running. Experimental results show that the no-load levitating system would drift to a new equilibrium position by the external loaded history, but the new equilibrium position will almost not drift by the second-round same loaded history. A new method is proposed to improve the stability of the HTS Maglev vehicle, that is, a pre-load was applied to the HTS Maglev vehicle before running. The impulse responses are performed on the HTS Maglev vehicle before the pre-load and after the pre-load. The results show that the pre-load method is considerably effective to improve the stiffness and damping coefficient of the HTS Maglev vehicle. Moreover, it helps to suppress the levitation height decay and enhance the stability of the HTS Maglev vehicle in practical operation

  1. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    Science.gov (United States)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  2. The potential for EMS Maglev using high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodall, R [Loughborough Univ. (United Kingdom); Macleod, C [Loughborough Univ. (United Kingdom); El-Abbar, A [Loughborough Univ. (United Kingdom); Jones, H [Oxford Univ. (United Kingdom); Jenkins, R [Oxford Univ. (United Kingdom); Campbell, A [Cambridge Univ. (United Kingdom)

    1996-12-31

    Various aspects relating to the use of high temperature superconducting materials in iron-cored magnets for Maglev are considered. The particular emphasis is upon direct control of the superconducting coils, and a control analysis is undertaken to assess the requirements. Experimental results form tests conducted to determine how a superconducting magnet will perform under the conditions required for Maglev are included, and the final section determines the likely effect on the magnet design of using superconducting rather than normal coils. (orig.)

  3. Characteristic study of high-T{sub c} superconducting maglev under side-loading

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: frank.weiwang@gmail.com; Wang Jiasu [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: asclab@asclab.cn; Liu Wei; Zheng Jun; Lin Qunxu; Pan Siting; Deng Zigang; Ma Guangtong; Wang Suyu [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-15

    In practical application of High-T{sub c} Superconducting (HTS) maglev, slant is an observable defect. It was caused by constantly one side on and off the vehicle by passengers. So far, this phenomenon has not been reported yet. In order to understand its influence on the stability of the HTS maglev, we experimentally studied the dynamic characteristic and slant effect of HTS maglev under center-load and side-load. It was found that load destabilizes the vehicle, and the side-load can obviously slant the vehicle body. In the end, the pre-load method was proposed to enhance the dynamic stability and suppress the slant, which proved to be considerably effective. These results are critical in practical running of HTS maglev.

  4. Status of the superconductive Maglev program in the United States; Amerika ni okeru chodendo jiki fujo tetsudo keikaku no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Osaki, H [Tokyo Univ. (Japan). Faculty of Engineering

    1994-07-25

    In the United States, high speed transportation plan was approved in 1965, and research and development of the superconductive magnetically levitated system (Maglev) became active. Although research and development for design, construction, and test for 500km/h Maglev were started in 1974, the federal government ordered to stop in 1975 all the development projects of high speed transportation traffic systems, and the activity slowed down very much as compared with those in Japan, Germany, and other countries. In 1990, the National Maglev Initiative (NMI) project was established. The feature which is different from those of Japanese and German systems is 0.16g and larger acceleration, which allows to shorten the transit time between stations. Development plan for Maglev prototype was approved officially in November, 1991. Features of levitation, guidance, propulsion as well as the carriage lineup of the 4 systems conceptually designed in the NMI project are introduced. 22 refs., 4 figs., 57 tabs.

  5. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    Science.gov (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  6. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    International Nuclear Information System (INIS)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-01-01

    Highlights: • Vibration of a HTS maglev model on two guideways was studied. • Simulation about vibration of HTS maglev on two guideways is accomplished. • Transition curve can weaken vibration of HTS maglev effectively when it running through curves. • Dynamic characteristics of HTS maglev can be enhanced with transition curve. - Abstract: High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  7. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Nan [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, Botian [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Gou, Yanfeng [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Chen, Ping [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, Jun [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Zigang, E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • Vibration of a HTS maglev model on two guideways was studied. • Simulation about vibration of HTS maglev on two guideways is accomplished. • Transition curve can weaken vibration of HTS maglev effectively when it running through curves. • Dynamic characteristics of HTS maglev can be enhanced with transition curve. - Abstract: High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  8. Comparison of high-speed transportation systems in special consideration of investment costs

    Directory of Open Access Journals (Sweden)

    R. Schach

    2007-10-01

    Full Text Available In this paper a substantial comparison of different high-speed transportation systems and an approach to stochastic cost estimations are provided. Starting from the developments in Europe, the high-speed traffic technical characteristics of high-speed railways and Maglev systems are compared. But for a comprehensive comparison more criterions must be included and led to a wider consideration and the development of a multi-criteria comparison of high-speed transportation systems. In the second part a stochastic approach to cost estimations of infrastructure projects is encouraged. Its advantages in comparison with the traditional proceeding are presented and exemplify the practical implementation.

  9. Safety of High Speed Magnetic Levitation Transportation Systems: Preliminary Safety Review of the Transrapid Maglev System

    Science.gov (United States)

    1990-11-01

    The safety of various magnetically levitated trains under development for possible : implementation in the United States is of direct concern to the Federal Railroad : Administration. This report, one in a series of planned reports on maglev safety, ...

  10. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  11. Integral cost-benefit analysis of Maglev technology under market imperfections

    NARCIS (Netherlands)

    Elhorst, J. Paul; Oosterhaven, Jan; Romp, Ward E.

    2001-01-01

    The aim of this article is to assess a proposed new mode of guided high speed ground transportation, the magnetic levitation rail system (Maglev), and to compare the results of a partial cost-benefit analysis with those of an integral CBA. We deal with an urbanconglomeration as well as a

  12. Gust Wind Effects on Stability and Ride Quality of Actively Controlled Maglev Guideway Systems

    Directory of Open Access Journals (Sweden)

    Dong-Ju Min

    2017-01-01

    Full Text Available The purpose of this paper is to present a framework to analyze the interaction between an actively controlled magnetic levitation vehicle and a guideway structure under gusty wind. The equation of motion is presented for a 30-dof maglev vehicle model consisting of one cabin and four bogies. In addition, a lateral electromagnetic suspension (EMS system is introduced to improve the running safety and ride quality of the maglev vehicle subjected to turbulent crosswind. By using the developed simulation tools, the effects of various parameters on the dynamic response of the vehicle and guideway are investigated in the case of the UTM maglev vehicle running on a simply supported guideway and cable-stayed guideway. The simulation results show that the independent lateral EMS and associated control scheme are definitely helpful in improving the running safety and ride quality of the vehicle under gusty wind. In the case of the cable-stayed guideway, at low wind speed, vehicle speed is the dominant factor influencing the dynamic responses of the maglev vehicle and the guideway, but at wind speed over 10 m/s, wind becomes the dominant factor. For the ride quality of the maglev vehicle, wind is also the most influential factor.

  13. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    Science.gov (United States)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-12-01

    High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  14. The General Atomics low speed urban Maglev technology development program

    Science.gov (United States)

    2003-01-01

    The overall objective of this program is to develop magnetic levitation technology that is a cost effective, reliable, : and environmentally friendly option for urban mass transportation in the United States. Maglev is a revolutionary : approach in w...

  15. A novel propulsion method for high-Tc superconducting maglev vehicle

    International Nuclear Information System (INIS)

    Ma Guangtong; Wang Jiasu; Wang Suyu; Liu Minxian; Jing Hua; Lu Yiyun; Lin Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method

  16. A novel propulsion method for high- Tc superconducting maglev vehicle

    Science.gov (United States)

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  17. The potential role of maglev in short-haul airline operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.

    1991-01-01

    Intercity travel is predominately by commercial air transport. However, airports are becoming increasingly congested at a time when there is often substantial local opposition to the expansion of airport infrastructure because of the environmental impacts. This paper explores the potential for integrating high-speed maglev systems into the airport infrastructure, but more importantly into airline operations. 7 refs., 2 figs.

  18. A linear maglev guide for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Tieste, K D [Inst. of Mechanics, Univ. of Hannover (Germany); Popp, K [Inst. of Mechanics, Univ. of Hannover (Germany)

    1996-12-31

    Machine tools require linear guides with high slide velocity and very high position accuracy. The three tasks of a linear guide - supporting, guiding and driving - shall be realised by means of active magnetic bearings (AMB). The resulting linear magnetically levitated (maglev) guide has to accomplish the following characteristics: High stiffness, good damping and low noise as well as low heat production. First research on a one degree-of-freedom (DOF) support magnet unit aimed at the development of components and efficient control strategies for the linear maglev guide. The actual research is directed to realise a five DOF linear maglev guide for machine tools without drive to answer the question whether the maglev principle can be used for a linear axis in a machine tool. (orig.)

  19. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S

    2009-01-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  20. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: asclab@asclab.cn

    2009-05-15

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  1. Publications on maglev technologies

    Energy Technology Data Exchange (ETDEWEB)

    He, J.L.; Coffey, H.T.; Rote, D.M.; Wang, Z.

    1991-12-01

    Magnetically levitated passenger-transportation vehicles, using attractive and repulsive magnetic forces, are currently in the development or prototype-revenue stages in Japan and Germany. The basic principles of these technologies have been understood for several decades, but their practical applications awaited advances in high-power electronic devices, modern controls, superconducting magnets, and improvements in our transportation infrastructures. A considerable amount of work was devoted to magnetic-levitation (maglev) transportation system in the late 1960s and the 1970s. Detailed development was sustained primarily in Germany and Japan. This listing of publications was begun as the initial phase of a design study for a maglev development facility sponsored by the State of Illinois. The listing has been continually updated under programs sponsored by the Federal Railroad Administration and the US Army Corps of Engineers. In 1991, the National Maglev Initiative issued 27 contracts for the study of technical issues related to maglev and four contracts for the definition of maglev systems. In December 1991, the Intermodal Surface Transportation Efficiency Act was enacted, mandating the development of a US-designed maglev system in a six-year period. This listing is offered as an aid to those working on these projects, to help them locate technical papers on relevant technologies. The design and installation of a maglev transportation system will require the efforts of workers in many disciplines, from electronics to economics to safety. Accordingly, the references have been grouped in 14 different sections to expedite review of the listing. In many case, the references are annotated to indicate the general content of the papers. Abstracts are not available. A list of information services from which the listed documents might be obtained and an author index are provided.

  2. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2007-01-01

    In 1839, Earnshaw proved theoretically that it is impossible to achieve a stable equilibrium with a pure permanent maglev. Furthermore, in 1939, Braunbeck deduced that it is only possible to stabilize a super conductive or an electric maglev. In 2000, however, the present authors discovered that stable levitation is achievable by a combination of permanent magnetic and nonmagnetic forces, and its stability can be maintained even with mere passive magnetic forces by use of the gyro-effect. An improved design of permanent maglev impeller pump has been developed. Passive magnetic (PM) bearings support the rotor radially; on its right side, an impeller is fixed and on its left side a motor magnets-assemble is mounted. Unlike a previous prototype design, in which the rotor magnets were driven by a motor via magnetic coupling, a motor coil is installed opposite to the motor magnets disc, producing a rotating magnetic field. At standstill or if the rotating speed is lower than 4000 rpm, the rotor has one axial point contact with the motor coil. The contact point is located at the centre of the rotor. As the rotating speed increases gradually to higher than 4000 rpm, the rotor will be drawn off from the contact point by the hydrodynamic force of the fluid. Then the rotor becomes fully suspended. For radial and peripheral stabilization, a gyro-effect is important, which is realized by designing the motor magnets disc to have large diameter, short length and high rotating speed; for axial stability, an axial rehabilitating force is necessary, which is produced by PM bearings. The rotor demonstrated a full levitation by rotation over 4000 rpm. As a left ventricular assist device, the rotation of the pump has a speed range from 5000 to 8000 rpm. The relation between pressure head and flow rate indicates that there is neither mechanical friction nor hydrodynamic turbulence inside the pump; the former is due to the frictionless maglev and the latter is a result of the

  3. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  4. Safety of High Speed Magnetic Levitation Transportation Systems : Thermal Effects and Related Safety Issues of Typical Maglev Steel Guideways

    Science.gov (United States)

    1994-09-01

    This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...

  5. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    Science.gov (United States)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  6. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  7. Research on the filtering algorithm in speed and position detection of maglev trains.

    Science.gov (United States)

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  8. Maglev guideway route alignment and right-of-way requirements

    Science.gov (United States)

    Carlton, S.; Andriola, T.

    1992-12-01

    The use of existing rights-of-way (ROW) is assessed for maglev systems by estimating trip times and land acquisition requirements for potential maglev corridors while meeting passenger comfort limits. Right-of-way excursions improve trip time but incur a cost for purchasing land. The final report documents findings of the eight tasks in establishing right-of-way feasibility by examining three city-pair corridors in detail and developing an approximation method for estimating route length and travel times in 20 additional city-pair corridor portions and 21 new corridors. The use of routes independent of existing railroad or highway right-of-way have trip time advantages and significantly reduce the need for aggressive guideway geometries on intercity corridors. Selection of the appropriate alignment is determined by many corridor specific issues. Use of existing intercity rights-of-way may be appropriate for parts of routes on a corridor-specific basis and for urban penetration where vehicle speeds are likely to be reduced by policy due to noise and safety considerations, and where land acquisition costs are high. Detailed aspects of available rights-of-way, land acquisition costs, geotechnical issues, land use, and population centers must be examined in more detail on a specific corridor basis before the proper or best maglev alignment can be chosen.

  9. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    International Nuclear Information System (INIS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-01-01

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves

  10. Maglev crude oil pipeline

    Science.gov (United States)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  11. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  12. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    Directory of Open Access Journals (Sweden)

    Chunhui Dai

    2011-07-01

    Full Text Available This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  13. Design considerations for superconducting magnets as a maglev pad

    International Nuclear Information System (INIS)

    Ichikawa, H.; Ogiwara, H.

    1974-01-01

    The design and construction of a thin superconducting magnet for a magnetically suspended high-speed train are explained. The superconducting magnet, which is to be used in a null-flux maglev train system, is called a 'wing-type' superconducting magnet because of its geometry. The wing-type superconducting magnet is about 1.5m long and weighs about 500kg, but its heat loss is within 1W, which is very small compared with that of conventional superconducting magnets. (author)

  14. New transport system - Maglev

    International Nuclear Information System (INIS)

    Kim, In Kun

    1999-01-01

    Historical background, world wide development activities and status of the Maglev are reported. After over 30 years of research and development, the Maglev technology is ready for commercialization. It is expected that a few commercial Maglev lines may appear early part of 21st century and we hope to see one of then in Korea.

  15. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  16. The Most Important Maglev Applications

    Directory of Open Access Journals (Sweden)

    Hamid Yaghoubi

    2013-01-01

    Full Text Available The name maglev is derived from magnetic levitation. Magnetic levitation is a highly advanced technology. It has various uses. The common point in all applications is the lack of contact and thus no wear and friction. This increases efficiency, reduces maintenance costs, and increases the useful life of the system. The magnetic levitation technology can be used as an efficient technology in the various industries. There are already many countries that are attracted to maglev systems. Many systems have been proposed in different parts of the worlds. This paper tries to study the most important uses of magnetic levitation technology. The results clearly reflect that the maglev can be conveniently considered as a solution for the future engineering needs of the world.

  17. Latest trend for practical use of linear motorcar. Status quo and future aspect of transrapid maglev

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Kunio [Techno Consultants Co., Ltd., Tokyo, (Japan)

    1989-08-25

    Present stage and future aspect of the Transrapid Maglev of West Germany is reported. TR05 was opened to the general public in 1979. The large scale test course is called TVE with the length of 31.5km and has a loop at each end, enabling continuous test running. In Japnuary, 1988, TR06 set a new world record of 412.6km/h as a manned vehicle. In December, 1988, TR07 was brought in, and functional test, levitation test and low speed running test were completed. High speed test is scheduled to start in June, 1989. Steel can be used for the building of the guideway. It is aimed that Transrapid Maglev be used in other countries as well. It can be used in Japan for a wide range og transportation systems including communtation and trunk line transportation. 5 figs., 1 tab.

  18. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  19. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  20. Pre-study on the Berlin-Budapest high-speed rail link; Hochgeschwindigkeitsverkehr: Vorstudie zur Strecke Berlin-Budapest

    Energy Technology Data Exchange (ETDEWEB)

    Fengler, W.; Stehle, J. [TU Dresden (Germany). Fakultaet Verkehrswissenschaften ' ' Friedrich List' ' ; Schach, R. [TU Dresden (Germany). Fakultaet Bauingenieurwesen; Stephan, A. [Inst. fuer Bahntechnik GmbH, Dresden/Berlin (Germany)

    2008-07-01

    In a pre-study, the Government of the State of Saxony commissioned a comparison between wheel/rail and maglev technology for high-speed operations on the northern section of the pan-European Corridor IV. From the holistic perspective of the business evaluation and the expected economic impact, it can be concluded that there is a case for establishing a guided high-speed link between Berlin and Budapest and that the plan should be pursued further. Teh pre-study showed that, taking a comprehensive view of investment and operational aspects, the Transrapid technology already stands comparison with wheel/rail technology. (orig.)

  1. Dynamic Stability of Maglev Systems,

    Science.gov (United States)

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  2. US Advanced Freight and Passenger MAGLEV System

    Science.gov (United States)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  3. 40 Years MAGLEV Vehicles in Germany

    OpenAIRE

    Meisinger, Reinhold; Guangwei, Shu

    2011-01-01

    On May 6th 1971 the worldwide first MAGLEV vehicle was presented by Messerschmitt-Bölkow-Blohm (MBB) in Ottobrunn near Munich, Germany. Till the year 2000 different test and application MAGLEV vehicles followed, but no commercial use in Germany. Since December 31st 2002 the Shang-hai MAGLEV Transportation System is successfully in operation, as the worldwide first and only one commercial used MAGLEV line. The paper in honour of Prof. Dr.-Ing. Eveline Gottzein for her 80th birthday contains in...

  4. Dynamics and Control of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Won ko

    2006-06-01

    Full Text Available In this paper, dynamics of a Maglev vehicle was analyzed and controls utilizing an optimized damping and an LQR algorithms were designed to stabilize the vehicle. The dynamics of magnetically levitated and propelled Maglev vehicle are complex and inherently unstable. Moreover, 6-DOF system dynamics is highly nonlinear and coupled. The proposed control schemes provide the dynamic stability and controllability, which computer simulations confirmed the effectiveness.

  5. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  6. Improved ADRC for a Maglev planar motor with a concentric winding structure

    NARCIS (Netherlands)

    Kou, Baoquan; Xing, Feng; Zhang, Chaoning; Zhang, L.; Zhou, Yiheng; Wang, Tiecheng

    2016-01-01

    In the semiconductor industry, positioning accuracy and acceleration are critical parameters. To improve the acceleration speed of a motor, this paper proposes the moving-coil maglev planar motor with a concentric winding structure. The coordinate system has been built for the multiple degrees of

  7. Agile Port and High Speed Ship Technologies

    Science.gov (United States)

    2009-12-31

    Alternative Shipboard Powering Systems for Naval and Regulatory Review • The Evaluation and Implementation Plan for Southern California Maglev ...Ackerman". CSULB Foundation Annual Report. CSULB Foundation, Long Beach, CA. December 2005. " Maglev Technology ’Conveys’ Port Transportation Solutions...34. Newsflash. College of Engineering, California State University, Long Beach. Cover page. Spring 2006 Hanson, Kristopher. "Engineers Tout Maglev at

  8. Vehicle/Guideway Interaction in Maglev Systems

    Science.gov (United States)

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  9. U.S. Maglev finally lifts off

    International Nuclear Information System (INIS)

    Carlson, L.

    1991-01-01

    In the largest allocation of U.S. maglev funds to date, four contracts totalling $8.6 million to develop potential concepts for a maglev system in the U.S. were awarded on the last day of October. With the $4.3 million in contracts awarded in late August as a result of a BAA, this brings the total monies awarded thus far by the National Maglev Initiative to $12.9 million. The long-awaited maglev concept contracts will fund four industrial teams, each examining a different maglev concept. In this paper, each of the 11-month concept studies examines such issues as the vehicle, guideway, levitation, suspension, propulsion, braking and control, and integrate them into a complete transportation system. Each study also assesses technical feasibility, performance, capital, operating and maintenance costs for a system that would be available sometime around the turn of the century

  10. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.

    Science.gov (United States)

    Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang

    2018-05-24

    In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  11. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wang

    2018-05-01

    Full Text Available In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator’s frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL. In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  12. Safety of High Speed Magnetic Levitation Transportation Systems - Comparison of U.S. and Foreign Safety Requirements for Application to U.S. Maglev Systems

    Science.gov (United States)

    1993-09-01

    This report presents the results of a systematic review of the safety requirements selected for the German Transrapid : electromagnetic (EMS) type maglev system to determine their applicability and completeness with respect to the : construction and ...

  13. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  14. High-speed magnetic levitation system TRANSRAPID. History, development program, first application

    Energy Technology Data Exchange (ETDEWEB)

    Wiescholek, U [Federal Ministry of Education, Science, Research and Technology, Bonn (Germany); Rogg, D [Dornier SystemConsult, Friedrichshafen (Germany); Mayer, W J [Dornier SystemConsult, Friedrichshafen (Germany)

    1996-12-31

    Basing on the origins of the MAGLEV system development in Germany the Transrapid train is described. The TRANSRAPID drive is an synchronous long-stator linear motor. Levitation, guidance and propulsion as well as braking are performed completely without contact with the guideway, at any speed. The first track will be the Berlin Hamburg track with a length of 283 km. (HW)

  15. Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2017-08-01

    Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.

  16. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Science.gov (United States)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  17. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Directory of Open Access Journals (Sweden)

    Chen-Guang Huang

    2017-11-01

    Full Text Available During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  18. Improved ADRC for a Maglev Planar Motor with a Concentric Winding Structure

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-12-01

    Full Text Available In the semiconductor industry, positioning accuracy and acceleration are critical parameters. To improve the acceleration speed of a motor, this paper proposes the moving-coil maglev planar motor with a concentric winding structure. The coordinate system has been built for the multiple degrees of freedom movement system. The Lorenz force method has been applied to solve its electromagnetic model. The real-time solving of the generalized inverse matrix of factors can realize the decoupling of the winding current. When the maglev height changes, the electromagnetic force and torque decreases exponentially with the increase of the air gap. To decrease the influence on control system performance by the internal model change and the external disturbance, this paper proposes an improved active disturbance rejection control (ADRC to design the controller. This new controller overcomes the jitter phenomenon due to the turning point for the traditional ADRC, thus it is more suitable for the maglev control system. The comparison between ADRC and the improved ADRC has been conducted, the result of which shows the improved ADRC has greater robustness.

  19. Levitation characteristics in an HTS maglev launch assist test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Qiu Ming; Liu Yu; Wen Zheng; Duan Yi; Chen Xiaodong

    2007-01-01

    With the aim of finding a low-cost, safe, and reliable way to reduce costs of space launch, a maglev launch assist vehicle (Maglifter) is proposed. We present a permanent magnet-high temperature superconductor (PM-HTS) interaction maglev system for the Maglifter, which consists of a cryostat with multi-block YBaCuO bulks and a flux-collecting PM guideway. We obtain an optimum bulk arrangement by measuring and analysing the typical locations of HTSs above the PM guideway. We also measure the levitation abilities of the arrangement at different field cooled heights (FCHs) and different measuring distances (MDs), and find that the lower FCH and the lower MD both cause more magnetic flux to penetrate the HTSs, and then cause stronger lateral stability. A demonstration PM-HTS maglev test vehicle is built with four maglev units and two PM guideways with the length of 7 m. Its levitation characteristics in different FC and loading conditions are demonstrated. By analysing the maglev launch assist process, we assess that the low FC is useful for increasing the lateral stability of the Maglifter

  20. Super high-speed magnetically levitated system approaches: practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S; Nakao, H; Takemasa, H

    1988-01-01

    The JR-MAGLEV, utilizing superconducting magnets, has been under development since 1970 with the manufacturing of a succession of trial vehicles such as the LSM 200, ML 100, ML 500 and MLU 001. In 1979, the ML 500 trial vehicle achieved a world-record speed of 517 km/h. This was followed by the MLU 001, which recorded a speed of 350 km/h as a 3-car formation in 1986 and 400 km/h as a 2-car formation with passengers in 1987. As a result of the satisfactory results obtained by the MLU 001, a prototype vehicle for commercial service, the MLU 002, was manufactured in March 1988 and is now under testing at the Miyazaki test track, with the aim of achieving a target operational speed of 420 km/h.

  1. Influence of the ramp angle on levitation characteristics of HTS maglev

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Zhang Longcai; Wang Suyu; Pan Siting

    2008-01-01

    The gradeability is one of the advantages of the high-temperature superconducting (HTS) maglev vehicle, and it is relative to the levitation characteristic of the maglev system on the ramp. The influence of the ramp angle on the levitation characteristics of the HTS maglev model was investigated. Some levitation characteristic parameters on the uphill guideway with different ramp angles were studied by the equivalent experiment, such as the levitation force, the levitation gap, the levitation stiffness and the guidance force. Compared with the experimental results on the horizontal guideway, it was found that the levitation gap increased, but the levitation force and the levitation stiffness decreased. The levitation gap and the levitation stiffness are considered as the main maglev characteristic parameters needed to be taken into account

  2. Lateral restorable characteristics of the high-Tc superconducting maglev vehicle above the permanent magnet guideway

    International Nuclear Information System (INIS)

    Ma, G.T.; Wang, J.S.; Lin, Q.X.; Liu, M.X.; Deng, Z.G.; Li, X.C.; Liu, H.F.; Zheng, J.; Wang, S.Y.

    2009-01-01

    The lateral restorable characteristics of a translational symmetry high-T c superconducting maglev system are investigated by measuring its resonant frequency (f RF ) after a lateral displacement. The difference between whether this lateral displacement is restorable, meaning elastic or inelastic, is determined by whether or not the maglev body returns to its original position after a lateral displacement. The maximum restorable lateral displacement (δ MRLD ) is determined by the sudden change of the f RF vs. the maximum lateral displacement (δ MLD ) curve. The f RF of the high-T c superconducting maglev system with different field-cooling height (FCH) and working height (WH) was obtained from the frequency domain vibration curve which was measured by a vibration measurement system. The results showed that, the δ MRLD was reduced when the WH was decreased. The maximum restorable guidance force (F MRGF ) was found to not always increase with the lowering of the WH for the same FCH. The lateral restorable stiffness (k LRS ) was always enhanced with the decrease of the WH. The decrease of the δ MRLD with the WH is interpreted by the fact that, the tangential field component (ΔH) across the surface of the high-T c superconductor (HTSC) is easier to exceed the J c λ value (J c is the critical current density and λ is the London penetration depth) when the WH is lowered, and this makes the trapped flux lines become more susceptible in escaping its pinning sites.

  3. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    Science.gov (United States)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed

  4. Guideways for high speed magnetically levitated train systems - TRANSRAPID

    Energy Technology Data Exchange (ETDEWEB)

    Falkner, H [Technische Univ. Braunschweig (Germany); Grossert, E [IBF Dr. Falkner GmbH, Braunschweig/Berlin (Germany)

    1996-12-31

    The superspeed maglev system Transrapid is a rapid train system designed for speeds ranging from 300 to 500 km/h, using new no-contact levitation, guidance and propulsion system technologies, which will soon be used for an actual operational line. On the Transrapid Test Facility in Emsland (TVE), suitibility studies have been carried out since 1984. In 1989, work began on the plans for a reference line. Different guideway constructions, designed for the actual operational line are discussed in the following article. (orig.)

  5. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  6. A method to enhance the curve negotiation performance of HTS Maglev

    Science.gov (United States)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  7. Integral Cost-Benefit Analysis of Maglev Rail Projects Under Market Imperfections

    Directory of Open Access Journals (Sweden)

    J. Paul Elhorst

    2008-07-01

    Full Text Available This article evaluates a new mode of high speed ground transportation, the magnetic levitation rail system (Maglev. The outcomes of this evaluation provide policy information on the interregional redistribution of employment and population and the national welfare improvement of two Dutch urban-conglomeration and two Dutch core-periphery projects. This article also compares the results of an integral cost- benefit analysis with those of a conventional cost-benefit analysis and concludes that the additional economic benefits due to market imperfections vary from –1% to +38% of the direct transport benefits, depending on the type of regions connected and the general condition of the economy.

  8. Fatigue Testing of Maglev-Hybrid Box Beam

    Science.gov (United States)

    2009-03-02

    04142009 3. DATES COVERED: (From - To) 23052006-14092008 4. TITLE AND SUBTITLE Fatigue Testing of Maglev -Hybrid Box Beam 5a. CONTRACT NUMBER NA...was previously built under collaboration between Maglev Inc. and Lehigh University. The girder was instrumented with strain gages and LVDT’s to monitor...report March 2,2009 Contract N00014-06-1-0872 Project: Fatigue Testing of Maglev -Hybrid Box Beam Prepared by Dr. J.L. Grenestedt and Dr. R. Sause

  9. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    Science.gov (United States)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  10. A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Jing, H.; Wang, J.; Wang, S.; Wang, L.; Liu, L.; Zheng, J.; Deng, Z.; Ma, G.; Zhang, Y.; Li, J.

    2007-01-01

    In order to improve the levitation performance of the high temperature superconducting (HTS) magnetic levitation (Maglev) vehicle, a two-pole Halbach array's permanent magnet guideway (PMG) is proposed, which is called as Halbach PMG. The finite element method (FEM) calculations indicate that Halbach PMG has a wider high-field region than the present PMG of equal PM's transverse section. The levitation force of bulk HTSCs with the present PMG and Halbach PMG are measured. The results show that at different levitation gaps, the force ratios based on the Halbach PMG are about 2.3 times larger than that on the present PMG, which greatly increases the load capability of the system. Therefore, both the numerical analysis and experimental results have confirmed that the Halbach PMG will further enhance the performance of the vehicle and it is possible to decrease the total numbers of onboard HTSCs, reducing overall costs. So based on the Halbach PMG, we further study the width ratios between HTSCs and PMG for making the better use of the onboard HTSCs. Some preliminary results are given. These results are important for further HTS Maglev vehicle system designs using Halbach PMG

  11. Maglev: where next

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, S

    1984-01-01

    The new magnetic levitation system of transport now in operation in Birmingham, England is described. The decision to construct the system followed a comprehensive analysis of the transportation problem which came to the conclusion that only an automatic, small, vehicle-based system was likely to be able to offer the combination of high quality, flexibility and economy of operation required at this particular location. The advantages of the Maglev system are discussed.

  12. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    International Nuclear Information System (INIS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B.T.; Si, S.S.; Deng, Z.G.

    2015-01-01

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  13. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, J., E-mail: jzheng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Che, T. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, B.T.; Si, S.S. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  14. Maglev trains key underlying technologies

    CERN Document Server

    Liu, Zhigang; Li, Xiaolong

    2015-01-01

    The motion of the train depends on the traction of linear motors in the vehicle. This book describes a number of essential technologies that can ensure the safe operation of Maglev trains, such as suspension and orientation technologies, network control and diagnosis technologies. This book is intended for researchers, scientists, engineers and graduate students involved in the rail transit industry, train control and diagnosis, and Maglev technology.

  15. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    Science.gov (United States)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  16. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  17. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    International Nuclear Information System (INIS)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S.; Wang, J.

    2008-01-01

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk magnet, it is

  18. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  19. Fractional Order PIλDμ Control for Maglev Guiding System

    Science.gov (United States)

    Hu, Qing; Hu, Yuwei

    To effectively suppress the external disturbances and parameter perturbation problem of the maglev guiding system, and improve speed and robustness, the electromagnetic guiding system is exactly linearized using state feedback method, Fractional calculus theory is introduced, the order of integer order PID control was extended to the field of fractional, then fractional order PIλDμ Controller was presented, Due to the extra two adjustable parameters compared with traditional PID controller, fractional order PIλDμ controllers were expected to show better control performance. The results of the computer simulation show that the proposed controller suppresses the external disturbances and parameter perturbation of the system effectively; the system response speed was increased; at the same time, it had flexible structure and stronger robustness.

  20. Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Liu Yu; Wen Zheng; Chen Xiaodong; Duan Yi

    2008-01-01

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs

  1. Maglev System Concept Definition (SCD) System Safety Review

    Science.gov (United States)

    1993-01-07

    As part of the National Maglev Initiative (NMI), the Federal Railroad : Administration (FRA) solicited proposals to conceptually define the technical feasibility, : performance and costs of constructing and operating Maglev systems in the United : St...

  2. Functional safety requirements of the propulsion and power supply equipment of the MAGLEV system; Umgang mit funktionalen Sicherheitsanforderungen bei Antrieb und Energieversorgung der Magnetbahn

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. [IFB Inst. fuer Bahntechnik GmbH, Dresden (Germany)

    2008-07-01

    In the Transrapid high-speed MAGLEV railway system, the operating control subsystem provides for the higher-level safety function. Within the system also selected components of the stationary linear-motor drive have important safety functions. Under the approval procedure, the safety-relevant functions must be certified. This makes specific requirements on the development and integration of the components used. (orig.)

  3. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  4. High speed magnetically levitated transport systems: Technical and economic aspects. Sistemi di trasporto ad alta velocita' a levitazione magnetica: Considerazioni tecniche ed economiche

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, G; Morini, A [Padua Univ. (Italy)

    1992-11-01

    In assessing the current state of technology relative to high speed (400 to 500 km/h) magnetically levitated (MAGLEV) transportation systems, this paper compares the technical aspects of the two main types of suspension systems now being developed specifically for these transportation systems, i.e., attractive electromagnetic using conventional magnets, and repulsive electrodynamic using superconducting magnets. Commercialization prospects for these systems are reviewed by analyzing areas where high speed levitated trains could compete against conventional rail and air transportation systems. The technology review includes progress reports on research and developments activities taking place in Germany and Japan, as well as, descriptions of some recent applications of this technology.

  5. Lateral restorable characteristics of the high-T{sub c} superconducting maglev vehicle above the permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, G.T., E-mail: guangtma@gmail.co [Applied Superconductivity Laboratory, Southwest Jiaotong University, Mail Stop 152, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: asclab@asclab.c [Applied Superconductivity Laboratory, Southwest Jiaotong University, Mail Stop 152, Chengdu, Sichuan 610031 (China); Lin, Q.X.; Liu, M.X.; Deng, Z.G.; Li, X.C.; Liu, H.F.; Zheng, J.; Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Mail Stop 152, Chengdu, Sichuan 610031 (China)

    2009-11-01

    The lateral restorable characteristics of a translational symmetry high-T{sub c} superconducting maglev system are investigated by measuring its resonant frequency (f{sub RF}) after a lateral displacement. The difference between whether this lateral displacement is restorable, meaning elastic or inelastic, is determined by whether or not the maglev body returns to its original position after a lateral displacement. The maximum restorable lateral displacement (delta{sub MRLD}) is determined by the sudden change of the f{sub RF} vs. the maximum lateral displacement (delta{sub MLD}) curve. The f{sub RF} of the high-T{sub c} superconducting maglev system with different field-cooling height (FCH) and working height (WH) was obtained from the frequency domain vibration curve which was measured by a vibration measurement system. The results showed that, the delta{sub MRLD} was reduced when the WH was decreased. The maximum restorable guidance force (F{sub MRGF}) was found to not always increase with the lowering of the WH for the same FCH. The lateral restorable stiffness (k{sub LRS}) was always enhanced with the decrease of the WH. The decrease of the delta{sub MRLD} with the WH is interpreted by the fact that, the tangential field component (DELTAH) across the surface of the high-T{sub c} superconductor (HTSC) is easier to exceed the J{sub c}lambda value (J{sub c} is the critical current density and lambda is the London penetration depth) when the WH is lowered, and this makes the trapped flux lines become more susceptible in escaping its pinning sites.

  6. Structural parameter optimization design for Halbach permanent maglev rail

    International Nuclear Information System (INIS)

    Guo, F.; Tang, Y.; Ren, L.; Li, J.

    2010-01-01

    Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.

  7. Structural parameter optimization design for Halbach permanent maglev rail

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F., E-mail: guofang19830119@163.co [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China); Tang, Y.; Ren, L.; Li, J. [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-11-01

    Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.

  8. Automatic Design of a Maglev Controller in State Space

    Science.gov (United States)

    1991-12-01

    Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING

  9. Update of super-speed ground transportation technology development status and performance capabilities. CIGGT report No. 89-16

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, W F

    1990-01-01

    This report presents an update of the Phase II assessment of development status and performance capabilities for four candidate super-speed ground transportation system alternatives for the Las Vegas-Southern California corridor. The four alternatives considered are the TGV wheel-on-rail technology, the Transrapid TR- 07 long-stator Electromagnetic Maglev (EMS) technology, the Japan Railways MLU Electrodynamic Maglev (EDS) technology, and the HSST Corp. HSST-400 short-stator Electromagnetic Maglev technology.

  10. Shunt protection for superconducting Maglev magnets

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ontario (Canada). Dept. of Physics

    1979-09-01

    Closely coupled, short-circuited shunt coils are proposed for quench protection of superconducting Maglev magnets which use high resistance, matrix composite conductors. It is shown that, by suitable design, the shunts can reduce induced ac losses and that the changing currents during magnet energization or vehicle lift off and landing can be tolerated.

  11. A high precision position sensor design and its signal processing algorithm for a maglev train.

    Science.gov (United States)

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  12. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    Directory of Open Access Journals (Sweden)

    Wensen Chang

    2012-04-01

    Full Text Available High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  13. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  14. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    Full Text Available Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS for High-Speed Ground Transportation (HSGT almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS are hardly currently used for the High-Speed Ground Transportation (HSGT. Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT, developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG. This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS. Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an

  15. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  16. Shunt protection for superconducting Maglev magnets

    International Nuclear Information System (INIS)

    Atherton, D.L.

    1979-01-01

    Closely coupled, short-circuited shunt coils are proposed for quench protection of superconducting Maglev magnets which use high resistance, matrix composite conductors. It is shown that, by suitable design, the shunts can reduce induced ac losses and that the changing currents during magnet energization or vehicle lift off and landing can be tolerated. (author)

  17. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S

    2008-01-01

    In order to improve the cost performance of the present high-T c superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  18. High speed maglev design

    Science.gov (United States)

    Rote, Donald M.; He, Jianliang; Coffey, Howard

    1993-01-01

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  19. High speed maglev design

    Science.gov (United States)

    Rote, D.M.; Jianliang He; Coffey, H.

    1993-10-19

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.

  20. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    Science.gov (United States)

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  1. Methods of stabilizing a permanent maglev rotator in heart pumps and other rotary machines

    Directory of Open Access Journals (Sweden)

    kun-xi qian

    2014-10-01

    Full Text Available Permanent maglev rotator in a rotary machine could be stabilized according to the author’s experiences, by use of a non-PM (permanent magnetic force acting together with the PM force, and a non-PM bearing functioning together with the PM bearing, or a so-called gyro-effect which can stabilize all rotators including permanent maglev rotator. This paper presents both axially and radially driven permanent maglev centrifugal heart pumps, as well as a permanent maglev turbine machine and an industrially used permanent maglev centrifugal pump. In all this devices permanent maglev rotators achieve stable equilibrium by different approaches described in detail. Finally, the principle exhibition of gyro-effect and the route chart to stabilization of permanent maglev rotator are presented.

  2. Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data

    Science.gov (United States)

    Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao

    2012-11-01

    Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.

  3. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  4. Next generation railway system. ; Control system for JR Maglev. Jisedai tetsudo system. ; Rinia shinkansen no seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K [Central Japan Railway Company, Nagoya (Japan)

    1993-07-10

    Aiming at achieving a maglev Shinkansen that links Tokyo with Osaka at a speed of 500 km/h, an experimental maglev line is being constructed in Yamanashi Prefecture. This paper explains a train control system as the main subject. The system mounts superconductive magnets directly on bogies to propel a train using actions of moving magnet fields generated from propulsion coils paved on ground. Because of its mechanism to levitate and guide the train using induction coils superposed on the propulsion coils, no special control device is required for the levitation and guidance. This is a difference from a normal conduction magnet levitation system. Its speed control also differs from the conventional railway systems. It uses a ground primary control system that controls supply currents from substations on the ground, including braking control. One substation controls one train only. Automatic control is made on all controls related to travelling, including a control from train movement start to stops at predetermined positions, scheduled-time operation control, and jerk control. The construction of the experimental line is under steady progress. 5 figs.

  5. Urban Maglev Technology Development Program : Colorado Maglev Project : part 2 final report

    Science.gov (United States)

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  6. Design and fabrication of a hybrid maglev model employing PML and SML

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  7. Simulation of YBCO Tape and Coils in HTS Maglev System

    Directory of Open Access Journals (Sweden)

    Song Mengxiao

    2017-01-01

    Full Text Available In the process of running high temperature superconducting maglev train, the AC(Alternating Current loss of superconducting coil is directly related to its safe operation and operating cost. In this paper, the simulation model was built based on the finite element software COMSOL Multiphysics, and mainly simulated and calculated the AC losses of YBCO(Yttrium Barium Copper Oxide tape and coils. In this model, as the solving object, the singular and infinite long YBCO tape and coils model was solved with H-formulation and the nonlinear characteristic (E-J constitutive law and anisotrophy (B-J characteristic were taken into consideration as the theoretical foundation. Then on the basis of the model under maglev suspension system, AC losses under different amplitude and frequence AC currents were calculated. The results shows that under different frequencies and dynamic components, the local maximum AC loss of YBCO tape and coils occurs when the steady-state DC(Direct Current current is 30A. Then comparing with old maglev suspension system, the new system can greatly reduce the energy consumption and the material cost.

  8. Development of Maglev and linear drive technology for transportation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masada, Eisuke [Tokyo Univ. (Germany)

    1996-12-31

    In order to realise guided ground transportation systems with superspeed, better riding comforts and environmental effects two types of maglev transports, JR-Maglev and HSST have been developed since 20 years in Japan. JR-Maglev is bases on a electro-dynamic suspension system and driven by long-stator linear synchronous motors. HSST is an electromagnetic suspension system with short-stator linear induction motor. Both systems are presented. (HW)

  9. Risk Analysis Based on AHP and Fuzzy Comprehensive Evaluation for Maglev Train Bogie

    OpenAIRE

    Fan, Chengxin; Dou, Fengshan; Tong, Baiming; Long, Zhiqiang

    2016-01-01

    The maglev bogie is the key subsystem for maglev train security. To ensure life and property security, it is essential to evaluate its risk level before its operation. In this paper, a combinational method of analytic hierarchy process and fuzzy comprehensive evaluation is proposed to assess hazards in a complex maglev bogie system associated with multiple subsystems’ failures. The very comprehensive identification of risk sources has been done by analyzing the structure of maglev bogie. Furt...

  10. Risk Analysis Based on AHP and Fuzzy Comprehensive Evaluation for Maglev Train Bogie

    Directory of Open Access Journals (Sweden)

    Chengxin Fan

    2016-01-01

    Full Text Available The maglev bogie is the key subsystem for maglev train security. To ensure life and property security, it is essential to evaluate its risk level before its operation. In this paper, a combinational method of analytic hierarchy process and fuzzy comprehensive evaluation is proposed to assess hazards in a complex maglev bogie system associated with multiple subsystems’ failures. The very comprehensive identification of risk sources has been done by analyzing the structure of maglev bogie. Furthermore, based on the fuzzy theory, linguistic evaluation set is classified according to risk tolerance. The score of each risk factor is obtained by weighted sum of the result of fuzzy comprehensive evaluation. Our results show that the degree of maglev bogie’s risk is within the range of acceptability. The merits of this work facilitate finding the weak links and determining the maintenance of maglev bogie system.

  11. Maglev for Students

    Science.gov (United States)

    Kraftmakher, Yaakov

    2008-01-01

    An experiment and a demonstration concerning transport by magnetic levitation (Maglev) are described. The lift, drag and radial forces on a magnet placed over a rotating conducting disc are measured versus the rotation frequency. The experiment relates to important topics of electromagnetism and could be a useful addition to the undergraduate…

  12. The concept of the mechanically active guideway as a novel approach to maglev

    Science.gov (United States)

    Horwath, T. G.

    1992-01-01

    A maglev system that is suitable for operation in the United States will have to meet unique requirements which determine the major systems characteristics. Maglev configurations presently developed in Germany and Japan are based on conventional maglev concepts and as such do not meet all of the requirements. A novel maglev guideway concept is introduced as a solution. This concept, the mechanically active guideway, is articulated in three degrees of freedom and assumes system functions which normally reside in the maglev vehicle. The mechanically active guideway contains spatially distributed actuators which are energized under computer control at the time of vehicle passage to achieve bank angle adjustment and ride quality control. A typical realization of the concept is outlined.

  13. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  14. Positioning performance of a maglev fine positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.; Darnold, J.R.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages of maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.

  15. High-efficiency and low-cost permanent magnet guideway consideration for high-T{sub c} superconducting Maglev vehicle practical application

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn

    2008-11-15

    In order to improve the cost performance of the present high-T{sub c} superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  16. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    International Nuclear Information System (INIS)

    Longcai, Zhang

    2014-01-01

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius

  17. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  18. A Hands-On Approach to Maglev for Gifted Students.

    Science.gov (United States)

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  19. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  20. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  1. Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

    Directory of Open Access Journals (Sweden)

    Y. Cai

    1995-01-01

    Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  2. Proceedings of the international conference on maglev and linear drives

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book contains papers presented at a conference on Maglev and linear drives. Topics covered include: Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle; Power supply system to drive HSST - Expo '86; and Thrust and levitation force characteristics of linear synchronous motors

  3. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    Science.gov (United States)

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of

  4. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  5. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Science.gov (United States)

    2010-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  6. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Science.gov (United States)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  7. Fault Detection Based on Tracking Differentiator Applied on the Suspension System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Hehong Zhang

    2015-01-01

    Full Text Available A fault detection method based on the optimized tracking differentiator is introduced. It is applied on the acceleration sensor of the suspension system of maglev train. It detects the fault of the acceleration sensor by comparing the acceleration integral signal with the speed signal obtained by the optimized tracking differentiator. This paper optimizes the control variable when the states locate within or beyond the two-step reachable region to improve the performance of the approximate linear discrete tracking differentiator. Fault-tolerant control has been conducted by feedback based on the speed signal acquired from the optimized tracking differentiator when the acceleration sensor fails. The simulation and experiment results show the practical usefulness of the presented method.

  8. Maglev for students

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2008-01-01

    An experiment and a demonstration concerning transport by magnetic levitation (Maglev) are described. The lift, drag and radial forces on a magnet placed over a rotating conducting disc are measured versus the rotation frequency. The experiment relates to important topics of electromagnetism and could be a useful addition to the undergraduate physics laboratory. The clearly seen electrodynamic suspension is an attractive classroom demonstration

  9. Maglev for students

    Energy Technology Data Exchange (ETDEWEB)

    Kraftmakher, Yaakov [Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: krafty@mail.biu.ac.il

    2008-07-15

    An experiment and a demonstration concerning transport by magnetic levitation (Maglev) are described. The lift, drag and radial forces on a magnet placed over a rotating conducting disc are measured versus the rotation frequency. The experiment relates to important topics of electromagnetism and could be a useful addition to the undergraduate physics laboratory. The clearly seen electrodynamic suspension is an attractive classroom demonstration.

  10. Stability and Bifurcation Analysis in a Maglev System with Multiple Delays

    Science.gov (United States)

    Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou

    This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.

  11. Influence of Off-Centre Operation on the Performance of HTS Maglev

    Science.gov (United States)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  12. Influences of cooling height and lateral moving speed on the levitation characteristics of YBaCuO bulks

    International Nuclear Information System (INIS)

    Zhou Jun; Zhang Xingyi; Zhou Youhe

    2009-01-01

    Using an updated high-temperature superconductor (HTS) maglev measurement system, electromagnetic forces between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under different cooling height (CH) and different lateral moving speed of the PM. It is found that the influence of the moving speed on both the levitation and lateral force is substantial and as such the results shown in this work are a benefit to the understanding of levitation systems.

  13. Influences of cooling height and lateral moving speed on the levitation characteristics of YBaCuO bulks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: Zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2009-03-15

    Using an updated high-temperature superconductor (HTS) maglev measurement system, electromagnetic forces between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under different cooling height (CH) and different lateral moving speed of the PM. It is found that the influence of the moving speed on both the levitation and lateral force is substantial and as such the results shown in this work are a benefit to the understanding of levitation systems.

  14. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  15. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  16. Compendium of Executive Summaries from the Maglev System Concept Definition. Final Reports

    National Research Council Canada - National Science Library

    1993-01-01

    ...) studies awarded under the National Maglev Initiative. These summaries present the technical feasibility, performance, capital, operating and maintenance costs for a maglev system that would be available by the year 2000...

  17. Urban Maglev Technology Development Program : Colorado Maglev Project : part 1 : executive summary of final report

    Science.gov (United States)

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  18. Framework for technical assessment in JR Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Akio [Central Japan Railway Co., Tokyo (Japan); Akahoshi, Toru [Central Japan Railway Co., Tokyo (Japan); Furuki, Tsutomu [Railway Technical Research Inst., Tokyo (Japan)

    1995-12-31

    In the course of development of JR Maglev, various technical assessments are carried out at each stage of development by a system management group of a project team in order to achieve goals of development. For the purpose, guidelines for practicality assessment were prepared at design stage. It is now striven to make test plans necessary for the practicality assessment. This assessment will serve for those to be ultimately implemented by Ministry of Transport (MOT). This paper presents an overview of concepts, methods and procedures of the technical assessments especially focused on the practicality assessment in the development of JR Maglev. (orig.)

  19. Improved high speed maglev design

    Science.gov (United States)

    Rote, D.M.; He, Jianliang; Coffey, H.T.

    1992-01-01

    This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  20. Note: Development of a small maglev-type antirolling system.

    Science.gov (United States)

    Park, Cheol Hoon; Park, Hee Chang; Cho, Han Wook; Moon, Seok Jun; Chung, Tae Young

    2010-05-01

    Various passive and/or active antirolling devices have been used for suppressing the rolling motion of ships in the ocean. In this study, a maglev-type active mass driver (AMD) is developed for controlling the rolling motion of a shiplike structure. No friction is generated during the motion of this maglev-type AMD, as the moving mass is floated by the magnetic levitation force and displaced by the propulsion force generated by the linear motor. For verifying the feasibility of the proposed method, a small AMD having a moving mass of approximately 4.0 kg is constructed and used in a small-scale model of a catamaran. This paper presents the detailed design procedures and obtained experimental results. Our results show that the developed maglev-type AMD has the potential for use in controlling the rolling motion of ships and other oceanographic vessels.

  1. Kinematics analysis of vertical magnetic suspension energy storage flywheel rotor under transient rotational speed

    Science.gov (United States)

    Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei

    2018-05-01

    In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.

  2. Effect of lateral deformations of guideway on guidance characteristics of maglev train

    International Nuclear Information System (INIS)

    Kim, Ki Jung; Yang, Seok Jo; Lee, Jae Kyoung; Han, Hyung Suk

    2015-01-01

    A slender guideway is essential in improving aesthetically and reducing its construction cost which accounts for about 70% of overall investment for maglev system. As the slender guideway, however, may increase its deformation, its effect on levitation stability and guidance performance needs to be analyzed. The purpose of this study is to analyze the effect on guidance characteristics of maglev due to the lateral deformation of the guideway girder and lateral irregularity of guiderail. For doing this, 3D model considering lateral deformation of girder and irregularity of rail of the guideway is developed. Using the dynamic interaction model integrated with the proposed guideway and maglev vehicle including electromagnetics and its controller, guidance characteristics of maglev are analyzed. It is analyzed that the effect on lateral deformation of girder is relatively small compared to deformation on the lateral irregularities of guiderail

  3. Effect of lateral deformations of guideway on guidance characteristics of maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Jung; Yang, Seok Jo [Dept. of Mechatronics Engineering, Chungnam National Unversity, Daejeon (Korea, Republic of); Lee, Jae Kyoung; Han, Hyung Suk [Korea Institute of Machery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    A slender guideway is essential in improving aesthetically and reducing its construction cost which accounts for about 70% of overall investment for maglev system. As the slender guideway, however, may increase its deformation, its effect on levitation stability and guidance performance needs to be analyzed. The purpose of this study is to analyze the effect on guidance characteristics of maglev due to the lateral deformation of the guideway girder and lateral irregularity of guiderail. For doing this, 3D model considering lateral deformation of girder and irregularity of rail of the guideway is developed. Using the dynamic interaction model integrated with the proposed guideway and maglev vehicle including electromagnetics and its controller, guidance characteristics of maglev are analyzed. It is analyzed that the effect on lateral deformation of girder is relatively small compared to deformation on the lateral irregularities of guiderail.

  4. Analysis of eddy current induced in track on medium-low speed maglev train

    Science.gov (United States)

    Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie

    2017-06-01

    Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.

  5. Compendium of Executive Summaries from the Maglev System Concept Definition. Final Reports.

    Science.gov (United States)

    1993-03-01

    This report contains the Executive Summaries from the four System Concept Definition (SCD) studies awarded under the National Maglev Initiative...These summaries present the technical feasibility, performance, capital, operating and maintenance costs for a maglev system that would be available by

  6. Maglev train development. History and today's marketing chances; Magnetbahnentwicklung. Historie und heutige Marktchancen

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Eckert [Institut fuer Bahntechnik GmbH, Dresden (Germany); Witt, Michael [Lahmeyer Rhein-Main GmbH, Bad Vilbel (Germany)

    2012-03-15

    The development of maglev train systems started more than 40 years ago. The paper discusses relevant research efforts made in maglev train technology and the transport technology developments in past decades. Transport-political aspects were the determining factors for the development that led to current applications in the field of maglev train technology worldwide. (orig.)

  7. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    Science.gov (United States)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  8. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  9. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  10. MagneMotion urban maglev : final report

    Science.gov (United States)

    2004-11-01

    The MagneMotion Urban Maglev System, called M3, is designed as an alternative to all conventional guided transportation systems. Advantages include major reductions in travel time, operating cost, capital cost, noise, and energy consumption. Small ve...

  11. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    Science.gov (United States)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  12. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  13. An Operation Control Strategy for the Connected Maglev Trains Based on Vehicle-Borne Battery Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    2018-01-01

    Full Text Available Vehicle-borne battery condition is an important factor affecting the efficiency of the maglev train operation and other connected ones. To effectively eliminate the influence of the battery condition and improve the operation efficiency of the connected maglev trains, an operation control strategy is proposed to guarantee train operation safety. First, based on Internet of Things, a sensor network is designed to monitor vehicle-borne battery condition in each vehicle of the train. Second, the train Operation Control System collects battery data of all vehicles in a maglev train by Train Communication Network. Third, all connected maglev trains share the battery data via a 38 GHz directional Radio Communication System and adjust operation control strategy accordingly. Simulation results indicate that the proposed strategy can guarantee the operation safety of the connected maglev trains.

  14. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  15. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Science.gov (United States)

    Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi

    2017-05-01

    To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  16. Field homogeneity improvement of maglev NdFeB magnetic rails from joints.

    Science.gov (United States)

    Li, Y J; Dai, Q; Deng, C Y; Sun, R X; Zheng, J; Chen, Z; Sun, Y; Wang, H; Yuan, Z D; Fang, C; Deng, Z G

    2016-01-01

    An ideal magnetic rail should provide a homogeneous magnetic field along the longitudinal direction to guarantee the reliable friction-free operation of high temperature superconducting (HTS) maglev vehicles. But in reality, magnetic field inhomogeneity may occur due to lots of reasons; the joint gap is the most direct one. Joint gaps inevitably exist between adjacent segments and influence the longitudinal magnetic field homogeneity above the rail since any magnetic rails are consisting of many permanent magnet segments. To improve the running performance of maglev systems, two new rail joints are proposed based on the normal rail joint, which are named as mitered rail joint and overlapped rail joint. It is found that the overlapped rail joint has a better effect to provide a competitive homogeneous magnetic field. And the further structure optimization has been done to ensure maglev vehicle operation as stable as possible when passing through those joint gaps. The results show that the overlapped rail joint with optimal parameters can significantly reduce the magnetic field inhomogeneity comparing with the other two rail joints. In addition, an appropriate gap was suggested when balancing the thermal expansion of magnets and homogenous magnetic field, which is considered valuable references for the future design of the magnetic rails.

  17. Passive secondary magnetic damping for superconducting Maglev vehicles

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.; Sturgess, K.

    1976-01-01

    We analyze a passive magnetic damping scheme for the secondary suspension of a superconducting Maglev vehicle. The unsprung levitation or linear synchronous motor magnets are coupled electromagnetically to short-circuited aluminum damper coils mounted on the underside of the sprung mass. Relative motion between the magnets and the passenger compartment causes a time-dependent flux linkage which induces dissipative currents in the coils. Analysis for the typical Canadian Maglev vehicle design shows that a damping factor of 1 sec/sup -1/ can be obtained with a total coil mass of approximately 100 kg, for a secondary/primary suspension stiffness ratio of 0.2. This scheme appears to offer a design alternative to conventional frictional or hydraulic dampers

  18. A mini axial and a permanent maglev radial heart pump.

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-05-31

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.

  19. Technical Assessment of Maglev System Concepts

    Science.gov (United States)

    1998-10-01

    beams by the genieur 1983; City of Las Vegas 1987; L’Industrial post-tensioning to improve the total deflection Italiana del Cemento 1989; Maglev...Initiative, U.S. Army Corps of L’Industria Italiana del Cemento (1989) Experi- Engineer, Huntsville, under contract DTFR 53-92- mental magnetic

  20. Analysis and Design of a Maglev Permanent Magnet Synchronous Linear Motor to Reduce Additional Torque in dq Current Control

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2018-03-01

    Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.

  1. A study of an active magnetic shielding method for the superconductive Maglev vehicle

    International Nuclear Information System (INIS)

    Nemoto, K.; Komori, M.

    2010-01-01

    Various methods of magnetic shielding have been studied so far to reduce magnetic field strength inside the passenger room of the superconductive Maglev vehicle. Magnetic shielding methods with ferromagnetic materials are very useful, but they tend to be heavier for large space. Though some passive magnetic shielding methods using induced currents in superconducting bulks or superconducting coils have also been studied, the induced current is relatively small and it is difficult to get satisfactory magnetic shielding performance for the passenger room of the Maglev vehicle. Thus, we have proposed an active magnetic shielding method with some superconducting coils of the same length as propulsion-levitation-guidance superconducting coils of the Maglev vehicle. They are arranged under the passenger room of the Maglev vehicle. Then, we studied the shielding effect by canceling magnetic flux density in the passenger room by way of adjusting magnetomotive-forces of the magnetic shielding coils. As a result, it is found that a simple arrangement of two magnetic shielding coils for one propulsion-levitation-guidance superconducting coil on the vehicle shows an effective magnetic shielding.

  2. A study of an active magnetic shielding method for the superconductive Maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K., E-mail: nemoto@kamakuranet.ne.j [Kyushu Institute of Technology, Dept. of Applied Science for Integrated System Engineering, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan); Komori, M. [Kyushu Institute of Technology, Dept. of Applied Science for Integrated System Engineering, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan)

    2010-11-01

    Various methods of magnetic shielding have been studied so far to reduce magnetic field strength inside the passenger room of the superconductive Maglev vehicle. Magnetic shielding methods with ferromagnetic materials are very useful, but they tend to be heavier for large space. Though some passive magnetic shielding methods using induced currents in superconducting bulks or superconducting coils have also been studied, the induced current is relatively small and it is difficult to get satisfactory magnetic shielding performance for the passenger room of the Maglev vehicle. Thus, we have proposed an active magnetic shielding method with some superconducting coils of the same length as propulsion-levitation-guidance superconducting coils of the Maglev vehicle. They are arranged under the passenger room of the Maglev vehicle. Then, we studied the shielding effect by canceling magnetic flux density in the passenger room by way of adjusting magnetomotive-forces of the magnetic shielding coils. As a result, it is found that a simple arrangement of two magnetic shielding coils for one propulsion-levitation-guidance superconducting coil on the vehicle shows an effective magnetic shielding.

  3. Dynamics of the Bogie of Maglev Train with Distributed Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Yaozong Liu

    2015-01-01

    Full Text Available A dynamic model of the bogie of maglev train with distributed magnetic forces and four identical levitating controllers is formulated. The vertical, pitching, and rolling degree of freedom of the electromagnet modules and their coupling are considered. The frequency responses of the bogie to track irregularity are investigated with numerical simulation. The results tell us that there are resonances related to the first electromagnetic suspension whose frequencies are determined by the control parameters. A comparative analysis has been carried out between the models with distributed or concentrated magnetic forces. The comparison indicates that simplifying the distributed magnetic force to concentrated one degenerates the dynamic behavior of the maglev bogie, especially resulting in overestimated resonances of the first electromagnetic suspension of maglev trains. The results also indicate that those resonances only occur on specific wavelengths of irregularity that relate to the length of the electromagnets.

  4. Preparing a feasibility study for a maglev transport system

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, H

    1984-06-01

    The Transrapid test facility in Emsland is almost completed, and the phase of putting into operation with the TR 06 maglev vehicle has commenced. This will be followed by a general test phase to check the practicability of the maglev system. It is now time to clarify, by means of a feasibility study, what steps are necessary for the introduction of the maglev system in West Germany. Taking two existing railway lines as example, namely Hamburg-Hannover and Duesseldorf Airport-Cologne/Bonn Airport, the effect will be examined of the public-law licensing procedure, participation of the general public in planning procedures, and the information of the media. Also, the technical framework data will be revised on the basis of the experience gained in building the Transrapid facility and the technical improvements made subsequently. Proposed track routing plans are to take particular account of environmental protection considerations, while cost accounting models will be developed which allow fast and reliable forecasts to be made for future projects in respect of investment and operating costs, and optimal operating procedures will be determined by means of simulation.

  5. Research and new technologies in transportation. Vol. 1. High-speed railway systems: Maglev technology. Forschung und neue Technologien im Verkehr. Bd. 1. Schnellbahnsysteme: Magnetbandtechnolgie

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    High-speed magnetic levitation technology opens up a new dimension for long-distance passenger transport with speeds ranging between ground travel and flying. The status of development and test results of the German TRANSRAPID magnetic levitation system and corresponding activities abroad will be reported on. Both the new vehicle technology of the TRANSRAPID 07 and results of application studies at home and abroad will be presented. High-speed magnetic railway technology - status and development perspectives; readiness for service, safety and reliability, application studies. The book comprises 11 papers read at the symposium on the subject of high-speed trains. 14 papers have been recorded separately in this database. (orig./HW).

  6. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Science.gov (United States)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  7. PERSPECTIVE TRANSPORT-POWER SYSTEM BASED ON THE INTEGRATION OF MAGLEV-TECHNOLOGY AND DISTRIBUTED PHOTO-ELECTRIC STATION

    Directory of Open Access Journals (Sweden)

    V. O. Dzenzerskiy

    2018-02-01

    Full Text Available Purpose. The research main purpose is the perfection of magnetolevitating technology on electrodynamic suspension and providing its functioning on the base of ecologically rational energy systems. It means creation of the MAGLEV transport-power system which uses renewable energy sources (in particular, photoelectric converters and is connected to national/local networks as an energy user and producer simultaneously. Methodology. Conducted research, analysis and summary conclusions are based both on the results of works on the given subject, and own works of authors. The methods of systems analysis and computer design of components of the large cyber-physical transport-power system were used during research conducting. Findings. The physical-technical foundations of conception of the perspective transport-power system, which includes high-speed ground vehicle on electrodynamic suspension and distributed photo-electric energy complex are developed. The adapt to the performance of the given transport type and guaranteeing its safe functioning in any weather terms. Originality. For the first time authors substantiated the possibility for creation of single transport complex uniting the speed magnetolevitating system and distributed power supply system on the base of sun energy. It is simultaneously the inalienable part of the precision fast-acting control system, working in the real-time mode. Practical value. The offered scientific-technical solution allows on the base of renewable energy source to solve the problems of power supply and a high-speed transport control. Due to the inclusion of the distributed power supply system into local intellectual networks on the SMART-grid technology it gives the possibility to optimize energy consumption of territories neighboring to high-speed way.

  8. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  9. Superconducting magnet for maglev system. Fujoshiki tetsudoyo chodendo jishaku

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, M; Maeda, H; Sanada, Y [Toshiba Corp., Tokyo (Japan)

    1991-04-20

    The magnetically levitated vehicle (Maglev) system use superconducting magnet was explained in characteristics and present development status. The development of Maglev system, using superconducting magnet, commenced in 1960 {prime}s by ex-Japan National Railways, then succeeded by the Railway Technical Research Institute in 1987, made a long-term progress to be put to practical use. Then, added with the Central Japan Railway Company and Japan Railway Construction Public Company, the project team commenced the construction of Yamanashi test track in 1990, to aim at putting to practical use to be finally confirmed. On the other hand, actual vehicle use superconducting magnet has also entered the final development stage. For the superconducting coil for the Miyazaki test track use, development was made of integrated submersion technology of coil winding by resin, coil-binding structure with cramps to resist high electromagnetic force, generated in the superconducting coil, and coil inner vessel by welding thin stainless steel plate. For the Yamanashi test track use, made were heightening in thermal stability against the quenching phenomenon and optimization in coil inner vessel structure by simulation to confirm the highest magnetomotive force to be 1004kA. 8 figs., 1 tab.

  10. A Mini Axial and a Permanent Maglev Radial Heart Pump§

    Science.gov (United States)

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-01-01

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements. The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004. The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure. An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation. PMID:19662120

  11. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2017-05-01

    Full Text Available To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  12. Scientific Presentations on High Temperature Superconductivity and Cryogenic Power Research from 2005-2013

    Science.gov (United States)

    2013-11-01

    which uses higher fields of 3.6T, and the 7T magnets used for the Mach 10 speed test track based MagLev trains at Holloman Air Force Base (AFB...STEM AirCamp Outreach T. Haugan, E. Brewster, C. Ebbing Superconductivit y Basic Science and Technology, and MagLev Train Demonstration 12-Jul

  13. Robust levitation control for maglev systems with guaranteed bounded airgap.

    Science.gov (United States)

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway

    Directory of Open Access Journals (Sweden)

    J. D. Yau

    Full Text Available As a seismic wave travels along the separate supports of an extended structure, the structure is subjected to multiple-support excitation due to seismic wave propagation. Considering the seismic wave passage effect, this paper describes seismic analysis of a maglev vehicle moving on a multiply supported gudieway. The guideway system is modeled as a series of simple beams and the vehicle as a four degrees-of-freedom (DOFs rigid bar equipped with multiple onboard PI+LQR hybrid controllers. The controller is used to regulate control voltage for tuning both magnetic forces of uplift levitation and lateral guidance in the maglev system. Numerical studies show that as a maglev vehicle is equipped with more supported magnets then they can provide more control gains for tuning the guidance forces of the moving vehicle, and mitigate seismic-induced lateral vibration of a maglev vehicle running a guideway.

  15. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  16. The status of the technical development for the Yamanashi Maglev test line

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Maglev Systems Development Dept., Railway Technical Research Inst., Tokyo (Japan); Seki, Akio [Linear Express Research Development Div., Central Japan Railway Co. Ltd., Tokyo (Japan)

    1996-12-31

    The superconducting maglev system has been under development for the past 25 years in Japan. In last 17 years, running test on the 7 km Miyazaki test track has yielded important data for the maglev system development. In 1990, the maglev system gained the status of one of the national - funded projects in Japan. The government authorized the 42.8 km test line in Yamanashi Prefecture and R and D entered into a new phase. This new test line is planned to go through near Tokyo on the supposed Chuo line, which is expected to be a new important line connecting Tokyo and Osaka, the central part of Japan. This fact clearly explains the role of Yamanashi test line in the future. The construction of the Yamanashi test line is energetically promoted, to start running tests in spring of 1997. The situation of the technical development of the Yamanashi test line is reviewed here. (orig.)

  17. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  18. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Down-selection of one or more Maglev projects for... Procedures For Financial Assistance § 268.21 Down-selection of one or more Maglev projects for further study... completion of Phase III of the Maglev Deployment Program, FRA will down-select one or more projects to...

  19. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  20. Maglev Facility for Simulating Variable Gravity

    Science.gov (United States)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  1. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor.

    Science.gov (United States)

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-04-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.

  2. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  3. The AMT maglev test sled -- EML weapons technology transition to transportation

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, J.C. Jr. [BDM Federal, Huntsville, AL (United States); Zowarka, R.C. Jr. [Univ. of Texas, Austin, TX (United States); Davey, K. [American Maglev Technology, Inc., Edgewater, FL (United States); Weldon, J.M. [Parker Kinetic Designs, Inc., Austin, TX (United States)

    1997-01-01

    Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to the vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.

  4. Maglift Monorail

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Tom; Kelley, Bruce; Marder, Barry; Silva, Julio Pinto; Turman, Bob

    1999-06-10

    In the 1990s, significant experience has been gained with high-speed passenger rail technologies. On the one hand, high speed versions of conventional-configuration trains, such as the French TGV, have proven themselves in service; on the other hand, magnetic levitation (maglev) trains such as the German Transrapid, which some expected to supplant conventional trains in some high speed applications, have not yet proven themselves and face a problematic future. This is because of maglev's high capital cost, the magnetic drag which it introduces, and the high development risks associated with this complex technology. This paper examines a new form of high-speed train expected to be capable of speeds of 300 mph, the Maglift Monorail. The Maglift Monorail was developed by simplifying and improving two well-understood technologies--wheelsets and LIMs--and then integrating them. The solution is a vehicle with flangeless wheels mounted in two axes, powered by a high-efficiency and light-weight LIM, positioned to give magnetic lift (maglift), i.e., electromagnetic force in the vertical direction which reduces the vehicle weight on the suspension, and thereby reduces static and rolling drag. Maglift can be considered a form of maglev as it uses the same electromagnetic forces to lift and propel the vehicle. This solution is presented in a Spanish-designed monorail system which has a unique suspension designed to minimize friction while giving great stability and turning capability. This monorail vehicle is propelled by the Seraphim motor (Segmented Rail Phased Induction Motor) which virtually eliminates magnetic drag and provides significant maglift. The Maglift Monorail achieves lower operating costs and a greater overall reduction in drag than conventional noncontact maglev does, and it does so without incurring maglev's high capital costs or its technology development risks.

  5. Proceedings of the Federal Transit Administration's Urban Maglev Workshop

    Science.gov (United States)

    2005-09-01

    The Federal Transit Administrations (FTA) Urban Maglev Workshop was held at FTA Headquarters in Washington, DC, on September 8-9, 2005. The key workshop goals were to review progress, share lessons learned among the grantees, and discuss future di...

  6. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Suyu; Wang Jiasu

    2009-01-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  7. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  8. Meeting the maglev system's safety requirements

    Energy Technology Data Exchange (ETDEWEB)

    Pierick, K

    1983-12-01

    The author shows how the safety requirements of the maglev track system derive from the general legal conditions for the safety of tracked transport. It is described how their compliance beyond the so-called ''development-accompanying'' and ''acceptance-preparatory'' safety work can be assured for the Transrapid test layout (TVE) now building in Emsland and also for later application as public transport system in Germany within the meaning of the General Railway Act.

  9. Social and environmental changes: universal peace possible solely through creating of job opportunities in environment industries

    International Nuclear Information System (INIS)

    Dip Ing Mohamad Sani

    2006-01-01

    Until recent there was a speed gap in the traffic branches between the track bound wheel-on-rail systems and aircraft. But this gap is now closing by the super high speed MagLev train on the base of track bound Magnetic Levitation technology. This one may now become one of the key technologies for the 21st century, as it combines essential environmental and economic advantage: i] Its propulsion energy is electricity - which means that Renewable Energies may be applied without reservation, 2] Its ecological advance vice versa aircraft is huge - pollution of the higher atmosphere e.g. differs by a factor 40 per person x kilometer, 3] At a speed of more than 200 km per hour, energy consumption is lower than and maintenance costs range at ca. 3 of which have to be calculated for high speed wheel-on-rail systems, 4] Short distance flights which stress as well the budgets of the airlines as exceptionally the environment, become obsolete where MagLev relations exist. A MagLev connection can be regarded as the quickest relation for passengers at distances of less than ca. 1000 km, 5] Intermodal traffic network as well as airport connections, which enlarge their focus according to the radio telescope system well-known from astronomy, are supported by the super high speed MagLev with a velocity up to 550 km per hour, 6] Zones of excellence and high performance management may be created at MagLev terminals - with global market access provided. By these factors, social development and environmental advance may be well-combined on the base of Renewable Energy use in a modern traffic, distribution and logistic system network

  10. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Influence of guideway flexibility on maglev vehicle/guideway dynamic forces. Final report, July 1991-July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, L E; Ahlbeck, D R; Stekly, Z J; Gregorek, G M

    1992-07-01

    The report presents the results of a study investigating the dynamic interaction between aerial structures and maglev vehicles. The study includes three dimensional responses for attractive (EMS) maglev vehicle and repulsive (EDS) maglev vehicles and six different guideway structures. The analysis is conducted using original time domain computer models which incorporate up to 52 degrees of freedom for EMS systems and 44 degrees of freedom for the EDS systems, including multiple span guideways, multiple-vehicle trains, aerodynamic inputs with the special relations and structural properties associated with each major system component, and with appropriate maglev suspension characteristics interconnecting vehicle to guideway. The various guideway structure and vehicle combinations are analyzed separately for two representative guideway lengths of 21m and 39m. Results are presented for vehicle accelerations in terms of ride comfort accelerations and for guideway accelerations and bending moments. Comparisons from the analysis include EMS vs. EDS system responses, effects of span length, effects of position in car, effects of multiple-vehicle trains, effects of multiple simple span guideways vs. continuous span guideways, effects of wind gusts, and effects of beam bearing pad stiffness. Costs of each guideway is estimated in 1992 dollars.

  12. Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).

  13. Design Optimization for a Maglev System Employing Flux Eliminating Coils

    Science.gov (United States)

    Davey, Kent R.

    1996-01-01

    Flux eliminating coils have received no little attention over the past thirty years as an alternative for realizing lift in a MAGLEV system. When the magnets on board the vehicle are displaced from the equilibrium or null flux point of these coils, they induce current in those coils which act to restore the coil to its null flux or centerline position. The question being addressed in this paper is that of how to choose the best coil for a given system. What appears at first glance to be an innocent question is in fact one that is actually quite involved, encompassing both the global economics and physics of the system. The real key in analyzing that question is to derive an optimization index or functional which represents the cost of the system subject to constraints, the primary constraint being that the vehicle lift itself at a certain threshold speed. Outlined in this paper is one scenario for realizing a total system design which uses sequential quadratic programming techniques.

  14. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  15. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  16. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  17. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  18. Optimization of levitation and guidance forces in a superconducting Maglev system

    Science.gov (United States)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  19. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Science.gov (United States)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  20. Theory and experiment research for ultra-low frequency maglev vibration sensor

    International Nuclear Information System (INIS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng

    2015-01-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements

  1. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  2. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma

    2015-01-01

    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  3. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.

  4. The Active Fractional Order Control for Maglev Suspension System

    Directory of Open Access Journals (Sweden)

    Peichang Yu

    2015-01-01

    Full Text Available Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based on LQR is employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.

  5. Operating control techniques for maglev transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, K H; Schnieder, E

    1984-06-01

    The technical and operational possibilities of magnetic levitation transport systems can only be fully exploited by introducing 'intelligent' control systems which ensure automatic and trouble-free train running. The solution of exacting requirements in the fields of traction dynamics, security and control as well as information gathering transmission and processing is an important prior condition in that respect. The authors report here on the present state of research and development in operating control techniques applicable to maglev transport systems.

  6. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  7. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.

    Science.gov (United States)

    Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2007-01-01

    A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.

  8. Dual-keel electrodynamic maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Jianlang, He [Argonne National Lab., IL (United States); Rote, D M [Argonne National Lab., IL (United States); Zian, Wang [Argonne National Lab., IL (United States); Coffey, H T [Argonne National Lab., IL (United States)

    1996-12-31

    This paper introduces a new concept for an electrodynamic-suspension maglev system that has a dual-keel arrangement. Each keel consists of a row of superconducting magnets aboard the vehicle. The keels move in troughs in the guideway that are each lined with pairs of figure-eight-shaped null-flux coils. Each pair of null-flux coils is cross-connected to produce null-flux suspension and guidance force. The cross-connected figure-eight null-flux coils in each trough are also energized by a three-phase power supply to produce propulsive force. Preliminary analysis shows that the new system has many advantages over other EDS systems in terms of system performance and dynamic stability. (orig.)

  9. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  10. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  11. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  12. Control of maglev vehicles with aerodynamic and guideway disturbances

    Science.gov (United States)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  13. Modelling the electromechanical interactions in a null-flux EDS Maglev system

    NARCIS (Netherlands)

    Boeij, de J.; Steinbuch, M.; Gutierrez, H.M.; Fair, H.D.

    2004-01-01

    The fundamental electromechanical interactionsin a passive null-ux EDS maglev system aremediated by the voltages induced in the levita-tion coils by the sled magnets, and by the forcesexerted on the sled as a result of the inducedcurrents. This paper presents a reliable andcompact method to

  14. Will maglev ever get off the ground in the U.S

    International Nuclear Information System (INIS)

    Cortes-Comerer, N.

    1988-01-01

    A superconducting magnetically levitated train could fly 100 passengers at 300 mph, six inches above a track with no mechanical contact. Before maglev can become a reality in the U.S., a cadre of engineers and scientists experienced in this technology will have to be developed, according to Francis Moon, director of the Sibley School of Mechanical and Aerospace Engineering at Cornell University, who testified at the Senate hearings. There is no course in the U.S. that teaches design of superconducting magnets, he says. The expertise exists on a small scale in several government labs, but there is a lack of manpower and experience at major U.S. corporations. It is important to involve American industry and engineering school in order to build engineering teams that eventually can be tapped to build a national maglev system. Besides magnets, many other components need designing. Moon says, including the vehicle and guideway, an electric power system for the guideway, and control strategies for vehicle dynamics

  15. Deenergizing method of superconducting magnets for Maglev in an emergency

    Energy Technology Data Exchange (ETDEWEB)

    Kishikawa, Akihiko [Railway Technical Research Inst., Tokyo (Japan); Nemoto, Kaoru [Railway Technical Research Inst., Tokyo (Japan)

    1996-12-31

    The running stability of the superconducting magnets (SCMs) mounted on the JR Maglev vehicle has been confirmed through many researches and actual running tests. So we could confirm that the high performance of our SCMs during the last few years, but we must bear in mind that the SCM which consists of the superconducting wire has the possibility of changing into normal resistive state from superconducting state. If one of the pair SCMs normalizes, a huge lateral force on one side of a bogie will occur suddenly and push the vehicle toward the sidewall of the guideway. This paper describes the method that reduces this huge force acting on one side of a bogie in an SCM accident. (orig.)

  16. Linear electric machines, drives, and MAGLEVs handbook

    CERN Document Server

    Boldea, Ion

    2013-01-01

    Based on author Ion Boldea's 40 years of experience and the latest research, Linear Electric Machines, Drives, and Maglevs Handbook provides a practical and comprehensive resource on the steady improvement in this field. The book presents in-depth reviews of basic concepts and detailed explorations of complex subjects, including classifications and practical topologies, with sample results based on an up-to-date survey of the field. Packed with case studies, this state-of-the-art handbook covers topics such as modeling, steady state, and transients as well as control, design, and testing of li

  17. Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle

    International Nuclear Information System (INIS)

    Fife, A.A.; Ensing, H.J.; Tillotson, M.; Westera, W.

    1986-01-01

    A review is presented on the current status of superconducting magnet developments for the Canadian electrodynamic Maglev transportation system. Various design aspects of the levitation and linear synchronous motor magnets, appropriate for the current vehicle concepts, are discussed. In addition, recent experimental work is outlined on the development of a suitable epoxy impregnation technology for the superconducting coils

  18. Modeling the electromechanical interactions in a null-flux electrodynamic maglev system

    NARCIS (Netherlands)

    Boeij, de J.; Steinbuch, M.; Gutierrez, H.M.

    2005-01-01

    The fundamental electromechanical interactions in a passive -flux electrodynamic maglev system (EDS) are mediated by the voltages induced in the levitation coils by the sled magnets, and by the forces exerted on the sled as a result of the induced currents. This work presents a reliable and compact

  19. Amplitude control of the track-induced self-excited vibration for a maglev system.

    Science.gov (United States)

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. FTA Low-speed urban maglev research program lessons learned : March 2009.

    Science.gov (United States)

    2009-03-01

    In 1999, the Federal Transit Administration initiated the Low-Speed Urban Magnetic Levitation (UML) Program to develop magnetic levitation technology that offers a cost effective, reliable, and environmentally sound transit option for urban mass tran...

  1. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    International Nuclear Information System (INIS)

    Zhang, Longcai; Wang Jiasu; He Qingyong; Zhang Jianghua; Wang Suyu

    2007-01-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state

  2. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Zhang Jianghua [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state.

  3. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  4. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    International Nuclear Information System (INIS)

    Qin Yujie; Hou Xiaojing

    2011-01-01

    Research highlights: → The relaxation properties of maglev forces have been investigated simultaneously. → Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. → The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. → The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  5. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yujie, E-mail: qyjswjtu@vip.sohu.co [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Hou Xiaojing [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2011-02-15

    Research highlights: {yields} The relaxation properties of maglev forces have been investigated simultaneously. {yields} Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. {yields} The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. {yields} The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  6. Development of a disposable maglev centrifugal blood pump intended for one-month support in bridge-to-bridge applications: in vitro and initial in vivo evaluation.

    Science.gov (United States)

    Someya, Takeshi; Kobayashi, Mariko; Waguri, Satoshi; Ushiyama, Tomohiro; Nagaoka, Eiki; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo

    2009-09-01

    MedTech Dispo, a disposable maglev centrifugal blood pump with two degrees of freedom magnetic suspension and radial magnetic coupling rotation, has been developed for 1-month extracorporeal circulatory support. As the first stage of a two-stage in vivo evaluation, 2-week evaluation of a prototype MedTech Dispo was conducted. In in vitro study, the pump could produce 5 L/min against 800 mm Hg and the normalized index of hemolysis was 0.0054 +/- 0.0008 g/100 L. In in vivo study, the pump, with its blood-contacting surface coated with biocompatible 2-methacryloyloxyethyl phosphorylcholine polymer, was implanted in seven calves in left heart bypass. Pump performance was stable with a mean flow of 4.49 +/- 0.38 L/min at a mean speed of 2072.1 +/- 64.5 rpm. The maglev control revealed its stability in rotor position during normal activity by the calves. During 2 weeks of operation in two calves which survived the intended study period, no thrombus formation was seen inside the pump and levels of plasma free hemoglobin were maintained below 4 mg/dL. Although further experiments are required, the pump demonstrated the potential for sufficient and reliable performance and biocompatibility in meeting the requirements for cardiopulmonary bypass and 1-week circulatory support.

  7. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  8. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  9. Superconducting magnet for MAGLEV

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fumio; Miyairi,; Komei,; Goto, Fumihiko [Hitachi, Ltd., Tokyo, (Japan)

    1989-07-25

    In the superconducting magnet for MAGLEV , the magnet itself travels. It is, therefore, important to know the dynamic behavior which accompanies the traveling; and for the designing of a superconducting magnet, analysis of mechanical characteristics as well as electromagnetic characteristics is required. This is a report on the recent analyzing technology of mechanical characteristics by CAE(Computer Aided Engineering). The analysis is conducted by an on-line system of finite element method. Most important for the analysis are that the analysis model is appropriate and that basic data coincide with the actual condition. Recent analysis results are as follows. Equivalent rigidity of coils can be calculated by an analysis model and the calculated value agrees with the experiment value. Structure of the internal drum can be optimized with the parameter of deformation or stress. Analysis result of a load supporting material agrees with the experiment value when a correction coefficient (0.5) is introduced to the elastic modulus of FRP. 2 refs., 10 figs.

  10. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  11. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  12. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  13. The high speed civil transport and NASA's High Speed Research (HSR) program

    Science.gov (United States)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  14. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  15. The levtitation system of the superspeed Maglev system TRANSRAPID

    Energy Technology Data Exchange (ETDEWEB)

    Ellmann, S [Thyssen Henschel Magnetfahrtechnik, Muenchen (Germany)

    1996-12-31

    The levitation system of the superspeed maglev system Transrapid is modular and consists of a continuous series of levitation chassis under the entire length of the vehicle. Each vehicle section has 4 levitation chassis which support he vehicle body by means of 4 pneumatic springs. The entire length of the vehicle is equipped with levitation magnets which transmit the levitation force as a line load to the stator packs mounted in a continuous line on the underside of the guideway. (HW)

  16. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  17. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  18. Possibility of a high-T{sub c} superconducting bulk magnet for maglev trains in the future; Koonchodendo baruku jishaku no jikifujoshiki tetudo heno oyo kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H. [Railway Technical Research Institute, Fundamental Research Division, Tokyo (Japan)

    1999-11-25

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77K and high magnetic fields. The materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger, J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting and mechanical properties. One of the applications is a superconducting bulk magnet for future magnetically levitated (Maglev) trains. (author)

  19. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  20. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  1. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  2. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  3. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  4. Characteristics of electromagnetic forces of a single winding EDS MAGLEV system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Heum [Korea High Speed Rail Construction Authority (Korea, Republic of); Cha, Guee Soo [Seoul National University (Korea, Republic of); Hahn, Song Yop [Soonchunhyang University (Korea, Republic of)

    1995-07-01

    This paper describes the characteristics of electromagnetic forces of Combined superconducting maglev system. Generation of the levitation, the propulsion and the guidance force by a single coil is proved by the phasor analysis. It is also shown that double-layered configuration has better characteristics in efficiency, pulsation of the forces and drag ration than single-layered configuration. (author). 3 refs., 7 figs., 1 tab.

  5. An experimental study on magnet for electro-magnetic suspension MagLev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Seop; Chung, Hyun Kap [Korea Institute of Machinery and Metals (Korea, Republic of)

    1995-07-01

    This paper deals with characteristics of magnet that the levitation and guidance forces at static state and we tested and evaluated its. Also we compared to effect of levitation force with material and shape of guide way, focus on evaluation and method of test for the magnet of Urban Transit Maglev vehicle. (author). 3 refs., 9 figs., 2 tabs.

  6. A superconducting maglev test facility for high speed transport

    International Nuclear Information System (INIS)

    Rhodes, R.G.; Mulhall, B.E.

    1976-01-01

    A 550 m long straight track for research into magnetically levitated vehicles has been constructed at the University of Warwick. The flat guideway comprises two strips of aluminium, interacting with the vehicle borne superconducting magnets to produce both lift and guidance. For propulsion a petrol driven winch is provided, though it is to be replaced later by a linear electric motor. Problems of engineering cryostats for magnetic levitation are briefly discussed. (author)

  7. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  8. Chicago-St. Louis high speed rail plan

    International Nuclear Information System (INIS)

    Stead, M.E.

    1994-01-01

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team's analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor

  9. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  10. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  11. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  12. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  13. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  14. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  15. Energy consumption of magnetic-levitation train systems

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, W J

    1981-11-01

    In transport, interest is at present being directed to the energy consumption of the various systems. The 'maglev' system is not yet in practical transport use, so that many characteristics of the system have still to be proven. Calculations show, however, that the 'maglev' train system can meet or even exceed the high requirements familiar to us from the conventional railway. Among the assumptions made with respect to speed, acceleration, distance between halts and capacity utilization it can be shown by calculation that the 'maglev' system is more economical in energy consumption than most existing passenger transport systems. A final judgement on the still existing uncertainties with respect to the traction resistance curve and the motor efficiency can only be made after the experimental 'maglev' layout now being built in Emsland has gone into operation.

  16. Foldover effect and energy output from a nonlinear pseudo-maglev harvester

    Science.gov (United States)

    Kecik, Krzysztof; Mitura, Andrzej; Warminski, Jerzy; Lenci, Stefano

    2018-01-01

    Dynamics analysis and energy harvesting of a nonlinear magnetic pseudo-levitation (pseudo-maglev) harvester under harmonic excitation is presented in this paper. The system, for selected parameters, has two stable possible solutions with different corresponding energy outputs. The main goal is to analyse the influence of resistance load on the multi-stability zones and energy recovery which can help to tune the system to improve the energy harvesting efficiency.

  17. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  18. Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Wan-Tsun Tseng

    2013-01-01

    Full Text Available The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of operation, namely premature commutation, simultaneous commutation, and late commutation. Each type of operation has a different thrust drop which can be affected by several parameters such as jerk, running speed, motor section length, and vehicle data. This paper focuses on determining the thrust drop of the change-step mode. The study results of this paper can be used to improve the operation system of high-speed maglev trains.

  19. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  20. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  1. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  2. A High-Speed Design of Montgomery Multiplier

    Science.gov (United States)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  3. Maglev system concept using 20-K high-temperature superconductors and hyperconductors

    Science.gov (United States)

    Hull, J. R.; He, Jianliang

    A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.

  4. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  5. Design and validation of a slender guideway for Maglev vehicle by simulation and experiment

    Science.gov (United States)

    Han, Jong-Boo; Han, Hyung-Suk; Kim, Sung-Soo; Yang, Seok-Jo; Kim, Ki-Jung

    2016-03-01

    Normally, Maglev (magnetic levitation) vehicles run on elevated guideways. The elevated guideway must satisfy various load conditions of the vehicle, and has to be designed to ensure ride quality, while ensuring that the levitation stability of the vehicle is not affected by the deflection of the guideway. However, because the elevated guideways of Maglev vehicles in South Korea and other countries fabricated so far have been based on over-conservative design criteria, the size of the structures has increased. Further, from the cost perspective, they are unfavourable when compared with other light rail transits such as monorail, rubber wheel, and steel wheel automatic guided transit. Therefore, a slender guideway that does have an adverse effect on the levitation stability of the vehicle is required through optimisation of design criteria. In this study, to predict the effect of various design parameters of the guideway on the dynamic behaviour of the vehicle, simulations were carried out using a dynamics model similar to the actual vehicle and guideway, and a limiting value of deflection ratio of the slender guideway to ensure levitation control is proposed. A guideway that meets the requirement as per the proposed limit for deflection ratio was designed and fabricated, and through a driving test of the vehicle, the validity of the slender guideway was verified. From the results, it was confirmed that although some increase in airgap and cabin acceleration was observed with the proposed slender guideway when compared with the conventional guideway, there was no notable adverse effect on the levitation stability and ride quality of the vehicle. Therefore, it can be inferred that the results of this study will become the basis for establishing design criteria for slender guideways of Maglev vehicles in future.

  6. A comparison of high velocity systems on rail. Cooperation project. Pt. 2/A. Final report. A method to evaluate operating costs. Vergleich von spurgefuehrten Hochgeschwindigkeitssystemen. Kooperationsprojekt. T. 2/A. Abschlussbericht. Comparaison de systemes de transport guide a grande vitesse. Projet de cooperation. Pt. 2/A. Rapport final. Methode zur Bestimmung der Betriebskosten. Methode de determination des couts d'exploitation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    In this German-French cooperation project a comparison between the high speed Intercity Express (ICE), the high speed train TGV (train a grande vitesse) and the maglev rapid transit system Transrapid is drawn. Investment costs for infrastructure and rail network and operating costs, ie costs for the operational management, maintenance and capital cost are compared. For this a method has been worked out for the calculation of operating cost ratios and a model has been developed for writing operating programmes and for the evaluation of operating costs. (RHM).

  7. Design, construction and performance of an EMS-based HTS maglev vehicle

    International Nuclear Information System (INIS)

    Gu Chen; Liu Menglin; Xing Huawei; Zhou, Tong; Yin Wensheng; Zong Jun; Han Zhenghe

    2005-01-01

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications

  8. Design, construction and performance of an EMS-based HTS maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)]. E-mail: guchen@mail.tsinghua.edu.cn; Liu Menglin [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China); Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China); Zhou, Tong [Department of Automation, Tsinghua University, Beijing 100084 (China); Yin Wensheng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Zong Jun [Innova Superconductor Technology Co., Ltd., Beijing 100176 (China); Han Zhenghe [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)

    2005-06-15

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications.

  9. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  10. Switching algorithm for maglev train double-modular redundant positioning sensors.

    Science.gov (United States)

    He, Ning; Long, Zhiqiang; Xue, Song

    2012-01-01

    High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments.

  11. Switching Algorithm for Maglev Train Double-Modular Redundant Positioning Sensors

    Directory of Open Access Journals (Sweden)

    Song Xue

    2012-08-01

    Full Text Available High-resolution positioning for maglev trains is implemented by detecting the tooth-slot structure of the long stator installed along the rail, but there are large joint gaps between long stator sections. When a positioning sensor is below a large joint gap, its positioning signal is invalidated, thus double-modular redundant positioning sensors are introduced into the system. This paper studies switching algorithms for these redundant positioning sensors. At first, adaptive prediction is applied to the sensor signals. The prediction errors are used to trigger sensor switching. In order to enhance the reliability of the switching algorithm, wavelet analysis is introduced to suppress measuring disturbances without weakening the signal characteristics reflecting the stator joint gap based on the correlation between the wavelet coefficients of adjacent scales. The time delay characteristics of the method are analyzed to guide the algorithm simplification. Finally, the effectiveness of the simplified switching algorithm is verified through experiments.

  12. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  13. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  14. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  15. High-speed photography. Technique and evolution

    International Nuclear Information System (INIS)

    Sanchez-Tembleque, R.

    1981-01-01

    It is intended to present some general considerations about ''Higg-speed photography'' as a tool of work common in mos research laboratories in the world. ''High-speed photography'' relies on the principles of photography of actions, that change rapidly with the time. The evolution of this technique goes along with the discovering of new phenomena in wich higher speeds are involved. At present is normal to deal with changing rates involving picoseconds times (10 -12 s) and new developments on the field of femtosecond (10 -15 s) theoretically are contemplated. (author)

  16. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  17. A small Maglev car model using YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W M [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Zhou, L [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Yong, Feng [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Zhang, P X [Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi' an, Shaanxi 710016 (China); Chao, X X [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Bian, X B [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Zhu, S H [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Wu, X L [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China); Liu, P [Department of Physics, Shaanxi Normal University, Xi' an, Shaanxi 710016 (China)

    2006-07-15

    Models of two small Maglev cars have been made. The track was paved with NdFeB magnets. The arrangement of the magnets made it easy to get a uniform magnetic field distribution along the length of the track and a magnetic field gradient in the lateral direction. When the car with YBCO bulk superconductors was field cooled to LN{sub 2} temperature at a certain distance above the track, the car could be automatically levitated over the track and moved along the track without any obvious friction. The model can be used to demonstrate the Meissner effect and a fast transportation system to students and adults.

  18. A small Maglev car model using YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W M; Zhou, L; Yong, Feng; Zhang, P X; Chao, X X; Bian, X B; Zhu, S H; Wu, X L; Liu, P

    2006-01-01

    Models of two small Maglev cars have been made. The track was paved with NdFeB magnets. The arrangement of the magnets made it easy to get a uniform magnetic field distribution along the length of the track and a magnetic field gradient in the lateral direction. When the car with YBCO bulk superconductors was field cooled to LN 2 temperature at a certain distance above the track, the car could be automatically levitated over the track and moved along the track without any obvious friction. The model can be used to demonstrate the Meissner effect and a fast transportation system to students and adults

  19. High-Speed Videography Instrumentation And Procedures

    Science.gov (United States)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  20. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  1. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  2. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  3. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  4. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  5. Characterizing speed-independence of high-level designs

    DEFF Research Database (Denmark)

    Kishinevsky, Michael; Staunstrup, Jørgen

    1994-01-01

    This paper characterizes the speed-independence of high-level designs. The characterization is a condition on the design description ensuring that the behavior of the design is independent of the speeds of its components. The behavior of a circuit is modeled as a transition system, that allows data...... types, and internal as well as external non-determinism. This makes it possible to verify the speed-independence of a design without providing an explicit realization of the environment. The verification can be done mechanically. A number of experimental designs have been verified including a speed-independent...

  6. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  7. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  8. Basic study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, M.; Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K.

    2010-01-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  9. Preliminary study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-01-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  10. Basic study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M., E-mail: ogata@rtri.or.j [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  11. Preliminary study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken, E-mail: ogata@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  12. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  13. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  14. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  15. New magnetic rails with double-layer Halbach structure by employing NdFeB and ferrite magnets for HTS maglev

    Science.gov (United States)

    Sun, Ruixue; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Jipeng; Deng, Zigang

    2018-01-01

    In the high temperature superconducting (HTS) maglev system, the magnetic rail as an essential infrastructure is needed all along the route to carry passengers and goods to the destinations. Thus, large amount of rare earth magnetic materials are required in the magnetic rail construction. In order to decrease the dependence of magnetic rails on rare earth elements, the ferrite magnet is employed to replace part of the NdFeB magnets containing rare earth elements. Consequently, a new type rail with double-layer Halbach structure is presented, which is consisted of NdFeB and ferrite magnets. In this paper, we designed and fabricated the proposed rail, and further measured its magnetic flux density distribution and electromagnetic force interacting with HTS bulks. Experimental results indicate that, this new type rail, in double-layer Halbach structure, can achieve an equivalent distribution of magnetic flux density and levitation performance as the pure NdFeB Halbach rail, while a 10% reduction in NdFeB magnet consumption can be realized at the same time. In addition this work explores another magnetic material selection for HTS maglev applications. The dependence on rare earth element and the cost of magnetic rails can be further reduced, as the coercive force of ferrite magnets improved.

  16. Nonmagnetic concrete. Guide for the superconductive magnetically levitated train system (Maglev); Hijisei concrete. Chodendo jiki fujoshiki tetsudoyo guide way

    Energy Technology Data Exchange (ETDEWEB)

    Tottori, S; Sato, T [Railway Technical Research Institute, Tokyo (Japan)

    1994-07-01

    Non-magnetization is applied to concrete structures with which magnetic environment is a problem, such as a guideway for superconductive magnetically levitated train system (Maglev) and geomagnetism observation facilities. As an example, this paper introduces the conception and the design methods of guideways for Maglev. If reinforcing bars or tensing materials of common steel are placed close to a vehicle, inductive current is generated in the steel due to moving magnetic field, causing a problem to form part of driving resistance. The inductive current includes loop current and eddy current. The former current may be prevented if the contact resistance in steels with each other is about one ohm or more, but the latter current has no other means but to minimize it as long as the material is electrically conductive. Conceivable measures may include the use as reinforcing bars of non magnetic high Mn-steel with electric specific resistance of 4 to 5 times as large as that for common steel reinforcing bars, and the use of continuous reinforcing fibers such as aramid. The latter material requires strength design especially importantly, but has obtained good result when it was constructed at the experimental linear motor train guideway at Miyazaki, Japan. 5 refs., 6 figs.

  17. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  18. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  19. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  20. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  1. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  2. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  3. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  4. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  5. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  6. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  7. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  8. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  9. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  10. Mathematical model of the 5-DOF sled dynamics of an electrodynamic Maglev system with a passive sled

    NARCIS (Netherlands)

    Boeij, de J.; Steinbuch, M.; Gutierrez, H.M.

    2005-01-01

    A model that describes the five-degrees-of-freedom (5-DOF) dynamics of a passively levitated electrodynamic maglev system is presented. The model is based on the flux-current-force interactions and the geometric relationships between the levitation coils and the permanent magnets on the sled. The

  11. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  12. MagLev Cobra: Test Facilities and Operational Experiments

    International Nuclear Information System (INIS)

    Sotelo, G G; Dias, D H J N; De Oliveira, R A H; Ferreira, A C; De Andrade, R Jr; Stephan, R M

    2014-01-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa 2 Cu 3 O 7−δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  13. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  14. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  15. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  16. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  17. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  18. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  19. Analysis and topology optimization design of high-speed driving spindle

    Science.gov (United States)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  20. HIGH SPEED RAILWAY LINES – FUTURE PART OF CZECH RAILWAY NETWORK?

    Directory of Open Access Journals (Sweden)

    Lukáš Týfa

    2017-08-01

    Full Text Available The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network. The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.

  1. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  2. Application of Fabry-Perot velocimeter to high-speed experiments

    International Nuclear Information System (INIS)

    Chaw, H.H.; McMillan, C.F.; Osher, J.E.

    1988-01-01

    The Fabry-Perot (F-P) velocimeter is a useful instrument for measuring the velocity of objects at speeds ranging from fractions of a kilometer per second to a few tens of kilometers per second and up. Because of its immunity to electromagnetic interference and its velocity resolution, it has become the prime diagnostic tool in our electric-gun facility. Examples of its application to high speed experiments are discussed, including: electric-gun flyer studies, spallation of materials under high-speed impact, momentum-transfer studies, pressure pulse created by high-velocity impact, and detonation-wave studies in high-explosive experiments

  3. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  4. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  5. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  6. High-speed nonvolatile CMOS/MNOS RAM

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Dodson, W.D.; Sokel, R.J.

    1979-01-01

    A bulk silicon technology for a high-speed static CMOS/MNOS RAM has been developed. Radiation-hardened, high voltage CMOS circuits have been fabricated for the memory array driving circuits and the enhancement-mode p-channel MNOS memory transistors have been fabricated using a native tunneling oxide with a 45 nm CVD Si 3 N 4 insulator deposited at 750 0 C. Read cycle times less than 350 ns and write cycle times of 1 μs are projected for the final 1Kx1 design. The CMOS circuits provide adequate speed for the write and read cycles and minimize the standby power dissipation. Retention times well in excess of 30 min are projected

  7. High-speed cryptography and cryptanalysis

    NARCIS (Netherlands)

    Schwabe, P.

    2011-01-01

    Modern digital communication relies heavily on cryptographic protection to ensure data integrity and privacy. In order to deploy state-of-the art cryptographic primitives and protocols in real-world scenarios, one needs to highly optimize software for both speed and security. This requires careful

  8. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  9. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  10. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  11. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  12. High-speed microjet generation using laser-induced vapor bubbles

    Science.gov (United States)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  13. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  14. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  15. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  16. High Speed Photomicrography

    Science.gov (United States)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  17. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  18. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  19. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  20. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  1. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  2. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  3. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  4. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... monorail systems operating primarily on dedicated rail (i.e., not used by freight trains) or guideway, in...

  5. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  6. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    announced that it will expand the capacity on its aging high speed line between Tokyo and Osaka, the most heavily traveled intercity rail segment in the...United States, in most of these countries intercity rail travel (including both conventional and high speed rail) represents less than 10% of all...that is sometimes mentioned by its advocates. Intercity passenger rail transport is relatively safe, at least compared with highway travel . And HSR in

  7. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  8. Controller design and test results for a four axis HTS coil based Maglev system

    International Nuclear Information System (INIS)

    Zhou Tong; Xing Huawei

    2007-01-01

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H ∼ loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM

  9. Controller design and test results for a four axis HTS coil based Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tong [Department of Automation, Tsinghua University, Beijing 100084 (China)]. E-mail: tzhou@mail.tsinghua.edu.cn; Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China)

    2007-04-15

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H{sub {approx}} loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM.

  10. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  11. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  12. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  13. The Physics of SERAPHIM; TOPICAL

    International Nuclear Information System (INIS)

    MARDER, BARRY M.

    2001-01-01

    The Segmented Rail Phased Induction Motor (SERAPHIM) has been proposed as a propulsion method for urban maglev transit, advanced monorail, and other forms of high speed ground transportation. In this report we describe the technology, consider different designs, and examine its strengths and weaknesses

  14. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  15. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    International Nuclear Information System (INIS)

    Wu, J.F.; Li, Y.

    2014-01-01

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely

  16. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  17. TECHNICAL APPROACH TO THE EFFICIENCY DETERMINATION OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    A. V. Momot

    2013-11-01

    Full Text Available Purpose. The aim of this article is to develop an approach and formulate arrangements concerning the definition of the economic appropriateness of high-speed movement implementation in Ukraine. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment into the construction. It will let get an annual profits from the passenger carriage. To solve such problems we use net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. Obtained studies can state the fact that the technical approach for full effectiveness definition of a construction and high-speed passenger trains service taking into account the cost of infrastructure, rolling stock, the impact of environmental factors, etc. was determined. Originality. We propose a scientific approach to determine the economic effectiveness of the construction and high-speed main lines service. It includes improved principles of defining the passenger traffic, the cost of high-speed rails construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and the external factors impact on the company. A technical approach for the calculation of future traffic volumes along the high-speed line was improved. It differs essentially from the European one proposed by the French firm «SYSTRA», as it allows taking into account additional transit traffic through Ukraine. It helps to distribute the passengers on separate sections proportionally to the number of cities population, which are combined by high-speed main line, subject to the average population mobility, travel time and the coefficient that takes into account the frequency of additional passenger trips on a given section, depending on the purpose (business trip, transfer to a plane, recreation, etc

  18. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    International Nuclear Information System (INIS)

    Deng Zigang; Wang Jiasu; Zheng Jun; Zhang Ya; Wang Suyu

    2013-01-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a–b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a–b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications. (paper)

  19. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.

  20. High-speed motion neutron radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Barton, J.P.; Robinson, A.H.

    1982-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is about 4 X 10 11 n/cm 2 X s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability

  1. A multidimensonal Examination of Prefomences of the Future advanced Transport Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System

    NARCIS (Netherlands)

    Janic, M.

    2016-01-01

    Multidimensional examination of performances of the future advanced ETT Evacuated Tube Transport) system operated by TRM (TransRapidMaglev); assessment of the ETT TRM system contribution to sustainability of the future transport sector through its completion with APT (Air Passenger Transport) system

  2. Relation between riding quality of MAGLEV vehicle and guideway construction accuracy. Chodendo jiki fujoshiki tetsudo guideway no seko seido to norigokochi level

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, A; Hashimoto, S; Furukawa, A [Railway Technology Research Institute, Tokyo (Japan)

    1994-01-15

    Good riding quality of MAGLEV vehicle requires construction of its guideway to a high level of accuracy. This paper discusses the relation of the power spectrum density (hereinafter the PSD) made up of guideway construction accuracy and its deviation with the level of riding comfort. The discussion uses the 'riding comfort affecting coefficient' consisting of the unit construction length, vehicle's travelling speed, and vibration characteristics. The PSD, which has been used to evaluate track deviation in the iron wheel/rail system railways, is derived from the number of limit exceeded point, the value 'P' as a track deviation coefficient, and the PSD. The relation between the standard deviation in construction errors and the PSD was derived based on track construction methods. This calculation method is characterized by a function with a step form. The relation between the deviation and the level was quantified using this PSD. Its practicability was verified by a simulated re-inspection of the guideway deviation. Correlation between the level and the construction accuracy was elucidated, and a method for determining the criteria for construction accuracy was established. A side wall beam installing vehicle has been fabricated on a trial basis for a side wall system for the guideway, and installation accuracy tests are being carried out. 14 refs., 12 figs., 3 tabs.

  3. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    Science.gov (United States)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  4. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  5. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    Science.gov (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  7. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  8. High performance multi-channel high-speed I/O circuits

    CERN Document Server

    Oh, Taehyoun

    2013-01-01

    This book describes design techniques that can be used to mitigate crosstalk in high-speed I/O circuits. The focus of the book is in developing compact and low power integrated circuits for crosstalk cancellation, inter-symbol interference (ISI) mitigation and improved bit error rates (BER) at higher speeds. This book is one of the first to discuss in detail the problem of crosstalk and ISI mitigation encountered as data rates have continued beyond 10Gb/s. Readers will learn to avoid the data performance cliff, with circuits and design techniques described for novel, low power crosstalk cancel

  9. High-speed photography of light beams transmitted through pinhole targets

    International Nuclear Information System (INIS)

    Yaonan, D.; Haien, He.; Lian, C.; Huifang, Z.; Zhijian, Z.

    1988-01-01

    A method of high speed photography is presented. It was designed and performed in order to study temporal behaviors of plasma closure effects of pinhole targets in laser plasma experiments. A series of high speed photographs were taken for the laser beam transmitted through the pinhole targets. Spatially resolved and integrated temporal histories of closure effects were observed, respectively. Some physical information about closure effect and closure speed have been studied

  10. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    Science.gov (United States)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  11. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  12. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  13. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  14. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    Science.gov (United States)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  15. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  16. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  17. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  18. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  19. Design of a novel 6-DOF planar maglev system

    International Nuclear Information System (INIS)

    Lai, Y.-C.; Yen, J.-Y.

    2006-01-01

    This paper describes a novel single-deck and six degree-of-freedom (DOF) planar maglev positioning system design. The proposed design uses an array of solenoids to levitate and to hold a permanent magnet carrier in place. The solenoids are excited separately to generate restoring forces when the permanent magnet carrier is displaced from its equilibrium position. The research uses the ANSOFT finite element analysis simulation to analyze the solenoid restoring forces and to motivate a suitable permanent magnets arrangement. Active control on the solenoid currents is then used to maintain the carrier position. The system identification is carried out by perturbing the experimental set-up from its equilibrium position. The simulation results based on the identification models show that simple control is effective for maintaining the carrier position. Initial implementation has also showed that the concept is feasible

  20. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump].

    Science.gov (United States)

    Wang, Yiwen; Zhang, Fan; Fang, Yuan; Dong, Baichuan; Zhou, Liang

    2016-05-01

    In order to analyze and study the hemolysis performance of the centrifugal maglev blood pump, which was designed by ourselves, this paper built the mathematical model and computational fluid dynamics analyzed it using Fluent. Then we set up the in vitro hemolysis experiment platform, in case of the design condition, the content of free hemoglobin and hematocrit in plasma were measured in a certain time interval, and calculated the normalized index of hemolysis of the blood pump. The numerical simulation results show the internal static pressure distribution is smooth inside the pump, the wal shear stress inside the pump is less than 150 Pa. Therefore, the red blood cel damage and exposure time is independent. The normalized index of hemolysis is (0.002 9±0.000 7) mg/L, which is in accordance with human physiological requirement.

  1. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  2. 75 FR 16552 - High-Speed Intercity Passenger Rail (HSIPR) Program

    Science.gov (United States)

    2010-04-01

    ...; Enhancing intercity travel options; Ensuring a state of good repair of key intercity passenger rail assets... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration High-Speed Intercity Passenger Rail... selections for the High-Speed Intercity Passenger Rail (HSIPR) Program. This notice builds on the program...

  3. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  4. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  5. Integrated High-Speed Torque Control System for a Robotic Joint

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  6. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  7. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  8. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  9. Design and application on experimental platform for high-speed bearing with grease lubrication

    Directory of Open Access Journals (Sweden)

    He Qiang

    2015-12-01

    Full Text Available The experimental platform for high-speed grease is an important tool for research and development of high-speed motorized spindle with grease lubrication. In this article, the experimental platform for high-speed grease is designed and manufactured which consists of the drive system, the test portion, the loading system, the lubrication system, the control system, and so on. In the meantime, the high-speed angular contact ceramic ball bearings B7005C/HQ1P4 as the research object are tested and contrasted in the grease lubrication and oil mist lubrication. The experimental platform performance is validated by contrast experiment, and the high-speed lubricated bearing performance is also studied especially in the relationship among the rotating speed,load and temperature rise. The results show that the experimental platform works steadily, accurate, and reliable in the experimental testing. And the grease lubrication ceramic ball bearings B7005C/HQ1P4 can be used in high-speed motorized spindle in the circular water cooling conditions when the rotating speed is lower than 40,000 r/min or the DN value (the value of the bearing diameter times the rotating speed is lower than the 1.44 × 106 mm r/min. Grease lubrication instead of oil mist lubrication under high-speed rotating will simplify the structure design of the high-speed motorized spindle and reduce the pollution to the environment.

  10. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, van de N.; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  11. Real-time control of the 3-DOF sled dynamics of a null-flux Maglev System with a passive sled

    NARCIS (Netherlands)

    Boeij, de J.; Steinbuch, M.; Gutierrez, H.M.

    2006-01-01

    The real-time control of the three degrees of freedom (DOF) dynamics of an electrodynamic (EDS) Maglev vehicle is presented. The design is based on a 5-DOF state-space model of the sled dynamics that uses a simple algebraic model to describe the interaction between the -flux coils on the track and

  12. Benefits of sequential turbocharging in improving high torque/low speed operation of medium speed diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Danyluk, P.; Gutoski, G. [Coltec Industries Inc., Fairbanks Morse Engine Division (United States); Chen, S.K. [PEI Consultants (United States)

    1998-12-31

    This paper describes the benefits of sequential turbocharging in improving the operating envelope of a medium speed diesel engine. In particular, the high torque, low speed performance envelope can be greatly extended over that of a standard medium speed engine and, in addition, can offer improved operating range over what has been achieved with compressor air bypass/waste gate systems. This paper compares the three approaches on the basis of possible operating envelopes for a specific application, the new U.S. Navy LPD-17 amphibious assault ship, which has a very demanding requirement for high torque at low engine speed and low ambient temperatures. Comparison is made to the earlier approach to extend the operating envelope on the U.S. Navy LSD-41 class engines. The LSD-41 fleet has been in service since 1985 running with a compressor air bypass system developed jointly by Lockheed Shipyard and Coltec Industries for the U.S. Navy. (au)

  13. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  14. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  15. HDR 192Ir source speed measurements using a high speed video camera

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio; Podesta, Mark; Rubo, Rodrigo A.; Sales, Camila P. de; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Purpose: The dose delivered with a HDR 192 Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a 192 Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases

  16. Assessment of left ventricular hemodynamics by Gd-DTPA enhanced high speed cine MRI

    International Nuclear Information System (INIS)

    Matsumura, Kentaro; Nakase, Emiko; Kawai, Ichiro

    1992-01-01

    To assess the validity of Gd-DTPA enhanced high speed cine MRI in left ventricular (LV) volumes and ejection fraction (EF), high speed cine MRI was compared with intra-venous digital subtraction left ventriculography (IV-DSA) in 14 patients. All patients underwent conventional cine MRI and Gd-DTPA enhanced high speed MRI, simultaneously. The pulse sequences of high speed MRI were TR 8 ms (TR 6 ms plus rewind pulse 2 ms), TE 3.2 ms, matrix 128, phase encode 8 or 6 and NEX 1. Comparison with LV-volume showed a high correlation (y = 0.854x + 1,699, r = 0.985) between high speed cine MRI and VI-DSA. To make left ventricular volume curve by area-length method in cine MRI, manual tracing of LV-cavity was more difficult in conventional cine MRI-method than enhanced high speed cine MRI-method. In conclusion, first pass-Gd-DTPA enhanced high speed cine MRI, using the horizontal long axis approach and the multiphase study, is a highly, accurate reproducible method of evaluating LV-volumetry. (author)

  17. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  18. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  19. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  20. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  1. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  2. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  3. High speed motion-picture photography. Instrumentation and application

    International Nuclear Information System (INIS)

    Bertin-Maghit, G.; Delli, C.; Falgayrettes, M.

    1981-01-01

    Filming technology at 5,000 frames/second is presented in this paper for the determination of the volume and the expension speed of a gas bubble in water. The high speed 16 mm movie camera, fitted with ultra-wide angle lenses, is placed in front of a side light facing the bubble. Ten 60 ms fast flashes, released in succession, illuminate the bubble [fr

  4. State-observer with low sensitivity and its application to Maglev vehicle suspension control

    Energy Technology Data Exchange (ETDEWEB)

    Breinl, W; Mueller, P C

    1982-12-01

    A linear time-invariant multi-input/multi-output dynamical system with uncertain parameters is considered. In general the separate design of the regulator and of the observer is not possible because the separation principle does not hold for parameter variations. However, in certain cases the observer matrices may be chosen in a special manner that an observer with low sensitivity can be designed. Then the separation principle is also valid for parameter variations. The existence and the design of such insensitive observers are discussed. The theoretical results are illustrated by an application to the suspension control of a Maglev vehicle.

  5. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S.; Bae, D.K.; Lee, C.Y.; Ko, T.K.

    2011-01-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2 ).

  6. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Science.gov (United States)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  7. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  8. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  9. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  10. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  11. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  12. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  13. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  14. Technical report of electronics shop characteristics of high speed electronics component, (1)

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiino, Kazuo.

    1975-01-01

    We must develop electronics circuits for high speed signals. The electronics components of the circuits make use of the special components. This report treats a pulse response of the electronics components (i.e. coaxial cable, connector, resistor, capacitor, diode, transistor) for high speed electronics. The results of this report was already applied constructions of high speed electronics circuits and experimental equipments of the High Energy Physics Division. (auth.)

  15. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  16. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  17. Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet

    International Nuclear Information System (INIS)

    Liu, W.; Wang, J.S.; Ma, G.T.; Zheng, J.; Tuo, X.G.; Li, L.L.; Ye, C.Q.; Liao, X.L.; Wang, S.Y.

    2012-01-01

    Compared with the permanent magnet, the magnetized bulk high-T c superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T c superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  18. Wavelet-OFDM Signal Transmission Characteristics with High-Speed PLC Modem

    Science.gov (United States)

    Nakagawa, Kenichi; Tokuda, Masamitsu; Igata, Yuji

    In this paper, we measured the interference immunity characteristics of high-speed PLC system using Wavelet-OFDM when the narrowband conducted interference wave signal was injected. As the results, it was clear that (1) measured PHY rate at the all frequency band hardly decreased in C/I (Carrier to Interference ratio) of above 20dB, but began to decrease rapidly in C/I of below 0dB when the interference signal was injected in the frequency band of high-speed PLC signal, (2) when C/I became from 0dB to -20dB, the measured PHY rate at the frequency existing the notch band were improved around 10Mbps than that at the frequency not existing the notch band, (3) when the narrowband interference wave was injected outside of frequency band of high-speed PLC signal, the measured PHY rate did not decrease than that in each notch band. Therefore, it was revealed that high-speed PLC system using Wavelet-OFDM had good interference immunity characteristics.

  19. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  20. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    Science.gov (United States)

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-11

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  1. Impact of Increased Football Field Width on Player High-Speed Collision Rate.

    Science.gov (United States)

    Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul

    2017-07-01

    High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High-speed and supersonic upward plasma drifts: multi-instrumental study

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are

  3. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  4. Social exclusion and high speed rail: The case study of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pagliara, F.; Menicocci, F.; Vassallo, J.M.; Gomez, J.

    2016-07-01

    Very few contributions in the literature have dealt with the issue of social exclusion related to High Speed Rail systems. The objective of this manuscript is to understand what are the factors excluding users from choosing High Speed Rail services considering as case study Spain. For this purpose, a Revealed Preference survey was employed in November and December 2015. A questionnaire was submitted to users of the Spanish transport systems travelling for long distance-journeys. The aim was that of investigating their perception of High Speed Rail system and the factors inhibiting passengers or excluding them from its use. Data about their socioeconomic characteristics were collected as well. The main result of the survey has been that a relationship between social exclusion and High Speed Rail in Spain is present, especially in terms of geographical exclusion. (Author)

  5. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  6. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  7. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  8. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  9. Tooling device design for vibration-assisted high speed shaping of PMMA

    International Nuclear Information System (INIS)

    Mostofa, Md. Golam; Noh, J. H.; Kim, H. Y.; Ahn, J. H.; Kang, D. B.

    2010-01-01

    PMMA optical components that are used as one of the most important parts of high precision equipment and machines are increasingly replacing the glass due to the various advantages of PMMA. Especially in Light Guide Panels, the PMMA sheet that is used in Liquid Crystal Displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. The High Speed End milling and High Speed Shaping processes that are widely adopted and applied to the precise machining of Light Incident Plane still have quality problems, such as cracks, breakages, poor waviness, and straightness. This paper presents the tooling device design for machining a Light Incident Plane through vibration-assisted High Speed Shaping for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic characteristics of the cutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted High Speed Shaping

  10. A novel portable multi-channel analyzer based on high-speed microcontroller

    International Nuclear Information System (INIS)

    Lou Xinghua; Yi Hongchang; Wang Yuemin

    2005-01-01

    This paper introduces a novel portable multi-channel analyzer (MCA) based on high-speed microcontroller. The hardware implementation and the software scenario of the MCA are discussed. The MCA has features of high speed, small size and better performances. (authors)

  11. Yonjung High-Speed Railway Bridge Assessment Using Output-Only Structural Health Monitoring Measurements under Train Speed Changing

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Yonjung Bridge is a hybrid multispan bridge that is designed to transport high-speed trains (HEMU-430X with maximum operating speed of 430 km/h. The bridge consists of simply supported prestressed concrete (PSC and composite steel girders to carry double railway tracks. The structural health monitoring system (SHM is designed and installed to investigate and assess the performance of the bridge in terms of acceleration and deformation measurements under different speeds of the passing train. The SHM measurements are investigated in both time and frequency domains; in addition, several identification models are examined to assess the performance of the bridge. The drawn conclusions show that the maximum deflection and acceleration of the bridge are within the design limits that are specified by the Korean and European codes. The parameters evaluation of the model identification depicts the quasistatic and dynamic deformations of PSC and steel girders to be different and less correlated when higher speeds of the passing trains are considered. Finally, the variation of the frequency content of the dynamic deformations of the girders is negligible when high speeds are considered.

  12. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    Science.gov (United States)

    2013-12-01

    wave absorbing beach at the other. The carriage has electro-hydraulic drive and a regenerative braking system with a maximum carriage speed of 20...Carderock Division To: Commander, Naval Sea Systems Command (PMS3 85) Subj FORWARDING OF REPORT Encl: (1) NSWCCD-80-TR-2013/015, "High Speed Trimaran...and verify the system processes and capability. Your comments will be reviewed and are appreciated. JUDE F. BROWN By direction Copy to: NAVSEA

  13. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  14. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  15. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  16. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  17. High-speed photography of dynamic photoelastic experiment with a highly accurate blasting machine

    Science.gov (United States)

    Katsuyama, Kunihisa; Ogata, Yuji; Wada, Yuji; Hashizume, K.

    1995-05-01

    A high accurate blasting machine which could control 1 microsecond(s) was developed. At first, explosion of a bridge wire in an electric detonator was observed and next the detonations of caps were observed with a high speed camera. It is well known that a compressed stress wave reflects at the free face, it propagates to the backward as a tensile stress wave, and cracks grow when the tensile stress becomes the dynamic tensile strength. The behavior of these cracks has been discussed through the observation of the dynamic photoelastic high speed photography and the three dimensional dynamic stress analysis.

  18. Compensator design for improved counterbalancing in high speed atomic force microscopy

    OpenAIRE

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, ...

  19. High-speed cinematography of gas-tungsten arc welding: theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, L.D.; Key, J.F.

    1981-06-01

    High-speed photo-instrumentation theory and application are reviewed, with particular emphasis on high-speed cinematography, for the engineer who has not acquired an extensive background in scientific photography. Camera systems, optics, timing system, lighting, photometric equipment, filters, and camera mounts are covered. Manufacturers and other resource material are listed in the Appendices. The properties and processing of photosensitive materials suitable for high-speed photography are reviewed, and selected film data are presented. Methods are described for both qualitative and quantitative film analysis. This technology is applied to the problem of analyzing plasma dynamics in a gas-tungsten welding arc.

  20. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.