WorldWideScience

Sample records for high specific-activity zirconium-89

  1. Standardized methods for the production of high specific-activity zirconium-89

    Science.gov (United States)

    Holland, Jason P.; Sheh, Yiauchung; Lewis, Jason S.

    2009-01-01

    Zirconium-89 is an attractive metallo-radionuclide for use in immunoPET due to the favorable decay characteristics. Standardized methods for the routine production and isolation of high purity and high specific-activity 89Zr using a small cyclotron are reported. Optimized cyclotron conditions reveal high average yields of 1.52 ± 0.11 mCi/μA·h at a proton beam energy of 15 MeV and current of 15 μA using a solid, commercially available 89Y-foil target (0.1 mm, 100% natural abundance). 89Zr was isolated in high radionuclidic and radiochemical purity (>99.99%) as [89Zr]Zr-oxalate by using a solid-phase hydroxamate resin with >99.5% recovery of the radioactivity. The effective specific-activity of 89Zr was found to be in the range 5.28 – 13.43 mCi/μg (470 – 1195 Ci/mmol) of zirconium. New methods for the facile production of [89Zr]Zr-chloride are reported. Radiolabeling studies using the trihydroxamate ligand desferrioxamine B (DFO) gave 100% radiochemical yields in 7 days. Small-animal PET imaging studies have demonstrated that free 89Zr(IV) ions administered as [89Zr]Zr-chloride accumulate in the liver whilst [89Zr]Zr-DFO is excreted rapidly via the kidneys within <20 min. These results have important implication for the analysis of immunoPET imaging of 89Zr-labeled monoclonal antibodies. The detailed methods described can be easily translated to other radiochemistry facilities and will facilitate the use of 89Zr in both basic science and clinical investigations. PMID:19720285

  2. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  3. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  4. Production, applications and status of zirconium-89 immunoPET agents

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Osso, Joao Alberto

    2017-01-01

    Zirconium-89 has attracted huge interests and is used in tracing and quantification of slow biological processes and labeling of long half-live biomolecules such as monoclonal antibodies for pharmacokinetic studies and clinical trials. In this review, a concise introduction to targetry, irradiation data, separation and coordination chemistry of zirconium-89 has been presented. A detailed overreviwew on bi-functional ligands conjugation and "8"9Zr radiolabeling been addressed. The latest status of preclinical as well as clinical trials using "8"9Zr radioimmunomolecules in various human diseases has been presented since 2012. (author)

  5. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    Science.gov (United States)

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  6. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    Science.gov (United States)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  7. The chemistry of PET imaging with zirconium-89.

    Science.gov (United States)

    Dilworth, Jonathan R; Pascu, Sofia I

    2018-04-23

    This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.

  8. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  9. Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.

    Science.gov (United States)

    O'Hara, Matthew J; Murray, Nathaniel J; Carter, Jennifer C; Morrison, Samuel S

    2018-04-13

    Zirconium-89 ( 89 Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( nat Y), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89 Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5 ) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89 Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89 Zr present in the foils. The anion exchange column method described here is intended to be the first 89 Zr isolation stage in a dual-column purification process. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; Morrison, Samuel S.

    2018-04-01

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.

  11. In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Chen, Feng; Goel, Shreya; Valdovinos, Hector F; Luo, Haiming; Hernandez, Reinier; Barnhart, Todd E; Cai, Weibo

    2015-08-25

    Traditional chelator-based radio-labeled nanoparticles and positron emission tomography (PET) imaging are playing vital roles in the field of nano-oncology. However, their long-term in vivo integrity and potential mismatch of the biodistribution patterns between nanoparticles and radio-isotopes are two major concerns for this approach. Here, we present a chelator-free zirconium-89 ((89)Zr, t1/2 = 78.4 h) labeling of mesoporous silica nanoparticle (MSN) with significantly enhanced in vivo long-term (>20 days) stability. Successful radio-labeling and in vivo stability are demonstrated to be highly dependent on both the concentration and location of deprotonated silanol groups (-Si-O(-)) from two types of silica nanoparticles investigated. This work reports (89)Zr-labeled MSN with a detailed labeling mechanism investigation and long-term stability study. With its attractive radio-stability and the simplicity of chelator-free radio-labeling, (89)Zr-MSN offers a novel, simple, and accurate way for studying the in vivo long-term fate and PET image-guided drug delivery of MSN in the near future.

  12. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  13. The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86.

    Science.gov (United States)

    Ikotun, Oluwatayo F; Lapi, Suzanne E

    2011-04-01

    Positron emission tomography, with its high sensitivity and resolution, is growing rapidly as an imaging technology for the diagnosis of many disease states. The success of this modality is reliant on instrumentation and the development of effective and novel targeted probes. Initially, research in this area was focused on what we will define in this article as 'standard' PET isotopes (carbon-11, nitrogen-13, oxygen-15 and fluorine-18), but the short half-lives of these isotopes limit radiopharmaceutical development to those that probe rapid biological processes. To overcome these limitations, there has been a rise in nonstandard isotope probe development in recent years. This review focuses on the biological probes and processes that have been examined, in additiom to the preclinical and clinical findings with nonstandard radiometals: copper-64, zirconium-89, and yttrium-86.

  14. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  15. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  16. Standard Specification for Nuclear Grade Zirconium Oxide Pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification applies to pellets of stabilized zirconium oxide used in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  17. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  18. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  19. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach.

    Science.gov (United States)

    Even, Aniek J G; Hamming-Vrieze, Olga; van Elmpt, Wouter; Winnepenninckx, Véronique J L; Heukelom, Jolien; Tesselaar, Margot E T; Vogel, Wouter V; Hoeben, Ann; Zegers, Catharina M L; Vugts, Daniëlle J; van Dongen, Guus A M S; Bartelink, Harry; Mottaghy, Felix M; Hoebers, Frank; Lambin, Philippe

    2017-01-17

    Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging.Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing.Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1).In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection.

  20. Preparation and characterization of zirconium phosphate ion exchanger samples with respect to the separation of highly active actinoid elements

    International Nuclear Information System (INIS)

    Treplan, J.

    1972-01-01

    Inorganic ion exchangers are of growing interest in connection with separation processes of α-radiators of high specific activity, or with high gamma doses, because they have a considerably higher radiation resistance at their disposal compared to the commonly used organic ion exchangers. In opposition to their use, however, are the worse properties regarding capacity, chemical resistivity, exchange rate and reproducibility of the ion exchange bed. In the present work, an attempt has been made to influence the properties of a typical representative of this group, zirconium phosphate (ZP), by systematic changing of the preparation parameters in such a manner that a sufficient capacity is obtained regarding tri-valent ions. In addition, information is to be gathered in order to clarify the connection between exchanger property and structure of the ZP. (orig./LH) [de

  1. High purity zirconium obtainment through the iodine compounds transport method

    International Nuclear Information System (INIS)

    Bolcich, J.C.; Zuzek, E.; Dutrus, S.M.; Corso, H.L.

    1987-01-01

    This paper describes the experimental method and the equipment designed, constructed and actually applied for the high purity zirconium obtainment from a zirconium sponge of the nuclear type. The mechanism of purification is based on the impure metal attack with gaseous iodine (at 200 deg C) to obtain zirconium tetra iodine as main product which is then transformed into a pure zirconium base (at 1000-1300 deg C), precipitating the metallic zirconium and releasing the gaseous iodine. From the first experiences carried out, pure zirconium has been obtained from an initial filament of 0.5 mm of diameter as well as wires up to 2.5 mm of diameter. This work presents the results from the studies and analysis made to characterize the material obtained. Finally, the refining methods to which the zirconium produced may be submitted so as to optimize the final purity are discussed. (Author)

  2. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  3. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  5. Standard specification for nuclear-grade zirconium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements for zirconium oxide powder intended for fabrication into shapes, either entirely or partially of zirconia, for use in a nuclear reactor core. 1.2 The material described herein shall be particulate in nature. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  6. Effect of high hydrogen content on metallurgical and mechanical properties of zirconium alloy claddings after heat-treatment at high temperature

    International Nuclear Information System (INIS)

    Turque, Isabelle

    2016-01-01

    Under hypothetical loss-of-coolant accident conditions, fuel cladding tubes made of zirconium alloys can be exposed to steam at high temperature (HT, up 1200 C) before being cooled and then quenched in water. In some conditions, after burst occurrence the cladding can rapidly absorb a significant amount of hydrogen (secondary hydriding), up to 3000 wt.ppm locally, during steam exposition at HT. The study deals with the effect, poorly studied up to date, of high contents of hydrogen on the metallurgical and mechanical properties of two zirconium alloys, Zircaloy-4 and M5, during and after cooling from high temperatures, at which zirconium is in its β phase. A specific facility was developed to homogeneously charge in hydrogen up to ∼ 3000 wt.ppm cladding tube samples of several centimeters in length. Phase transformations, chemical element partitioning and hydrogen precipitation during cooling from the β temperature domain of zirconium were studied by using several techniques, for the materials containing up to ∼ 3000 wt.ppm of hydrogen in average: in-situ neutron diffraction upon cooling from 700 C, X-ray diffraction, μ-ERDA, EPMA and electron microscopy in particular. The results were compared to thermodynamic predictions. In order to study the effect of high hydrogen contents on the mechanical behavior of the (prior-)μ phase of zirconium, axial tensile tests were performed at various temperatures between 20 and 700 C upon cooling from the β temperature domain, on samples with mean hydrogen contents up to ∼ 3000 wt.ppm. The results show that metallurgical and mechanical properties of the (prior-)β phase of zirconium alloys strongly depend on temperature and hydrogen content. (author) [fr

  7. Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bearing Aryl-substituted [OSSO]-Type Bis(phenolate Ligands

    Directory of Open Access Journals (Sweden)

    Norio Nakata

    2016-01-01

    Full Text Available [OSSO]-type dibenzyl zirconium(IV complexes 9 and 10 possessing aryl substituents ortho to the phenoxide moieties (ortho substituents, phenyl and 2,6-dimethylphenyl (Dmp were synthesized and characterized. Upon activation with dMAO (dried methylaluminoxane, complex 9 was found to promote highly isospecific styrene polymerizations ([mm] = 97.5%–99% with high molecular weights Mw up to 181,000 g·mmol−1. When the Dmp-substituted pre-catalyst 10/dMAO system was used, the highest activity, over 7700 g·mmol(10−1·h−1, was recorded involving the formation of precisely isospecific polystyrenes of [mm] more than 99%.

  8. '99Mo/99mTc Generator Based on High Radionuclidic Pure Zirconium Molybdate Gel

    International Nuclear Information System (INIS)

    Amin, M.; Mostafa, M.; El-Amir, M.A.; El-Absy, M.A.; Mohamed, O.I.; Farag, A.B.

    2014-01-01

    99 Mo / 99 mTc radioisotope generator was prepared using in-situ precipitated zirconium molybdate chromatographic column. Zirconium molybdate gel matrix was synthesized by precipitation of neutron activation molybdenum-99 from its solution after variety purification processes to prevent contamination of the 99m Tc eluate with cross-contaminants. Greeter than 82.7 ± 0.4 % of the generated 99m Tc was immediately and reproducible eluted by passing 10 ml 0.9 % NaCl solution through the 1 g zirconium molybdate- 99 Mo column matrix at a flow rate of 0.5 ml / min and room temperature with high chemical, radionuclide ( ≥ 99.9 % 99m Tc) and radiochemical purity ( ≥ 97.7 % % as 99 mTcO 4 - ) with ph value suitable for medical uses.

  9. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  10. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  11. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  12. Production of Positron Emitting Radiometals: Cu-64, Y-86, Zr-89. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, Suzanne E. [Washington Univ., St. Louis, MO (United States)

    2014-07-18

    This proposal seeks support to increase our production of the radionuclides yttrium-86 and zirconium-89 while continuing to produce copper-64. We have the advantage that we already ship out copper-64 to some 20-25 institutions per week (over 60 different institutions total including 4 Canadian sites) and thus our group already has significant experience with producing, purifying and shipping radioactive materials. A significant portion of the funds requested supported the purchase of a new hotcell for the production of zirconium-89 and yttrium-86.

  13. Production of Positron Emitting Radiometals: Cu-64, Y-86, Zr-89. Final report

    International Nuclear Information System (INIS)

    Lapi, Suzanne E.

    2014-01-01

    This proposal seeks support to increase our production of the radionuclides yttrium-86 and zirconium-89 while continuing to produce copper-64. We have the advantage that we already ship out copper-64 to some 20-25 institutions per week (over 60 different institutions total including 4 Canadian sites) and thus our group already has significant experience with producing, purifying and shipping radioactive materials. A significant portion of the funds requested supported the purchase of a new hotcell for the production of zirconium-89 and yttrium-86.

  14. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  15. Growth and high pressure studies of zirconium sulphoselenide ...

    Indian Academy of Sciences (India)

    Growth and high pressure studies of zirconium sulphoselenide single ... tance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify .... The optical band gaps of the as-grown crystals were obtained by optical ab-.

  16. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    waste material that includes tailings and slimes. The soil removal and mining activity disturbs the surrounding ecosystem and alters the character of the landscape. Dry mineral separation processes create high amounts of airborne dust, whereas wet mineral separation processes do not. In operations that restore the landscape to pre-mining conditions, the volume of waste and the impact on the landscape may be relatively temporary.

  17. Contribution to the understanding of zirconium alloy deformation under irradiation at high doses

    International Nuclear Information System (INIS)

    Gharbi, Nesrine

    2015-01-01

    The growth of zirconium alloy tubes of PWR fuel assemblies is the result of two phenomena: axial irradiation creep and stress 'free' growth which is correlated to the formation of c-loops at high irradiation doses. This PhD work aims at investigating the coupling between these two phenomena through a fine Transmission Electron Microscopy analysis of the effect of a macroscopic applied stress on the c-loop microstructure. 600 keV Zr + ion irradiations were performed at 300 C on two recrystallized zirconium alloys: Zircaloy-4 and M5. Thanks to a device specifically designed, different tensile or compressive stress levels were applied under ion irradiation. The microstructural observations have shown that the c-loop density reduces in grains oriented with the c-axis close to the direction of the applied tensile stress or far from the direction of the applied compressive stress, which is in good agreement with the SIPA mechanism. Nevertheless, the examination of a large number of grains has revealed dispersion from grain to grain. This dispersion, which could be explained by the intergranular heterogeneities, reduces the magnitude of the stress effect on c-loop microstructure. In parallel to this experimental study, a cluster dynamics model has been able to describe the evolution under irradiation of zirconium and Zircaloy-4 microstructure and to assess the effect of stress on c-loop microstructure. On the macroscopic scale, a physical model was also developed to predict the irradiation growth and creep behaviour of zirconium alloy tubes. (author) [fr

  18. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  19. Specific heat and electric conductivity of zirconium alloy with 2,5 mass% niobium in the range of phase transitions

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Pokrasin, M.A.; Chernov, A.I.; Semashko, N.A.

    1996-01-01

    Experimental investigation of specific heat and electric resistance of zirconium alloy with 2.5 mass% niobium in the range of phase transitions was conducted, using adiabatic calorimeter of original design, characterized by high sensitivity, efficiency and high accuracy. It was revealed that temperature dependence of specific heat was characterized by anomalous growth at 590 deg C, related with (α+β Nb )→(α+β Zr )-transition, and at 810 deg -related with (α+β Zr )→β Zr - transition. Temperature dependence of electric resistance was specific in the region of α+β Zr →β Zr phase transition. It was established that revealed anomalies were connected with high oxygen absorption at high temperatures. 11 refs., 1 fig., 1 tab

  20. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  2. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  3. High energy beam thermal processing of alpha zirconium alloys and the resulting articles

    International Nuclear Information System (INIS)

    Sabol, G.P.; McDonald, S.G.; Nurminen, J.I.

    1983-01-01

    Alpha zirconium alloy fabrication methods and resultant products exhibiting improved high temperature, high pressure steam corrosion resistance. The process, according to one aspect of this invention, utilizes a high energy beam thermal treatment to provide a layer of beta treated microstructure on an alpha zirconium alloy intermediate product. The treated product is then alpha worked to final size. According to another aspect of the invention, high energy beam thermal treatment is used to produce an alpha annealed microstructure in a Zircaloy alloy intermediate size or final size component. The resultant products are suitable for use in pressurized water and boiling water reactors

  4. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R.

    2017-01-01

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples

  5. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Amol D.; Acharya, Raghunath; Reddy, Annareddy V. R. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

  6. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  7. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  8. Improved production and processing of 89Zr using a solution target

    International Nuclear Information System (INIS)

    Pandey, Mukesh K.; Bansal, Aditya; Engelbrecht, Hendrik P.; Byrne, John F.; Packard, Alan B.; DeGrado, Timothy R.

    2016-01-01

    Objective: The objectives of the present work were to improve the cyclotron production yield of 89 Zr using a solution target, develop a practical synthesis of the hydroxamate resin used to process the target, and develop a biocompatible medium for 89 Zr elution from the hydroxamate resin. Methods: A new solution target (BMLT-2) with enhanced heat dissipation capabilities was designed by using helium-cooled dual foils (0.2 mm Al and 25 μ Havar) and an enhanced water-cooled, elongated solution cavity in the target insert. Irradiations were performed with 14 MeV protons on a 2 M solution of yttrium nitrate in 1.25 M nitric acid at 40-μA beam current for 2 h in a closed system. Zirconium-89 was separated from Y by use of a hydroxamate resin. A one-pot synthesis of hydroxamate resin was accomplished by activating the carboxylate groups on a carboxymethyl cation exchange resin using methyl chloroformate followed by reaction with hydroxylamine hydrochloride. After trapping of 89 Zr on hydroxamate resin and rinsing the resin with HCl and water to release Y, 89 Zr was eluted with 1.2 M K 2 HPO 4 /KH 2 PO 4 buffer (pH 3.5). ICP-MS was used to measure metal contaminants in the final 89 Zr solution. Results: The BMLT-2 target produced 349 ± 49 MBq (9.4 ± 1.2 mCi) of 89 Zr at the end of irradiation with a specific activity of 1.18 ± 0.79 GBq/μg. The hydroxamate resin prepared using the new synthesis method showed a trapping efficiency of 93% with a 75 mg resin bed and 96–97% with a 100–120 mg resin bed. The elution efficiency of 89 Zr with 1.2 M K 2 HPO 4 /KH 2 PO 4 solution was found to be 91.7 ± 3.7%, compared to > 95% for 1 M oxalic acid. Elution with phosphate buffer gave very small levels of metal contaminants: Al = 0.40–0.86 μg (n = 2), Fe = 1.22 ± 0.71 μg (n = 3), Y = 0.29 μg (n = 1). Conclusions: The BMLT-2 target allowed doubling of the beam current for production of 89 Zr, resulting in a greater than 2-fold increase in production yield in comparison

  9. Preparation and investigation of ion exchange properties of sorbent based on activated carbon BAU and zirconium hydroxide

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Semenov, M.I.; Taushkanov, V.P.; Andronov, E.A.

    1978-01-01

    The method of obtaining the sorbent based on the activated carbon and zirconium hydroxide, performed by carbon soaking by zirconium salt solution, hydrolytic decomposition, being in salt pores by ammonia solution and drying of the obtained sorbet in the air at the temperature of 105-115 deg. The kinetic characteristics of the obtained sorbent in the wide range of pH value of solutions are studied; sodium, chloride, fluoride and phosphate ion sorbtion taken as examples. A high selectivity of the sorbent to phosphate and fluoride ions has been established. The usefullness of the obtained sorbent for extraction of phosphorus microquantities from 1M sodium chloride solution and its concentration at the elution stage is shown

  10. Synthesis, Characterization and Antimicrobial Activity of Zirconium (IV) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shobhana; Jain, Asha; Saxena, Sanjiv [Univ. of Rajasthan, Jaipur (India)

    2012-08-15

    Heteroleptic complexes of zirconium (IV) derived from bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones of the general formula ZrLL' (where L'H{sub 2}=RCNH(C{sub 6}H{sub 4})SC : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R=-C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl(p) and L'H{sub 2}=R'C : (NOH)C : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R' = -CH{sub 2}CH{sub 3}, -C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl (p) were prepared by the reactions of zirconium tetrachloride with disodium salts of Schiff bases (L Na{sub 2}) and oximes of heterocyclic β-diketones (L' Na{sub 2}) in 1:1:1 molar ratio in dry refluxing THF. The structures of these monomeric zirconium (IV) complexes were elucidated with the help of elemental analysis, molecular weight measurements, spectroscopic (IR, NMR and mass) studies. A distorted trigonal bipyramidal geometry may be suggested for these heteroleptic zirconium (IV) complexes. The ligands (bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones) and their heteroleptic complexes of zirconium (IV) were screened against A. flavus, P. aeruginesa and E. coli.

  11. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  12. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  13. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  14. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  15. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  16. Plasma-Activated Tropoelastin Functionalization of Zirconium for Improved Bone Cell Response

    Czech Academy of Sciences Publication Activity Database

    Yeo, G. C.; Santos, M.; Kondyurin, A.; Lišková, Jana; Weiss, A. S.; Bilek, M. M. M.

    2016-01-01

    Roč. 2, č. 4 (2016), s. 662-676 ISSN 2373-9878 R&D Projects: GA MZd(CZ) NV15-32497A; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : bone * plasma-activated coating * titanium * tropoelastin * zirconium Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.234, year: 2016

  17. Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation

    International Nuclear Information System (INIS)

    Song Shuang; Hong Fangyue; He Zhiqiao; Wang Hongyu; Xu Xianghong; Chen Jianmeng

    2011-01-01

    Zirconium and iodine co-doped titanium dioxide (Zr-I-TiO 2 ) was prepared by the hydrolysis of tetrabutyl titanate, premixed with zirconium nitrate in an iodic acid aqueous solution, followed by calcination in air. The structure and properties of the resultant catalyst powders were characterized by X-ray diffraction, the Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, transmission electron microscopy, and UV-vis absorption spectroscopy. The catalytic activity of the catalyst was evaluated by monitoring the photocatalytic decolorization of methyl orange under visible light irradiation. The results showed that the activities of Zr-I-TiO 2 catalysts were higher than that of TiO 2 doped with iodine alone (I-TiO 2 ), and the optimal doping concentration in the Zr-I-TiO 2 calcined at 400 deg. C was determined to be about 0.05 (molar ratio of Zr:Ti). In addition, the photocatalytic activity of Zr-I-TiO 2 calcined at 400 deg. C was found to be significantly higher than that calcined at 500 or 600 deg. C. Based on the physico-chemical characterization, we concluded that the role of zirconium on the I-TiO 2 surface is to increase the number of reactive sites by generating a small crystal size and large surface area. The inhibition of electron-hole pair recombination, by trapping photo-generated electrons with Zr 4+ , did not contribute markedly to the improved photocatalytic activity of Zr-I-TiO 2 .

  18. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  19. Activation analysis in zirconium and alloys for nuclear application

    International Nuclear Information System (INIS)

    Cohen, I.M.; Mila, M.I.; Gomez, C.D.

    1981-01-01

    A study has been performed with the purpose to ascertain the possibilities of using neutron activation analysis in non-destructive determination of several elements present in zirconium and its alloys. Those elements must be limited within acceptable top levels, in accordance to standards for nuclear applications. The experimental techniques used are described and the results obtained are discussed, showing that the method is adequate for determining Cl, Co, Hf, Mn, and W, but not Ni and U. (M.E.L.) [es

  20. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    Science.gov (United States)

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  1. Site-specifically {sup 89}Zr-labeled monoclonal antibodies for ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Tinianow, Jeff N.; Gill, Herman S.; Ogasawara, Annie; Flores, Judith E.; Vanderbilt, Alexander N.; Luis, Elizabeth; Vandlen, Richard; Darwish, Martine; Junutula, Jagath R.; Williams, Simon-P. [Genentech Research and Early Development, Genentech Inc., South San Francisco, CA 94080 (United States); Marik, Jan [Genentech Research and Early Development, Genentech Inc., South San Francisco, CA 94080 (United States)], E-mail: marik.jan@gene.com

    2010-04-15

    Three thiol reactive reagents were developed for the chemoselective conjugation of desferrioxamine (Df) to a monoclonal antibody via engineered cysteine residues (thio-trastuzumab). The in vitro stability and in vivo imaging properties of site-specifically radiolabeled {sup 89}Zr-Df-thio-trastuzumab conjugates were investigated. Methods: The amino group of desferrioxamine B was acylated by bromoacetyl bromide, N-hydroxysuccinimidyl iodoacetate, or N-hydroxysuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate to obtain thiol reactive reagents bromoacetyl-desferrioxamine (Df-Bac), iodoacetyl-desferrioxamine (Df-Iac) and maleimidocyclohexyl-desferrioxamine (Df-Chx-Mal), respectively. Df-Bac and Df-Iac alkylated the free thiol groups of thio-trastuzumab by nucleophilic substitution forming Df-Ac-thio-trastuzumab, while the maleimide reagent Df-Chx-Mal reacted via Michael addition to provide Df-Chx-Mal-thio-trastuzumab. The conjugates were radiolabeled with {sup 89}Zr and evaluated for serum stability, and their positron emission tomography (PET) imaging properties were investigated in a BT474M1 (HER2-positive) breast tumor mouse model. Results: The chemoselective reagents were obtained in 14% (Df-Bac), 53% (Df-Iac) and 45% (Df-Chx-Mal) yields. Site-specific conjugation of Df-Chx-Mal to thio-trastuzumab was complete within 1 h at pH 7.5, while Df-Iac and Df-Bac respectively required 2 and 5 h at pH 9. Each Df modified thio-trastuzumab was chelated with {sup 89}Zr in yields exceeding 75%. {sup 89}Zr-Df-Ac-thio-trastuzumab and {sup 89}Zr-Df-Chx-Mal-thio-trastuzumab were stable in mouse serum and exhibited comparable PET imaging capabilities in a BT474M1 (HER2-positive) breast cancer model reaching 20-25 %ID/g of tumor uptake and a tumor to blood ratio of 6.1-7.1. Conclusions: The new reagents demonstrated good reactivity with engineered thiol groups of trastuzumab and very good chelation properties with {sup 89}Zr. The site-specifically {sup 89}Zr-labeled thio

  2. Determination of zirconium by fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Sonar, V.R.; Gaikwad, R.; Raul, S.; Das, D.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Zirconium is used in a wide range of applications including nuclear clad, catalytic converters, surgical appliances, metallurgical furnaces, superconductors, ceramics, lamp filaments, anti corrosive alloys and photographical purposes. Irradiation testing of U-Zr and U-Pu-Zr fuel pins has also demonstrated their feasibility as fuel in liquid metal reactors. Different methods that are employed for the determination of zirconium are spectrophotometry, potentiometry, neutron activation analysis and mass spectrometry. Ion-selective electrode (ISE), selective to zirconium ion has been studied for the direct potentiometric measurements of zirconium ions in various samples. In the present work, an indirect method has been employed for the determination of zirconium in zirconium nitrate sample using fluoride ion selective electrode. This method is based on the addition of known excess amount of fluoride ion to react with the zirconium ion to produce zirconium tetra fluoride at about pH 2-3, followed by determination of residual fluoride ion selective electrode. The residual fluoride ion concentrations were determined from the electrode potential data using calibration plot. Subsequently, zirconium ion concentrations were determined from the concentration of consumed fluoride ions. A precision of about 2% (RSD) with the mean recovery of more than 94% has been achieved for the determination of zirconium at the concentration of 4.40 X 10 -3 moles lit -1

  3. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  4. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  5. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    International Nuclear Information System (INIS)

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300 0 C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr 9 Pt 11 + 9/2 N 2 . Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985 0 C/ = 2.4 x 10 -4 in Zr 9 Pt 11 ΔG/sub f 1985 0 C/ 0 Zr 9 Pt 11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  6. Investigation of Zirconium Oxide Films in Different Dissolved Hydrogen Concentration

    International Nuclear Information System (INIS)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun

    2016-01-01

    It has been reported that in pre-transition zirconium oxide, the volume fraction of tetragonal zirconium oxide increased near the oxide/metal (O/M) interface, and the sub-stoichiometric zirconium oxide layer was observed. The diffusion of oxygen ion through the oxide layer is the rate-limiting process during the pre-transition oxidation process, and this diffusion mainly occurs in the grain boundaries. The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high-temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pre-transition zirconium oxide in high-temperature water chemistry. In this study, in situ Raman and TEM analysis were conducted for investigating the phase transformation of zirconium alloy in primary water. From this study, the following conclusions are drawn: 1. The zirconium alloy was oxidized in primary water chemistry for 100 d, and Raman and TEM were measured after 30, 50, 80, and 100 d from start-up. 2. TEM and FFT analysis showed that the zirconium oxide mostly consisted of the monoclinic phase. The tetragonal zirconium oxide was just found near the O/M interface

  7. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  8. A molecular dynamics study of high-energy displacement cascades in α-zirconium

    International Nuclear Information System (INIS)

    Wooding, S.J.; Howe, L.M.; Gao, F.; Calder, A.F.; Bacon, D.J.

    1998-01-01

    The damage produced in α-zirconium at 100 K by displacement cascades with energy, E p , up to 20 keV has been investigated by molecular dynamics using a many-body interatomic potential. The results are compared with similar data for cascades of energy up to 10 keV in α-titanium. The production efficiency of Frenkel pairs falls to about 25% of the NRT value as E p rises above 10 keV in zirconium, and to about 30% at 10 keV in titanium. The power-law dependence of the number of Frenkel pairs, N F , on E p found previously is obeyed, i.e., N F = A(E p ) m . Interstitial and vacancy clusters with sizes of the same order are created in the cascade process, and clusters containing up to 25 interstitials and 30 vacancies were formed in zirconium by 20 keV cascades. Two thirds of the SIAs are produced in clusters in zirconium at high cascade energy. Most interstitial clusters have dislocation character with perfect Burgers vectors of the form 1/3(11 2 - 0), but a few metastable clusters are formed and are persistent over the timescale of MD simulations. Collapse of the 30-vacancy cluster to a faulted loop on the prism plane was found to occur over a period of more than 100 ps. Annealing over this timescale has a stronger effect on the number and clustering of defects in cascades that are dispersed over a large region of crystal than in cascades that form a compact region of damage. (author)

  9. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  10. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  11. The addition zirconium effect on the solubility and activity of sulfur in liquid iron

    International Nuclear Information System (INIS)

    Burylev, B.P.; Mojsov, L.P.

    1994-01-01

    Critical analysis of reference data on thermodynamic properties of zirconium sulfides is conducted for evaluation of zirconium desulfonation ability in liquid steel. Sulfur solubility dependence on zirconium concentration in liquid iron is presented. Curves of sulfur solubility in liquid iron in the presence of other elements, including titanium, manganese, vanadium and chromium are presented for comparison. It is shown that equilibrium concentration of sulfur is much lower than standard sulfur concentrations in steel, therefore zirconium appears to be the best desulfonator among the metals considered

  12. Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Retraint, D.; Grosseau-Poussard, J.-L.; Li, L.; Guérain, M.; Goudeau, P.; Tamura, N.; Kunz, M.

    2012-01-01

    Highlights: ► SMAT leads to a modification of surface properties of an M5 zirconium alloy (grain size and roughness. ► SMAT induces a change in the oxidation kinetics during high temperature oxidation. ► A diffusion model is able to reproduce kinetics and emphasise the consequences of SMAT on dissolution of oxygen in Zr. - Abstract: In the present work, the effects of a nanocrystallisation treatment on the high-temperature oxidation of a zirconium alloy are investigated. Surface Mechanical Attrition Treatment is a recent process designed to nanocrystallise the surface of materials. The particular effects of this treatment on an M5 zirconium alloy are studied using different experimental techniques at several scales. This material is of considerable interest, especially to the nuclear industry where very stringent conditions apply. High temperature oxidation was performed in order to show the benefits of this type of nanocrystallisation on the corrosion resistance of the alloy concerned. Microstructure development mechanisms, which improve the oxidation resistance of zirconium alloys have been identified during high-temperature corrosion. Those mechanisms have been discussed in further detail in relation to numerical calculations concerning the oxidation kinetics.

  13. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  14. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  15. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  16. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  17. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  18. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  19. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  20. Metallurgy of zirconium and hafnium

    International Nuclear Information System (INIS)

    Baryshnikov, N.V.; Geger, V.Eh.; Denisova, N.D.; Kazajn, A.A.; Kozhemyakin, V.A.; Nekhamkin, L.G.; Rodyakin, V.V.; Tsylov, Yu.A.

    1979-01-01

    Considered are those properties of zirconium and of hafnium, which are of practical interest for the manufacture of these elements. Systematized are the theoretical and the practical data on the procedures for thermal decomposition of zirconia and for obtaining zirconium dioxide and hafnium dioxide by a thermal decomposition of compounds and on the hydrometallurgical methods for extracting zirconium and hafnium. Zirconium and hafnium fluorides and chlorides production procedures are described. Considered are the iodide and the electrolytic methods of refining zirconium and hafnium

  1. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene.

    Science.gov (United States)

    Petis, Stephen M; Vasarhelyi, Edward M; Lanting, Brent A; Howard, James L; Naudie, Douglas D R; Somerville, Lyndsay E; McCalden, Richard W

    2016-02-01

    The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan-Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0-10.6) years for cobalt-chrome and 7.8 (range 2.1-10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%-97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%-99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%-98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%-99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up.

  2. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  3. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  4. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling; Elaboration de zirconium par reduction de tetrachlorure de zirconium par magnesothermie. Etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Basin, N

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl{sub 4} + 2 Mg = 2 MgCl{sub 2}. By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  5. Zirconium - an imported mineral commodity

    International Nuclear Information System (INIS)

    1983-10-01

    This report examines Canada's position in regard to the principal zirconium materials: zircon; fusion-cast zirconium-bearing refractory products; zirconium-bearing chemicals; and zirconium metal, master alloys, and alloys. None of these is produced in Canada except fused alumina-zirconia and certain magnesium-zirconium alloys and zirconium-bearing steels. Most of the 3 000-4 000 tonnes of the various forms of zircon believed to be consumed in Canada each year is for foundry applications. Other minerals, notably chromite, olivine and silica sand are also used for these purposes and, if necessary, could be substituted for zircon. Zirconium's key role in Canada is in CANDU nuclear power reactors, where zirconium alloys are essential in the cladding for fuel bundles and in capital equipment such as pressure tubes, calandria tubes and reactivity control mechanisms. If zirconium alloys were to become unavailable, the Canadian nuclear power industry would collapse. As a contingency measure, Ontario Hydro maintains at least nine months' stocks of nuclear fuel bundles. Canada's vulnerability to short-term disruptions to supplies of nuclear fuel is diminished further by the availability of more expensive electricity from non-nuclear sources and, given time, from mothballed thermal plants. Zirconium minerals are present in many countries, notably Australia, the Republic of South Africa and the United States. Australia is Canada's principal source of zircon imports; South Africa is its sole source of baddeleyite. At this time, there are no shortages of either material. Canada has untapped zirconium resources in the Athabasca Oil Sands (zircon) and at Strange Lake along the ill-defined border between Quebec and Newfoundland (gittinsite). Adequate metal and alloy production facilities exist in France, Japan and the United States. No action by the federal government in regard to zirconium supplies is called for at this time

  6. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  7. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0specific surface area decrease. (O.M.) 78 refs.

  8. Out-of-pile test of zirconium cladding simulating reactivity initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Lee, M. H.; Choi, B. K.; Bang, J. K.; Jung, Y. H. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Mechanical properties of zirconium cladding such as Zircaloy-4 and advanced cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) as an out-pile test. Cladding was hydrided by means of charging hydrogen up to 1000ppm to simulate high-burnup situation, finally fabricated to circumferential tensile specimen. Ring tension test was carried out from 0.01 to 1/sec to keep pace with actual RIA event. The results showed that mechanical strength of zirconium cladding increased at the value of 7.8% but ductility decreased at the 34% as applied strain rate and absorbed hydrogen increased. Further activities regarding out-of-pile testing plans for simulated high-burnup cladding were discussed in this paper.

  9. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  10. Superficial effects during the activation of zirconium AB2 alloys

    International Nuclear Information System (INIS)

    Zerbino, J; Visitin, A; Triaca, W

    2005-01-01

    The activation of zirconium nickel alloys with and without the addition of chromium and titanium is investigated through electrochemical and optical techniques.These alloys show high hydrogen absorption capacity and are extensively used in metal hydride batteries.Recent investigations in aqueous 1 M KOH indicate oxide layer growth and occlusion of hydrogen species in the alloys during the application of different cathodic potential programmes currently used in the activation process.In this research several techniques such as voltammetry, ellipsometry, energy dispersive analysis of X-rays EDAX, and scanning electron microscopy SEM are applied on the polished massive alloy Zr 1 -xTi x , x=0.36 y 0.43, and Zr 1 -xTi x CrNi, x=0.1,0.2 y 0.4.Data analysis shows that the stability, compactness and structure of the passive layers are strongly dependent on the applied potential programme.The alloy activation depends on the formation of deepen crevices that remain after a new polishing. Microscopic observation shows increase in the crevices thickness after the cathodic sweep potential cycling, which produces fragmentation of the grains and oxide growth during the activation process.This indicates metal breaking and intergranular dissolution that take place together with oxide and hydride formation.In some cases the resultant crevice thickness is one or two orders higher than that of the superficial oxide growth indicating intergranular localised corrosion

  11. Recrystallization resistance in aluminum alloys containing zirconium

    International Nuclear Information System (INIS)

    Ranganathan, K.

    1991-01-01

    Zirconium forms a fine dispersion of the metastable β' (Al 3 Zr) phase that controls recrystallization by retarding the motion of high-angle boundaries. The primary material chosen for this research was aluminum alloy 7150 containing zinc, magnesium, and copper as the major solute elements and zirconium as the dispersoid-forming element. The size, distribution, and the volume fraction of β' was controlled by varying the alloy composition and preheat practices. Preheated ingots were subjected to a specific sequence of hot-rolling operations to evaluate the resistance to recrystallization of the different microstructures. Optical and transmission electron microscopy (TEM) techniques were used to investigate the influence of dispersoid morphology resulting from the thermal treatments and deformation processing on the recrystallization behavior of the alloy. Studies were conducted to determine the influence of the individual solute elements present in 7150 on the precipitation of β' and consequently on the recrystallization behavior of the material. These studies were done on compositional variants of commercial 7150

  12. {sup 89}Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    England, Christopher G.; Ehlerding, Emily B.; Ellison, Paul A.; Hernandez, Reinier; Barnhart, Todd E. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Jiang, Dawei [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Rekoske, Brian T. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); McNeel, Douglas G. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); Huang, Peng [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2018-01-15

    Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. {sup 89}Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 ({sup 89}Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of {sup 89}Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification. (orig.)

  13. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  14. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  15. Influence of zirconium ions on the sorption of carrier-free radiophosphate (32P)

    International Nuclear Information System (INIS)

    Friedmann, Ch.; Schoenfeld, T.

    1975-01-01

    In acid solutions the addition of zirconium ions largely affects the sorption of carrier-free radiophosphate on various materials. With some sorbents, such as diatomeceous earth, clay minerals or activated charcoal, the addition of small quantities of zirconium leads to a substantial increase of 32 P adsorption. On the other hand, important quantities of zirconium cause decrease of sorption. With alumina as an adsorbent, any addition of zirconium leads to reduced adsorption of radiophosphate. These phenomena are due to the formation of soluble zirconium-phosphate complex ions. (author)

  16. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  17. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  18. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  19. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15 -500 ) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15 -500 supported zirconium complexes were characterized by in situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands

  20. Corrosion protection of zirconium surface based on Heusler alloy

    Czech Academy of Sciences Publication Activity Database

    Horáková, Kateřina; Cichoň, Stanislav; Lančok, Ján; Kratochvílová, Irena; Fekete, Ladislav; Sajdl, P.; Krausová, A.; Macák, J.; Cháb, Vladimír

    2017-01-01

    Roč. 89, č. 4 (2017), s. 553-563 ISSN 0033-4545 R&D Projects: GA MŠk LO1409; GA ČR(CZ) GA16-03085S; GA ČR GJ17-19910Y; GA ČR(CZ) GA15-05095S Institutional support: RVO:68378271 ; RVO:67985858 Keywords : electrochemistry * silicon * spectroscopy * SSC-2016 * surface chemistry * wate * zirconium Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 2.626, year: 2016

  1. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  2. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  3. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  4. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  5. High temperature thermodynamics of solutions of oxygen in zirconium and hafnium

    International Nuclear Information System (INIS)

    Boureau, G.; Gerdanian, P.

    1984-01-01

    The Tian-Calvet microcalorimetric method has been applied to the determination at 1323 Kelvin of ΔH(O 2 ), the partial molar enthalpy of mixing of oxygen in zirconium and in hafnium. No measurable departure from Henry's law has been found for dilute solutions (ratio oxygen over metal smaller than 0.1). For concentrated solutions repulsive interactions are found in agreement with the existence of ordered structures at lower temperatures. The domain of homogeneity of zirconium has been found larger than previously assumed. (author)

  6. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  7. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    International Nuclear Information System (INIS)

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  8. Effect of additions of cerium, lanthanum, and zirconium on the state of plantinum and the activity of aluminoplatinum catalysts for the complete oxidation of hydrocarbons

    International Nuclear Information System (INIS)

    Drozdov, V.A.; Davydov, A.A.; Popovskii, V.V.; Tsyrul'nikov, P.G.

    1986-01-01

    It is shown from an analysis of the diffuse reflectance spectra that additions of cerium, lanthanum or zirconium to aluminoplatinum catalyst stabilize the platinum in an oxidized state. This leads to a change in the specific catalytic activity (SCA) towards the total oxidation of methane and butane. The SCA of modified, reduced samples is greater than the SCA of samples that were calcined in air. This is because of the greater activity of metallic platinum compared to the ionic form

  9. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  10. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  11. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  12. Synthesis and labelling of Df-DUPA-Pep with gallium-68 and zirconium-89 as new PSMA ligands

    International Nuclear Information System (INIS)

    Benjamin Baur; Ehab Al-Momani; Noeen Malik; Hans-Juergen Machulla; Reske, S.N.; Christoph Solbach; Elena Andreolli; University of Milano-Bicocca, Milan

    2014-01-01

    Prostate-specific membrane antigen (PSMA) is a cell surface protein that is overexpressed in prostate cancer. Due to the specificity of expression of PSMA, numerous urea-based ligands have been synthesized until now. In the current study, we describe the coupling of the chelator desferrioxamine to DUPA-Pep and the subsequent labelling with Ga-68 and Zr-89 as new PSMA ligands. The labelling step is performed at room temperature and pH 7.5. In both radiosyntheses, the RCYs were higher than 95 % within 10 min, making dispensable any further purification and providing the radiotracers directly applicable for further utilization. (author)

  13. Zirconium and cast zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  14. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling

    International Nuclear Information System (INIS)

    Basin, N.

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl 4 + 2 Mg = 2 MgCl 2 . By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  15. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  16. Separation of hafnium from zirconium in sulfuric acid solutions using pressurized ion exchange

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1981-01-01

    High-resolution pressurized ion exchange has been used successfully to study and separate hafnium and zirconium sulfate complexes by chromatographic elution from Dowex 50W-X8 (15 to 25 μm) resin with sulfuric acid solutions. Techniques were developed to continuously monitor the column effluents for zirconium and hafnium by reaction with fluorometric and colorimetric reagents. Since neither reagent was specific for either metal ion, peak patterns were initially identified by using the stable isotopes 90 Zr and 180 Hf as fingerprints of their elution position. Distribution ratios for both zirconium and hafnium decrease as the inverse fourth power of the sulfuric acid concentration below 2N and as the inverse second power at higher acid concentration. The hafnium-to-zirconium separation factor is approximately constant (approx. 8) over the 0.5 to 3N range. Under certain conditions, an unseparated fraction was observed that was not retained by the resin. The amount of this fraction which is thought to be a polymeric hydrolysis product appears to be a function of metal and sulfuric acid concentrations. Conditions are being sought to give the highest zirconium concentration and the lowest acid concentration that can be used as a feed material for commercial scale-up in the continuous annular chromatographic (CAC) unit without formation of the polymer

  17. Synthesis of high specific activity tritium labelled compounds

    International Nuclear Information System (INIS)

    Parent, P.

    1986-01-01

    Tritiated methyl iodide of high specific activity is synthetized by Fischer-Tropsch reaction of tritium with carbon monoxide, tritiated methanol obtained is reacted with hydriodic acid. It is used for the synthesis of S-adenosyl L-methionine 3 H-methyl and of diazepam 3 H-methyl derivatives. Synthesis of 3-PPP 3 H: (hydroxy-3 phenyl)-3N-n propyl [ 3 H-2.3] piperidine [ 3 H-2.3] with a specific activity of 4.25 T Bq/mM (115 Ci/mM) and of baclofene 3 H with a specific activity of 0.925 TBq (25 Ci/mM) are also described [fr

  18. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  19. Total knee arthroplasty with an oxidised zirconium femoral component: ten-year survivorship analysis.

    Science.gov (United States)

    Ahmed, I; Salmon, L J; Waller, A; Watanabe, H; Roe, J P; Pinczewski, L A

    2016-01-01

    Oxidised zirconium was introduced as a material for femoral components in total knee arthroplasty (TKA) as an attempt to reduce polyethylene wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected database to assess the ten year survival and clinical and radiological outcomes of an oxidised zirconium total knee arthroplasty with the Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and a patient satisfaction scale were used to assess outcome. A total of 303 consecutive TKAs were performed in 278 patients with a mean age of 68 years (45 to 89). The rate of survival ten years post-operatively as assessed using Kaplan-Meier analysis was 97% (95% confidence interval 94 to 99) with revision for any reason as the endpoint. There were no revisions for loosening, osteolysis or failure of the implant. There was a significant improvement in all components of the WOMAC score at final follow-up (p zirconium TKA gives comparable rates of survival with other implants and excellent functional outcomes ten years post-operatively. Total knee arthroplasty with an oxidised zirconium femoral component gives comparable long-term rates of survival and functional outcomes with conventional implants. ©2016 The British Editorial Society of Bone & Joint Surgery.

  20. In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores

    Czech Academy of Sciences Publication Activity Database

    Petřík, M.; Zhai, C.; Nový, Z.; Urbánek, Lubor; Haas, H.; Decristoforo, C.

    2016-01-01

    Roč. 18, č. 3 (2016), s. 344-352 ISSN 1536-1632 R&D Projects: GA MŠk(CZ) LO1304; GA MŠk(CZ) LO1204; GA TA ČR(CZ) TE01020028 Institutional support: RVO:61389030 Keywords : Siderophores * Gallium-68 * Zirconium-89 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.466, year: 2016

  1. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  2. Chemical synthesis of high specific-activity [35S]adenosylhomocysteine

    International Nuclear Information System (INIS)

    Stern, P.H.; Hoffman, R.M.

    1986-01-01

    The study of the family of transmethylases, critical to normal cellular function and often altered in cancer, can be facilitated by the availability of a high specific-activity S-adenosylhomocysteine. The authors report the two-step preparation of [ 35 S]adenosylhomocysteine from [ 35 S]methionine at a specific activity of 1420 Ci/mmol in an overall yield of 24% by a procedure involving demethylation of the [ 35 S]methionine to [ 35 S]homocysteine followed by condensation with 5'-chloro-5'-deoxyadenosine. The ease of the reactions, ready availability and low cost of the reagents and high specific-activity and stability of the product make the procedure an attractive one with many uses, and superior to current methodology

  3. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    Science.gov (United States)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  4. Imaging the L-type amino acid transporter-1 (LAT1 with Zr-89 immunoPET.

    Directory of Open Access Journals (Sweden)

    Oluwatayo F Ikotun

    Full Text Available The L-type amino acid transporter-1 (LAT1, SLC7A5 is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[(18F]fluoroethyl-L-tyrosine (FET that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [(89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [(18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [(89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.

  5. The determination of some impurities in zirconium metal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Pearton, D.C.G.; Watterson, J.J.

    1976-01-01

    This report describes the work done on the development of an instrumental neutron-activation method for the analysis of impurities in reactor-grade zirconium. Nine samples were analysed, and the results were compared with those obtained by other techniques. No statistically significant differences were observed for ten of the twelve elements that could possibly be determined by instrumental neutron-activation analysis. Cadmium cannot be determined at the 0,5 p.p.m. level, and there is doubt about the comparative values recorded for aluminium. The precision of the measurement by direct instrumental neutron-activation analysis ranges from 1,4 per cent for tungsten to 17 per cent for chromium [af

  6. International strategic minerals inventory summary report; zirconium

    Science.gov (United States)

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  7. Zirconium molybdate gel as a generator for technetium-99m

    International Nuclear Information System (INIS)

    Evans, J.V.; Shying, M.E.

    1984-12-01

    A new sup(99m)Tc generator based on zirconium molybdate gel is described. Essentially the gel is a cation ion exchanger which permits the elution of the pertechnetate ion. The high molybdenum content of this gel, its stability under self-irradiation, and the absence of organic materials during preparation provide a generator concept that eliminates high processing costs, active waste storage costs and stability problems in other types of generator

  8. Extraction of zirconium from raffinate stream of Zirconium Oxide Plant raffinate

    International Nuclear Information System (INIS)

    Pandey, Garima; Chinchale, R.; Renjith, A.U.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2013-01-01

    Recovery of metals from dilute streams is a major task in nuclear industry in the view of environmental remediation and value recovery. Presently solvent extraction process is employed on the commercial scale to recover nuclear pure zirconium using TBP as extractant. The waste stream of TBP extraction process contains about 1.2 gpl of Zirconium in nitrate form. At present there is no process to recover Zirconium from this raffinate stream. Hence, under the present study recovery of zirconium from the raffinate stream of Zirconium Oxide Plant Raffinate has been investigated. TBP, which is the most commonly used solvent in the nuclear industry is not suitable for the extraction of zirconium from lean solution at low acidity as its distribution coefficient is less than one. In search of a suitable extractant Mixed Alkyl Phosphine Oxide (MAPO) was investigated as potential carrier. Parametric batch studies for various equilibrium data like extractant concentration, strippant concentration, solvent reusability, equilibration time, acidity etc. were done to optimize the process condition. For the distribution studies, equal volumes of the raffinate and organic phase were shaken at room temperature in digital wrist action shaker for 10 minutes to ensure complete equilibrium. It was found that 0.1 M MAPO in 80:20 dodecane: isodecanol is suitable for extraction of Zr at 2 N acidity. 0.1 M MAPO gives distribution coefficient in the range of 12-15 for Zr. The slope of log-log plot between MAPO concentration and K, suggests involvement of 3 molecules of MAPO in the formation of extracting species. 0.2 M Oxalic acid was able to completely back extract Zr from the organic phase into aqueous phase. Also good regeneration capacity of MAPO projects its potential to be used as extractant for the process. Based on the equilibrium studies, Dispersion Liquid Membrane configuration in hollow fiber contactor was explored for the extraction of Zirconium from Zirconium Nitrate Pure

  9. In vitro adsorption of oxalic acid and glyoxylic acid onto activated charcoal, resins and hydrous zirconium oxide

    NARCIS (Netherlands)

    Scholtens, R.; Scholten, J.; de Koning, H. W.; Tijssen, J.; ten Hoopen, H. W.; Olthuis, F. M.; Feijen, J.

    1982-01-01

    Patients suffering from primary hyperoxaluria show elevated plasma concentrations of oxalic acid and glyoxylic acid. The in vitro adsorption of these compounds into activated charcoal, a series of neutral and ion exchange resins and onto hydrous zirconium oxide has been investigated. Hydrous

  10. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  11. Luminescent determination of zirconium and hafnium with myricetin

    International Nuclear Information System (INIS)

    Talipov, Sh.T.; Zel'tser, L.E.; Morozova, L.A.; Tashkhodzhaev, A.T.

    1978-01-01

    Reaction of formation of 3, 5, 7, 3', 4', 5' - hexaoxiflavone - myricetin complexes with zirconium and hafnium ions has been the basis for development of luminescent method of determining these elements. Optimum conditions for complexing have been determined. For Hf they are : 8-9 HCl concentration, maximum fluorescence wave length (lambda fl.)of 520 nm, wave length of exciting light (lambda el) of 436 nm, for Zr lambda fl = 536nm, lambda el = 436 nm. Stable fluorescence establishes after 25 min. for Zr and after 15 min for Hf in the presence of 40% ethanol. Usage of various camouflage agents has permitted to attain high selectivity of the method. Possibility for determination of Zr with myricetin in the presence of a 10-time excess of Hf, Cr, Cu, 50-time excess of Mo and Ti is shown. Sensitivity of Zr determination is 2.0x10 μg -2 /ml, for Hf it is 9.0x10 μg -3 and mineral waters

  12. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  13. Preparation of high specific activity labelled triiodothyronine (T3) for radioimmunoassay

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Nagvekar, U.H.; Desai, C.N.; Mani, R.S.

    1981-01-01

    A method standardized for the preparation of high specific activity labelled triiodothyronine (T 3 ) is discussed. Iodine-125 labelled T 3 with a specific activity of 3 mCi μg was prepared by iodinating 3,5-diiodothyronine (T 2 ) and purifying it over Sephadex G-25 gel. Radochemical purity and stability evaluations were done by paper chromatography. Specific activity of the labelled T 3 prepared was estimated by the self-displacement method. The use of this high specific activity labelled T 3 in radioimmunoassay increased the sensitivity considerably. The advantage of this procedure is that the specific activity of labelled T 3 formed is independent of reaction yield and labelled T 3 yield. (author)

  14. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  15. Radiochemical determination of zirconium by inductively coupled plasma mass spectrometry (ICPMS)

    International Nuclear Information System (INIS)

    Oliveira, Thiago C.; Oliveira, Arno Heeren de

    2013-01-01

    The zirconium isotope 93 Zr is a long-lived pure β-particle-emitting radionuclide thus occurring as one of the radionuclides found in nuclear reactors. It's produced from 235 U fission and from 92 Zr neutron activation. Due to its long half-life, 93 Zr is one of the interest radionuclides for assessment studies performance of waste storage or disposal. Measurement of 93 Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. The aim of this work was to apply a selective radiochemical separation methodology for 93 Zr determination in nuclear waste and analyze it by Inductively Coupled Plasma Mass Spectrometry (ICPMS). To set up the zirconium radiochemical separation procedure, a zirconium tracer solution was used in order to follow the zirconium behavior during the radiochemical separation. A tracer solution containing the main interferences, Ba, Co, Eu, Fe, Mn, Nb, Ni, Sr, and Y was used in order to verify the decontamination factor during separation process. The limit of detection of 0,039 ppb was obtained for zirconium standard solutions by ICPMS. Then, the protocol will be applied to low level waste (LLW) and intermediate level waste (ILW) from nuclear power plants. (author)

  16. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  17. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  18. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  19. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  20. Production of high specific activity silicon-32

    International Nuclear Information System (INIS)

    Phillips, D.R.; Brzezinski, M.A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide 32 Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of 32 Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of 32 Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms

  1. 89Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies

    Science.gov (United States)

    Wu, Haitao; Asiedu, Kingsley O.; Szajek, Lawrence P.; Griffiths, Gary L.; Choyke, Peter L.

    2015-01-01

    Purpose To develop a clinically translatable method of cell labeling with zirconium 89 (89Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. Materials and Methods This study was approved by the institutional animal care committee. 89Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of 89Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444–555 kBq/[5 × 106] cells, n = 5) and CTLs (185 kBq/[5 × 106] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 106] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. Results 89Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%–43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. 89Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P cell tracking technique for use with PET that is

  2. (89)Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies.

    Science.gov (United States)

    Sato, Noriko; Wu, Haitao; Asiedu, Kingsley O; Szajek, Lawrence P; Griffiths, Gary L; Choyke, Peter L

    2015-05-01

    To develop a clinically translatable method of cell labeling with zirconium 89 ((89)Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. This study was approved by the institutional animal care committee. (89)Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of (89)Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444-555 kBq/[5 × 10(6)] cells, n = 5) and CTLs (185 kBq/[5 × 10(6)] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 10(6)] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. (89)Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%-43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. (89)Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P cell tracking technique for use with PET that is applicable to a broad range of

  3. Characterization of composite high density polyethylene and layered zirconium phosphate

    International Nuclear Information System (INIS)

    Lino, Adan S.; Silva, Daniela F.; Mendes, Luis C.

    2011-01-01

    Zirconium phosphate (ZrP) (2 w%), synthesized by direct precipitation method, was used in the preparation of composite with high density polyethylene (HDPE), through extrusion processing in the molten state. Wide angle x-ray diffraction (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM) techniques were used for ZrP, neat polymer and composite mechanical and morphologic characterization. Although there was a slight increase in the Young modulus, WAXD and SEM analysis showed that the intercalation of the HDPE matrix in the filler galleries did not occur, probably due to the insufficient lamellae spacing to intercalate the polymer chains. Then, a microcomposite was achieved. (author)

  4. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Wintermantel, Erich [Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway)

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium–zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p < 0.01) on the titanium–zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium. - Highlights: ► TiZr alloy showed increased hydrogen levels over Ti. ► The alloying element Zr appeared to catalyze hydrogen absorption in Ti. ► Surface roughness was significantly increased for the TiZr alloy over Ti. ► TiZr alloy revealed nanostructures not observed for Ti.

  5. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  6. Highly substituted zirconium and hafnium cyclopentadienyl bifunctional β-diketiminate complexes – Synthesis, structure, and catalytic activity towards ethylene polymerization

    Czech Academy of Sciences Publication Activity Database

    Havlík, A.; Lamač, Martin; Pinkas, Jiří; Varga, Vojtěch; Růžička, A.; Olejník, R.; Horáček, Michal

    2015-01-01

    Roč. 786, JUN 2015 (2015), s. 71-80 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Zirconium * Hafnium * Cyclopentadienyl Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.336, year: 2015

  7. Methods for the preparation of ultra-pure anhydrous zirconium tetrafluoride from zirconium tetraborohydride, researches in connection with halide glasses

    International Nuclear Information System (INIS)

    Tortevois, R.

    1990-01-01

    The synthesis of ultrapure zirconium tetrafluoride, the main component of fluorozirconate based optical fibers, was successfully attempted from zirconium tetraborohydride. Of the fluorinating agents used, nitrogen trifluoride doesn't react with zirconium tetraborohydride while xenon difluoride reacts too violently and leads to phases which contain boron. The fluorination in a compatible solvent enabled us to minimize the degradation. The best results were obtained with the fluorination of Zr(BH 4 ) 4 dissolved in CFCl 3 at -40 deg C by anhydrous HF. Using several analytical methods such as graphite furnace atomic absorption and proton activation, we analyzed the purity. The degree of transition element impurities is less than the ppm level for ZrF 4 . The dehydration of ZrF 4 ,H 2 O and ZrF 4 ,3H 2 O at room temperature by CIF 3 in gaseous and liquid state was also investigated. At exceptionally low temperature, this process allows oxide and oxyfluoride components to be reduced

  8. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  9. Hysteresis effects on the high-temperature internal friction of polycrystalline zirconium

    International Nuclear Information System (INIS)

    Povolo, F.; Molinas, B.J.; Rosario Univ. Nacional

    1985-01-01

    Hysteresis effects present on the high temperature internal friction of annealed polycrystalline zirconium are investigated in detail. It is shown that two internal friction maxima are present when the measurements are performed on heating. If a high enough temperature is reached, only one internal friction maximum is observed on cooling. Furthermore, when the temperature is not decreased below a certain value (critical temperature) only the lower temperature peak is present during a subsequent heating cycle. The critical temperature is strongly dependent on the grain size. Finally, both the hysteresis effects and the internal friction maxima are explained by relaxation mechanisms associated with grain boundary sliding and segregation of impurities to the grain boundaries. (author)

  10. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  11. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  12. N-tritioacetoxyphthalimide: A new high specific activity tritioacetylating reagent

    International Nuclear Information System (INIS)

    Saljoughian, M.; Morimoto, Hiromi; Than, Chit

    1996-01-01

    The authors' aim was to develop a nonvolatile, stable, and facile tritioacetylating reagent and to demonstrate its use on simple peptides. Accordingly, the authors made the synthesis of high specific activity N-(tritioacetoxy) derivatives of succinimide, phthalimide, and naphthalimide a major focus. As the preferred approach, N-(tritioacetoxy)phthalimide was prepared by radical dehalogenation of N-(iodoacetoxy)phthalimide using high specific activity tributyltin tritide. This tritiated acetylation reagent was characterized by 3 H and 1 H NMR spectroscopy and by radio-HPLC. Efficacy of the reagent was investigated by tritioacetylation of several peptides at their N-terminal amino group. 26 refs., 1 fig

  13. Fine-grained zirconium-base material

    Science.gov (United States)

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  14. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  15. High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds.

    Science.gov (United States)

    Ambrosi, Moira; Santoni, Sergio; Giorgi, Rodorico; Fratini, Emiliano; Toccafondi, Nicola; Baglioni, Piero

    2014-10-15

    The technological characteristics of porcelain stoneware tiles make them suitable for a wide range of applications spanning far beyond traditional uses. Due to the high density, porcelain stoneware tiles show high bending strength, wear resistance, surface hardness, and high fracture toughness. Nevertheless, despite being usually claimed as stain resistant, the surface porosity renders porcelain stoneware tiles vulnerable to dirt penetration with the formation of stains that can be very difficult to remove. In the present work, we report an innovative and versatile method to realize stain resistant porcelain stoneware tiles. The tile surface is treated by mixtures of nanosized zirconium hydroxide and nano- and micron-sized glass frits that thanks to the low particle dimension are able to penetrate inside the surface pores. The firing step leads to the formation of a glass matrix that can partially or totally close the surface porosity. As a result, the fired tiles become permanently stain resistant still preserving the original esthetical qualities of the original material. Treated tiles also show a remarkably enhanced hardness due to the inclusion of zirconium compounds in the glass coating. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  17. Arylimido zirconium and titanium complexes. Characteristic structures and application in ethylene polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Shifang; Zhang, Jing [Shanxi Univ., Taiyuan (China). Inst. of Applied Chemistry; Wang, Lijing [Shanxi Univ., Taiyuan (China). School of Chemistry and Chemical Engineering; Hua, Yupeng [Shanxi Univ., Taiyuan (China). School of Chemistry and Chemical Engineering; Inner Mongolia Univ., Ordos (China). College of Ordos; Sun, Wen-Hua [Chinese Academy of Sciences, Beijing (China). Key Laboratory of Engineering Plastics

    2016-07-01

    Dimeric anilidolithium (ArHNLi.Et{sub 2}O){sub 2} (Ar=2,6-{sup i}Pr{sub 2}C{sub 6}H{sub 3}) reacted with zirconium tetrachloride in THF to give the heterometallic zirconium-lithium complex [(Et{sub 2}O){sub 2}Li(μ-Cl){sub 2}(ArHN)(ArN=)Zr(μ-Cl)]{sub 2} (C1) and with titanium tetrachloride in toluene to give the titanium complex [(ArN=)TiCl{sub 2}.(Et{sub 2}O){sub 2}] (C2) each in good isolated yields. Their molecular structures in the solid state were confirmed by X-ray diffraction analysis. Upon activation with methylaluminoxane, both arylimido zirconium and titanium complexes exhibited good catalytic activities toward ethylene polymerization.

  18. The technologies of zirconium production for nuclear fuel components in Ukraine

    International Nuclear Information System (INIS)

    Semenov, G.R.

    2000-01-01

    Perspectives of development zirconium alloys and WWER-1000 assemble components production in Ukraine are considered. Basic technological production processes of zirconium alloys in conditions of Ukrainian enterprises and modern requirements are analyzed. The critical processes on technical and economic criteria are defined. The main directions of activity and steps on technological processes improvement for production quality providing are offered. (author)

  19. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  20. Zirconium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  1. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  2. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  3. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  4. Extractive metallurgy of zirconium--1945 to the present

    International Nuclear Information System (INIS)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01

    Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed

  5. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  6. Deformation mechanisms and irradiation effects in zirconium alloys. A multi-scale study

    International Nuclear Information System (INIS)

    Onimus, Fabien

    2015-01-01

    Zirconium alloys have been used for more than 30 years in the nuclear industry as structural materials for the fuel assemblies of pressurized water reactors. In particular, the cladding tube, made of zirconium alloys, constitutes the first barrier against the dissemination of radioactive elements. It is therefore essential to have a good understanding and prediction of the mechanical behavior of these materials in various conditions. The work presented in this dissertation deals with an experimental study and numerical simulations, at several length scales, of the deformation mechanisms and the mechanical behavior of zirconium alloys before irradiation, but also after irradiation and under irradiation. The mechanical behavior of zirconium single crystal has been determined, during an original study, using tensile test specimens containing large grains. Based on this study, crystal plasticity constitutive laws have been proposed. A polycrystalline model has also been developed to simulate the behavior of unirradiated zirconium alloys. A thorough Transmission Electron Microscopy (TEM) study has been able to clarify the deformation mechanisms of zirconium alloys occurring after irradiation. The clearing of loops by gliding dislocations leading to the dislocation channeling mechanism has been studied in details. This phenomenon has also been simulated using a dislocation dynamics code. The macroscopic consequences of this process have also been analyzed. A polycrystalline model taking into account the specificity of this mechanism has eventually been proposed. This approach has then been extended to the post-irradiation creep behavior. The recovery of radiation defects during creep tests has been characterized by TEM and modeled using cluster dynamics method. Deformation modes during creep have also been studied and a simple model for the creep behavior has eventually been proposed. Finally, the mechanism responsible for the acceleration of irradiation growth that

  7. ICP-AES determination of rare earths in zirconium with prior chemical separation of the matrix

    International Nuclear Information System (INIS)

    Rajeswari, B.; Dhawale, B.A.; Page, A.G.; Sastry, M.D.

    2002-01-01

    Zirconium being one of the most important material in nuclear industry used as a fuel cladding in reactors and an additive in advanced fuels necessitates its characterization for trace metallic contents. Zirconium, as refractory in nature as the rare earth elements, has a complex spectrum comprising of several emission lines. Rare earths, which are high neutron absorbers have to be analysed at very low limits. Hence, to achieve the desired limits, the major matrix has to be separated prior to rare earth determination. The present paper describes the method developed for the separation of rare earths from zirconium by solvent extraction using Trioctyl Phosphine Oxide (TOPO) as the extractant followed by their determination using Inductively Coupled Plasma - Atomic Emission Spectrometric (ICP-AES) method. Initially, radiochemical studies were carried out using known amounts of gamma active tracers of 141 Ce, 152-154 Eu, 153 Gd and 95 Zr for optimisation of extraction conditions using Tl- activated NaI detector. The optimum conditions at 0.5 M TOPO/xylene in 6 M HCl so as to achieve a quantitative recovery of rare earth analytes alongwith a near total extraction of zirconium in the organic phase, was further extended to carry out the studies using ICP-AES method. The recovery of rare earths was found to be quantitative within experimental error with a precision better than 10% RSD. (author)

  8. Purification of zirconium concentrates

    International Nuclear Information System (INIS)

    Brown, A.E.P.

    1976-01-01

    A commercial grade ZrO 2 and an ammonium uranate (yellow cake) are obtained from the caldasito ore processing. This ore is found in the Pocos de Caldas Plateau, State of Minas Gerais, Brazil. Caldasito is an uranigerous zirconium ore, a mixture of zircon and baddeleyite and contains 60% ZrO 2 and 0,3% U 3 O 8 . The chemical opening of the ore was made by alkaline fusion with NaOH at controlled temperature. The zirconium-uranium separation took place by a continuous liquid-liquid extraction in TBP-varsol-HNO 3 -H 2 O system. The raffinate containing zirconium + impurities (aluminium, iron and titanium) was purified by an ion exchange operation using a strong cationic resin [pt

  9. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meinhardt, Kerry D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pederson, Larry R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce a uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that

  10. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  11. A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I.

    Directory of Open Access Journals (Sweden)

    Bradley J Beattie

    Full Text Available Because of their chemical properties and multiday half lives, iodine-124 and zirconium-89 are being used in a growing number of PET imaging studies. Some aspects of their quantitation, however, still need attention. For (89Zr the PET images should, in principle, be as quantitatively accurate as similarly reconstructed 18F measurements. We found, however, that images of a 20 cm well calibration phantom containing (89Zr underestimated the activity by approximately 10% relative to a dose calibrator measurement (Capintec CRC-15R using a published calibration setting number of 465. PET images of (124I, in contrast, are complicated by the contribution of decays in cascade that add spurious coincident events to the PET data. When these cascade coincidences are properly accounted for, quantitatively accurate images should be possible. We found, however, that even with this correction we still encountered what appeared to be a large variability in the accuracy of the PET images when compared to dose calibrator measurements made using the calibration setting number, 570, recommended by Capintec. We derive new calibration setting numbers for (89Zr and (124I based on their 511 keV photon peaks as measured on an HPGe detector. The peaks were calibrated relative to an 18F standard, the activity level of which was precisely measured in a dose calibrator under well-defined measurement conditions. When measuring (89Zr on a Capintec CRC-15R we propose the use of calibration setting number 517. And for (124I, we recommend the use of a copper filter surrounding the sample and the use of calibration setting number 494. The new dose calibrator measurement procedures we propose will result in more consistent and accurate radioactivity measurements of (89Zr and (124I. These and other positron emitting radionuclides can be accurately calibrated relative to 18F based on measurements of their 511 keV peaks and knowledge of their relative positron abundances.

  12. Quantitative analysis of nickel in zirconium and zircaloy; Dosage du nickel dans le zirconium et dans le zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Rastoix, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [French] On determine colorimetriquenent 10 a 1000 ppm de Ni dans le zirconium et le zircaloy par photo colorimetrie a 440 m{mu} de la dimethylglyoxime nickelique. Le dosage est rapide. Le fer, le cuivre, l'etain, le chrome ne genent pas aux concentrations habituellement rencontrees dans le zirconium et ses alliages. (auteur)

  13. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  14. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  15. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  16. A contribution to the study of arc melting in inert gas atmospheres of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.

    1990-01-01

    Mettalic zirconium is a material of great interest in the nuclear industry due to its low thermal neutron cross section, high strength and corrosion resistance. The latter permits its use in the chemical industry. In this study, a critical bibliographic revision of the industrial processes used for the melting and consolidation of zirconium sponge has been carried out. A procedure for the melting of zirconium on a laboratory scale, has been established. An nonconsumable-electrode arc furnace have been used. The effect of process variables like atmosphere, melting current and getter, have been showed. The influence of sponge characteristics on the qualities of cast zirconium buttons have been studied. The present study is a contribution towards future investigations to obtain high purity cast zirconium and its alloys commercially known as zircaloy. (author)

  17. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  18. A preliminary investigation of the diffusion of helium in zirconium

    International Nuclear Information System (INIS)

    Reed, D.J.; Faulkner, D.

    1976-10-01

    The out-diffusion of helium, introduced into polycrystalline zirconium at room temperature by ion-implantation at 100 keV to a peak concentration of 1ppm, was found to occur in two principal regions. Two evolution rate maxima, obtained during post-implantation target annealing at 2.6 0 K s -1 , were observed in close proximity at 330 0 C (0.28 Tsub(m)) and 450 0 C (0.34 Tsub(m)) comprising the principal stage, with a subordinate stage occurring at 600 0 C (0.4 Tsub(m)). These data were compared with similar maxima observed in nickel at 600 0 C (0.5 Tsub(m)) and 850 0 C (0.65 Tsub(m)). The results imply a high helium diffusivity over the 0.5 mm experimental range in comparison with nickel, and an exceptionally high diffusivity taking into account the melting temperature of zirconium. On the basis of a diffusion model proposed earlier for nickel, activation energies of 1.37 and 1.66 eV have been assigned to the principal maxima at 330 0 C and 450 0 C, and a value of 2.41 eV to the maximum at 600 0 C. The long range diffusivity of helium manifested by its thermal evolution from uniformly filled 120 mm thick foils was found to be much lower than that measured for short range migration. An empirical activation energy of approximately 3 eV was estimated for this process, thought to be a result of bubble migration. The release of helium from zirconium has been explained by comparison with nickel data. The proposed substitutional de-trapping mechanism has been invoked to account for the principal evolution rate maxima at 330 0 C. Helium release observed at 600 0 C has been explained by the annealing of radiation damage, so allowing gas trapped therein to be evolved. (author)

  19. Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics Department, Federal University of Ceara, Campus do Pii, Postal Code 6030, 60455-760, Fortaleza-Ceara (Brazil)], E-mail: sombra@fisica.ufc.br

    2009-12-15

    In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO{sub 2}) and titanium oxide (TiO{sub 2}) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H{sub 2}PO{sub 4}){sub 2}+TiO{sub 2} and CapZr: Ca(H{sub 2}PO{sub 4}){sub 2}+ZrO{sub 2}. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 deg. C. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr{sub 4}P{sub 6}O{sub 24}, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

  20. Applications for zirconium and columbium alloys

    International Nuclear Information System (INIS)

    Condliff, A.F.

    1986-01-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbian alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis

  1. Determination of nitrogen in zirconium by charged-particle activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strijckmans, K; Mortier, R; Vandecasteele, C; Hoste, J [Ghent Rijksuniversiteit (Belgium)

    1982-01-01

    The determination of nitrogen in zirconium by charged-particle activation analysis is described. The /sup 14/N(..cap alpha.., ..cap alpha..n)/sup 13/N and the /sup 14/N(p, ..cap alpha..)/sup 11/C reactions were used. The /sup 13/N activity was separated from matrix activity as ammonia by steam-distillation after dissolution of the sample in dilute hydrofluoric acid.The /sup 11/C activity was separated as carbon dioxide by dissolution of the sample in a mixture of concentrated sulphuric acid, sodium fluoride and potassium periodate, followed by oxidation of the evolved gases with a copper oxide-iron oxide-kaolin mixture and trapping of the carbon dioxide in dilute sodium hydroxide solution. The chemical yield of both separations was investigated. The nuclear interference of boron can be neglected, in view of the low boron content. Alpha- and protonactivation yielded the following results for BCR reference materials (alpha-activation results first): CRM 21: 24.6 +- 3.3 and 25.9 +- 0.8 ..mu..g/g (certified value: 26.4 +- 2.5 ..mu..g/g);CRM 56: 12.0 +- 1.1 and 10.5 +- 0.3 ..mu..g/g (certified value: 11.7 +- 1.7 ..mu..g/g); CRM 57: 11.2 +- 0.3 ..mu..g/g (alpha/activation) (certified value: 11.9 +- 1.8 ..mu..g/g).

  2. Study of the production of Zirconium tetracheoride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Abrao, A.

    1987-08-01

    This work describes the studies carried out on the production of zirconium tetrachloride by chlorianation of pure zirconium oxide with (a) carbon tetrachloride and (b) chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride it has been determined that efficiency increases with the rising of temperature between 450 and 750 0 C. The flow rate of the carbon tetrachloride vapour used was 1.50L/min. For the zirconium oxide chlorination in the presence of carbon, the study has been carried out at temperatures between 700 and 850 0 C and the flow rate of the chlorine gas used in the process was 0,50/Lmin. Pure zirconium oxide chlorination as well as zirconium oxide-carbon mixture chlrorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constants, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  3. The extraction of zirconium (IV) from sulfuric acid solutions with high-molecular weight quaternary ammonium compound

    International Nuclear Information System (INIS)

    Sato, Taichi; Watanabe, Hiroshi

    1982-01-01

    The extraction of zirconium sulfate in aqueous sulfuric acid solutions with trioctylmethylammonium chloride (Aliquat-336; R 3 R'NCl) in organic solvents has been investigated under different conditions. In addition, the organic phases extracted sulfuric acid and zirconium sulfate were examined by IR and NMR spectroscopies. It has been found that Aliquat-336 extracts zirconium (IV) from sulfuric acid solutions according to the following ion-exchange reactions. i) The extraction of sulfuric acid is at first carried out through the equilibria, SO 4 2 - (aq) + 2R 3 R'NCl(org) reversible (R 3 R'N) 2 SO 4 (org) + 2Cl - (aq), (R 3 R'N) 2 SO 4 (org) + H + (aq) + HSO 4- (aq) reversible 2R 3 R'NHSO 4 (org). ii) The extraction of zirconium is expressed as the equilibrium reaction, Zr(SO 4 ) 3 2 - (aq) + 2xR 3 R'NHSO 4 (org) + (1-x)(R 3 R'N) 2 SO 4 (org) reversible (R 3 R'N) 2 [Zr(SO 4 ) 3 ](org) + xH 2 SO 4 (aq) + SO 4 2 - (aq), x = [R 3 R'NHSO 4 ]/(2[(R 3 R'N) 2 SO 4 ] + [R 3 R'NHSO 4 ]). Moreover, the hydrolyzed species (R 3 R'N)[ZrO(OH)(SO 4 )] is formed when zirconium is further extracted in an organic phase. (author)

  4. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  5. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tsuyoshi, E-mail: m-tsuyo@criepi.denken.or.j [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Kato, Tetsuya; Kurata, Masaki [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Yamana, Hajimu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-11-15

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the delta-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag{sup +}/Ag) in LiCl-KCl melts containing 0.13 in mol% UCl{sub 3} and 0.23 in mol% ZrCl{sub 4} at 773 K. To our knowledge, this is the first report on the electrochemical formation of the delta-(U, Zr) phase. The relative partial molar properties of uranium in the delta-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared delta-phase electrode.

  6. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    International Nuclear Information System (INIS)

    Murakami, Tsuyoshi; Kato, Tetsuya; Kurata, Masaki; Yamana, Hajimu

    2009-01-01

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the δ-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag + /Ag) in LiCl-KCl melts containing 0.13 in mol% UCl 3 and 0.23 in mol% ZrCl 4 at 773 K. To our knowledge, this is the first report on the electrochemical formation of the δ-(U, Zr) phase. The relative partial molar properties of uranium in the δ-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared δ-phase electrode.

  7. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  9. Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Yavari, R.; Davarkhah, R.

    2013-01-01

    Modified multiwall carbon nanotubes (MWCNTs) by nitric acid solution were used to investigate the adsorption behavior of zirconium from aqueous solution. Pristine and oxidized MWCNTs were characterized using nitrogen adsorption/desorption isotherm, Boehm's titration method, thermogravimetry analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the surface properties of MWCNTs such as specific surface area, total pore volume, functional groups and the total number of acidic and basic sites were improved after oxidation. These improvements are responsible for their hydrophobic properties and consequently an easy dispersion in water and suitable active sites for more adsorption of zirconium. The adsorption of Zr(IV) as a function of initial concentration of zirconium, contact time, MWCNTs dosage, HCl and HNO 3 concentration and also ionic strength was investigated using a batch technique under ambient conditions. The experimental results indicated that sorption of Zr(IV) was strongly influenced by zirconium concentrations, oxidized MWCNTs content and acid pH values. The calculated correlation coefficient of the linear regressions values showed that Langmuir model fits the adsorption equilibrium data better than the Freundlich model. Kinetic data of sorption indicated that equilibrium was achieved within 60 min and the adsorption process can be described by the pseudo second-order reaction rate model. Based on the experimental results, surface complexation is the major mechanism for adsorption of Zr(IV) onto MWCNTs. Also, Study on the desorption process of zirconium showed that the complete recovery can be obtained using nitric or hydrochloric acids of 4 M. (author)

  10. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  11. Characterization of the active deformation mechanisms in Zirconium alpha alloys, and use of micro-macro transfer models

    International Nuclear Information System (INIS)

    Francillette, H.; Bacroix, B.; Gasperini, M.; Lebensohn, R.A.

    1996-01-01

    The aim of this study is to model the evolution of the crystallographic textures of rolled zirconium sheet metals, based on the active deformation mechanisms. Plane compression tests have been carried out on Zr 702 polycrystalline samples, at ambient temperature. Active mechanisms were identified and characterized by the means of local orientation measurements (EBSD: electron BackScattering Diffraction), completed with global texture measurements. Measured orientations are then introduced in Taylor, Sachs and self-coherent type micro-macro models in order to validate these models with respect to mechanism activation and texture evolution. (A.B.)

  12. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  13. The determination of nitrogen in zirconium by charged-particle activation analysis

    International Nuclear Information System (INIS)

    Strijckmans, K.; Mortier, R.; Vandecasteele, C.; Hoste, J.

    1982-01-01

    The determination of nitrogen in zirconium by charged-particle activation analysis is described. The 14 N(α, αn) 13 N and the 14 N(p, α) 11 C reactions were used. The 13 N activity was separated from matrix activity as ammonia by steam-distillation after dissolution of the sample in dilute hydrofluoric acid.The 11 C activity was separated as carbon dioxide by dissolution of the sample in a mixture of concentrated sulphuric acid, sodium fluoride and potassium periodate, followed by oxidation of the evolved gases with a copper oxide-iron oxide-kaolin mixture and trapping of the carbon dioxide in dilute sodium hydroxide solution. The chemical yield of both separations was investigated. The nuclear interference of boron can be neglected, in view of the low boron content. Alpha- and protonactivation yielded the following results for BCR reference materials (alpha-activation results first): CRM 21: 24.6 +- 3.3 and 25.9 +- 0.8 μg/g (certified value: 26.4 +- 2.5 μg/g);CRM 56: 12.0 +- 1.1 and 10.5 +- 0.3 μg/g (certified value: 11.7 +- 1.7 μg/g); CRM 57: 11.2 +- 0.3 μg/g (alpha/activation) (certified value: 11.9 +- 1.8 μg/g). (Author)

  14. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  15. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  16. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  17. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  18. The fluorimetric titration of zirconium in the ppm-range

    International Nuclear Information System (INIS)

    Linden, W.E. von der; Boef, G. den; Ozinga, W.

    1976-01-01

    A fluorimetric titration of zirconium(IV) with EDTA is proposed. The fluorescence intensity of the zirconium-morin complex is used to indicate the end-point. More than twenty other cations were investigated and it was found that they did not interfere, neither did common anions. Mercury(II) can only be tolerated in amount not exceeding that of zirconium. Bismuth(III) interferes and hafnium(IV0 is titrated together with zirconium. The relative standard deviation of the titration of 10ml of a solution containing 1 ppm of zirconium does not exceed 1.5%

  19. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.

  20. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  1. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  2. Removal of zirconium and niobium activities from plutonium nitrate during plutonium reconversion process

    International Nuclear Information System (INIS)

    Ajithlal, R.T.; Rakshe, P.R.; Kumaraguru, K.

    2010-01-01

    Present investigation deals with quality improvement of Pu solutions after ion exchange cycle of Purex process. In order to improve the decontamination factor of Pu with respect to fission products zirconium ( 95 Zr) and niobium ( 95 Nb), Pu-Product solution was precipitated as oxalate at different compositions of nitric acid with stoichiometric and hyper-stoichiometric amount of oxalic acid. The Pu-oxalate so precipitated was washed with respective feed solutions of oxalic and nitric acid mixture, similar to feed conditions. Fission product activities in the feed, supernatant and the washes were analysed for gross gamma activity and individual fission products by Multichannel analyzer using HPGe-detector. A solution comprising of 4M HNO 3 + 0.2M excess oxalic acid precipitation with excess amount of washing yielded effective decontamination of the Pu product. (author)

  3. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  4. Method to electrolytically precipitate metals onto zirconium objects

    International Nuclear Information System (INIS)

    Donaghy, R.E.

    1978-01-01

    Tubes and other formed bodies made of zirconium or zirconium alloys which serve to take up nuclear fuels, are plated by electrolytically depositing a metal film onto these in order to improve their mechanical and corrosion properties. The object is activated in a solution of ammonium bifluoride and sulphuric acid, whereby an electrically conducting solid and a loose layer is formed. This loose film is removed by using fluoboric acid or hydrofluoric silicic acid solution, ultrasonics, or strips of organic material (cotton, polyester, nylon). The plating of Cu, Ni, Cr is described in detail. The object is rinsed between the process steps with deionized water and finally degased at a temperature of 150-200 0 C. (IHOE) [de

  5. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    Science.gov (United States)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  6. Spectrophotometric titration of zirconium in siliceous materials

    International Nuclear Information System (INIS)

    Sugawara, K.F.; Su, Y.-S.; Strzegowski, W.R.

    1978-01-01

    An accurate and selective complexometric titration procedure based upon a spectrophotometrically detected end-point has been developed for the determination of zirconium in glasses, glass-ceramics and refractories. A p-bromomandelic acid separation step for zirconium imparts excellent selectivity to the procedure. The method is particularly important for the 1 to 5% concentration range where a simple, accurate and selective method for the determination of zirconium has been lacking. (author)

  7. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  8. Synthesis of [diene-"1"4C] curcumin at high specific activity

    International Nuclear Information System (INIS)

    Filer, Crist N.; Lacy, James M.; Wright, Christopher

    2016-01-01

    An efficient method is described to label curcumin with "1"4C at high specific activity. - Highlights: • This paper describes the synthesis of ["1"4C] Curcumin at the highest specific activity and total activity amount yet reported. • The "1"4C label was installed in the diene framework of Curcumin. • This paper also describes the characterization of ["1"4C] Curcumin by HPLC and mass spectrometry.

  9. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  10. Joint titrimetric determination of zirconium and hafnium

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Bianco de Salas, G.N.; Cornell de Casas, M.I.

    1980-01-01

    A method for the joint titrimetric determination of zirconium and hafnium, which are elements of similar chemical behaviour, is described. The disodic salt of the ethylendiaminetetracetic acid (EDTA) is used for titration, while xilenol orange serves as final point indicator. Prior to titration it is important to evaporate with sulfuric acid, the solution resulting from the zirconium depolymerization process, to adjust the acidity and to eliminate any interferences. The method, that allows the quick and precise determination of zirconium and hafnium in quantities comprised between 0.01 and mg, was applied to the analysis of raw materials and of intermediate and final products in the fabrication of zirconium sponge and zircaloy. (M.E.L.) [es

  11. Study of solution speciation, soil retention and soil-plant transfer of zirconium

    International Nuclear Information System (INIS)

    Ferrand, E.

    2005-12-01

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ( 93 Zr and 95 Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K d , values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  12. Occupational exposure to natural radioactivity in the zirconium mineral manufacturing industries

    International Nuclear Information System (INIS)

    Ballesteros, L.; Zarza, I.; Ortiz, J.; Serradell, V.

    2006-01-01

    The spanish 'Real Decatur 783/2001', published as result of the adaptation of the European Council directive 96/29/EURATOM (B.S.S. directive), regulates in Spain the use of natural radioactive substances. This decree establishes the need to study and control those activities in which significant increases of the exposure of workers or members of the public could take place. One of these natural radioactive substances are zirconium minerals. They are widely employed in some industrial activities, such as the production of zirconia and zirconium chemicals, glazed ceramic products manufacture, refractories, foundry sands (including investment casting) and zirconium mineral manufacturing. Its major end uses are fine ceramics where it acts as an opacifier in glazes and enamels and also as an additive in special glass (i.e. TV glass). This paper provides a description of a measurement campaign carried out to estimate the risk of occupational exposure to natural radioactivity in the zirconium mineral manufacturing industries. Zirconium raw sands have generally a granular size of 100 to 200 μm, which may be reduced to around 2 μm for use in ceramics and paint applications by milling to flour. These sands contain varying concentrations of natural radionuclides: 232 Th, 235 U, and mostly 238 U, together with their progenies. The first part of the study is to identify situations and areas where worker s are exposed to radiation. Five pathways of exposure were found: inhalation of dust, ingestion of dust, inhalation of radon, skin contamination and external irradiation. Samples from raw materials and from the environment at the work areas are performed; both where the zircon sands are unloaded and stored and at the milling area. Secondly, collected samples are analysed to evaluate activities on those natural radionuclides. Gamma spectrometry analysis is performed for the whole of the samples. For this purpose, a Ge-HP detector (high purity Ge detectors) is used. Dust samples

  13. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Jia Yunjie; Zhang Yuejuan; Wang Runwei; Fan Faying; Xu Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O 3 PCH 2 NHCH 2 COOH) 2 ·0.5H 2 O, denoted as ZrGP] and its selective adsorptions to Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO 4 ) 2 ], ZrGP exhibited highly selective adsorption to Pb 2+ in solution which contained Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg 2+ and Ca 2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  14. low dose irradiation growth in zirconium

    International Nuclear Information System (INIS)

    Fortis, A.M.

    1987-01-01

    Low dose neutron irradiation growth in textured and recrystallized zirconium, is studied, at the Candu Reactors Calandria temperature (340 K) and at 77 K. It was necessary to design and build 1: A facility to irradiate at high temperatures, which was installed in the Argentine Atomic Energy Commission's RA1 Reactor; 2: Devices to carry out thermal recoveries, and 3: Devices for 'in situ' measurements of dimensional changes. The first growth kinetics curves were obtained at 365 K and at 77 K in a cryostat under neutron fluxes of similar spectra. Irradiation growth experiments were made in zirconium doped with fissionable material (0,1 at % 235 U). In this way an equivalent dose two orders of magnitude greater than the reactor's fast neutrons dose was obtained, significantly reducing the irradiation time. The specimens used were bimetallic couples, thus obtaining a great accuracy in the measurements. The results allow to determine that the dislocation loops are the main cause of irradiation growth in recrystallized zirconium. Furthermore, it is shown the importance of 'in situ' measurements as a way to avoid the effect that temperature changes have in the final growth measurement; since they can modify the residual stresses and the overconcentrations of defects. (M.E.L.) [es

  15. Decontamination and recycle of zirconium pressure tubes from Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Gantayet, L.M.; Verma, R.; Remya Devi, P.S.; Banerjee, S.; Kotak, V.; Raha, A.; Sandeep, K.C.; Joshi, Shreeram W.; Lali, A.M.

    2009-01-01

    An ion exchange process has been developed for decontamination of zirconium pressure tubes from Pressurized Heavy Water Reactor and recycling of neutronically improved zirconium. Distribution coefficient, equilibrium isotherm, kinetic and breakthrough data were used to develop the separation process. Effect of gamma radiation on indigenous resins was also studied to assess their suitability in high radiation field. (author)

  16. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  17. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1984-01-01

    Kinetics of zirconium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  18. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    Science.gov (United States)

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  19. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  20. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  1. Review of zirconium-zircaloy pyrophoricity

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1984-11-01

    Massive zirconium metal scrap can be handled, shipped, and stored with no evidence of combustion or pyrophoricity hazards. Mechanically produced fine scrap such as shavings, turnings, or powders can burn but are not pyrophoric unless the particle diameter is less than 54 μm. Powders with particle diameters less than 54 μm can be both pyrophoric and explosive. Pyrophoric powders should be collected and stored underwater or under inert gas cover to reduce the flammability hazard. Opening sealed containers of zirconium stored underwater should be attempted with caution since hydrogen may be present. The factors that influence the ignition temperature have been explored in depth and recommendations are included for the safe handling, shipping, and storage of pyrophoric or flammable zirconium. 29 refs., 5 figs., 6 tabs

  2. Rational Design of Zirconium-doped Titania Photocatalysts with Synergistic Brønsted Acidity and Photoactivity.

    Science.gov (United States)

    Ma, Runyuan; Wang, Liang; Zhang, Bingsen; Yi, Xianfeng; Zheng, Anmin; Deng, Feng; Yan, Xuhua; Pan, Shuxiang; Wei, Xiao; Wang, Kai-Xue; Su, Dang Sheng; Xiao, Feng-Shou

    2016-10-06

    The preparation of photocatalysts with high activities under visible-light illumination is challenging. We report the rational design and construction of a zirconium-doped anatase catalyst (S-Zr-TiO 2 ) with Brønsted acidity and photoactivity as an efficient catalyst for the degradation of phenol under visible light. Electron microscopy images demonstrate that the zirconium sites are uniformly distributed on the sub-10 nm anatase crystals. UV-visible spectrometry indicates that the S-Zr-TiO 2 is a visible-light-responsive catalyst with narrower band gap than conventional anatase. Pyridine-adsorption infrared and acetone-adsorption 13 C NMR spectra confirm the presence of Brønsted acidic sites on the S-Zr-TiO 2 sample. Interestingly, the S-Zr-TiO 2 catalyst exhibits high catalytic activity in the degradation of phenol under visible-light illumination, owing to a synergistic effect of the Brønsted acidity and photoactivity. Importantly, the S-Zr-TiO 2 shows good recyclability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tests for depositing thin films of metallic zirconium; Essais de depot de zirconium metallique en couches minces

    Energy Technology Data Exchange (ETDEWEB)

    Bentolila, J.; Pattoret, A.; Platzer, R.

    1957-01-15

    The authors report a study which aimed at obtaining a thin, adhesive and non porous coating of metallic zirconium on a uranium substrate by means of chemical process. The main required condition was not to go beyond the uranium phase change temperature (650 C). Two kinds of tests have been performed: on the one hand, tests of reduction of zirconium tetrachloride in non aqueous solvent medium, and on the other hand, tests of vacuum decomposition of zirconium hydride. As far as the first tests are concerned, the authors studied organic solvent media (reduction by aluminium and lithium hydride, action of organic-magnesium compounds), and liquid ammoniac. For the second test type, they describe the apparatus, the preparation of the zirconium hydride, preparation of the substrate surfaces, coating preparation, and decomposition process. Results are discussed in terms of temperature, of presence of copper powder in the coating, of early surface hydriding of uranium, surface polishing.

  4. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  5. Chemistry, spectroscopy and isotope separation of zirconium and its compounds as revealed by laser diagnostics of laser produced metal beams

    International Nuclear Information System (INIS)

    Hackett, P.A.; Humphries, M.; Rayner, D.M.; Bourne, O.L.; Mitchell, A.

    1986-01-01

    Recent work from the author's laboratory on zirconium beams is reviewed. Zirconium metal beams have been produced by laser vaporization of solid zirconium targets coupled with supersonic expansion of helium gas. The resultant supersonic metal beam is shown to present an ideal environment for various spectroscopic techniques. The state distribution of zirconium atoms in the beam is obtained from low resolution laser induced fluorescence (LIF) studies. High resolution LIF studies give information on the hyperfine splitting in the ground state of the zirconium-91 isotope. Information on the hyperfine splitting in the excited state is obtained from quantum beat spectroscopy. Low resolution 2 color multiphoton ionization spectroscopy using a XeCl laser allows isotope separation of all isotopes of zirconium. These metal beams are highly reactive and can be used to produce novel chemical species. The results of two studies in which a reactant is added to the expansion gas are reported here. Zirconium oxide (ZrO), a molecule observed in the emission spectra of cool stars and in laboratory studies at high temperatures, is produced in a low temperature, collision free environment by adding small quantities of oxygen to the expansion gas. Zirconium fluoride (ZrF), a molecule previously unobserved, is produced by the addition of small quantities of CF/sub 4/

  6. Control of microstructure during hot working of zirconium alloys

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Banerjee, S.

    2005-01-01

    Hot working is considered to be the most important step involved in the fabrication of zirconium alloys for nuclear reactor applications for two reasons: i) the scale of the microstructure and texture of the final product is decided at this stage and ii) the hot deformed microstructure provides a suitable starting microstructure for the subsequent fabrication steps. The resultant microstructure in turn controls the properties of the final product. In order to obtain final product with a suitable microstructure and with specified mechanical properties on a repeatable basis the control of microstructure during hot working is of paramount importance. This is usually done by studying the constitutive behaviour of the material under hot working conditions and by constructing processing maps. In the latter method, strain rate sensitivity is mapped as a function of temperature and strain rate to delineate domains within the bounds of which a specific deformation mechanism dominates. Detail microstructural analysis is then carried out on the samples deformed within the domains. Using this methodology, processing maps have been constructed for various zirconium alloys. These maps have been found to be very useful for optimizing the hot workability and control of microstructure of zirconium alloys. (author)

  7. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  8. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  9. Studies on the structure of zirconium carbide powders subjected to vibration grinding

    International Nuclear Information System (INIS)

    Kravchik, A.E.; Neshpor, V.S.

    1976-01-01

    The present work is a study of zirconium carbide powders subjected to vibratory milling in various media. The powders were comminuted in air (dry milling), benzene, trichloroethylene, and distilled water. The milling time was 10-160 h. The chemical compositions, specific surfaces, and crystal lattice parameters of the powder in the initial condition and after milling for 100 h in the various media are given. Vibratory milling of zirconium carbide powder can be successfully performed in benzene. Comminution in benzene enables a large specific surface to be attained, with practically no chemical reaction between the medium and the milling products. In milling in trichloroethylene the latter decomposes, with the formation of hydrochloric acid which reacts with the milling products. In a study of the fine structure parameters of zirconium carbide in the , , and directions the smallest crystal lattice strains and block sizes were observed in the direction. This may be taken as evidence that under such disintegration conditions the (110) planes constitute cleavage planes. An evaluation of internal and surface energies established that the strained crystal lattice energy reaches values which must be allowed for in any subsequent uses of the powder

  10. Ab initio atomic simulation of hydrogen and iodine effects in zirconium

    International Nuclear Information System (INIS)

    Domain, Ch.

    2002-03-01

    In this work we present ab initio atomic simulations concerning the effects of hydrogen and iodine in hexagonal zirconium. We first studied the point defects in the dilute Zr-H (and to a less extend Zr-H-O) systems and concluded that it is better described within the generalised gradient approximation for the exchange and correlation functional. We calculated the hydrogen thermal diffusion coefficient in solid solution that agree very well with the experimental values. The calculated formation energy of different self-interstitial configuration are rather small (around 3 eV) and close to each other indicating the high complexity of these defects. We studied the core structure of the screw dislocation that has a preferential prismatic spreading. We also calculated the gamma surface for different gliding planes. The influence of hydrogen, that induces a significant reduction of the gamma surfaces excess energies, allows to qualitatively explain experimental results regarding some hydrogen effects on hexagonal zirconium plastic deformation. We also discussed the effect of zirconium hydride stoichiometry on gamma surfaces. The results concerning the iodine and oxygen adsorption on zirconium surfaces, inducing the evaluation of the effective surface energy reduction as a function of the iodine partial pressure allow for a better description of iodine induced stress corrosion cracking of zirconium. (author)

  11. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  12. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  13. High-resolution characterization of oxidation mechanism of zirconium nuclear fuel cladding alloys

    International Nuclear Information System (INIS)

    Hu, J.; Lozano-Perez, S.; Grovenor, C.

    2015-01-01

    Full text of publication follows. Zirconium alloys are used extensively as cladding materials in modern light water reactors to separate the uranium dioxide (UO 2 ) fuel rods and the coolant water in order to prevent the escape of radioactive fission products whilst maintaining heat transfer to the coolant. With increasing demand for high burn-up in modern nuclear reactors, environmental degradation of these alloys is now the life limiting factor for fuel assemblies. As part of the MUZIC-2 collaboration studying oxidation and hydrogen pickup in Zr alloys, several high resolution analysis techniques have been used to study the microstructure of a range of commercial and developmental Zr alloys. The sample used for this investigation was prepared from a Westinghouse TM developmental alloy with composition of Zr-0.9Nb-0.01Sn-0.08Fe (wt %) in the recrystallized condition. The sample was oxidised in an autoclave at EDF Energy under simulated PWR water conditions at 360 C. degrees for 360 days. Using Transmission Electron Microscope (TEM), we have studied the development of the equiaxed-columnar-equiaxed grain structure, and observe that the columnar grains are both longer and show a stronger preferred texture in more corrosion-resistant alloys. Fresnel imaging revealed the existence of both parallel interconnected pores and some vertically interconnected pores along the columnar oxide grain boundaries, which become more disconnected near the metal-oxide interface. Electron Energy Loss Spectroscopy (EELS) provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr 3 O 2 with varying thickness. These observations will be discussed in the context of current models for oxidation in zirconium alloys. (authors)

  14. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  15. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    Science.gov (United States)

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  17. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  18. Prospects for zirconium structural alloys at high temperatures

    International Nuclear Information System (INIS)

    Thomas, W.R.

    1969-05-01

    Improved station efficiencies and lower capital costs provide incentives for the development of zirconium alloys for pressure tubes which can operate at temperatures above 450 o C. The experience of the Ti industry indicates that a complex alloy containing solution hardeners of Sn or Al and precipitation hardeners of Mo and Nb and perhaps Si will be required. The thermal neutron cross-section of the alloy will be about 10% higher than Zircaloy-2 and because of its poor corrosion resistance will require cladding with a corrosion resistant alloy such as Zr-Cr. Results to date indicate that such a pressure tube is feasible. (author)

  19. Study of the processes for of remelting zirconium alloys in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz A.T.; Rossi, Jesualdo L.; Costa, Guilherme R.; Martinez, Luis G.; Sato, Ivone M., E-mail: luiz.atp@uol.com.br, E-mail: jelrossi@ipen.br, E-mail: guilhermeramoscosta@gmail.com, E-mail: lgallego@ipen.br, E-mail: imsato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Zirconium alloy tubes are used as cladding for fuel elements of PWR nuclear reactors, which contains the UO{sub 2} pellets. In the manufacture of these fuel element parts, machining chips from the nuclear grade zirconium alloys are generated. Hence, these machining chips cannot be discarded, as ordinary metallic waste. Thus, the recycling of this material is a strategic aspect for the nuclear technology, both for economic and environmental issues. The main reason is that nuclear grade alloys have very high cost, are not commercially produced in Brazil and has to be imported for the manufacture of the nuclear fuels. This work discusses a method to melt and recycle Zircaloy chips, using an electric-arc furnace to obtain small laboratory ingots. The chemical composition of the ingots was determined using X-ray fluorescence spectroscopy and was compared to the specifications of nuclear grade Zircaloy and to the chemical composition of the received machining chips. The ingots were annealed in high vacuum, as well as were hot rolled in a mill. The microstructures were characterized by optical microscopy. The hardness was evaluated using the Rockwell B scale hardness. The results showed that the compositions of the recycled Zircaloy comply with the chemical specifications and a suitable microstructure has been obtained for nuclear use. (author)

  20. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  1. Positron emission tomography imaging of CD105 expression with {sup 89}Zr-Df-TRC105

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hao; Yang, Yunan [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Severin, Gregory W.; Engle, Jonathan W.; Zhang, Yin; Barnhart, Todd E.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Liu, Glenn [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); Leigh, Bryan R. [TRACON Pharmaceuticals, Inc, San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2012-01-15

    High tumor microvessel density correlates with a poor prognosis in multiple solid tumor types. The clinical gold standard for assessing microvessel density is CD105 immunohistochemistry on paraffin-embedded tumor specimens. The goal of this study was to develop an {sup 89}Zr-based PET tracer for noninvasive imaging of CD105 expression. TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS) and labeled with {sup 89}Zr. FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and Df-TRC105. PET imaging, biodistribution, blocking, and ex-vivo histology studies were performed on 4T1 murine breast tumor-bearing mice to evaluate the pharmacokinetics and tumor-targeting of {sup 89}Zr-Df-TRC105. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of HUVECs revealed no difference in CD105 binding affinity between TRC105 and Df-TRC105, which was further validated by fluorescence microscopy. {sup 89}Zr labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the 4T1 tumor uptake of {sup 89}Zr-Df-TRC105 was 6.1 {+-} 1.2, 14.3 {+-} 1.2, 12.4 {+-} 1.5, 7.1 {+-} 0.9, and 5.2 {+-} 0.3 %ID/g at 5, 24, 48, 72, and 96 h after injection, respectively (n = 4), higher than all organs starting from 24 h after injection, which provided excellent tumor contrast. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiments, control studies with {sup 89}Zr-Df-cetuximab, and ex-vivo histology all confirmed the in vivo target specificity of {sup 89}Zr-Df-TRC105. We report here the first successful PET imaging of CD105 expression with {sup 89}Zr as the radiolabel. Rapid, persistent, CD105-specific uptake of {sup 89}Zr-Df-TRC105 in the 4T1 tumor was observed. (orig.)

  2. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  3. Study of solution speciation, soil retention and soil-plant transfer of zirconium; Etude de la speciation en solution, de la retention dans les sols et du transfert sol-plante du zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ferrand, E

    2005-12-15

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ({sup 93}Zr and {sup 95}Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K{sub d}, values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  4. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  5. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  6. Critical evaluation of the determination of zirconium and hafnium by instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Burger, Mario; Kraehenbuehl, Urs

    1991-01-01

    Neutron activation analysis (instrument or radiochemical) is suitable for the determination of zirconium and hafnium in samples of geochemical origin only when sufficient attention is paid to inter-fering nuclides. The size of the necessary correction for INAA depends on the composition of the sample; this problem is discussed. The radio-chemical technique which is recommended involves separation of the samples, precipitations and anion-exchange separation. Results are given for various standard reference materials and for meteorites. (author). 12 refs.; 1 fig.; 9 tabs

  7. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  8. OPTIMIZATION OF COMPLEX MINERAL TANNING MATERIAL ON THE BASIS OF ALUMINIUM AND ZIRCONIUM

    Directory of Open Access Journals (Sweden)

    K. Toguzbaev

    2012-01-01

    Full Text Available Influence of acetate ion on stability of alumina-zirconium tanning to alkalization has been investigated in the paper. The investigation results have shown that at the ratio of Al3+:Zr4+:CH3COO = 1:1:1 it  is  possible  to  prepare  a  solution  of  masking   alumina-zirconium  tanning  (АЦД-М   with  high stability and low consumption of aluminum sulfate. The paper reveals that masking of alumina-zirconium tanning by natrium acetate allows to increase stability to alkalization and improve tanning properties. It has been established that for a stable increase of fatty matter viscosity and improvement of  leather water-resistant properties it is necessary to use water-insoluble aluminum and zirconium soaps of carboxylic acids.

  9. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  10. Preparation of high quality zirconium oxychloride from zircon of Vietnam

    International Nuclear Information System (INIS)

    Ngo Van Tuyen; Vu Thanh Quang; Trinh Giang Huong; Vuong Huu Anh

    2007-01-01

    This paper introduces a sodium hydroxide decomposition method for zirconium oxychloride production from zircon sand of Vietnam such as Ha Tinh, Hue, Binh Thuan seaside. Techniques for separation of impurities in ZOC final product such as SiO 2 , Fe 2 O 3 , TiO 2 , rare earths, uranium, and thorium have also been introduced. Content of uranium and thorium in the final product of ZOC is less than 1 ppm. (author)

  11. On the radiochemical purity of elementary 35S with high specific activity

    International Nuclear Information System (INIS)

    Todorovsky, D.S.; Kostadinov, K.N.; Efremova, Yu.N.

    1979-01-01

    Radiochemical composition and chemical changes with increasing storage time of benzene solutions and of solid species of elementary 35 S with high specific activity are studied. The dependence of the stability on the specific activity and the radioactive concentration is shown and some tentative limits are given for permissible storage periods. (author)

  12. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Science.gov (United States)

    2010-04-01

    ... zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs...

  13. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    Science.gov (United States)

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  14. Corrosion of zirconium alloys in alternating pH environment

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1985-01-01

    Behaviour of two commercial alloys, Zircaloy-2 and zirconium-2.5 wt% niobium were investigated in an environment of alternating pH. Corrosion advancement and scale morphology of coupons exposed to aqueous solution of LiOH (pH 10.2 and 14) were followed as a function of temperature (300-360 degreesC) and time (up to 165 days). The test sequence consisted of short term exposure to high pH and re-exposure to low pH solutions for extended period of time followed by a short term test in high pH. The results of these tests and detailed post-corrosion analysis indicate a fundamental difference between the corrosion behaviour of these two materials. Both alloys corrode fast in high pH environments, but only zirconium-2.5 wt% niobium continues to form detectable new oxide in low pH solution

  15. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  16. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  17. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  18. Processing fissile material mixtures containing zirconium and/or carbon

    Science.gov (United States)

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  19. Annotating MYC status with 89Zr-transferrin imaging.

    Science.gov (United States)

    Holland, Jason P; Evans, Michael J; Rice, Samuel L; Wongvipat, John; Sawyers, Charles L; Lewis, Jason S

    2012-10-01

    A noninvasive technology that quantitatively measures the activity of oncogenic signaling pathways could have a broad impact on cancer diagnosis and treatment with targeted therapies. Here we describe the development of (89)Zr-desferrioxamine-labeled transferrin ((89)Zr-transferrin), a new positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. The use of (89)Zr-transferrin produces high-contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated TFRC expression in a MYC-driven prostate cancer xenograft model. Moreover, (89)Zr-transferrin imaging can detect the in situ development of prostate cancer in a transgenic MYC prostate cancer model, as well as in prostatic intraepithelial neoplasia (PIN) before histological or anatomic evidence of invasive cancer. These preclinical data establish (89)Zr-transferrin as a sensitive tool for noninvasive measurement of oncogene-driven TFRC expression in prostate and potentially other cancers, with prospective near-term clinical application.

  20. Hot-rolled and cold-finished zirconium and zirconium alloy bars, rod, and wire for nuclear application

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The specification covers hot- and cold-finished zirconium alloy bars, rod, and wire, other than those required for reforging, including rounds, squares, and shapes. One unalloyed grade and three alloy grades for use in nuclear applications are described. The products covered include the following sections and sizes: bars, rounds in coils for subsequent reworking (6.4 to 19 mm) and flats (6.4 to 250 mm); rods, rounds in coils for subsequent reworking (6.4 to 19 mm); wire (9.5 mm). The specification covers ordering information, manufacture, condition, chemical requirements, mechanical properties, corrosion properties, permissible variations in dimensions, significance of numerical limits, lot size, special tests, workmanship, finish, inspection, certification, packaging and marking

  1. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  2. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  3. EURALERT-89 user's guide

    International Nuclear Information System (INIS)

    Mueller, H.; Friedland, W.; Proehl, G.; Paretzke, H.G.

    1990-09-01

    EURALERT-89 is a dose assessment program system including countermeasures which has been developed in the framework of the C.E.C. research programme 'Radiological aspects of nuclear accident scenarios'. For this purpose the ECOSYS model for calculating the transfer of radionuclides through the environment, the contamination of foodstuffs and potential doses has been adapted to real-time use in the different European countries. In this user's guide the file names are given in the form SUBD/FNAM; this means that the data file with name FNAM is in the subdirectory SUBD. Remember that writing the path of a file depends on the computer used. With EURALERT-89 it is relatively simple to get an estimate of the most important informations (deposition, maximum specific activities in foodstuffs, most important dose values) for all locations which are included in the input file. This goal can be achieved with only a few commands. (orig./HP)

  4. A density functional theory study of a silica-supported zirconium monohydride catalyst for depolymerization of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J.; Parrinello, M.

    2000-04-06

    A silica-supported zirconium hydride catalyst for depolymerization of polyethylene is studied using density functional theory (DFT) together with a generalized gradient approximation (GGA) for the exchange and correlation energy. The (100) and (111) surfaces of {beta}-cristobalite are used as two possible models of a silica surface. Based on the experimental surface structure determined by J. Corker et al., they propose a detailed atomic model of the zirconium monohydride that is believed to be the active site for depolymerization of polyolefins. The model of the zirconium monohydride on the (100) surface is found to be very stable and the structure is in good agreement with extended X-ray absorption fine structure (EXAFS) measurements. Depolymerization of a small polyolefin chain (C{sub 3}H{sub 8}) was carried out to give CH{sub 4} and C{sub 2}H{sub 6} by addition of H{sub 2}. The rate-limiting step is a {beta}-methyl transfer to the zirconium atom, and the activation energy is 29 kcal/mol on the (100) surface.

  5. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  6. Separation process of zirconium and hafnium; Procede de separation du zirconium et du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO{sub 3}{sup -} ions concentration, the role of the cation coming with NO{sub 3}{sup -}, as well as the influence of the concentration of zirconium in the solution on the separation coefficient {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (M.B.) [French] Des differents procedes de separation zirconium-hafnium, l'extraction par solvant en contre-courant est le procede le plus facilement utilisable a l'echelle industrielle. On utilise comme solvant le phosphate de tributyle, dilue avec du white spirit pour faciliter les decantations. Des essais preliminaires ont montre que le milieu nitrique semblait le plus favorable a l'extraction; mais beaucoup d'autres facteurs interviennent dans le processus de separation. Nous avons etudie successivement l'influence de l'acidite, celle de la concentration en ions NO{sub 3}{sup -}, le role du cation accompagnant NO{sub 3}{sup -}, ainsi que l'influence de la concentration en zirconium de la solution sur le coefficient de separation {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (MB)

  7. A Facile Method for the Preparation of Unsymmetrical Ureas Utilizing Zirconium(IV) Chloride

    International Nuclear Information System (INIS)

    Lee, Anna; Kim, Hee-Kwon; Thompson, David H.

    2016-01-01

    A facile synthetic method for the preparation of unsymmetrical ureas from amines is described.Carbamoyl imidazole compounds were prepared by the reaction of 1,1-carbonyldiimidazole with primary or secondary amines, and further activation by treatment with zirconium(IV) chloride to generate the desired urea. This reaction protocol was applied to the synthesis of tri and tetrasubstituted ureas with high yields. This study provides an alternative guideline for the practical preparation of various unsymmetrical ureas.

  8. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Kalnins, J.M.

    1978-01-01

    The exchange of transition metal (M 2+ ) ions from manganese through cobalt, nickel, copper to zinc with γ-zirconium phosphate was examined. By using acetate salts the hydrogen ion concentration is kept low enough to achieve high loadings. The fully loaded solids have the composition ZrM(PO 4 ) 2 .4H 2 O. Near quantitative uptakes are achieved at 100 0 C. The interlayer spacings change very little with loading indicating that γ-zirconium phosphate is able to accommodate cations and water molecules without appreciable increase in volume. The copper exchanged phase readily forms an acetylacetonate when shaken with 2,4-pentanedione. (author)

  9. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  10. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  11. Recovery of zirconium from pickling solution, regeneration and its reuse

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D. [Nuclear Fuel Complex, Hyderabad 500062 (India); Mandal, D., E-mail: dmandal10@gmail.com [Alkali Material & Metal Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Visweswara Rao, R.V.R.L.; Sairam, S.; Thakur, S. [Nuclear Fuel Complex, Hyderabad 500062 (India)

    2017-05-15

    Graphical abstract: The following compares the performance of fresh pickling solution (PS) and regenerated and used pickling solution (UPS). - Highlights: • Pickling of zircaloy tubes and appendages is carried out to remove oxide layer. • The pickling solution become saturated with zirconium due to reuse. • As NaNO{sub 3} concentration increases, conc. of Zr in pickling solution decreases. • Experimental results shows that, used pickling solution can be regenerated. • Regenerated solution may be reused by adding makeup quantities of HF-HNO{sub 3}. - Abstract: The pressurized heavy water reactors use natural uranium oxide (UO{sub 2}) as fuel and uses cladding material made up of zircaloy, an alloy of zirconium. Pickling of zircaloy tubes and appendages viz., spacer and bearing pads is carried out to remove the oxide layer and surface contaminants, if present. Pickling solution, after use for many cycles i.e., used pickling solution (UPS) is sold out to vendors, basically for its zirconium value. UPS, containing a relatively small concentration of hydrofluoric acid. After repeated use, pickling solution become saturated with zirconium fluoride complex and is treated by adding sodium nitrate to precipitate sodium hexafluro-zirconate. The remaining solution can be recycled after suitable makeup for further pickling use. The revenue lost by selling UPS is very high compared to its zirconium value, which causes monetary loss to the processing unit. Experiments were conducted to regenerate and reuse UPS which will save a good amount of revenue and also protect the environment. Experimental details and results are discussed in this paper.

  12. Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chao; Wang, Yunpeng; Sang, Deli; Li, Yijun; Jing, Lei; Fu, Ruidong, E-mail: rdfu@ysu.edu.cn; Zhang, Xiangyi

    2015-01-15

    Highlights: • The microstructure and mechanical properties of DCT-treated Zr were investigated. • DCT induced a change in grain orientation and improved internal stress. • Changes in grain orientation and internal stress increased dislocation density. • Hardness in basal planes was significantly larger than that in prism planes. • Strength levels were high and good ductility could still be achieved after DCT. - Abstract: The effects of deep cryogenic treatment (DCT) on the microstructure and mechanical properties of commercial pure zirconium were investigated. Experimental results indicated that DCT induced a change in grain orientation and improved internal stress, which in turn increased dislocation density that led to improved hardness. Hardness in basal planes was found to be significantly larger than that in prism planes. Moreover, strength was enhanced in DCT-treated zirconium and the ductility was comparable to that of as-annealed zirconium. This phenomenon was due to the increase in dislocation density and the good ductility resulting from the motion of pre-existing dislocations and specific dislocation configurations. DCT led to the transformation of tensile fracture mode from mixed-rupture characteristics of quasi-cleavage and dimples to quasi-cleavage, thereby increasing compatible deformation capabilities. The possible mechanisms underlying microstructural modification, tensile strength, and hardness improvement were discussed.

  13. Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium

    International Nuclear Information System (INIS)

    Yuan, Chao; Wang, Yunpeng; Sang, Deli; Li, Yijun; Jing, Lei; Fu, Ruidong; Zhang, Xiangyi

    2015-01-01

    Highlights: • The microstructure and mechanical properties of DCT-treated Zr were investigated. • DCT induced a change in grain orientation and improved internal stress. • Changes in grain orientation and internal stress increased dislocation density. • Hardness in basal planes was significantly larger than that in prism planes. • Strength levels were high and good ductility could still be achieved after DCT. - Abstract: The effects of deep cryogenic treatment (DCT) on the microstructure and mechanical properties of commercial pure zirconium were investigated. Experimental results indicated that DCT induced a change in grain orientation and improved internal stress, which in turn increased dislocation density that led to improved hardness. Hardness in basal planes was found to be significantly larger than that in prism planes. Moreover, strength was enhanced in DCT-treated zirconium and the ductility was comparable to that of as-annealed zirconium. This phenomenon was due to the increase in dislocation density and the good ductility resulting from the motion of pre-existing dislocations and specific dislocation configurations. DCT led to the transformation of tensile fracture mode from mixed-rupture characteristics of quasi-cleavage and dimples to quasi-cleavage, thereby increasing compatible deformation capabilities. The possible mechanisms underlying microstructural modification, tensile strength, and hardness improvement were discussed

  14. A study of the fixing of phosphoric ions by zirconium-montmorillonite; Etude de la fixation d'ions phosphoriques par la montmorillonite-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bittel, R; Boursat, C; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In connection with the research carried out on the purification of nuclear reactor water, we have undertaken a study of the ion-exchange properties of acid montmorillonite. In a previous paper, we described the preparation of zirconium-montmorillonite small plate. The present article aims to study some of the properties of the clay obtained. We have observed that zirconium-montmorillonite fixes very strongly the phosphorus from solutions of phosphoric acid or of phosphates: on 1 g of clay it is possible to fix 1,2 milli-atoms-gram of zirconium and the zirconium montmorillonite itself fixes 2,1 milli-atoms-gram of phosphorus. An explanation of these experimental results, which is as much chemical as mineralogical, is the hypothesis that the fixing of phosphoric ions modifies the distribution of the ions between the platelets and precipitates a very slightly soluble product of the type diphospho-zirconic acid. (author) [French] En rapport avec des recherches sur I'epuration de l'eau des reacteurs nucleaires nous avons entrepris une etude sur les proprietes d'echangeur d'ions de la montmorillonite-acide. Dans une precedente publication, nous avons decrit la preparation des plaquettes de montmorillonite-zirconium. La presente communication a pour but d'etudier quelques proprietes de l'argile obtenue. Nous avons constate que la montmorilionite-zirconium fixe le phosphore de solutions d'acide phosphorique ou de phosphate avec une grande intensite: sur 1 g d'argile, on peut fixer 1,2 atomes-gramme de zirconium, et la montmorillonite-zirconium fixe a son tour 2,1 milli-atomesgramme de phosphore. Une explication des resultats experimentaux, tant d'ordre chimique que d'ordre mineralogique, consiste en l'hypothese suivant laquelle la fixation d'ions phosphoriques modifierait la repartition des ions entre les feuillets avec precipitation du compose tres peu soluble (type: acide diphosphozirconique). (auteur)

  15. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  16. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  17. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  18. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    Science.gov (United States)

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  19. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  20. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface

    Directory of Open Access Journals (Sweden)

    Borgo Claudemir Adriano

    2004-01-01

    Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.

  1. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    McLaughlin, D.F.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium tetrachloride from zirconium tetrachloride where a complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is prepared from zirconium-hafnium tetrachlorides and the complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and where a hafnium tetrachloride enriched stream is taken from the top of the column and a zirconium enriched tetrachloride stream is taken from the bottom of the column. The improvement comprising: prepurifying the zirconium-hafnium tetrachlorides, prior to preparation of the complex and introduction of the complex into a distillation column, to substantially eliminate iron chloride from the zirconium hafnium tetrachlorides, whereby buildup or iron chloride in the distillation column and in the reboiler is substantially eliminated and the column can be operated in a continuous, stable and efficient manner

  2. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  3. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  4. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  5. Oxidized zirconium: a potentially longer lasting hip implant

    International Nuclear Information System (INIS)

    Good, V.; Widding, K.; Hunter, G.; Heuer, D.

    2005-01-01

    Because younger, more active patients are receiving total hip replacements, it is necessary to develop materials, which would increase the life span of the implants and challenge their wear potential under adverse conditions. Oxidized zirconium (OxZr) is a metal with the surface transformed to ceramic by oxidation that offers low fracture risk and excellent abrasion resistance. This study compared wear of polyethylene (non-irradiated and highly crosslinked) with OxZr and CoCr heads under smooth and rough (clinically relevant) conditions. Wear was up to 15-fold less and up to 4-fold fewer particles were produced when coupled with OxZr than with CoCr, demonstrating that OxZr heads should increase clinical implant longevity

  6. Biomechanical testing of zirconium dioxide osteosynthesis system for Le Fort I advancement osteotomy fixation.

    Science.gov (United States)

    Hingsammer, Lukas; Grillenberger, Markus; Schagerl, Martin; Malek, Michael; Hunger, Stefan

    2018-01-01

    The following work is the first evaluating the applicability of 3D printed zirconium dioxide ceramic miniplates and screws to stabilize maxillary segments following a Le-Fort I advancement surgery. Conventionally used titanium and individual fabricated zirconium dioxide miniplates were biomechanically tested and compared under an occlusal load of 120N and 500N using 3D finite element analysis. The overall model consisted of 295,477 elements. Under an occlusal load of 500N a safety factor before plastic deformation respectively crack of 2.13 for zirconium dioxide and 4.51 for titanium miniplates has been calculated. From a biomechanical point of view 3D printed ZrO 2 mini-plates and screws are suggested to constitute an appropriate patient specific and metal-free solution for maxillary stabilization after Le Fort I osteotomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  8. Zirconium-hydride solid zero power reactor and its application research

    International Nuclear Information System (INIS)

    Lin Shenghuo; Luo Zhanglin; Su Zhuting

    1994-10-01

    The Zirconium Hydride Solid Zero Power Reactor built at China Institute of Atomic Energy is introduced. In the reactor Zirconium-hydride is used as moderator, plexiglass as reflector and U 3 O 8 with enrichment of 20% as the fuel, Since its initial criticality, the physical characteristics and safety features have been measured with the result showing that the reactor has sound stability and high sensitivity, etc. It has been successfully used for the personnel training and for the testing of reactor control instruments and experiment devices. It also presents the special advantage for the pre-research of some applications

  9. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    Science.gov (United States)

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  11. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  12. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  13. Zirconium sponge and other forms of virgin metal for nuclear applications - approved standard 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers virgin zirconium metal commonly designated as sponge because of its porous, sponge-like texture, but it may also take other forms such as chunklets. One grade is described which is designated as reactor grade R-1, suitable for use in nuclear applications. The most important characteristic of the reactor grade is its low nuclear cross section as achieved by removal of hafnium and careful quality control in manufacturing procedures to prevent contamination with other high cross section materials

  14. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  15. Synthesis and characterization of αzirconium (IV) hydrogenphosphate containing metallic copper clusters

    International Nuclear Information System (INIS)

    Souza, Alexilda Oliveira de; Rangel, Maria do Carmo; Alves, Oswaldo Luiz

    2005-01-01

    The α-zirconium (IV) hydrogenphosphate (α-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on α-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11μ) with different sizes and shapes were produced. (author)

  16. The Results of HLW Processing Using Zirconium Salt of Dibutyl phosphoric Acid in Hot Cell

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Yu.S.; Zilberman, B.Ya.; Shmidt, O.V. [Khlopin Radium Institute, 2nd Murinsky Ave., 28, Saint-Petersburg, 194021 (Russian Federation)

    2008-07-01

    Zirconium salt of dibutyl phosphoric acid (ZS HDBP), is an effective solvent for liquid HLW and ILW (high and intermediate level wastes) processing with radionuclide partitioning into different groups for further immobilization according to radiotoxicity. The rig trials in mixer-settles in hot cells were carried out using 30 L of real HLW containing transplutonium (TPE), rare earths (RE), Sr and Cs in 2 mol/L HNO{sub 3}, characterized by total specific activity 520 MBk/L. The recovery factor for TPE and RE was as high as 10{sup 4}, but only 10 for Sr. Purification factor of TPE and RE from Cs and Sr was 10{sup 4}, and that of Sr from TPE and Cs was 10{sup 3}. Almost all Cs was localized in the second cycle raffinate. So Zr salt of HDBP can be used in HLW processing with radionuclide partitioning with respect to the categories of radiotoxicity. (authors)

  17. Laser-Based Additive Manufacturing of Zirconium

    Directory of Open Access Journals (Sweden)

    Himanshu Sahasrabudhe

    2018-03-01

    Full Text Available Additive manufacturing of zirconium is attempted using commercial Laser Engineered Net Shaping (LENSTM technique. A LENSTM-based approach towards processing coatings and bulk parts of zirconium, a reactive metal, aims to minimize the inconvenience of traditional metallurgical practices of handling and processing zirconium-based parts that are particularly suited to small volumes and one-of-a-kind parts. This is a single-step manufacturing approach for obtaining near net shape fabrication of components. In the current research, Zr metal powder was processed in the form of coating on Ti6Al4V alloy substrate. Scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS as well as phase analysis via X-ray diffraction (XRD were studied on these coatings. In addition to coatings, bulk parts were also fabricated using LENS™ from Zr metal powders, and measured part accuracy.

  18. Quantitative analysis of nickel in zirconium and zircaloy

    International Nuclear Information System (INIS)

    Rastoix, M.

    1957-01-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [fr

  19. Radiation induced defect flux behaviors at zirconium based component

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun; Kwon, Jun Hyun; Lee, Gyeong Geun

    2013-01-01

    In commercial reactor core, structure materials are located in high temperature and high pressure environment. Therefore, main concern of structure materials is corrosion and mechanical properties change than radiation effects on materials. However, radiation effects on materials become more important phenomena because research reactor condition is different from commercial reactor. The temperature is lower than 100 .deg. C and radiation dose is much higher than that of commercial reactor. Among the radiation effect on zirconium based metal, radiation induced growth (RIG), known as volume conservative distortion, is one of the most important phenomena. Recently, theoretical RIG modeling based on radiation damage theory (RDT) and balance equation are developed. However, these growth modeling have limited framework of single crystal and high temperature. To model theoretical RIG in research reactor, qualitative mechanism must be set up. Therefore, this paper intent is establishing defect flux mechanism of zirconium base metal in research reactor for RIG modeling. After than theoretical RIG work will be expanded to research reactor condition

  20. Titanium zirconium and hafnium coordination compounds with vanillin thiosemicarbazone

    International Nuclear Information System (INIS)

    Konunova, Ts.B.; Kudritskaya, S.A.

    1987-01-01

    Coordination compounds of titanium zirconium and hafnium tetrachlorides with vanillin thiosemicarbazone of MCl 4 x nLig composition, where n=1.5, 4 for titanium and 1, 2, 4 for zirconium and hafnium, are synthesized. Molar conductivity of ethanol solutions is measured; IR spectroscopic and thermochemical investigation are carried out. The supposition about ligand coordination via sulfur and azomethine nitrogen atoms is made. In all cases hafnium forms stable compounds than zirconium

  1. Stabilization of mixed carbides of uranium-plutonium by zirconium. Part 1.: uranium carbide with small additions of zirconium; Etude de la stabilisation des carbures mixtes d'uranium et de plutonium par addition de zirconium. 1. partie: etude des carbures d'uranium avec de faibles additions de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bocker, S [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    Cast carbide samples, being of a high density and purity, are preferable for research purposes, to samples produced by powder metallurgy methods. Samples of uranium carbide with small additions of zirconium (1 to 5 per cent) were cast, as rods, in an arc furnace. A single phase carbide with interesting qualities was produced. As cast, a dendrite structure is observed, which does not disappear, after a treatment at 1900 deg. C during 110 hours. In comparison with uranium monocarbide the compatibility with stainless steel is much improved. The specific heat (between room temperature and 2500 deg. C) is similar to the specific heat of uranium monocarbide. A study of these mixed carbides, but having a part of the uranium replaced by plutonium is under way. (author) [French] Les echantillons de monocarbures obtenus par coulee sont tres interessants pour les recherches experimentales a cause de leur grande purete, de leur densite tres elevee et de la facilite d'obtention des lingots de forme et dimensions variees. On a prepare et coule dans un four a arc des echantillons de carbures d'uranium avec de faibles additions de zirconium (1 a 5 at. pour cent). On obtient ainsi des carbures monophases presentant de meilleures proprietes que le monocarbure d'uranium. A l'etat brut de coulee on observe une structure dendritique qui n'est pas detruite par un traitement thermique de 110 heures a 1900 deg. C. La compatibilite avec l'acier inoxydable 316 (a 925 deg. C pendant 500 heures) est nettement amelioree par rapport a UC. La chaleur specifique (entre la temperature ordinaire et 2500 deg. C) et la densite sont tres peu differentes de celles du monocarbure d'uranium. Une etude concernant les composes U-Pu-Zr-C est actuellement en cours. (auteur)

  2. The behaviour of zirconium alloys in Santowax OM organic coolant at high temperatures

    International Nuclear Information System (INIS)

    Sawatzky, A.

    1964-10-01

    Zirconium alloys have been exposed to Santowax OM at temperatures of 320 to 400 o C for times as long as 5000 hours. Short-term experiments (less than 2 weeks) were done in stainless-steel bombs and small out-of-pile loops. The X-7 organic loop in the NRX reactor was used to study long-term oxidation and hydriding both in-flux and out-of-flux. The results obtained lead to several tentative conclusions: Aluminum cladding serves as an effective hydrogen barrier; Considerable protection against hydriding is given by zirconium oxide, provided impurities in the organic are carefully controlled; Hydriding is greatly enhanced by the presence of chlorine in the coolant; and, Hydriding is somewhat enhanced by neutron irradiation. Of considerable significance is the fact that a Zircaloy-4 in-reactor test section of the X-7 loop was exposed to Santowax OM at 320 to 400 o C for more than 5000 hours without excessive hydriding. (author)

  3. Composition and microstructure of zirconium and hafnium germanates obtained by different chemical routes

    International Nuclear Information System (INIS)

    Utkin, A.V.; Prokip, V.E.; Baklanova, N.I.

    2014-01-01

    The phase composition and morphology of zirconium and hafnium germanates synthesized by ceramic and co-precipitation routes were studied. The products were characterized using high-temperature X-ray diffraction analysis (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and thermal (TG/DTA) analysis. To investigate the phase composition and stoichiometry of compounds the unit cell parameters were refined by full-profile Rietveld XRD analysis. The morphology of products and its evolution during high-temperature treatment was examined by SEM analysis. It was stated that there is the strong dependence of the phase composition and morphology of products on the preparation route. The ceramic route requires a multi-stage high-temperature treatment to obtain zirconium and hafnium germanates of 95% purity or more. Also, there are strong diffusion limitations to obtain hafnium germanate Hf 3 GeO 8 by ceramic route. On the contrary, the co-precipitation route leads to the formation of nanocrystalline single phase germanates of stoichiometric composition at a relatively low temperatures (less than 1000 °C). The results of quantitative XRD analysis showed the hafnium germanates are stoichiometric compounds in contrast to zirconium germanates that form a set of solid solutions. This distinction may be related to the difference in the ion radii of Zr and Hf. - Graphical abstract: The phase composition and morphology of zirconium and hafnium germanates synthesized by ceramic and co-precipitation routes were studied. It was stated that there is the strong dependence of the phase composition and morphology of products on the preparation route. Display Omitted - Highlights: • Zr and Hf germanates were synthesized by ceramic and co-precipitation routes. • The morphology of products depends on the synthesis parameters. • Zirconium germanates forms a set of solid solutions. • Hafnium germanates are stoichiometric compounds

  4. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  5. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    Science.gov (United States)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  6. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  7. Spectrophotometric titration of sulfates in the presence of zirconium

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Kotova, S.S.; Molokanova, L.G.; Chekmarev, A.M.; Yagodin, G.A.

    1978-01-01

    The procedure has been proposed for express determination of sulphate ions in the presence of zirconium by spectrophotometric titration with the use of barium chloride and nitrochromazo as an indicator. The procedure is based on bonding zirconium into a more stable complex with EDTA (ethylenediaminotetraacetic acid). The presence of excess of EDTA and zirconium (4) complexonate in the solution being titrated does not affect the titration curve shape and the character of break on the curve in the equivalence point. A complete demasking of SO 4 2- is observed in the case of 1O-fold excess of EDTA with respect to zirconium (4). Statistic evaluation of the method has shown that the results of titration can be distorted by chance errors only

  8. Development of wear resistant zirconium oxide thin films on stainless steel substrates

    International Nuclear Information System (INIS)

    Then, I.K.; Mujahid, M.; Zhang, B.

    2005-01-01

    The present work deals specifically with the development of zirconium oxide thin film coatings on the stainless steel orthodontic bracket system by sputtering technique. Thin films of zirconium oxide have been deposited on injection molded stainless steel substrates using sputtering under controlled temperature and environment conditions. The deposited films, 1.5 μm in thickness, were found to have a predominantly tetragonal structure with grain size of about 5 nm. The grain size was found to increase only slightly with increasing heat treatment time at 650 C. It has been shown that thin-film zirconia coatings with stable structure and good adhesion along with very low friction coefficient could be produced. (orig.)

  9. Development of wear resistant zirconium oxide thin films on stainless steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Then, I.K.; Mujahid, M. [School of Materials Engineering, Nanyang Technological Univ. (Singapore); Zhang, B. [Dou Yee Technologies Pte Ltd, Bedok Industrial Park C (Singapore)

    2005-07-01

    The present work deals specifically with the development of zirconium oxide thin film coatings on the stainless steel orthodontic bracket system by sputtering technique. Thin films of zirconium oxide have been deposited on injection molded stainless steel substrates using sputtering under controlled temperature and environment conditions. The deposited films, 1.5 {mu}m in thickness, were found to have a predominantly tetragonal structure with grain size of about 5 nm. The grain size was found to increase only slightly with increasing heat treatment time at 650 C. It has been shown that thin-film zirconia coatings with stable structure and good adhesion along with very low friction coefficient could be produced. (orig.)

  10. Plastic flow and preferred orientation in molybdenum and zirconium films

    International Nuclear Information System (INIS)

    Window, B.

    1989-01-01

    X-ray diffraction measurements on samples of molybdenum and zirconium growth with ion assistance at low temperatures support the occurrence of plastic flow during growth, provided the level of bombardment is high enough. As the energy of the argon ions was increased, the lattice strain in the growth direction increased to a maximum before decreasing slowly. That this is a plastic flow transition is shown by the independence of the maximum strain on preparation conditions and by the changes in microstructure. In particular, the grain size in the growth direction decreased and the preferred orientation favored the usual wire drawing textures of these metals. For the zirconium films this involved a change in preferred orientation from a (00.2) to a (10.0) texture. A reduction in strain is observed at high bombardment levels

  11. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  12. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  13. Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Angela Woods

    2017-03-01

    Full Text Available AMP-activated protein kinase (AMPK plays a key role in integrating metabolic pathways in response to energy demand. We identified a mutation in the γ1 subunit (γ1D316A that leads to activation of AMPK. We generated mice with this mutation to study the effect of chronic liver-specific activation of AMPK in vivo. Primary hepatocytes isolated from these mice have reduced gluconeogenesis and fatty acid synthesis, but there is no effect on fatty acid oxidation compared to cells from wild-type mice. Liver-specific activation of AMPK decreases lipogenesis in vivo and completely protects against hepatic steatosis when mice are fed a high-fructose diet. Our findings demonstrate that liver-specific activation of AMPK is sufficient to protect against hepatic triglyceride accumulation, a hallmark of non-alcoholic fatty liver disease (NAFLD. These results emphasize the clinical relevance of activating AMPK in the liver to combat NAFLD and potentially other associated complications (e.g., cirrhosis and hepatocellular carcinoma.

  14. Synthesis of glycolic acid-1-14C of high specific activity

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    A simple procedure is described which efficiently converts traces of 14 C labelled cyanide present as a dilute solution into glycolic acid-1- 14 C with more than 85% radiochemical recovery and of high specific activity. (author)

  15. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    Garcia G, N.; Ordonez R, E.

    2010-10-01

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP 2 O 7 ) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP 2 O 7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  16. A study of a production process for hafnium-free zirconium from zircon

    International Nuclear Information System (INIS)

    Ratanalert, N.

    1985-01-01

    The purpose of this experiment was to extract and purify the zirconium from zircon. The effects of time of extraction and stripping of zirconium, concentration of feed solution, concentration of hydrochloric acid in stripping process, equilibrium curve of extraction of zirconium and hafnium and equilibrium curve of stripping zirconium or scrubbing hafnium were studied from standard zirconium and hafnium. The results, subsequently were applied to the extraction procedures for zirconium from zircon. Minus 100 mesh zircon was fused with sodium hydroxide in the ratio of 1 : 6 at 700 degree C for l hour. After fusion the zirconate was leached with water and dissolved in hot concentrated hydrochloric acid. Zirconyl chloride octahydrate crystallized out when the solution was cooled. An agueons solution of zirconyl chloride was used as the feed to the hexone - thiocyanate solvent extraction process. This was prepared by dissolving zirconyl chloride octahydrate crystal in waster. This zirconium feed solution in 1 M HCl and 1 M N H 4 CNS was extracted with 2.7 m N H 4 CNS in hexone and then stripped with 3.6 M HCl the aqueous phase was got rid of thiocyanate ion by extracting with pure hexone, then the zirconium in aqueous phase was precipitated with sulfuric acid and ammonium hydroxide at pH 1.8 - 2.0 and zirconium oxide was obtained by ignition at 700 degree C. The process could be modified to improve the purity of zirconium by using cation exchange resin to get rid of thiocyanate ion after solvent extraction process

  17. Some recent trends in the use of zirconium alloys for nuclear service

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.

    1992-01-01

    Without any exception nuclear power reactors particularly the water cooled ones, operating in the World use natural or slightly enriched uranium oxide fuel pellets with zirconium alloy cladding. While the zirconium alloys have proven to be successful in their designed usage, a desire for longer lifetimes of core components and increased duty cycle puts more demand on materials performance. This demand has led to more in depth studies of phenomena associated with zirconium alloy corrosion mechanism, fine tuning of the zirconium alloy composition, development of fabrication techniques and to the evaluation of newer zirconium alloys for critical applications. (author). 5 refs., 32 figs

  18. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  19. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  20. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  1. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  2. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  3. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  4. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  5. Solubilities and stabilities of zirconium species in aqueous solutions: Literature review

    International Nuclear Information System (INIS)

    Rizkalla, E.N.; Choppin, G.R.

    1988-01-01

    This document describes specific chemical properties of zirconium compounds in water. The information sources were published reports rather than experimental data. The information is reviewed as a comprehensive, descriptive report. Included as a supplement is a proposal for funding to study carbon-14 in the Palo Duro Basin repository. 17 refs., 4 figs., 6 tabs

  6. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  7. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.

    Science.gov (United States)

    Pool, Jaime A; Lobkovsky, Emil; Chirik, Paul J

    2004-02-05

    Molecular nitrogen is relatively inert owing to the strength of its triple bond, nonpolarity and high ionization potential. As a result, the fixation of atmospheric nitrogen to ammonia under mild conditions has remained a challenge to chemists for more than a century. Although the Haber-Bosch process produces over 100 million tons of ammonia annually for the chemical industry and agriculture, it requires high temperature and pressure, in addition to a catalyst, to induce the combination of hydrogen (H2) and nitrogen (N2). Coordination of molecular nitrogen to transition metal complexes can activate and even rupture the strong N-N bond under mild conditions, with protonation yielding ammonia in stoichiometric and even catalytic yields. But the assembly of N-H bonds directly from H2 and N2 remains challenging: adding H2 to a metal-N2 complex results in the formation of N2 and metal-hydrogen bonds or, in the case of one zirconium complex, in formation of one N-H bond and a bridging hydride. Here we extend our work on zirconium complexes containing cyclopentadienyl ligands and show that adjustment of the ligands allows direct observation of N-H bond formation from N2 and H2. Subsequent warming of the complex cleaves the N-N bond at 45 degrees C, and continued hydrogenation at 85 degrees C results in complete fixation to ammonia.

  8. Extraction and determination of hydrogen in uranium and zirconium; Extraction et dosage de l'hydrogene dans l'uranium et le zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Champeix, L; Coblence, G; Darras, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The method of desorption under vacuum at high temperatures in the solid phase, which gives good results in the case of steels, has been applied to uranium and zirconium. In these two metals hydrogen is found mainly in the form of hydride. It is chiefly a question of determining the most suitable temperature and the heating time necessary to obtain an almost total extraction of hydrogen. Two considerations must be taken into account in the choice of temperature. It should be such that on the one hand the hydride decomposes rapidly and completely at the reduced pressure applied, and on the other hand the diffusion of hydrogen through the metal takes place fairly quickly. The apparatus and the method used are described; systematic tests have led to the adoption of temperatures of 650 deg. C for uranium and 1050 deg. C for zirconium. (author) [French] La methode de desorption sous vide a chaud en phase solide, methode qui donne de bons resultats dans le cas des aciers, a ete appliquee a l'uranium et au zirconium. Dans ces deux metaux, l'hydrogene se trouve surtout a l'etat d'hydrure. Il s'agit essentiellement de determiner la temperature optimum et la duree du chauffage necessaire pour obtenir une extraction d'hydrogene pratiquement complete. Deux considerations interviennent dans le choix de la temperature. Elle doit etre telle que, d'une part la decomposition de l'hydrure se fasse rapidement et completement sous la pression reduite realisee et d'autre part que la diffusion de l'hydrogene a travers le metal soit assez rapide. L'appareil et le mode operatoire utilises sont decrits des essais systematiques ont conduit a adopter une temperature de 650 deg. C pour l'uranium et de 1050 deg. C pour le zirconium. (auteur)

  9. Microstructure of lead zirconium titanate (PZT) by electron microscopy

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin

    1989-01-01

    Transmission and high-resolution electron microscopy reveal the microtexture of lead zirconium titanate ceramics. Fine scale (≤ 500 Aangstroem) ferroelastic and ferroelectric twin domains, as well as dislocations were found in a complex texture. Correlations between stoichiometry, microstructure and piezoelectric properties are discussed. 6 refs., 3 figs

  10. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  11. Uncertainty and Detection Limit in Determination of 89,90Sr by Cherenkov Counting

    International Nuclear Information System (INIS)

    Grahek, Z.; Karanovic, G.; Nodilo, M.

    2013-01-01

    The methodology for the rapid determination of 89,90Sr in normal and emergency situations is given. Methodology is based on simultaneous separation of strontium and yttrium from samples and quantitative 89,90Sr determination by Cherenkov counting within three days. Methodology for quantitative determination by Cherenkov counting based on following changes of sample activity during the time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1. Obtained results show that by using low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in broad range of concentration activities (1 - 1000 Bq (kgL) -1 ) with uncertainties below 10% within 2-3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) depends on determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation. Portion of each in combined uncertainty depend on level of activity of each isotope and its activity ratio.(author)

  12. Measurement of activation cross sections for quasi-monoenergetic neutron induced reactions of {sup 89}Y

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)

    2017-09-15

    The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)

  13. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Science.gov (United States)

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  14. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    Science.gov (United States)

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  15. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    Science.gov (United States)

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pcement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  16. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  17. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  18. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  19. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  20. Photometric determination of zirconium in phosphorites by reaction with arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skaya, I V; Maksimov, A V

    1976-05-01

    The reaction between zirconium and arsenazo III has been studied over a wide range of hydrochloric acid concentration and under different conditions. 6 and 9 M HCl solutions are optimal for determining zirconium; the least effect of phosphate ions and color stability in time are observed in this case. The determination of zirconium should be carried out using 10-fold reagent excess and in 15-20 min after adding the reagent. The interference of phosphate ions has been estimated. A procedure has been developed for photometric determination of zirconium in phosphorites with prior acid separation of soluble impurities.

  1. Effect of zirconium on the structure and phase composition of steel 03Kh8SYu

    International Nuclear Information System (INIS)

    Tarzhumanova, V.A.; Ryabchenkov, A.V.; Shatunova, A.V.; Yoganova, S.A.

    1986-01-01

    Previously, the authors determined the optimum zirconium content providing retention of a fine-grained structure for steel 03Kh8SYu during high-temperature heating. It was suggested that this was caused by separation in the steel of intermetallic phase Fe 3 Zr. This paper presents results of further studies in this direction. X-ray analysis results for the anodic residues of the steels are presented. It can be seen that in steel without zirconium, carbides of the type M 23 C 6 and M 7 C 3 and aluminum nitride are present. On adding 0.05% Zr, zirconium nitride forms in addition to the existing aluminum nitride and carbides of the type M 7 C 3 . The authors also investigated the effect of zirconium on the tendency of the steel toward grain growth at higher temperature; they studied the structure of steel 03Kh8SYu with 0.61% Zr after soaking specimens for 100 h at 950-1100 C. Results are presented

  2. A half-century of changes in zirconium alloys

    International Nuclear Information System (INIS)

    Mardon, J.P.; Barberis, P.; Hoffmann, P.B.

    2008-01-01

    This article presents the history of zirconium alloys for PWR and BWR technologies. For more than 20 years zirconium alloys have evolved to cope with demands of the reactor operators concerning the burn-up extension and new safety margins. The poor properties of Zircaloy-1 concerning corrosion have led researchers to add elements like iron by developing Zircaloy-3A and Zircaloy-3C, and resulting in Zircaloy-4 with tin addition (from 1.30% to 1.50%). Zircaloy-4 is now outdated for PWR and new zirconium alloys with niobium are used (M5, ZIRLO...) they present a better resistance to corrosion, to hydridation, to creep and they are less prone to dimensional changes under irradiation. (A.C.)

  3. Research and development of zirconium industry in China

    International Nuclear Information System (INIS)

    Liu Jianzhang; Tian Zhenye

    2001-01-01

    The development of uranium material for nuclear power and silicon material for information industry represents two revolutionary changes in the material field in 20-th century. The development of these kinds of materials not only brings about great revolution of technology in the material field, but also promotes the great advancement of the world economy. Zirconium or its alloy, as one of the most important material in atomic age, just as the same as foreign countries has been developed under promotion of nuclear submarine project in China, and building of civil nuclear power reactor then has been laid a solid foundation for zirconium industry and provide a broad market for zirconium material

  4. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium chloride from zirconium chloride using a distillation column, with a hafnium chloride enriched vapor stream taken from the top of the column and a zirconium enriched chloride stream taken from the bottom of the column. The improvement comprising: purifying the zirconium-hafnium chloride in a molten salt purification vessel prior to or after introduction into the distillation column to substantially eliminate iron chloride from the zirconium-hafnium chloride by at least periodically removing iron chloride from the molten salt purification vessel by electrochemically plating iron onto an electrode in the molten salt purification vessel. The molten salt in the molten salt purification vessel consisting essentially of a mixture of chlorides selected from the group consisting of alkali metals, alkaline earth metals, zirconium, hafnium, aluminum, manganese, and zinc

  5. Zirconium distribution in the system HNO3-H2O-TBP-diluent

    International Nuclear Information System (INIS)

    Shu, J.; Araujo, B.F. de.

    1984-01-01

    The extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems is studied in order to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a minimum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon zirconium behaviour was also verified. With the data obtained it was possible to introduce some modifications in the standard Purex flowsheet with the increase of the decontamination of uranium product from zirconium. (Author) [pt

  6. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  7. Manufacturing process to reduce large grain growth in zirconium alloys

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1987-01-01

    A method is described of treating cold worked zirconium alloys to reduce large grain growth during thermal treatment above its recrystallization temperature. The method comprises heating the zirconium alloy at a temperature of about 1300 0 F. to 1350 0 F. for about 1 to 3 hours subsequent to cold working the zirconium alloy and prior to the thermal treatment at a temperature of between 1450 0 -1550 0 F., the thermal treatment temperature being above the recrystallization temperature

  8. Stable tracer investigations in humans for assessing the biokinetics of ruthenium and zirconium radionuclides

    International Nuclear Information System (INIS)

    Veronese, I.; Cantone, M.C.; Giussani, A.; Maggioni, T.; Birattari, C.; Bondardi, M.; Groppi, F.; Garlaschelli, I.; Werner, E.; Roth, P.; Hoellriegl, V.; Louvat, P.; Felgenhauer, N.; Zilker, Th.

    2003-01-01

    The interest in the biokinetics of ruthenium and zirconium in humans is justified by the potential radiological risk represented by their radionuclides. Only a few data related to the biokinetics of ruthenium and zirconium in humans are available and, accordingly, the biokinetic models currently recommended by the ICRP for these elements are mainly based on data from animal experiments. The use of stable isotopes as tracers, coupled with a proper analytical technique (nuclear activation analysis with protons) for their determination in biological samples, represents an ethically acceptable methodology for biokinetic investigations, being free from any radiation risk for the volunteer subjects. In this work, the results obtained in eight biokinetic investigations for ruthenium, conducted on a total of three healthy volunteers, and six for zirconium, performed on a total of three subjects, are presented and compared to the predictions of the ICRP models. (author)

  9. Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

    KAUST Repository

    Azzi, Joachim

    2012-11-01

    Design of a new well-defined surface organometallic species [O-(=Si–NH)2Zr(IV)Np2] has been obtained by reaction of tetraneopentyl zirconium (ZrNp4) on SBA-15 surface displaying mainly silylamine pairs [O-(=Si–NH2)2]. These surface species have been achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2. Chemisorption of ammonia occurs primarily by opening these siloxane bridges[2] to generate silanol/silylamine pairs [O-(=Si–NH2)(=SiOH)] followed by substitution of the remaining silanol. Further treatment using hexamethyldisilazane (HMDS) results in the protection of the isolated remaining silanol groups by formation of ≡Si-O-SiMe3 and =Si(OSiMe3)2 but leaves ≡SiNH2 untouched. After reaction of this functionalized surface with ZrNp4, this latter displays mainly a bi-podal zirconium neopentyl organometallic complex [O-(=Si–NH)2Zr(IV)Np2] which has been fully characterized by diverse methods such as infrared transmission spectroscopy, magic angle spinning solid state nuclear magnetic resonance, surface elemental analysis, small angle X-ray powder diffraction (XRD), nitrogen adsorption and energy filtered transmission electron microscopy (EFTEM). These different characterization tools unambiguously prove that the zirconium organometallic complex reacts mostly with silylamine pairs to give a bi-podal zirconium bis-neopentyl complex, uniformly distributed into the channels of SBA-151000. Therefore this new material opens a new promising research area in Surface Organometallic Chemistry which, so far, was dealing mainly with O containing surface. It is expected that vicinal amine functions may play a very different role as compared with classical inorganic supports. Given the importance in the last decades of N containing ligands in catalysis, one may expect

  10. Zirconium - ab initio modelling of point defects diffusion

    International Nuclear Information System (INIS)

    Gasca, Petrica

    2010-01-01

    Zirconium is the main element of the cladding found in pressurized water reactors, under an alloy form. Under irradiation, the cladding elongate significantly, phenomena attributed to the vacancy dislocation loops growth in the basal planes of the hexagonal compact structure. The understanding of the atomic scale mechanisms originating this process motivated this work. Using the ab initio atomic modeling technique we studied the structure and mobility of point defects in Zirconium. This led us to find four interstitial point defects with formation energies in an interval of 0.11 eV. The migration paths study allowed the discovery of activation energies, used as entry parameters for a kinetic Monte Carlo code. This code was developed for calculating the diffusion coefficient of the interstitial point defect. Our results suggest a migration parallel to the basal plane twice as fast as one parallel to the c direction, with an activation energy of 0.08 eV, independent of the direction. The vacancy diffusion coefficient, estimated with a two-jump model, is also anisotropic, with a faster process in the basal planes than perpendicular to them. Hydrogen influence on the vacancy dislocation loops nucleation was also studied, due to recent experimental observations of cladding growth acceleration in the presence of this element [fr

  11. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  12. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  13. Determination of hafnium at the 10−4% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Graphical abstract: -- Highlights: •We worked out ICP-MS method of Hf determination in Zr and Zr compounds. •We used NAA method as reference one. •We obtained pure zirconium matrix by ion exchange (Diphonix ® resin). •These permit to determine ≥1 × 10 −4 % Hf in Zr sample by ICP MS with good precision and accuracy. -- Abstract: Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix ® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr] 0 /[Hf] 0 ) ranged from 1200 to ca. 143,000

  14. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  15. X-ray K-absorption edge of zirconium in some perovskite type zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, B K; Patil, R N [Shivaji Univ., Kolhapur (India). Dept. of Physics

    1979-01-01

    The chemical shifts in the X-ray K-absorption edges of zirconium in the zirconates of calcium, strontium, barium and lead and zirconium oxide have been investigated employing a 400 mm bent crystal X-ray spectrograph. It has been found that the discontinuity shifts towards the high energy side with respect to that in the pure metal and that the chemical shift depends upon the size of the next nearest cation. The larger the size of the cation, smaller is the chemical shift. Dependence of the shift on the crystal structure and the packing factor of the perovskite is also reported.

  16. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  17. Spectrofluorimetric determination of hafnium and zirconium with 3,7-dihydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takushi; Suzuki, Osamu; Seuzuki, Tetsuo; Murata, Akira

    1986-04-01

    The absorptive and fluorescent characteristics of the hafnium and zirconium complexes of 3-hydroxyflavone and its 12 hydroxy and methoxy derivatives have been studied. The fluorescence of the 1:1 hafnium - 3,7-dihydroxyflavone complex (lambdasub(ex.)397 nm,lambdasub(em.) 465 nm) in 3 M hydrochloric acid has been used to determine 2-40 ng ml/sup -1/ of hafnium. The fluorescence of the 1:1 zirconium - 3,7-dihydroxyflavone complex (lambdasub(ex.) 395 nm, lambda sub(em.) 465 nm) at pH 2.0 in 0.02 M sulphate solution has been used to determine 2-40 ng ml/sup -1/ of zirconium. These methods are very sensitive and can be used for the simultaneous determination of hafnium and zirconium with an error of about 5%.

  18. Collaborative study of the colorimetric determination of zirconium in antiperspirant aerosols

    International Nuclear Information System (INIS)

    Beavin, P. Jr.

    1977-01-01

    A previously published method for determining zirconium in antiperspirant aerosols was collaboratively studied by 7 laboratories. The method consists of 2 procedures: a rapid dilution procedure for soluble zirconium compounds or a lengthier fusion procedure for total zirconium followed by colorimetric determination. The collaborators were asked to perform the following: Spiking materials representing 4 levels of soluble zirconium were added to weighed portions of a zirconium-free cream base concentrate and the portions were assayed by the dilution procedure. Spiking materials representing 4 levels of zirconium in either the soluble or the insoluble form (or as a mixture) were also added to portions of the same concentrate and these portions were assayed by the fusion procedure. They were also asked to concentrate and assay, by both procedures, 2 cans each of 2 commercial aerosol antiperspirants containing zirconyl hydroxychloride. The average percent recoveries and standard deviations for spiked samples were 99.8-100.2 and 1.69-2.71, respectively, for soluble compounds determined by the dilution procedure, and 93.8-97.4 and 3.09-4.78, respectively, for soluble and/or insoluble compounds determined by the fusion procedure. The average perent zirconium found by the dilution procedure in the 2 commercial aerosol products was 0.751 and 0.792. Insufficient collaborative results were received for the fusion procedure for statistical evaluation. The dilution procedure has been adopted as official first action

  19. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    Science.gov (United States)

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  1. Hydrogen outbreak of Zirconium Molybdate Hihydrate

    International Nuclear Information System (INIS)

    Miura, Yasuhiko; Fukuda, Kazuhiro; Ochi, Eiji

    2008-01-01

    JNFL is planning to construct a facility for enclosing the hull and end pieces produced due to reprocessing of spent fuel into stainless canisters after compressing, while those hull and end pieces enclosed into the stainless canisters are called 'compressed hulls'. Since the compressed hulls contain moisture absorbent Zirconium Molybdate Hihydrate accompanying hull and end pieces, there is a risk of outbreak of radiolysisradiolysis gas such as hydrogen, etc. by radiolysisradiolysis. This report intends to state the result of radiation irradiation experiment with the purpose of examining the volume of hydrogen outbreak from Zirconium Molybdate Hihydrate of the compressed hulls. (author)

  2. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  3. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  4. Preparation of tritiated thymidine of high specific activity

    International Nuclear Information System (INIS)

    Ivan'kova, E.K.; Sidorov, G.V.; Myasoedov, N.F.

    1981-01-01

    Optimum conditions for the reaction are determined; and conditions for reaction component separation on resins of Dowex-1x8 and APA-8p (HCOO - , elution with ammonium formate) are optimized. It is established that the transition from thymine preparations with the specific activity of 0.15 and 1.5 TBq/mmol to the preparation with the specific activity of 3.25 TBq/mmol brings about the reduction in the desoxyribosylation reaction rate and the decrease in the thymidine yield from 85-90 to 65% [ru

  5. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: Identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes

    International Nuclear Information System (INIS)

    Thompson, S.; Mayerl, F.; Walsh, C.T.; Peoples, O.P.; Masamune, S.; Sinskey, A.J.

    1989-01-01

    Thiolase proceeds via covalent catalysis involving an acetyl-S-enzyme. The active-site thiol nucleophile is identified as Cys 89 by acetylation with [ 14 C]acetyl-CoA, rapid denaturation, tryptic digestion, and sequencing of the labeled peptide. The native acetyl enzyme is labile to hydrolytic decomposition with t 1/2 of 2 min at pH 7, 25 degree C. Cys 89 has been converted to the alternate nucleophile Ser 89 by mutagenesis and the C89S enzyme overproduced, purified, and assessed for activity. The Ser 89 enzyme retains 1% of the V max of the Cys 89 enzyme in the direction of acetoacetyl-CoA thiolytic cleavage and 0.05% of the V max in the condensation of two acetyl-CoA molecules. A covalent acetyl-O-enzyme intermediate is detected on incubation with [ 14 C]acetyl-CoA and isolation of the labeled Ser 89 -containing tryptic peptide. Comparisons of the Cys 89 and Ser 89 enzymes have been made for kinetic and thermodynamic stability of the acetyl enzyme intermediates both by isolation and by analysis of [ 32 P]CoASH/acetyl-CoA partial reactions and for rate-limiting steps in catalysis with trideuterioacetyl-CoA

  6. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  7. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  9. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  10. Synthesis of amorphous zirconium oxide with luminescent characteristics

    International Nuclear Information System (INIS)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T.

    2004-01-01

    It was prepared zirconium oxide, ZrO 2 , by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C 3 H 7 O) 4 , as precursor and nitric acid, HNO 3 , as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n H2O /n Zr (C 3 H 7 0) 4 , high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO 2 obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO 2 , presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of 90 Sr/ 90 Y and it was thermally stimulated. (Author)

  11. Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titanium-zirconium phosphates

    International Nuclear Information System (INIS)

    Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C.; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.

    2010-01-01

    Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti 1-x Zr x )(HPO 4 ) 2 .H 2 O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H 3 PO 4 in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits. - Graphical abstract: Layered phosphates of general formula (Ti 1-x Zr x )(HPO 4 ).H 2 O have been prepared by the hydrothermal treatment of amorphous gels in phosphoric acid and characterised by Rietveld analysis of high resolution synchrotron X-ray powder diffraction data and pair distribution function analysis of high energy synchrotron X-ray total scattering data.

  12. Mechanical resistance of zirconium implant abutments: A review of the literature

    Science.gov (United States)

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  13. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  14. Interrelationship between structure and corrosion behaviour of zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, T [Bayer A.G., Leverkusen (Germany, F.R.)

    1979-05-01

    Due to plant failures caused by the break-down of zirconium grade 702 subjected to sulphuric acid the structure and corrosion behaviour of welded and as delivered specimens were tested for various heat treatments. It was shown by structure investigations and electron microprobe analysis that the corrosion behaviour of zirconium (in boiling 65 pct sulphuric acid) is strongly infuenced by the structure, which in its turn is dependent on the grade of purity and the prehistory of the material. Type, amount, and distribution of residual elements or precipitations caused by them are responsible for the corrosion resistance. This is valid particularly for the element iron. The plant failures mentioned here coincided with the examination results. Measures to improve the chemical resistance of pure zirconium subjected to extremely aggressive media were derived.

  15. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  16. MOCVD of zirconium oxide thin films: Synthesis and characterization

    International Nuclear Information System (INIS)

    Torres-Huerta, A.M.; Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Vargas-Garcia, J.R.

    2009-01-01

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO 2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  17. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  18. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  19. Protection of zirconium and its alloys by metallic coatings

    International Nuclear Information System (INIS)

    Loriers, H.; Lafon, A.; Darras, R.; Baque, P.

    1968-01-01

    At 600 deg. C in an atmosphere of carbon dioxide, zirconium and its alloys undergo corrosion which presents two aspects simultaneously: - formation of a surface layer of zirconia, - dissolution of oxygen in the alloy sub-layer leading to brittleness. The two phenomena greatly restrict the possibilities of using zirconium alloys as a canning material for fuel elements in CO 2 cooled nuclear reactors. An attempt has thus been made to limit, and perhaps to suppress, the corrosion effects in zirconium under these conditions by protecting it with metallic coatings. A first attempt to obtain a protection using copper-based coatings did not produce the result hoped for. Aluminium coatings produced by vacuum evaporation, followed by a consolidating thermal treatment make it possible to prevent the formation of the zirconia layer, but they do not eliminate the hardening effect produced by oxygen diffusion. On the other hand, electrolytically produced chromium deposits whose adherence is improved by a thermal vacuum treatment, counteract both these phenomena simultaneously. A similar result has been obtained with coatings of molybdenum produced by the technique of high-frequency inductive plasma sputtering. The particular effectiveness of the last two types of coatings is due to their structures characterized by the existence of an adherent film of chromium or molybdenum in the free state. (authors) [fr

  20. Preparation of [35S]sulfobromophthalein of high specific activity

    International Nuclear Information System (INIS)

    Kurisu, H.; Nilprabhassorn, P.; Wolkoff, A.W.

    1989-01-01

    Study of the hepatocyte transport mechanism of organic anions such as bilirubin and sulfobromophthalein has been limited by the relatively low specific activities of these ligands. [ 3 H]Bilirubin and [ 35 S]sulfobromophthalein have been available with specific activities of only approximately 100 mCi/mmol. We now report a relatively simple procedure to prepare [ 35 S]sulfobromophthalein at a specific activity of approximately 3000 mCi/mmol. This compound is radiochemically pure and serves as a tracer for authentic sulfobromophthalein as judged by chromatography, hepatocyte uptake, metabolism, and biliary excretion. Use of this material as a photoaffinity probe and as a transported ligand may permit dissection and understanding of its transport mechanism

  1. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  2. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  3. [The clinical application of zirconium-dioxide-ceramics. Case report].

    Science.gov (United States)

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  4. Distribution of zirconium in the nitric acid-water-TPB-diluent system

    International Nuclear Information System (INIS)

    Shu, J.; Floh de Araujo, B.

    1984-10-01

    This paper deals with the extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems. The main purpose is to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a mininum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon ziconium behaviour was also verified. With the data obtained it was possible to introduce some modification in the standard Purex flow-sheet with the increase of the decontamination of uranium from zirconium. 5 refs., 9 figs

  5. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  6. Acridinium esters as high-specific-activity labels in immunoassay

    International Nuclear Information System (INIS)

    Weeks, I.; Beheshti, I.; McCapra, F.; Campbell, A.K.; Woodhead, J.S.

    1983-01-01

    A chemiluminescent acridinium ester has been synthesized that reacts spontaneously with proteins to yield stable, immunoreactive derivatives of high specific activity. The compound has been used to prepare chemiluminescent monoclonal antibodies to human alpha 1-fetoprotein having average incorporation ratios as great as 2.8 mol of label per mole of antibody, which corresponds to a detection limit of approximately 8 X 10(-19) mol. These antibodies have been used in the preliminary development of a two-site immunochemiluminometric assay for human alpha 1-fetoprotein, which requires only a 30-min incubation and a quantification time of 5 s per sample

  7. Separation process of zirconium and hafnium

    International Nuclear Information System (INIS)

    Hure, J.; Saint-James, R.

    1955-01-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO 3 - ions concentration, the role of the cation coming with NO 3 - , as well as the influence of the concentration of zirconium in the solution on the separation coefficient β = α Zr / α Hf . (M.B.) [fr

  8. Zirconium diselenite microstructures, formation and mechanism

    Science.gov (United States)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  9. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  10. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  11. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  12. Extraction and determination of hydrogen in uranium and zirconium

    International Nuclear Information System (INIS)

    Champeix, L.; Coblence, G.; Darras, R.

    1959-01-01

    The method of desorption under vacuum at high temperatures in the solid phase, which gives good results in the case of steels, has been applied to uranium and zirconium. In these two metals hydrogen is found mainly in the form of hydride. It is chiefly a question of determining the most suitable temperature and the heating time necessary to obtain an almost total extraction of hydrogen. Two considerations must be taken into account in the choice of temperature. It should be such that on the one hand the hydride decomposes rapidly and completely at the reduced pressure applied, and on the other hand the diffusion of hydrogen through the metal takes place fairly quickly. The apparatus and the method used are described; systematic tests have led to the adoption of temperatures of 650 deg. C for uranium and 1050 deg. C for zirconium. (author) [fr

  13. Change in the work function of zirconium by oxidation at high temperatures and low oxygen pressures

    International Nuclear Information System (INIS)

    Maeno, Yutaka; Yamamoto, Masahiro; Naito, Shizuo; Mabuchi, Mahito; Hashino, Tomoyasu

    1991-01-01

    Changes in the work function of zirconium on oxidation are measured at oxygen pressures of 3.0 x 10 -6 - 3.0 x 10 -4 Pa and at temperatures in the range 426-775 K. The work function first decreases then increases until a final saturation stage is reached. Use of secondary-ion mass spectroscopy (SIMS) shows that the changes correspond to oxygen adsorption, oxide nucleation and oxide growth, respectively. The initial decrease in work function is interpreted by the incorporation of oxygen adatoms into the subsurface. The oxygen adsorption potential of zirconium is evaluated by an effective medium theory, and the physical origin of the incorporation of oxygen adatoms is discussed. The positive change in the work function caused by oxide formation and the temperature and pressure dependences of the change in the work function by oxidation are explained qualitatively. (author)

  14. Zirconium-made equipment for the new La Hague reprocessing plants

    International Nuclear Information System (INIS)

    Decours, J.; Demay, R.; Bernard, C.; Mouroux, J.P.; Simonnet, J.

    1991-01-01

    The use of zirconium was developed to solve some problems of severe corrosion in boiling nitric medium, and to guarantee the service life of the equipment concerned. The paper presents the experience gained since the early 1970s, when the first units made of zirconium were used in French reprocessing plants. For the new La Hague UP3 and UP2 800 plants, it was decided to extend the use of zirconium to make large-scale equipment and, to do so, a major R and D program was implemented, of which the main results are presented

  15. In-situ stabilization of radioactive zirconium swarf

    Science.gov (United States)

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  16. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  17. Study of some properties of zirconium phosphate; Etude de quelques proprietes du phosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Prospert, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-05-01

    Zirconium phosphate has been studied with a view to using it as an ion exchanger: the first objective was to develop a method of preparation easy to apply and also reproducible. To this end, several tests were carried out varying the molar ratios of phosphorus and of zirconium. Some physical properties such as the diffraction of X-rays were examined. The work then involved certain chemical properties, particularly the percentages of free water and structural water given by the loss on calcination, the Karl-Fisher method and the weight losses by thermogravimetry. Finally an attempts was made to apply the exchanger to the separation of alkaline ions. The static tests showed that the order of fixation of these ions was Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Tests with columns showed that Na{sup +} and K{sup +} were easily separable, as was the Rb{sup +}-Cs{sup +} mixture, this last pair being fairly difficult to dissociate. (author) [French] Le phosphate de zirconium a ete etudie en vue de son utilisation comme echangeur d'ions: le premier but a atteindre a ete de mettre au point une preparation pouvant se reveler facilement utilisable ainsi qu'aisement reproductible. A cet effet, plusieurs essais ont ete effectues en faisant varier les rapports molaires du phosphore et du zirconium. Quelques proprietes physiques, telle la diffraction des rayons X, ont ete abordees. Ensuite, l'etude a porte sur certaines proprietes chimiques, particulierement les pourcentages d'eau libre et d'eau de structure par des pertes au feu, utilisation de la methode de Karl-Fisher, ainsi que des pertes de poids a la thenmobalance. Enfin, on a tente d'utiliser l'echangeur a la separation des ions alcalins. Les etudes statiques ont permis de constater que l'ordre de fixation de ces ions etait Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Les essais effectues en colonne ont montre que Na{sup +} et K{sup +} etaient aisement separables entre eux, ainsi que du couple Rb{sup +}-Cs{sup +}, ce

  18. Thermodynamic and kinetic characterization of a zirconium chelate

    International Nuclear Information System (INIS)

    Stumpf, H.O.; Ekman, M.F.; Souza, R.F.; Costa, V.H.; Dick, Y.P.

    1980-01-01

    The chemical preparation, composition and characteristics of a zirconium complex with hemateine was studied. Hematein is the common name of an organic compound containing hydroxy-aromatic and hydroxyquinonic groups. The stability constant of this complex was determined spectrophotometrically. Other thermodynamic parameters for the complex formation were also determined; the effect of temperature on these parameters was examined. Reaction kinetics was investigated, as well as the charge of reacting species for the formation of the activated complex. (C.L.B.) [pt

  19. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    Science.gov (United States)

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  1. Synthesis and characterization of isomorphously zirconium substituted Mobil Five (MFI) zeolite

    International Nuclear Information System (INIS)

    Shah, Kishor Kr.; Saikia, Jitu; Saikia, Durlov; Talukdar, Anup K.

    2012-01-01

    Highlights: ► In situ modification of the MFI zeolite by incorporation of Zr in various ratios. ► The samples were characterized by XRD, FT-IR, TGA, UV–vis (DRS), SAA and SEM. ► The amount of the Zr incorporated in the product is determined by EDX analysis. ► The incorporation of Zr is confirmed by XRD, FT-IR, UV–vis (DRS) and TGA. - Abstract: A series of zirconium doped Mobil Five (MFI) zeolites were synthesized hydrothermally with silicon to aluminium plus zirconium ratios of 100 and 200 and with different Al to Zr ratios. The MFI zeolite phase was identified by XRD and FT-IR analysis. UV–vis (DRS) and TG analyses suggested isomorphous substitution of Zr in the framework of MFI structure. The specific surface area, pore volume and pore size of the synthesized samples were investigated by the nitrogen adsorption method, while morphology was examined using scanning electron microscopy.

  2. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    Science.gov (United States)

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  3. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  4. Natural radioactivity concentration in raw materials used for manufacturing refractory products

    International Nuclear Information System (INIS)

    Fathivand, A. A.; Amidi, J.; Hafezi, S.

    2007-01-01

    Some Particular areas contain natural radionuclide at levels much higher than those usually present in earth's crust. The radiological impact of the use of zirconium ore in zirconium industry is due to internal exposure of the lung by alpha particles and external exposure of the body by the gamma rays. The result of gamma spectrometry measurement of the concentrations of the natural radionuclide in zirconium industry is described. Materials and Methods: Gamma spectrometry system with a shielded high pure germanium (HPGe) detector connected to multi channel analyzer (MCA) was used to determine concentrations of natural radionuclide in about 45 samples of imported zirconium minerals, tiles, stone ware and waste sludge's of Iranian ceramic industry. Results: The 238 U concentration in the samples, ranging from 3000 to 10000 Bq Kg -1 , is higher than the concentration of both 232 Th (500-1800 Bq Kg -1 ), and 40 K (50-800 Bq Kg -1 ). The measured specific activities in the mineral showed that specific activity of baddeleyite is higher than that of zircon. The results of ceramic tiles show that the tiles usually contain small amount of zirconium compound. Conclusion: Due to relatively high concentration level of uranium in imported zirconium samples, specific regulations is necessary for zirconium compound used in ceramic industry

  5. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  6. History of the development of zirconium alloys for use in nuclear reactors

    International Nuclear Information System (INIS)

    Rickover, H.G.; Geiger, L.D.; Lustman, B.

    1975-01-01

    The technical problems and the major decisions made during the early development of zirconium alloys for use in naval reactors are outlined. A summary is given of the development of commercial sources of supply for zirconium and hafnium metal over the period 1950 to 1965, and the problems encountered in obtaining zirconium needed for early naval prototype and shipboard reactors are identified. Steps taken in the Government procurement process are described and statistics on production amounts, prices, and inventory are included. Also included are the technical aspects associated with the development of zirconium for water-cooled nuclear reactors, beginning in early 1949 when the Bettis Atomic Power Laboratory was established as a part of the Naval Reactors Program. While in the course of the next 25 years, small-scale investigations were performed on other potential core structural materials such as stainless steel, niobium, aluminum, and beryllium, the pressure for continual development, improvement, and application of zirconium was predominant and unrelenting. (U.S.)

  7. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Wang Luning; Luo Jingli

    2011-01-01

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO 2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  8. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aktuğ, Salim Levent, E-mail: saktug@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Durdu, Salih, E-mail: durdusalih@gmail.com [The Department of Industrial Engineering, Giresun University, Merkez, Giresun 28200 (Turkey); Yalçın, Emine, E-mail: emine.yalcin@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Çavuşoğlu, Kültigin, E-mail: kultigin.cavusoglu@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Usta, Metin, E-mail: ustam@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Materials Institute, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470 (Turkey)

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28 days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370 A/cm{sup 2} was minimum compared to uncoated zirconium coated at 0.260 and 0.292 A/cm{sup 2}. The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. - Highlights: • Hydroxyapatite was formed on zirconium at different current densities by single-step plasma electrolytic oxidation. • The amount of hydroxyapatite and calcium-based phases increased with

  9. Lithium aluminate/zirconium material useful in the production of tritium

    Science.gov (United States)

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  10. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for {sup 89}Zr-immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, Danielle J.; Klaver, Chris; Sewing, Claudia; Poot, Alex J.; Adamzek, Kevin; Visser, Gerard W.M.; Dongen, Guus A.M.S. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Huegli, Seraina; Mari, Cristina; Gasser, Gilles [University of Zurich, Department of Chemistry, Zurich (Switzerland); Valverde, Ibai E. [University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel (Switzerland); Mindt, Thomas L. [Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); General Hospital of Vienna, Ludwig Boltzmann Institute for Applied Diagnostics, Vienna (Austria)

    2017-02-15

    All clinical {sup 89}Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of {sup 89}Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its {sup 89}Zr-DFO*-mAb complex with {sup 89}Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl {sup 89}Zr-DFO*-trastuzumab was more stable than {sup 89}Zr-DFO-trastuzumab; after 72 h incubation at 2-8 C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for {sup 89}Zr-DFO*-trastuzumab compared to {sup 89}Zr-DFO-trastuzumab. At 144 h p.i. for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, the uptake in sternum was 0.92

  11. Determination of the ruthenium, cerium and zirconium radio-activity of sea-water by carrying-over and adsorption using manganese dioxide

    International Nuclear Information System (INIS)

    Guegueniat, P.

    1967-01-01

    Principle: Manganese dioxide is precipitated in the medium to be analyzed by the action of hydrogen peroxide on potassium permanganate. Large volumes of sea-water are treated by successive adsorptions of 80 litre fractions using always the same precipitate obtained from 30 g of potassium permanganate. Some examples are given concerning the analysis of 80, 160, 1000 and 2000 litres of water. Advantages of the technique: The existence of low activities due to ruthenium, zirconium and cerium can be demonstrated if sufficiently large volumes of water are treated. (author) [fr

  12. Coupling NMR with Synchrotron radiation at high temperature for the study of molten fluorides : applied to zirconium fluorides

    International Nuclear Information System (INIS)

    Maksoud, Louis

    2013-01-01

    Molten fluorides are used in Molten Salt Reactors MSR such as the non moderated fast reactor MSFR, where the molten salt LiF-ThF 4 is the fuel and the coolant. The formation of fission products (FP) such as lanthanides, during the reactor operation, possibly modifies the physicochemical properties of the melt. It is therefore important to characterize the melt from the structural and the dynamics point of view in order to determine its properties. Because of problems related to the radioactivity of thorium, as well as requirements related to spectroscopic methods, the system studied in this thesis is the LiF-ZrF 4 -LaF 3 (zirconium and lanthanum are possible FP). The approach followed in this thesis combines measurements by NMR spectroscopy and EXAFS at 850 C with molecular dynamics simulations. In the molten salt, we have shown the existence of zirconium and lanthanum complexes with different coordination numbers, whose proportions depend on the composition. Depending on the content of ZrF 4 , [ZrF 7 ] 3- species are dominant but change slightly and are further connected between each other's via bridging fluorine. The addition of LaF 3 to the mixture stabilizes the 7 coordination number around the zirconium and tends to enrich the environment of lanthanum with fluorides. A medium-range order is established between the various complexes containing zirconium and lanthanum due to bridging fluorine. Species dynamics is slower when the amount of either ZrF 4 or LaF 3 is higher. We noted a significant effect on the structure and dynamics of species starting 10 mol% LaF 3 added to the medium. The data obtained by this novel approach concerning the chemistry of the molten salt in MSR containing FP, are fundamental to improve the separation of these products and optimize the process. (author)

  13. Quality control methods of strontium chloride 89SrCl2, radiopharmaceutical for palliative treatment of bone metastases

    International Nuclear Information System (INIS)

    Deptula, C.Z.; Kempisty, T.; Markiewicz, A.; Mikolajczak, R.; Stefancyk, S.; Terlikowska, T.; Zulczyk, W.

    1997-01-01

    Strontium chloride, 89 SrCI 2 , a radiopharmaceutical used for palliative therapy of bone metastases from breast and prostate cancer is produced by irradiation in a nuclear reactor. The analytical quality control procedures are established to confirm the radionuclidic purity of the preparation, its chemical composition and specific activity. Chemical concentration of strontium in the product is determined by complexometry with arsenazo III and chlorides assay by potentiometric titration with silver nitrate. The contamination with chemical impurities is determined by DC graphite spark spectrography. The specific activity and isotonicity of the solution are corrected by addition of natural SrCI 2 and NaCI. 90 Sr is produced in the 89 Sr(n,γ) 90 Sr reaction contributes to impurities. It decays to 90 Y and the activity of 90 Sr can be calculated from the activity of 90 Y. The extraction chromatography on nonionic acrylic ester polymer coated with organic solutions of selective features (Spec resins for Eichrom) is applied for separation of radionuclides. The extraction chromatography system consisting of two columns: strontium selective resin and rare earth elements selective resin was used for separation of 90 Y from 90 Sr in the 89 SrCI 2 solution. The 90 Y and 90 Sr carrier-free solutions used as tracers helped for determination of extraction conditions and efficiency. The concentration of 90 Sr determined in the analysed solution is at the level of 2.10 -4 % which conforms with the data calculated from irradiation parameters. The obtained product, strontium chloride 89 SrCI 2 for injection, forms a sterile and isotonic water solution (pH - 4-7) with specific activity of 89 Sr in the range from 3.5 to 6.3. MBq/mg and radioactive concentration of 37.5 MBq/ml. The radionuclidic purity of the obtained preparations is at the level of 99.9% with respect to 89 Sr

  14. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  15. Study of zirconium-addition binary systems

    International Nuclear Information System (INIS)

    Wozniakova, B.; Kuchar, L.

    1975-01-01

    The curves are given of the solid and the liquid of binary zirconium-addition systems. Most additions reduce the melting temperature of zirconium. The only known additions to increase the melting temperature are nitrogen, oxygen and hafnium. Also given are the transformation curves of the systems and the elements are given which reduce or raise the temperature of α-β transformation. From the Mendeleev table into which are plotted the curves of the solid and the liquid of binary systems it is possible to predict the properties of unknown binary systems. For the calculations of the curves of the solid and the liquid, 1860 degC was taken as the temperature of zirconium melting. For the calculations of transformation curves, 865 degC was taken as the temperature of α-β transformation. The equations are given of the curves of the solid and the liquid and of the transformation curves of some Zr-addition systems. Also given are the calculated equilibrium distribution coefficients and the equilibrium distribution coefficients of the transformation of additions in Zr and their limit values for temperatures approximating the melting point or the temperature of the transformation of pure Zr, and the values pertaining to eutectic and peritectic or eutectoid and peritectoid temperatures. (J.B.)

  16. Bioremediation of zirconium from aqueous solution by coriolus versicolor: process optimization

    International Nuclear Information System (INIS)

    Amin, M.; Bhatti, H. N.; Sadaf, S.

    2013-01-01

    In the present study the potential of live mycelia of Coriolus versicolor was explored for the removal of zirconium from simulated aqueous solution. Optimum experimental parameters for the bioremediation of zirconium using C. versicolor biomass have been investigated by studying the effect of mycelia dose, concentration of zirconium, contact time and temperature. The isothermal studies indicated that the ongoing bioremediation process was exothermic in nature and obeyed Langmuir adsorption isotherm model. The Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) of bioremediation were also determined. The result showed that bioremediation of zirconium by live C. versicolor was feasible and spontaneous at room temperature. The equilibrium data verified the involvement of chemisorption during the bioremediation. The kinetic data indicated the operation of pseudo-second order process during the biosorption of zirconium from aqueous solution. Maximum bioremediation capacity (110.75 mg/g) of C. versicolor was observed under optimum operational conditions: pH 4.5, biomass dose 0.05 mg/100 mL, contact time 6 h and temperature 30 degree C. The results showed that C. versicolor could be used for bioremediation of heavy metal ions from aqueous systems. (author)

  17. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  18. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  19. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  20. Acid-Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides

    DEFF Research Database (Denmark)

    Li, Hu; He, Jian; Riisager, Anders

    2016-01-01

    sites, and their catalytic activity in converting biomass-derived carbonyl compounds to corresponding alcohols in 2-propanol. Particularly, a quantitative yield of furfuryl alcohol (FFA) was obtained from furfural (FUR) over organotriphosphate-zirconium hybrid (ZrPN) under mild conditions. The presence...

  1. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  2. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  3. Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Mohajerani, Ezeddin; Khabbazi, Amir

    2012-11-01

    Novel zirconium complexes have been synthesized by using a mixture of zirconium nitrate, 1,2,4,5-benzen tetracarboxylic acid (H4btec), 1,10-phenanthroline(phen) and potassium thiocyanate. Monodentate coordination mode of btec acid for all complexes was investigated by FT-IR spectroscopy. The complexes were also characterized by UV-Vis, 1H NMR, CHN, ICP-AES. The reaction details and features were described and discussed. The photoluminescence emission of seven zirconium complexes was shown two series peaks: first, sharp and intense bands from 300 to 500 nm and broadened with less intensity from 650 to 750 nm for the second bands. Each of the zirconium compounds were doped in PVK:PBD blend as host. The ratio of zirconium complexes for each type were modified 8 wt.% in PVK:PBD(100:40). The electroluminescence spectra of zirconium complexes were indicated a red shift rather than PVK:PBD blend. We suggest that the electroplex occurring at PVK-Zr complex interface.

  4. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  5. An evaluated neutronic data file for elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Chiba, S.

    1994-09-01

    A comprehensive evaluated neutronic data file for elemental zirconium is derived and presented in the ENDF/B-VI formats. The derivation is based upon measured microscopic nuclear data, augmented by model calculations as necessary. The primary objective is a quality contemporary file suitable for fission-reactor development extending from conventional thermal to fast and innovative systems. This new file is a significant improvement over previously available evaluated zirconium files, in part, as a consequence of extensive new experimental measurements reported elsewhere

  6. Effect of zirconium addition on the recrystallization behaviour of a ...

    Indian Academy of Sciences (India)

    In the present work, zirconium was added to a commercial Al–Cu–Mg alloy and by heat treatment Al3Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, ...

  7. Optimization of the conditions for producing zirconia by the precipitation of basic zirconium sulfate

    International Nuclear Information System (INIS)

    Ricci, D.R.; Paschoal, J.O.A.

    1988-01-01

    The process of precipitation of the basic sulfate from zirconium oxychlorides solutions has been optimized in order to obtain zirconia of high purity as well as suitable for ceramic processing. The main parameters of this study were obtained from the determination of the pH and of the concentration of the initial oxychloride solution, of the sulfate/zirconium molar ratio and of the reaction temperature. The following experimental procedure has been carried out: a) reaction of each precipitate with ammonium hydroxide followed by drying at 150 0 -C / 5 h and calcination at 1000 0 C / 1 h, yielding the final product (zirconia) b) product characterization by means of spectrographic, X - ray fluorescence and diffractometry analyses, determination of grain size distribution and of apparent density, and morphology study by scanning electron microscopy. The yielding of the overall reaction has been determined by chemical analysis and the composition of the basic zirconium sulfate by thermogravimetric analyses. (author) [pt

  8. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  9. Process for electrolytic deposition of metals on zirconium materials

    International Nuclear Information System (INIS)

    Donaghy, R.E.

    1981-01-01

    An article made of a zirconium alloy can be electrolytically plated with a layer of a metal such as copper, nickel or chromium when the article is free of any loosely adhering film formed during an activation step. The article is activated in an aged aqueous solution of ammonium bifluoride and sulfuric acid. Next the loosely adhering film formed in the first step is removed by chemical treatment, ultrasonic cleaning, or by swabbing the surface with cotton or an organic material. Finally the article is contacted with an electrolytic plating solution in the presence of an electrode receiving current

  10. Densification of silicon and zirconium carbides by a new process: spark plasma sintering

    International Nuclear Information System (INIS)

    Guillard, F.

    2006-12-01

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  11. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  12. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  13. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  14. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  15. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    International Nuclear Information System (INIS)

    Tomul, Fatma

    2011-01-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+ , Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  16. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, P.G.; Souza, J.R. de

    1991-01-01

    A gravimetric method for zirconium determination in refractories is described. X-ray fluorescence analysis is also employed in this experiment and considerations about interfering elements are presented. (M.V.M.)

  17. Production of N-13 labeled compounds with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  18. Fluorimetric determination of uranium in zirconium and zircaloy alloys

    International Nuclear Information System (INIS)

    Acosta L, E.

    1991-05-01

    The objective of this procedure is to determine microquantities of uranium in zirconium and zircaloy alloys. The report also covers the determination of uranium in zirconium alloys and zircaloy in the range from 0.25 to 20 ppm on 1 g of base sample of radioactive material. These limit its can be variable if the size of the used aliquot one is changed for the final determination of uranium. (Author)

  19. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  20. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  1. Preparation of highly-oxidized starch using hydrogen peroxide and its application as a novel ligand for zirconium tanning of leather.

    Science.gov (United States)

    Yu, Yue; Wang, Ya-Nan; Ding, Wei; Zhou, Jianfei; Shi, Bi

    2017-10-15

    A series of highly-oxidized starch (HOS) were prepared using H 2 O 2 and a copper-iron catalyst as a desired ligand for zirconium tanning of leather. The effects of catalyst and H 2 O 2 dosages, and reaction temperature on the oxidation degree (OD, represented as the amount of carbonyl and carboxyl groups derived) of starch were investigated. The OD reached 76.2% when oxidation was conducted using 60% H 2 O 2 and 0.015% catalyst at 98°C for 2h. 13 C NMR and FT-IR illustrated carbonyl and carboxyl groups were formed in HOS after oxidation. GPC and laser particle size analyses indicated the decrease of HOS molecular size with increasing H 2 O 2 dosage and OD. HOS with moderate OD and molecular weight was able to coordinate with zirconium and remarkably improve tanning process. Leather tanned by Zr complexes using HOS-60 (60% H 2 O 2 , Mn 3516g/mol) as ligand presented considerably better physical and organoleptic properties than those of traditional Zr-tanned leather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-01-01

    Highlights: → The morphology, content and distribution of ZrO 2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO 2 -GAC exhibited Zr content of 12%, while bituminous based ZrO 2 -GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO 3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO 2 -GAC, while the one of bituminous ZrO 2 -GAC decreased. - Abstract: This study investigated the effects of in situ ZrO 2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 o C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO 2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO 3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C 0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal

  3. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC–ESI-MS response for the bioanalysis of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shah; Pezzei, Cornelia [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Güzel, Yüksel [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Huck, Christian W., E-mail: Christian.W.Huck@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2014-12-10

    Highlights: • A novel sample preparation technique for isolation of small molecules from human plasma. • Effectiveness of zirconium silicate for the removal of residual proteins after protein precipitation. • Abolishing the consumption of salts for the depletion of residual proteins after protein precipitation. • More than 99.6% removal of plasma proteins. - Abstract: An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC–DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81–86% and 78–83%, respectively. Caffeic acid was extracted in the excess of 89–92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87–91% and 92–95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization

  4. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC–ESI-MS response for the bioanalysis of small molecules

    International Nuclear Information System (INIS)

    Hussain, Shah; Pezzei, Cornelia; Güzel, Yüksel; Rainer, Matthias; Huck, Christian W.; Bonn, Günther K.

    2014-01-01

    Highlights: • A novel sample preparation technique for isolation of small molecules from human plasma. • Effectiveness of zirconium silicate for the removal of residual proteins after protein precipitation. • Abolishing the consumption of salts for the depletion of residual proteins after protein precipitation. • More than 99.6% removal of plasma proteins. - Abstract: An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC–DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81–86% and 78–83%, respectively. Caffeic acid was extracted in the excess of 89–92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87–91% and 92–95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization

  5. Determination of impurities in uranium--niobium (7.5%)--zirconium (2.5%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arragon, Y

    1973-10-01

    The determination of 11 impurities in uranium--niobium-- zirconium alloys was studied. Elements of which the alloy is composed are considered and information is given on the determination of niobium by niobic acid precipitation. Selective elimination of the three components is discussed. Two liquid-liquid extractions are used. The nioblum is separated by methylisobutylketone in a hydrochloric --hydrofluoric medium and the zirconium and uranium by tributyl phosphate in a nitric medium. The determination of trace elements using electrochemical methods is discussed. Anodic re-dissolution polarography or square wave polarography enabled six elements (cadmium, copper, lead, zinc, bismuth, and thallium) to be determined in a carbonate medium together with aluminium in tetraethylammonium perchlorate, molybdenum in nitric acid, ammonium nitrate, and tungsten in hydrochloric acid with added double sodium and potassium tartrate. Fluorine was determined using ionometric techniques with a specific electrode and carbon was titrated by conductometry after combustion of the sample in an oxygen current. (auth)

  6. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  7. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  8. Thermal behaviour of nitrogen implanted into zirconium

    International Nuclear Information System (INIS)

    Miyagawa, S.; Ikeyama, M.; Saitoh, K.; Nakao, S.; Niwa, H.; Tanemura, S.; Miyagawa, Y.

    1994-01-01

    Zirconium films were implanted with 15 N ions of energy 50keV to a total fluence of 1x10 18 ionscm -2 in an attempt to study the formation process and thermal stability of ZrN layers produced by high fluence implantation of nitrogen. Subsequent to the implantation at room temperature, samples were annealed at temperatures of 300 C-900 C. The depth profiles of the implanted nitrogen were measured by nuclear reaction analysis using the 15 N(p,αγ) 12 C at E R =429keV, and the surfaces were examined by thin film X-ray diffraction (XRD) and scanning electron microscopy. There were many blisters 0.2-0.4μm in diameter on the surface of the as-implanted samples and double peaks were observed in the nitrogen depth profiles; they were in both sides of the mean projected range. It was found that most of the blisters became extinct after annealing above 400 C, and the XRD peak (111) intensity was increased with the increase in the annealing temperature. Moreover, 14 N and 15 N implantations were superimposed on Zr samples in order to study the atomic migration of nitrogen at each stage of high fluence implantation. It was found that the decrease in the peak at the deeper layers was related to blister extinction and nitrogen diffusion into underling zirconium which could be correlated with radiation damage induced by post-implanted ions. ((orig.))

  9. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the main factor is the changing of water chemistry and the H 2 O 2 concentration play the determinative role. Probably, the influence of H 2 O 2 is based on the formation of unstable compound ZrO 3 ·nH 2 O and Zr(OH) 4 with high solubility. The validity of the used formulae was confirmed by corrosion measurements on WWER and RBMK fuel cladding. The model can be applied for calculating the reliability of nuclear fuel operation. (author)

  10. Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations.

    Science.gov (United States)

    Feusier, Julie; Witherspoon, David J; Scott Watkins, W; Goubert, Clément; Sasani, Thomas A; Jorde, Lynn B

    2017-01-01

    Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. Alu Yb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. We identified 5,288 putative Alu insertion events, including several hundred novel Alu Yb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare Alu Yb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare Alu Yb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future

  11. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  12. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  13. Production of high specific activity 27Mg by fast neutron irradiation and recoil-aided leaching

    International Nuclear Information System (INIS)

    Wierczinski, B.; Goeij, J.J.M. de; Volkers, K.J.

    2000-01-01

    High specific activity 27 Mg was produced via recoil-aided leaching from alumina in aqueous medium during irradiation with fast neutrons from a nuclear reactor. After irradiation the aqueous medium was passed through an IC-chelate column, the 24 Na formed during irradiation was removed by elution with 0.25 ml . l -1 sodium acetate and subsequently the 27 Mg was eluted with 2 mol . l -1 hydrochloric acid. Irradiation of alumina with a particle size of 3 μm and a specific surface area of 100 m 2 . g -1 in Milli-Q Plus Water yielded 90% of the total 27 Mg activity produced. Under standard conditions activities of about 8 . 10 5 Bq and specific activities of ca. 10 13 Bq . mol -1 were obtained at the end of irradiation. The standard working conditions involved irradiation of 200 mg alumina dispersed in 0.5 ml liquid in a fast neutron flux of 3 . 10 15 m -2 . s -1 for 15 min, a waiting time of 10 min, and a processing time of 15 minutes. Various alumina samples with different particle sizes and specific surfaces were tested, and the 27 Mg yields were fitted to a mathematical function. Since the high leaching yields cannot only be explained by recoil only, other phenomena such as diffusion and leaching aided by the high hydration energy of the Mg 2+ ion are probably involved. (orig.)

  14. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  15. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  16. Hydrolysis of TBF and TiAP in presence of zirconium

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kulikov, I.A.; Kuprij, A.A.

    1992-01-01

    Acid hydrolysis of organic solutions of tributyl phosphate (TBP) and tri-iso-amylphosphate (TiAP) in n-paraffin diluent in the presence of zirconium (0.025-0.1 mole/l) at nitric acid concentration of 0.3-1 mole/l is studied. Hydrolysis of extractants in a two-phase system, modelling conditions of spent fuel reprocessing and consisting of 1.1 mole/l TAP, 3 mole/l nitric acid at zirconium concentration in water phase 0.05-0.11 mole/l, at water-organic phase ratio 10:1 and at 60 deg C is also studied. Constants of TAP hydrolysis in organic and water phases are determined. Mechanism of increasing the TAP hydrolysis rate in zirconium presence is discussed. 5 refs., 2 figs., 5 tabs

  17. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, C.G.; Souza, J.R.

    1991-01-01

    The zirconium determination in refractories is described, consisting in two separation methods for eliminating the interferences. The formatted product is calcined at 1100 0 C and determined gravimetrically as Zr P z 07. (author)

  18. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  19. Zirconium Phosphate Supported MOF Nanoplatelets.

    Science.gov (United States)

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  20. Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Anand

    2017-12-01

    Full Text Available In this work, the influence of zirconium substitution in cubic spinel nanocrystalline CoFe2O4 on the structural, morphological and dielectric properties are reported. Zirconium substituted cobalt ferrite Co1-xZrxFe2O4 (x = 0.7 nanoparticles were synthesized by sol-gel route. The structural and morphological investigations using powder X-ray diffraction and high resolution scanning electron microscope (HRSEM analysis are reported. Scherrer plot, Williamson–Hall analysis and Size-strain plot method were used to calculate the crystallite size and lattice strain of the samples. High purity chemical composition of the sample was confirmed by energy dispersive X-ray analysis. The atoms vibration modes of as synthesized nanoparticles were recorded using Fourier transform infrared (FTIR spectrometer in the range of 4000–400 cm-1. The temperature-dependent dielectric properties of zirconium substituted cobalt ferrite nanoparticles were also carried out. Relative dielectric permittivity, loss tangent and AC conductivity were measured in the frequency range 50 Hz to 5 MHz at temperatures between 323 K and 473 K. The dielectric constant and dielectric loss values of the sample decreased with increasing in the frequency of the applied signal.

  1. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr...

  2. Thermoluminescence of magnesium doped zirconium oxide (ZrO2:Mg) UV irradiated

    International Nuclear Information System (INIS)

    Rivera Montalvo, Teodoro; Furetta, Claudio

    2008-01-01

    Full text: The monitoring of ultraviolet radiation (UVR) different thermoluminescent (TL) materials have been used to measure UVR. UV dosimetry using thermoluminescence phenomena has been suggested in the past by several authors. This technique has an advantage over others methods due to the readout of the samples. Other advantages of these phosphors are their small size, portability, lack of any power requirements, linear response to increasing radiation dose and high sensitivity. Zirconium oxide, recently received full attention in view of their possible use as thermoluminescent dosimeter (TLD), if doped with suitable activators, in radiation dosimetry. In the present investigation thermoluminescent (TL) properties of magnesium doped zirconium oxide (ZrO 2 :Mg) under ultraviolet radiation (UVR) were studied. The ZrO 2 :Mg powder of size 30-40 nm, having mono clinical structure, exhibit a thermoluminescent glow curve with one peak centered at 180 C degrees. The TL response of ZrO 2 :Mg as a function ultraviolet radiation exhibits four maxima centered at 230, 260, 310 and 350 nmn. TL response of ZrO 2 :Mg as a function of spectral irradiance of UV Light was linear in a wide range. Fading and reusability of the phosphor were also studied. The results showed that ZrO 2 :Mg nano powder has the potential to be used as a UV dosemeter in UVR dosimetry. (author)

  3. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  4. Study of diffusion processes in the oxide layer of zirconium alloys

    Directory of Open Access Journals (Sweden)

    Sialini P.

    2016-03-01

    Full Text Available In the active zone of a nuclear reactor where zirconium alloys are used as a coating material, this material is subject to various harmful impacts. During water decomposition reactions, hydrogen and oxygen are evolved that may diffuse through the oxidic layer either through zirconium dioxide (ZrO2 crystals or along ZrO2 grains. The diffusion mechanism can be studied using the Ion Beam Analysis (IBA method where nuclear reaction 18O(p,α15N is used. A tube made of zirconium alloy E110 (with 1 wt. % of Nb was used for making samples that were pre-exposed in UJP PRAHA a.s. and subsequently exposed to isotopically cleansed environment of H2 18O medium in an autoclave. The samples were analysed with gravimetric methods and IBA methods performed at the electrostatic particle accelerator Tandetron 4130 MC in the Nucler Physics Institute of the CAS, Řež. With IBA methods, the overall thicknesses of corrosion layers on the samples, element composition of the alloy and distribution of oxygen isotope 18O in the corrosion layer and its penetration in the alloy were identified. The retrieved data shows at the oxygen diffusion along ZrO2 grains because there are two peaks of 18O isotope concentrations in the corrosion layer. These peaks occur at the environment-oxide and oxide-metal interface. The element analysis identified the presence of undesirable hafnium.

  5. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process

    Science.gov (United States)

    Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue

    2014-04-01

    The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.

  6. Superconductivity in zirconium-rhodium alloys

    Science.gov (United States)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  7. Stress-induced breakdown during galvanostatic anodising of zirconium

    International Nuclear Information System (INIS)

    Van Overmeere, Q.; Proost, J.

    2010-01-01

    Although internal stress is frequently being suggested as a plausible reason for oxide breakdown during valve metal anodising, no direct quantitative evidence has been made available yet. In this work, we anodized sputtered zirconium thin films galvanostatically at room temperature in sulphuric acid until breakdown was observed, and simultaneously measured the internal stress evolution in the oxide in situ, using a high-resolution curvature setup. It was found that the higher the magnitude of the observed internal compressive stress in the oxide, the smaller the oxide thickness at which breakdown occurred. The moment of breakdown was identified from a slope change in the cell voltage evolution, indicative for a decrease in anodising efficiency. The latter presumably occurs as a result of oxygen evolution, initiated by the relative increase of the cubic or tetragonal zirconia phase content relative to the monoclinic one. This was evidenced in turn by comparing electron diffractograms, taken in a transmission electron microscope, before and after breakdown. The critical role of internal stress on oxide breakdown during zirconium anodising can therefore be associated with its promoting effect on the densifying phase transformation of monoclinic oxide.

  8. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    Science.gov (United States)

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  9. Amine extraction of lead(II) and zirconium(IV) with succinate media

    International Nuclear Information System (INIS)

    Mahamuni, S.V.; Mane, C.P.; Sargar, B.M.; Rajmane, M.M.; Anuse, M.A.

    2004-01-01

    Lead is an important constituent of various alloys, which are in increasing demand in manufacture of batteries and nuclear shielding while the use of zirconium in nuclear power plants as entirely cladding uranium fuel is most important. This study was carried out to optimize the extraction conditions for Pb(II) and zirconium(IV)

  10. Inhibitors for the corrosion of reactive metals: titanium and zirconium and their alloys in acid media

    International Nuclear Information System (INIS)

    Petit, J.A.; Chatainier, G.; Dabosi, F.

    1981-01-01

    The search for effective corrosion inhibitors for titanium and zirconium in acid media is growing because of the considerable increase in the use of these materials in chemical process equipment. It still remains limited, as appears from this review, because of the exceptionally high corrosion resistance of the metals. Titanium has received the greater attention. Its corrosion rate can be lowered by introduction in the medium of multivalent ions, inorganic and organic oxidants. Care should be taken to hold the concentration at a level exceeding some critical value, otherwise the corrosion rate increases. Complexing organic agents do not show such hazardous behaviour. The very rapid corrosion of titanium and zirconium in fluoride media may be lessened by complexing the fluoride ions. Though rarely encountered, localized corrosion may be avoided by using inhibitors. In some cases good corrosion inhibitors for titanium are dissolution accelerators for zirconium. (author)

  11. Newly developed active braze powders based on commercial nickel brazes using zirconium as active element for joining ceramic to metal; Entwicklung von neuen Aktivlotpulvern auf Basis kommerzieller Nickellote mit Zirkon als aktivelement zum Fuegen von Keramik-Metall-Verbunden

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Schlaefer, T.; Kopp, N.; Schlegel, A. [Institut fuer Oberflaechentechnik der RWTH Aachen (Germany)

    2010-06-15

    The increased requirements of highly stressed components, concerning the resistance to thermal-induced stresses, oxidation, corrosion, hardness as well as wear resistance make high-performance technical ceramics ideally suited for such applications. On the other hand they exhibit properties like high brittleness, partly low thermal shock resistance, low workability and consequential limitations in the engineering design. Hybrid material concepts, as combination of high-performance technical ceramics and metallic engineering materials, can offer interesting technological solutions, if suitable and joining technologies are available. Active brazing, which is a very flexible joining technology in respect of the material selection, arises for the development of new and innovative applications, such as high-temperature fuel cells. Currently silver/copper, copper and silver active brazing filler metals are already used in the industry and are characterised by a decrease of their mechanical strength at approx. 500 C. Referring to this, gold and palladium active brazing filler metals show better features, but because of their high price, they are seldom used. The aim of the reported investigations is the development of active brazing filler metals with reasonable raw materials costs for working temperatures above 500 C and moreover to be used in hydrocarbonated environments with better corrosion-resistance than silver/copper, copper and silver active brazing filler metals. Experimental brazing filler metals with zirconium as surface-active element has been manufactured on the basis of nickel brazing filler metals NI 102, NI 105 and NI 107. The modification of each nickel brazing filler metal was carried out on the one hand by powder metallurgy, whereby zirconium hydride has been mixed or mechanically alloyed. On the other hand the nickel brazing filler metals have been alloyed with zirconium by melting metallurgy. The content of active metal varied between 2 weight-% and

  12. Phyto-availability of zirconium in relation with initial speciation, solubility and soil characteristics

    International Nuclear Information System (INIS)

    Ferrand, E.; Benedetti, M.; Dumat, C.; Ferrand, E.; Leclerc-Cessac, E.

    2005-01-01

    During the last decades, the use of zirconium in industry has been widely developed and there is a potential risk of zirconium contamination. The long half-life isotope 93 Zr (T1/2=10 6 years) is largely observed in radioactive wastes. Therefore, the long-term prediction of the zirconium fate in the environment is essential. Due to its low solubility and strong tendency to polymerize, zirconium is usually considered as immobile, however the evidence of Zr mobility in certain conditions such as tropical weathering has been demonstrated. Soil-plant transfer is an important link in the chain of events which leads to radionuclide entry into the human food chain, but only few studies concern the Zr transfer to plants. The primary aim of this investigation is to verify if zirconium can be absorbed by edible plants (young peas and tomatoes) and to study the influence of Zr speciation on its availability. The second aim is to highlight the potential influence of plants on the Zr solubility in soil from the measurements of K d and with chemical extractions. Two agricultural top soils closed to the underground experimental laboratory (Meuse/Haute Marne, France) of the French National Agency for management of radioactive wastes (ANDRA) were collected: a sandy clayey loamy soil (A) and a clayey calcareous soil (B). The main differences between the two soils are: the pH, the texture and the carbonate content. In order to investigate the influence of the Zr speciation on its plant availability, soils were spiked with different forms of Zr chosen for their natural occurrence in the environment. Soil adsorption of Zr in batch experiments was realized (various initial [Zr], pH and I) in order to determine adsorption isotherms and partition coefficients (K d ). Tomatoes and peas were exposed to Zr by contact with the various soils during 8 days. After acidic digestion of the dried roots and aerial parts, the total Zr concentrations were measured by a quadrupole ICP-MS spectrometer

  13. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  14. Kinetic study of Cs+ and Eu3+ ions sorption by zirconium oxide powder

    International Nuclear Information System (INIS)

    Hanafi, H.A.; Hassan, H.S.; Hamed, M.M.

    2009-01-01

    Full text: Zirconium oxide powder was chemically synthesized by sol-gel method and characterized using infrared spectra and x-ray diffraction. The sorptive removal of cesium and europium ions from aqueous waste solution using synthetic zirconium oxide powder was investigated using batch technique. Experiments were carried out as a function of pH, time and temperature. The uptake of europium was found to be greater than that of cesium. A comparison of kinetic models applied to the sorption process of each ion was evaluated for the pseudo first order, the pseudo second order, and homogeneous particle diffusion kinetic models, respectively. The results showed that both the pseudo second order and the homogeneous particle diffusion models (HPDM) were found to best correlate the experimental rate data. The numerical values of the rate constants and particle diffusion coefficients were determined from the graphical representation of the proposed models. Activation energy (Ea) and entropy (Δ S*) of activation for each sorption process were also calculated from the linearized form of Arrhenius equation. (author)

  15. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    Science.gov (United States)

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p zirconium group versus 0.05 mm/year (range, -0.39 to 0.11 mm/year) in the metal group (difference of medians 0.03, p

  16. On composition and thermal degradation of basic zirconium sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Grizik, A A; Nekhamkin, L G; Kondrashova, I A; Serebrennikov, E L; Kerina, V P

    1988-02-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO/sub 4//sup 2-/:Zr, being 0.60+-0.03; 0.37+-0.04 and 0.176+-0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed.

  17. On composition and thermal degradation of basic zirconium sulfates

    International Nuclear Information System (INIS)

    Grizik, A.A.; Nekhamkin, L.G.; Kondrashova, I.A.; Serebrennikov, E.L.; Kerina, V.P.

    1988-01-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO 4 2- :Zr, being 0.60±0.03; 0.37±0.04 and 0.176±0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed

  18. Zirconium molybdate hydrate precipitates in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Magnaldo, A.; Noire, M.H.; Esbelin, E.; Dancausse, J.P.; Picart, S.

    2004-01-01

    This paper presents through 2 posters a general overview studies realised by CEA teams on deposits observed in the La Hague plant dissolution facilities. Their main constituents are metallic debris bound together with zirconium molybdate hydrate. A comprehensive study of zirconium molybdate hydrate formation included nucleation and growth kinetics was developed. Fouling mechanisms were consequently explained as influenced by the operation conditions. Pu insertion was also overviewed. Its behaviour is important when curative and preventive chemical treatments are considered. (authors)

  19. Physical properties of highly active liquor containing molybdate solids

    International Nuclear Information System (INIS)

    Dunnett, B.; Ward, T.; Roberts, R.; Cheeseright, J.

    2016-01-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  20. Physical properties of highly active liquor containing molybdate solids

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, B.; Ward, T.; Roberts, R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Cheeseright, J. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  1. Targeted radiotherapy of multicell neuroblastoma spheroids with high specific activity [125I]meta-iodobenzylguanidine

    International Nuclear Information System (INIS)

    Roa, Wilson H.Y.; Miller, Gerald G.; McEwan, Alexander J.B.; McQuarrie, Steve A.; Tse, Jeanie; Wu, Jonn; Wiebe, Leonard I.

    1998-01-01

    Purpose: Iodine-125 induces cell death by a mechanism similar to that of high linear energy transfer (high-LET) radiation. This study investigates the cytotoxicity of high-specific-activity [ 125 I]meta-iodobenzylguanidine ( 125 I-mIBG) in human SK-N-MC neuroblastoma cells grown as three-dimensional multicellular spheroids. Materials and Methods: Spheroids were incubated with high-specific-activity 125 I-mIBG (6 mCi/μg, 1000 times that of the conventional specific activity used for autoradiography). Cytotoxicity was assessed by fluorescence viability markers and confocal microscopy for intact spheroids, fluorescence-activated cell sorting and clonogenic assay, and clonogenic assays for dispersed whole spheroids. Distribution of radioactive mIBG was determined by quantitative light-microscope autoradiography of spheroid cryostat sections. Dose estimation was based on temporal knowledge of the retained radioactivity inside spheroids, and of the radiolabel's emission characteristics. Findings were compared with those of spheroids treated under the same conditions with 131 I-mIBG, cold mIBG, and free iodine-125. Results: 125 I-mIBG exerted significant cell killing. Complete spheroids were eradicated when they were treated with 500 μCi of 125 I-mIBG, while those treated with 500 μCi or 1000 μCi of 131 I-mIBG were not. The observed difference in cytotoxicity between treatments with 125 I- and 131 I-mIBG could not be accounted for by the absorbed dose of spheroid alone. The peripheral, proliferating cell layer of the spheroids remained viable at the moderate radioactivity of 100 μCi for both isotopes. Cytotoxicity induced by 125 I-mIBG was quantitatively comparable by the peripheral rim thickness to that of 131 I-mIBG at the dose of 100 μCi. The peripheral rim thickness decreased most significantly in the first 17 hours after initial treatment. There was no statistical decrease in the rim thickness identified afterwards for the second, third, and fourth days of

  2. Zirconium microstructures: uncharted possibilities

    International Nuclear Information System (INIS)

    Samajdar, I.; Kumar, Gulshan; Singh, Jaiveer; Lodh, Arijit; Srivastava, D.; Tewari, R.; Dey, G.K.; Saibaba, N.

    2015-01-01

    The 'conventional' Zirconium microstructures can be significantly extended with information on: (i) microtexture, (ii) residual stresses and (iii) local mechanical properties. Though these involve different tools, but a consolidated microstructure can be crated. This is the theme of this presentation. Examples of this consolidated picture will be made from deformation twinning, recovery-recrystallization, burst ductility and orientation versus solid solution hardening. (author)

  3. Status and task of the study on the hydrogen embrittlement of zirconium alloys

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Furuta, Teruo; Seino, Shun; Komatsu, Kazushi.

    1995-08-01

    As the burnup of the LWR fuel is extended, waterside corrosion and hydrogen pickup increase in the Zircaloy cladding. Hydrogen embrittlement of Zircaloy is one of the main factors which may limit the life of the fuel rod. This report presents a review on the hydrogen embrittlement of zirconium and its alloys including the irradiated materials. Research tasks for the reduction of ductility in the high burnup fuel cladding are also discussed. Many fundamental investigations have been performed on the hydrogen embrittlement of zirconium alloys. However, the embrittlement mechanism of the high burnup fuel cladding is complicated. Especially, a coupled effect of hydrides and radiation defects are expected to be pronounced with neutron dose increase. In order to evaluate the reduction of ductility of the higher burnup fuel cladding properly, it is necessary to investigate the coupled effect of these two factors by systematic examinations. (author) 64 refs

  4. Temperature dependence of lattice parameters of alpha-zirconium

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, M.

    1991-01-01

    This work presents a brief review of X-ray and thermal expansion determination of lattice parameters for α-Zirconium. Data reported by different authors cover almost all the field of existence of the hexagonal phase of Zirconium, from temperatures as low as 4.2 K up to about 1130 K, near the α→β transformation temperature. Polynomial expressions based on a least squares fitting of experimental data are also presented. The expressions obtained by Goldak et al. are considered to be the most complete. The influence of impurities on the lattice parameters is also discussed. (Author) [es

  5. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  6. Thermodynamics of hydrogen and deuterium solutions in α-zirconium

    International Nuclear Information System (INIS)

    Vinokurov, Yu.V.; Mogutnov, B.M.

    1979-01-01

    Interaction of H 2 and D 2 with α-Zr are studied in the 700-890 K temperature range using a high-temperature colorimeter. It is shown that hydrogen and deuterium partial enthalpies in zirconium do not depend on the temperature and concentration and compose -48.9+-1.0 and -46.2+-1.2 kJ/g-at. Calculated is an excess entropy of hydrogen in a solution and analyzed are contributions composing it

  7. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  8. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  9. Fast and sensitive determination of Sr-90 and SR-89 activity in milk by ion-chromatography and liquid scintillation

    International Nuclear Information System (INIS)

    Figueiredo, V.; Herrmann, A.

    1992-01-01

    A method for fast and exact determination of both strontium isotopes in milk and other foodstuffs, combination high performance ion chromatographic separation with by liquid scintillation counting, which enables the desired results to be obtained with very satisfactory precision and reproducibility within 24 hours, has been developed. The lowest detectable activity lies by 3 Bq/liter for Sr-90 and 1 Bq/liter for Sr-89 which is satisfactory for assessing a situation in a time crisis. (author)

  10. Effect of nitrogen flow ratio on structure and properties of zirconium ...

    Indian Academy of Sciences (India)

    Abstract. In this study, zirconium nitride thin films were deposited on Si substrates by ion beam sputtering (IBS). Influence of N2/(N2+Ar) on the structural and physical properties of the films has been investigated with respect to the atomic ratio between nitrogen and zirconium. It was found that the thickness of layers ...

  11. Calculation of radiation production of high specific activity isotopes 192Ir and 60Co

    International Nuclear Information System (INIS)

    Zhou Quan; Zhong Wenfa; Xu Xiaolin

    1997-01-01

    The high specific activity isotopes: 192 Ir and 60 Co in the high neutron flux reactor are calculated with the method of reactor physics. The results of calculation are analyzed in two aspects: the production of isotopes and the influence to parameters of the reactor, and hence a better case is proposed as a reference to the production

  12. Synthesis of high specific activity [ethyl-1,2-3H]-labeled chlorpyrifos oxon and diazoxon

    International Nuclear Information System (INIS)

    Zhang, Nanjing; Morimoto, Hiromi; Williams, Philip G.; Casida, John E

    2000-01-01

    [Ethyl-1,2-3H] Chlorpyrifos oxon and [ethyl-1,2-3H] diazoxon were synthesized at a specific activity of 79 and 58 Ci/mmol, respectively, by catalytic tritiation of the corresponding monovinyl analogs over Pd/C. Direct evidence is provided that the high specific activity results from isotope exchange of the terminal vinylic protons prior to saturation of the double bond. This radiosynthesis procedure is applicable to the toxicologically-important oxon metabolites of many commercial O-O-diethyl phosphorothioate pesticides

  13. New zirconium alloys for nuclear application; Novas ligas de zirconio para aplicacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, R.M.; Andrade, A.H.P., E-mail: rmlobo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions ({approx} 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  14. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    Science.gov (United States)

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  15. Synthesis of high specific activity tritium labelled [2-3H]-adenosine-5'-triphosphate

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Trump, E.L.; Williams, P.G.; Wemmer, D.E.

    1996-01-01

    A procedure for high level tritium labelling at the C2-H position of adenosine 5'-triphosphate ([2- 3 H]-ATP, 1), based on the tritiodehalogenation reaction of 2-bromoadenosine 5'-triphosphate (2) has been elaborated. This precursor was prepared in a six-step synthesis from guanosine. The tritiodehalogenation of (2) for three hours over palladium oxide in phosphate buffer yielded tritium labelled ATP with high specific activity, in good chemical yield. (author)

  16. Effect of zirconium purity on the glass-forming-ability and notch toughness of Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Laura M. [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA (United States); Hofmann, Douglas C. [Materials Development and Manufacturing Technology Group, NASA Jet Propulsion Laboratory/California Institute of Technology, MS 18-105, 4800 Oak Grove Dr. Pasadena, CA 91109 (United States); Vecchio, Kenneth S., E-mail: kvecchio@ucsd.edu [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA (United States)

    2016-09-30

    The effect of substituting standard grade zirconium lump (99.8% excluding up to 4% hafnium) for high purity zirconium crystal bar (99.5%) in a Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7} bulk metallic glass (BMG) is examined. The final hafnium content in the BMG specimens was found to range from 0 to 0.44 at%. Introducing low purity zirconium significantly decreased the glass-forming-ability and reduced the notch toughness of the BMG. In contrast, when adding high purity hafnium to Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7} made with high purity zirconium, no significant change in the glass-forming-ability or toughness was observed. This suggests that the introduction of low purity zirconium in BMGs creates a more complex response than a simple addition of hafnium. It is likely that other impurities in the material, such as oxygen, play a role in the complex crystallization kinetics and change in mechanical properties. The notch toughness was measured through four-point-bend tests, which showed a decrease in notch toughness from an average of ~53 MPa m{sup 1/2} for the high purity samples to an average of ~29 MPa m{sup 1/2} with full substitution of low purity zirconium. A similar decrease in glass-forming-ability and toughness is observed in commercially synthesized high purity Cu{sub 43}Zr{sub 43}Al{sub 7}Be{sub 7}. The large scale commercial process is expected to introduced some unintentional impurities, which decrease the properties of the BMG in the same way as the lower purity elements. Lastly, Weibull statistics are used to provide an analysis of variability in toughness for both ingots synthesized in a small laboratory arc-melter and those synthesized commercially.

  17. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  18. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  19. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  20. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The