WorldWideScience

Sample records for high shear strains

  1. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  2. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  3. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    Science.gov (United States)

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  4. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  5. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Science.gov (United States)

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  6. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  7. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  8. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  9. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  10. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  11. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  12. Falling balls and simple shearing strain

    International Nuclear Information System (INIS)

    Brun, J L; Pacheco, A F

    2006-01-01

    The problem of particles falling under gravity allows us to relate Hamiltonian mechanics to such different subjects as elasticity and fluid mechanics. It is with this in mind that mechanics gives us the opportunity of introducing, in a rather simple and unusual form, some concepts such as vorticity, the incompressibility condition or simple shear strain to physics students at the undergraduate level

  13. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  14. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    Science.gov (United States)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  15. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  16. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  17. Tuning strain of granular matter by basal assisted Couette shear

    Directory of Open Access Journals (Sweden)

    Zhao Yiqiu

    2017-01-01

    Full Text Available We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  18. Strain-induced shear instability in Liverpool Bay

    Science.gov (United States)

    Wihsgott, Juliane; Palmer, Matthew R.

    2013-04-01

    Liverpool Bay is a shallow subsection of the eastern Irish Sea with large tides (10 m), which drive strong tidal currents (1 ms-1). The Bay is heavily influenced by large freshwater inputs from several Welsh and English rivers that maintain a strong and persistent horizontal density gradient. This gradient interacts with the sheared tidal currents to strain freshwater over denser pelagic water on a semi-diurnal frequency. This Strain-Induced-Periodic-Stratification (SIPS) has important implications on vertical and horizontal mixing. The subtle interaction between stratification and turbulence in this complex environment is shown to be of critical importance to freshwater transport, and subsequently the fate of associated biogeochemical and pollutant pathways. Recent work identified an asymmetry of current ellipses due to SIPS that increases shear instability in the halocline with the potential to enhance diapycnal mixing. Here, we use data from a short, high intensity process study which reveals this mid-water mechanism maintains prolonged periods of sub-critical gradient Richardson number (Ri ≤ ¼) that suggests shear instability is likely. A time series of measurements from a microstructure profiler identifies the associated increase in turbulence is short lived and 'patchy' but sufficient to promote diapycnal mixing. The significance of this mixing process is further investigated by comparing our findings with long-term observations from the Liverpool Bay Coastal Observatory. We identify that the conditions for shear instability during SIPS are regularly met and suggest that this process contributes to the current underestimates of near coastal mixing observed in regional models. To assist our understanding of the observed processes and to test the current capability of turbulence 'closure schemes' we employ a one-dimensional numerical model to investigate the physical mechanisms driving diapycnal mixing in Liverpool Bay.

  19. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  20. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  1. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  2. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    Science.gov (United States)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  3. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  4. Shear banding in large strain plasticity - Influence of specimen dimensions

    Science.gov (United States)

    Mucha, Marzena; Wcisło, Balbina; Pamin, Jerzy

    2018-01-01

    The paper deals with numerical analysis of shear banding which occurs in an elongated rectangular plate for a large strain elastic-plastic material model. It is focused on the influence of plate size proportions and finite element mesh density on numerical results. The discussion is limited to isothermal conditions and ideal plasticity. First a plain strain case is computed for different lengths of the plate, then simulations are repeated for plane stress for which different thicknesses of the plate are considered. Most of the computations are performed for three finite element meshes to verify discretization sensitivity of the results. The simulations are performed using AceGen and AceFEM packages for Wolfram Mathematica.

  5. Shear-coupled grain-boundary migration dependence on normal strain/stress

    Science.gov (United States)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  6. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  7. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Garra, Brian S; Ophir, Jonathan

    2007-01-01

    Ultrasound elastography produces strain images of compliant tissues under quasi-static compression. In axial-shear strain elastography, the local axial-shear strain resulting from application of quasi-static axial compression to an inhomogeneous material is imaged. The overall hypothesis of this work is that the pattern of axial-shear strain distribution around the inclusion/background interface is completely determined by the bonding at the interface after normalization for inclusion size and applied strain levels, and that it is feasible to extract certain features from the axial-shear strain elastograms to quantify this pattern. The mechanical model used in this study consisted of a single stiff circular inclusion embedded in a homogeneous softer background. First, we performed a parametric study using finite-element analysis (FEA) (no ultrasound involved) to identify possible features that quantify the pattern of axial-shear strain distribution around an inclusion/background interface. Next, the ability to extract these features from axial-shear strain elastograms, estimated from simulated pre- and post-compression noisy RF data, was investigated. Further, the feasibility of extracting these features from in vivo breast data of benign and malignant tumors was also investigated. It is shown using the FEA study that the pattern of axial-shear strain distribution is determined by the degree of bonding at the inclusion/background interface. The results suggest the feasibility of using normalized features that capture the region of positive and negative axial-shear strain area to quantify the pattern of the axial-shear strain distribution. The simulation results showed that it was feasible to extract the features, as identified in the FEA study, from axial-shear strain elastograms. However, an effort must be made to obtain axial-shear strain elastograms with the highest signal-to-noise ratio (SNR asse ) possible, without compromising the resolution. The in vivo

  8. The strain-dependent spatial evolution of garnet in a high- P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Energy Technology Data Exchange (ETDEWEB)

    Macente, A. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Fusseis, F. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Menegon, L. [School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, Plymouth University, Fitzroy Drake Circus Plymouth Devon PL4 8AA UK; Xianghui, X. [Argonne National Laboratory, 9700 S. Cass Ave Building 431-B003 Argonne IL USA; John, T. [Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100 12249 Berlin Germany

    2017-03-27

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  9. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  10. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  11. A New Accurate yet Simple Shear Flexible Triangular Plate Element with Linear Bending Strains

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2010-01-01

    The paper describes a new shear flexible triangular element. The formulation is based on displacement interpolation of the transverse displacement of the midsurface and the rotations of the cross-sections, and the element is fully compatible. The basic principle is to use a so-called balanced...... interpolation so that the part of the shear strains that relates to the transverse displacement has the same polynomial variation as the part of the shear strains that relates to the rotations of the cross-section. This balanced interpolation in combination with complete polynomial interpolations prevents shear...... are virtually the same. The slightly incompatible formulation can be implemented directly into commercial codes....

  12. Orientations and Relative Shear-strain Response Coefficients for PBO Gladwin Tensor Strainmeters from Teleseismic Love Waves

    Science.gov (United States)

    Roeloffs, E. A.

    2016-12-01

    A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of

  13. Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation

    International Nuclear Information System (INIS)

    Liu Zheng-Guang; Wang Chong-Yu; Yu Tao

    2014-01-01

    The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni—Al—Re embedded-atom-method potential. A parameter (ΔE sf b ), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calculation results show that ΔE sf b decreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of ΔE sf b may be due to the expansion of local structure around the Re atom when SF goes through the Re atom. (rapid communication)

  14. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Science.gov (United States)

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  15. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  16. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  17. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum–lithium alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.

    2012-01-01

    The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  18. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  19. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  20. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  1. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  2. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  3. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  4. Experimental determination of the stress/strain situation in a sheared tunnel model with canister

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    A previous report concerned a technical matter which could be of great importance as regards the mechanical strength of canisters embedded in a bentonite/quartz buffer mass, i.e. the effect of a differential movement triggered by a critical deviatoric stress condition. Even if this is extremely unlikeley to occur it was considered to be of importance to verify the theoretical expressions for the maximum bending moment and maximum shear force. A special reason was to test the hypothesis that the contact pressure would soon reach a high value and then stay fairly constant when the displacement increased. The theoretical approach requires that the stress/strain properties of the fill are thoroghly investigated and described in therms of a mathematical model. Experience shows that this may be a tedions and difficult task. (L.E.)

  5. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  6. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  7. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  8. Effect of shear strain on the deflection of a clamped magnetostrictive film-substrate system

    International Nuclear Information System (INIS)

    Ming Zhenghui; Ming Li; Bo Zou; Xia Luo

    2011-01-01

    The effect of in-plane shear strain of a clamped bimorph on the deflection produced by magnetization of the film is investigated. The deflection is found by minimizing the Gibbs free energy with respect to four parameters, strains and curvatures along x and y directions at the interface, by assuming that the curvature in the y direction varies as a function of aspect ratio w/l along x. A set of standard linear equations of four parameters are obtained and the deflection is expressed in terms of the four parameters by solving the equations using Cramer rules. The inconsistencies pointed out by previous authors are also reviewed. For actuators made of thick and short clamped film-substrate system, the in-plane shear deformation should not be omitted. The present calculation model can give a relatively simple and accurate prediction of deflection for thick and short specimens of aspect ratio w/l<10, which supports the results obtained by finite element modeling. - Highlights: → We model the deflection of a thick magnetostrictive film-substrate cantilever plate. → Total stress along z from magnetic field is not zero without external force. → Effect of in-plane shear strain in calculating deflection examined. → Analytical solution of deflection obtained by assuming a curvature function. → Shear strain for short cantilever film-substrate plate considered.

  9. Reduced thoracolumbar fascia shear strain in human chronic low back pain

    Directory of Open Access Journals (Sweden)

    Konofagou Elisa E

    2011-09-01

    Full Text Available Abstract Background The role played by the thoracolumbar fascia in chronic low back pain (LBP is poorly understood. The thoracolumbar fascia is composed of dense connective tissue layers separated by layers of loose connective tissue that normally allow the dense layers to glide past one another during trunk motion. The goal of this study was to quantify shear plane motion within the thoracolumbar fascia using ultrasound elasticity imaging in human subjects with and without chronic low back pain (LBP. Methods We tested 121 human subjects, 50 without LBP and 71 with LBP of greater than 12 months duration. In each subject, an ultrasound cine-recording was acquired on the right and left sides of the back during passive trunk flexion using a motorized articulated table with the hinge point of the table at L4-5 and the ultrasound probe located longitudinally 2 cm lateral to the midline at the level of the L2-3 interspace. Tissue displacement within the thoracolumbar fascia was calculated using cross correlation techniques and shear strain was derived from this displacement data. Additional measures included standard range of motion and physical performance evaluations as well as ultrasound measurement of perimuscular connective tissue thickness and echogenicity. Results Thoracolumbar fascia shear strain was reduced in the LBP group compared with the No-LBP group (56.4% ± 3.1% vs. 70.2% ± 3.6% respectively, p Conclusion Thoracolumbar fascia shear strain was ~20% lower in human subjects with chronic low back pain. This reduction of shear plane motion may be due to abnormal trunk movement patterns and/or intrinsic connective tissue pathology. There appears to be some sex-related differences in thoracolumbar fascia shear strain that may also play a role in altered connective tissue function.

  10. Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet

    Science.gov (United States)

    Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.

    2013-01-01

    Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.

  11. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  12. Breast tumor classification using axial shear strain elastography: a feasibility study

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Ophir, Jonathan; Mobbs, Louise M; Kraemer-Chant, Christina M; Garra, Brian S

    2008-01-01

    Recently, the feasibility of visualizing the characteristics of bonding at an inclusion-background boundary using axial-shear strain elastography was demonstrated. In this paper, we report a feasibility study on the utility of the axial-shear strain elastograms in the classification of in vivo breast tumor as being benign or malignant. The study was performed using data sets obtained from 15 benign and 15 malignant cases that were biopsy proven. A total of three independent observers were trained, and their services were utilized for the study. A total of 9 cases were used as training set and the remaining cases were used as testing set. The feature from the axial-shear strain elastogram, namely, the area of the axial-shear region, was extracted by the observers. The observers also outlined the tumor area on the corresponding sonogram, which was used to normalize the area of the axial-shear strain region. There are several observations that can be drawn from the results. First, the result indicates that the observers consistently (∼82% of the cases) noticed the characteristic pattern of the axial-shear strain distribution data as predicted in the previous simulation studies, i.e. alternating regions of positive and negative axial-shear strain values around the tumor-background interface. Second, the analysis of the result suggests that in approximately 57% of the cases in which the observers did not visualize tumor in the sonogram, the elastograms helped them to locate the tumor. Finally, the analysis of the result suggests that for the discriminant feature value of 0.46, the number of unnecessary biopsies could be reduced by 56.3% without compromising on sensitivity and on negative predictive value (NPV). Based on the results in this study, feature values greater than 0.75 appear to be indicative of malignancy, while values less than 0.46 to be indicative of benignity. Feature values between 0.46 and 0.75 may result in an overlap between benign and malignant

  13. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain ...... shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed....

  14. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    Science.gov (United States)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  15. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  16. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  17. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    Science.gov (United States)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  18. Strain hardening in startup shear of long-chain branched polymer solutions.

    Science.gov (United States)

    Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing

    2013-08-09

    We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.

  19. Study of magnetorheological fluids at high shear rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)

    2006-08-15

    The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)

  20. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  1. Beam model for seismic analysis of complex shear wall structure based on the strain energy equivalence

    International Nuclear Information System (INIS)

    Reddy, G.R.; Mahajan, S.C.; Suzuki, Kohei

    1997-01-01

    A nuclear reactor building structure consists of shear walls with complex geometry, beams and columns. The complexity of the structure is explained in the section Introduction. Seismic analysis of the complex reactor building structure using the continuum mechanics approach may produce good results but this method is very difficult to apply. Hence, the finite element approach is found to be an useful technique for solving the dynamic equations of the reactor building structure. In this approach, the model which uses finite elements such as brick, plate and shell elements may produce accurate results. However, this model also poses some difficulties which are explained in the section Modeling Techniques. Therefore, seismic analysis of complex structures is generally carried out using a lumped mass beam model. This model is preferred because of its simplicity and economy. Nevertheless, mathematical modeling of a shear wall structure as a beam requires specialized skill and a thorough understanding of the structure. For accurate seismic analysis, it is necessary to model more realistically the stiffness, mass and damping. In linear seismic analysis, modeling of the mass and damping may pose few problems compared to modeling the stiffness. When used to represent a complex structure, the stiffness of the beam is directly related to the shear wall section properties such as area, shear area and moment of inertia. Various beam models which are classified based on the method of stiffness evaluation are also explained under the section Modeling Techniques. In the section Case Studies the accuracy and simplicity of the beam models are explained. Among various beam models, the one which evaluates the stiffness using strain energy equivalence proves to be the simplest and most accurate method for modeling the complex shear wall structure. (author)

  2. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    Science.gov (United States)

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  3. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  4. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  5. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  7. Diagnosis of Fibrosis and Activity by a Combined Use of Strain and Shear Wave Imaging in Patients with Liver Disease.

    Science.gov (United States)

    Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi

    2017-01-01

    Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.

  8. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.

    Science.gov (United States)

    Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn

    2018-01-01

    To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.

  9. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  10. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  11. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  12. Magnetism and Raman Spectroscopy of Pristine and Hydrogenated TaSe2 Monolayer tuned by Tensile and Pure Shear Strain

    Science.gov (United States)

    Chowdhury, Sugata; Simpson, Jeffrey; Einstein, T. L.; Walker, Angela R. Hight

    2D-materials with controllable optical, electronic and magnetic properties are desirable for novel nanodevices. Here we studied these properties for both pristine and hydrogenated TaSe2 (TaSe2-H) monolayer (ML) in the framework of DFT using the PAW method. We considered uniaxial and biaxial tensile strain, as well as shear strain along the basal planes in the range between 1% and 16%. Previous theoretical works (e.g.) considered only symmetrical biaxial tensile. Pristine ML is ferromagnetic for uniaxial tensile strain along ◯ or ŷ. For tensile strain in ŷ, the calculated magnetic moments of the Ta atoms are twice those for the same strain in ◯. Under pure shear strain (expansion along ŷ and compression along ◯), a pristine ML is ferromagnetic, but becomes non-magnetic when the strain directions are interchanged. Due to carrier-mediated double-exchange, the pristine ML is ferromagnetic when the Se-Ta-Se bond angle is < 82° and the ML thickness is < 3.25Å. We find that all Raman-active phonon modes show obvious red-shifting due to bond elongation and the E2 modes degeneracy is lifted as strain increases. For a TaSe2-H ML, the same trends were observed. Results show the ability to tune the properties of 2D-materials.

  13. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  14. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  15. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  16. Comparison of shear wave velocity measurements assessed with two different ultrasound systems in an ex-vivo tendon strain phantom.

    Science.gov (United States)

    Rosskopf, Andrea B; Bachmann, Elias; Snedeker, Jess G; Pfirrmann, Christian W A; Buck, Florian M

    2016-11-01

    The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model. A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation. A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827-0.954, p Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012). In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.

  17. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  18. Development of high temperature strain gage, (5)

    International Nuclear Information System (INIS)

    Yuuki, Hiroshi; Kobayashi, Yukio; Kanai, Kenji; Yamaura, Yoshio

    1976-01-01

    Development and improvement of resistance wire type strain gages usable for experimental measurement of thermal strains generated at high temperature in various structures and equipments that consist of a Fast Breeder Reactor have been carried out, and various characteristics of the strain gages have been investigated. Based on the results obtained up to now, development and research of this time mainly aim to improve strain and fatigue characteristics. As the results, characteristics of strain gages with sensing elements of nichrome V are improved, specifically mechanical hysteresis is decreased, strain limit is increased, etc. Also, improvement is recognized in thermal output, and it becomes clear that dummy gages work effectively. However, a filling method of MgO and an inserting method of active-dummy elements are selected as primary objects to improve strain characteristics, and many hours are taken for these objects, so confirmations of characteristics of platinum-tungsten strain gages, strain sensing elements of which are troublesome to produce, have not been completely done, though the performance of the gages has been improved in several points. As to nichrome V strain gages, there is a fair prospect of obtaining ones, specifications of which are quite close to the goal, though problems in manufacturing technics remain for future. As to platinum-tungsten strain gages, it is expected that similar strain gages to nichrome V are obtainable by improvement in manufacturing of sensing elements. (auth.)

  19. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  20. Increased effects of machining damage in beryllium observed at high strain rates

    International Nuclear Information System (INIS)

    Beitscher, S.; Brewer, A.W.; Corle, R.R.

    1980-01-01

    Tensile tests at both low and high strain rates, and also impact shear tests, were performed on a weldable grade powder-source beryllium. Impact energies increased by a factor of 2 to 3 from the as-machined level after etching or annealing. Similar increases in the ductility from machining damage removal were observed from the tensile data at the higher strain rate (10 s -1 ) while an insignificant increase in elongation was measured at the lower strain rate (10 -4 s -1 ). High strain-rate tests appear to be more sensitive and reliable for evaluating machining practice and damage removal methods for beryllium components subjected to sudden loads. 2 tables

  1. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  2. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  3. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.

    2006-07-01

    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  4. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  5. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR asse ) and contrast-to-noise ratio (CNR asse ) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR asse and CNR asse . The results of the study show that the CNR asse (SNR asse ) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study ( asse (SNR asse ) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR asse (SNR asse ) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR asse (SNR asse ) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR asse (SNR asse ) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR asse and the resolution with respect to pitch

  6. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Cohen, Itai; Archer, Lynden A.

    2008-01-01

    spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response

  7. Shear wave elastography for breast masses is highly reproducible.

    Science.gov (United States)

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  8. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.

    2016-01-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  9. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.

    2016-10-24

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  10. Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities

    Science.gov (United States)

    1993-01-01

    plasticity and ASB’s is the Double-notch Shear specimen, it has been decided to use this concept in shear testing at medium and high strain rates...is the Double-notch Shear specimen. it has been decided to use this concept in shear testing at medium and high strain rates. Originally, Campbell...7] C. Fressengeas, Analyse dynamique 61asto-viscoplastique de l’h6tdrogdndit6 de la ddforma- tion plastique de cisalllement, Proc. Int. Conf. on

  11. Effect of shear strain on the α-ε phase transition of iron: a new approach in the rotational diamond anvil cell

    International Nuclear Information System (INIS)

    Ma Yanzhang; Selvi, Emre; Levitas, Valery I; Hashemi, Javad

    2006-01-01

    The effect of shear strain on the iron α-ε phase transformation has been studied using a rotational diamond anvil cell (RDAC). The initial transition is observed to take place at the reduced pressure of 10.8 GPa under pressure and shear operation. Complete phase transformation was observed at 15.4 GPa. The rotation of an anvil causes limited pressure elevation and makes the pressure distribution symmetric in the sample chamber before the phase transition. However, it causes a significant pressure increase at the centre of the sample and brings about a large pressure gradient during the phase transformation. The resistance to the phase interface motion is enhanced due to strain hardening during the pressure and shear operations on iron and this further increases the transition pressure. The work of macroscopic shear stress and the work of the pressure and shear stress at the defect tips account for the pressure reduction of the iron phase transition

  12. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...... for testing fibre-reinforced polymers due to their elastic behaviour and low strain to failure. This is problematic as the High-speed servo-hydraulic test machine closes the gap between quasi-static tests rates and lower strain rates, which are achievable with the Split Hopkinson Pressure Bar. The Split...

  13. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  14. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 open-quotes Removal and Encapsulation of Heavy Metals from Ground Water,close quotes EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers

  15. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  16. Evaluation of healthy muscle tissue by strain and shear wave elastography – Dependency on depth and ROI position in relation to underlying bone

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Carlsen, Jonathan Frederik; Christiansen, Iben Riishede

    2016-01-01

    and methods: Ten healthy volunteers (five males and five females) had their biceps brachii, gastrocnemius, and quadriceps muscle examined with strain- and shear wave elastography at three different depths and in regions located above bone and beside bone. Strain ratios were averaged from cine-loops of 10 s...

  17. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  18. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  19. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  20. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

    Science.gov (United States)

    Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun

    2016-12-01

    A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  2. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  3. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  4. Problems associated with use of the logarithmic equivalent strain in high pressure torsion

    International Nuclear Information System (INIS)

    Jonas, J J; Aranas, C Jr

    2014-01-01

    The logarithmic 'equivalent' strain is frequently recommended for description of the experimental flow curves determined in high pressure torsion (HPT) tests. Some experimental results determined at -196 and 190 °C on a 2024 aluminum alloy are plotted using both the von Mises and logarithmic equivalent strains. Three types of problems associated with use of the latter are described. The first involves the lack of work conjugacy between the logarithmic and shear stress/shear strain curves, a topic that has been discussed earlier. The second concerns the problems associated with testing at constant logarithmic strain rate, a feature of particular importance when the material is rate sensitive. The third type of problem involves the 'history dependence' of this measure in that the incremental logarithmic strain depends on whether the prior strain accumulated in the sample is known or not. This is a difficulty that does not affect use of the von Mises equivalent strain. For these reasons, it is concluded that the qualifier 'equivalent' should not be used when the logarithmic strain is employed to describe HPT results

  5. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  6. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  7. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  8. On equivalent roughness of mobile bed at high shear stress

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan

    2009-01-01

    Roč. 57, č. 3 (2009), s. 191-199 ISSN 0042-790X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : bed shear * experiment * hydraulic transport * sediment transport Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  9. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  10. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  11. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  12. High strain rate studies in rock

    International Nuclear Information System (INIS)

    Grady, D.

    1977-01-01

    Dynamic compression studies using high velocity impact are usually considered to involve a catastrophic process of indeterminate loading rate by which a material is brough to a shock compressed state. Although this is frequently the case, methods are also available to control the rate of strain during the shock compression process. One of the most accurate of these methods makes use of the anomalous nonlinear elastic property of glass to transform an initial shock or step wave input into a ramp wave of known amplitude and duration. Fused silica is the most carefully calibrated material for this purpose and, when placed between the test specimen and the impact projectile, can provide loading strain rates in the range of 10 4 /s to 10 6 /s for final stress states of approximately 3.9 GPa or less.Ramp wave compression experiments have been conducted on dolomite at strain rates of 3 x 10 4 /s. Both initial yielding and subsequent deformation at this strain rate agrees well with previous shock wave studies (epsilon-dotapprox.10 6 /s) and differs substantially from quasi-static measurements (epsilon-dotapprox.10 -4 /s). The ramp wave studies have also uncovered a pressure-induced phase transition in dolomite initiating at 4.0 GPa

  13. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  14. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  15. Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Nunes, L C S [Laboratorio de Mecanica Teorica e Aplicada, Departamento de Engenharia Mecanica, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Brazil, Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber.

  16. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  17. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    International Nuclear Information System (INIS)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-01-01

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp"3-hybridized region but internal core keeps the tubular structure.

  18. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  19. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  20. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  1. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  2. High strain rate deformation of layered nanocomposites.

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  3. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  4. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  5. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    Science.gov (United States)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  6. Characterization of adiabatic shear bands in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of 6000 s−1

    International Nuclear Information System (INIS)

    Zou, D.L.; Luan, B.F.; Liu, Q.; Chai, L.J.; Chen, J.W.

    2012-01-01

    The adiabatic shear bands formed in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of about 6000 s −1 were characterized systemically by means of a high resolution field emission scanning electron microscope equipped with electron backscatter diffraction probe. The results show that the transformed bands were distinguished on the cross-section view of the impacted specimens, and the ultrafine and equiaxed grains formed in the transformed bands were confirmed. The gradient variation of the grains across the transformed bands from the boundary to the center of the bands was observed, and the grains at the center of the transformed bands were finer than other zones. Based on the characterization of the deformed microstructure adjacent to the transformed bands, the formation mechanism of the ultrafine and equiaxed grains in the transformed bands was revealed, and the rotational dynamic recrystallization mechanism should be responsible for the formation of the ultrafine and equiaxed grains in the transformed bands. According to the collection of the cumulative misorientation at different strain levels, the formation and evolution process of the ultrafine and equiaxed grains in the transformed bands were speculated. The microhardness measurements show that high microhardness value in the transformed bands was obtained because of the grain refining, and the large standard deviation of the microhardness at the center of the transformed bands was confirmed due to the gradient microstructural distribution in the bands.

  7. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  8. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  9. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  10. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  11. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    International Nuclear Information System (INIS)

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-01-01

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low (≤1.5 dyn/cm 2 ) or high (25 dyn/cm 2 ) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  12. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  13. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.

  14. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    Science.gov (United States)

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  15. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    Science.gov (United States)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  16. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  17. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: nareshb@mech.iitd.ac.in [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)

    2017-01-15

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  18. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  19. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  20. Microturbulence and Flow Shear in High-performance JET ITB Plasma; TOPICAL

    International Nuclear Information System (INIS)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-01-01

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists

  1. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  2. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    Science.gov (United States)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  3. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  4. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  5. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    Science.gov (United States)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  6. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Subrata, E-mail: subrata.panda@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Toth, Laszlo S., E-mail: laszlo.toth@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Fundenberger, Jean-Jacques, E-mail: jean-jacques.fundenberger@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Perroud, Olivier, E-mail: olivier.perroud@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); and others

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneities in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.

  7. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  8. Experimental investigation of the effects of high-frequency electroactive morphing on the shear-layer

    Science.gov (United States)

    Scheller, Johannes; Rizzo, Karl-Joseph; Jodin, Gurvan; Duhayon, Eric; Rouchon, Jean-François; Hunt, Julian; Braza, Marianna

    2015-11-01

    Time-resolved PIV measurements are conducted at a Reynolds number of 270 . 000 downstream of the trailing edge of a NACA4412 airfoil equipped with trailing-edge piezoelectric tab actuators to investigate the high-frequency low-amplitude actuation's effect on the shear-layer. A comparison of the time-averaged Reynolds stress tensor components at different actuation frequency reveals a significant impact of the actuation on the shear-layer dynamics. A proper orthogonal decomposition analysis is conducted in order to investigate the actuation's impact on the vortex breakdown. It will be shown that a specific low-amplitude actuation frequency enables a reduction of the predominant shear-layer frequencies.

  9. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    Science.gov (United States)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  10. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  11. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  12. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly so......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  13. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  14. The occurrence of shear banding in a millimeter scale (12-bar3)[634] grain of an Al-4.5% Mg alloy during plane strain compression

    International Nuclear Information System (INIS)

    Chapelle, David; Darrieulat, Michel

    2003-01-01

    The appearance of localization in shear bands during plane strain compression (PSC) of an Al-4.5% Mg alloy is investigated, with emphasis on a millimeter scale S-orientated grain in the longitudinal section of the specimen, upon which a gold microgrid was deposited. In order to justify this focus, attention is also paid on smaller grains of other areas. The microgrid technique allows the local strain field at various steps of deformation to be followed and in-plane components to be plotted over the selected region. Electron back scattered diffraction analysis was also used to gain an insight into the crystallography of local lattice rotations. One can then predict the potentially activated slip systems according to the Schmid law with Taylor's hypothesis, and assert the initial crystallographic feature of shear banding. This provides the opportunity to gain a more complete understanding, assuming a grain scale effect, of the mechanisms involved in the occurrence of shear banding in this alloy, and to reveal its influence on the rolling texture

  15. Effects of Wheat Flour Dough’s Viscoelastic Level by Adding Glucose Oxidase on its Dynamic Shear Properties whatever the Strain Modes

    Directory of Open Access Journals (Sweden)

    Jean Didier Koffi Kouassi

    2014-05-01

    Full Text Available The objective of this work was to study the effects of wheat flour dough’s viscoelastic level by adding glucose oxidase (Gox on its rheological properties at dynamic shear strain mode to predict the final product quality. Dough does display a linear viscoelastic domain. Glucose oxidase (Gox was added to dough in order to enhance its viscoelasticity and to take into account the possible effects of this viscoelasticity on the results. Whatever the types of dough strain used G’ increased, tan δ decreased and led to less sticky dough. Wheat flour dough, an increase in G’ with extension may be associated to a strain-hardening phenomenon but the role of dough viscoelasticity is discussed.

  16. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    Science.gov (United States)

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  17. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  18. Capacitance high temperature strain transducer by Interatom

    International Nuclear Information System (INIS)

    Fortmann, M.

    1987-01-01

    Special strain transducers are necessary to perform structure mechanical experiments on real components under creep-fatigue load. The new development of the transducer was able to solve the problem. In the meantime, different characteristics of the transducer have been examined and many successful applications have been effected. Some important aspects are given in this report. Up to now the longest operation period has been 24000 h on a pipe at 630 0 C service temperature in a conventional power station. (orig./DG) [de

  19. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  20. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  1. Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates

    Science.gov (United States)

    Olasumboye, Adewale Taiwo

    Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.

  2. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    Abstract. Copper samples having varying microstructures were deformed at high strain rates using a split-. Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well ...

  3. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared...... with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation.......Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation...

  4. The influence of high shear mixing on ternary dry powder inhaler formulations.

    Science.gov (United States)

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  6. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  7. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    Science.gov (United States)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  8. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  9. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and ...

  10. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  11. Evaluation test on stability of high temperature strain gage

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Instruments Co. Ltd., Tokyo (Japan)); Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro

    1983-08-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500/sup 0/C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others.

  12. Evaluation test on stability of high temperature strain gage

    International Nuclear Information System (INIS)

    Sato, Toshimi; Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro.

    1983-01-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500 0 C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others. (author)

  13. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  14. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  15. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  16. Dilatancy of Shear Transformations in a Colloidal Glass

    Science.gov (United States)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  17. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  18. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  19. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    Science.gov (United States)

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  20. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  1. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    International Nuclear Information System (INIS)

    Solomon, W.M.; Kaye, S.M.; Bell, S.M.; LeBlanc, B.P.; Menard, B.P.; Rewoldt, B.P.; Wang, W.; Levinton, F.M.; Yuh, H.; Sabbagh, S.A.

    2008-01-01

    Experiments have been conducted on NSTX to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma

  2. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    assessment of the structural behaviour of coupled shear wall bents in mixed shear wall ... efficient lateral load resisting system against wind and earthquake effects. .... can be obtained from the second derivative of equation (11) which must be ...

  3. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    Science.gov (United States)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  4. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  5. Electro optical system to measure strains at high temperature

    Science.gov (United States)

    Sciammarella, Cesar A.

    1991-12-01

    The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.

  6. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  7. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  8. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  9. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    Science.gov (United States)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  10. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  11. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  12. Effect of mid-thickness rebar mesh on the behavior and punching shear strength of interior slab–column connection

    Directory of Open Access Journals (Sweden)

    Ahmed Ibrahim

    2016-12-01

    The obtained results indicate that, the proposed shear reinforcement system has a positive effect in the enhancement of both the punching shear capacity and the strain energy of interior slab–column connection of both normal and high strength concrete. The general finite element software ANSYS can be used successfully to simulate the punching shear behavior of reinforced concrete flat plates.

  13. High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2016-06-01

    Full Text Available The ambient temperature high pressure oxydesulphurisation technique was investigated to reduce the sulphur content. Prince of Wales coal was chosen for this study. The focus of the study was to investigate the reduction of both pyritic and organic sulphur while changing the KMnO4/Coal ratio, agitation speed, agitator configuration, and shear. The effect of different concentrations of acetone as a solvent and effect of particle size on the sulphur removal was also studied by a series of experimental runs at ambient temperature. Heating value recovery was found to be increased with the decreased KMnO4/Coal ratio and with decreased acetone concentration. It was found that sulphur removal was enhanced with the increase in shear using a turbine impeller. The effect of particle size was more significant on the pyritic sulphur removal as compared to the organic sulphur removal while heating value recovery was found to increase with decreased desulphurization tome for both, under atmospheric and high pressure.

  14. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    Science.gov (United States)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  15. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  16. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  17. Simulation of vacancy migration energy in Cu under high strain

    International Nuclear Information System (INIS)

    Sato, K.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Kiritani, M.

    2003-01-01

    The activation energy for the migration of vacancies in Cu under high strain was calculated by computer simulation using static methods. The migration energy of vacancies was 0.98 eV in the absence of deformation. It varied with the migration direction and stress direction because the distance between a vacancy and its neighboring atoms changes by deformation. For example, the migration energy for the shortest migration distance was reduced to 9.6 and 39.4% of its initial value by 10% compression and 20% elongation, respectively, while that for the longest migration distance was raised to 171.7 by 20% elongation. If many vacancies are created during high-speed deformation, the lowering of migration energy enables vacancies to escape to sinks such as surfaces, even during the shorter deformation period. The critical strain rate above which the strain rate dependence of vacancy accumulation ceases to exist increases with the lowering of vacancy migration energy

  18. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  19. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  20. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    Science.gov (United States)

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.

    Science.gov (United States)

    Kim, Jong-Woong; Jung, Seung-Boo

    2012-04-01

    The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.

  2. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  3. Shear-lag effect and its effect on the design of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Dat Bui Thanh

    2018-01-01

    Full Text Available For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc., but also to resist lateral loads (wind and earthquake loads. As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  4. Shear-lag effect and its effect on the design of high-rise buildings

    Science.gov (United States)

    Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina

    2018-03-01

    For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  5. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  6. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain

    Science.gov (United States)

    2013-01-01

    Background Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP), a mild, chronic pneumonia of swine. Despite presenting with low direct mortality, EP is responsible for major economic losses in the pig industry. To identify the virulence-associated determinants of M. hyopneumoniae, we determined the whole genome sequence of M. hyopneumoniae strain 168 and its attenuated high-passage strain 168-L and carried out comparative genomic analyses. Results We performed the first comprehensive analysis of M. hyopneumoniae strain 168 and its attenuated strain and made a preliminary survey of coding sequences (CDSs) that may be related to virulence. The 168-L genome has a highly similar gene content and order to that of 168, but is 4,483 bp smaller because there are 60 insertions and 43 deletions in 168-L. Besides these indels, 227 single nucleotide variations (SNVs) were identified. We further investigated the variants that affected CDSs, and compared them to reported virulence determinants. Notably, almost all of the reported virulence determinants are included in these variants affected CDSs. In addition to variations previously described in mycoplasma adhesins (P97, P102, P146, P159, P216, and LppT), cell envelope proteins (P95), cell surface antigens (P36), secreted proteins and chaperone protein (DnaK), mutations in genes related to metabolism and growth may also contribute to the attenuated virulence in 168-L. Furthermore, many mutations were located in the previously described repeat motif, which may be of primary importance for virulence. Conclusions We studied the virulence attenuation mechanism of M. hyopneumoniae by comparative genomic analysis of virulent strain 168 and its attenuated high-passage strain 168-L. Our findings provide a preliminary survey of CDSs that may be related to virulence. While these include reported virulence-related genes, other novel virulence determinants were also detected. This new information will form

  7. Mechanical characterization of rocks at high strain rate

    Directory of Open Access Journals (Sweden)

    Konstantinov A.

    2012-08-01

    Full Text Available The paper presents the dynamic characterization in tension and compression of three rocks, Carrara marble, Onsernone gneiss and Peccia Marble, at high strain-rates. Two versions of a Split Hopkinson Bar have been used. The version for direct tension tests is installed at the DynaMat Laboratory of the University of Applied Sciences of Southern Switzerland, while the traditional version in compression is installed at the Laboratory of Dynamic Investigation of Materials of Lobachevsky State University. Results of the tests show a significantly strain-rate sensitive behaviour, exhibiting dynamic strength increasing with strain-rate. The experimental research has been developed in the frame of the Swiss-Russian Joint Research Program.

  8. Spallation model for the high strain rates range

    Science.gov (United States)

    Dekel, E.; Eliezer, S.; Henis, Z.; Moshe, E.; Ludmirsky, A.; Goldberg, I. B.

    1998-11-01

    Measurements of the dynamic spall strength in aluminum and copper shocked by a high power laser to pressures of hundreds of kbars show a rapid increase in the spall strength with the strain rate at values of about 107 s-1. We suggest that this behavior is a result of a change in the spall mechanism. At low strain rates the spall is caused by the motion and coalescence of material's initial flaws. At high strain rates there is not enough time for the flaws to move and the spall is produced by the formation and coalescence of additional cavities where the interatomic forces become dominant. Material under tensile stress is in a metastable condition and cavities of a critical radius are formed in it due to thermal fluctuations. These cavities grow due to the tension. The total volume of the voids grow until the material disintegrates at the spall plane. Simplified calculations based on this model, describing the metal as a viscous liquid, give results in fairly good agreement with the experimental data and predict the increase in spall strength at high strain rates.

  9. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  10. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  11. High wall shear stress and spatial gradients in vascular pathology: a review.

    Science.gov (United States)

    Dolan, Jennifer M; Kolega, John; Meng, Hui

    2013-07-01

    Cardiovascular pathologies such as intracranial aneurysms (IAs) and atherosclerosis preferentially localize to bifurcations and curvatures where hemodynamics are complex. While extensive knowledge about low wall shear stress (WSS) has been generated in the past, due to its strong relevance to atherogenesis, high WSS (typically >3 Pa) has emerged as a key regulator of vascular biology and pathology as well, receiving renewed interests. As reviewed here, chronic high WSS not only stimulates adaptive outward remodeling, but also contributes to saccular IA formation (at bifurcation apices or outer curves) and atherosclerotic plaque destabilization (in stenosed vessels). Recent advances in understanding IA pathogenesis have shed new light on the role of high WSS in pathological vascular remodeling. In complex geometries, high WSS can couple with significant spatial WSS gradient (WSSG). A combination of high WSS and positive WSSG has been shown to trigger aneurysm initiation. Since endothelial cells (ECs) are sensors of WSS, we have begun to elucidate EC responses to high WSS alone and in combination with WSSG. Understanding such responses will provide insight into not only aneurysm formation, but also plaque destabilization and other vascular pathologies and potentially lead to improved strategies for disease management and novel targets for pharmacological intervention.

  12. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.

    Science.gov (United States)

    Hsu, Hsiao-Ping; Kremer, Kurt

    2018-01-16

    Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state.

  13. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  14. Sustainment of high confinement in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ide, S.; Takeji, S.; Sakamoto, Y.; Isayama, A.; Suzuki, T.; Oikawa, T.; Fukuda, T.

    2001-01-01

    confinement is achieved owing to strong internal transport barriers (ITBs), are reported. In a high current plasma with an L-mode edge, deuterium-tritium-equivalent fusion power gain, Q DT eq =0.5 was sustained for 0.8 s (∼ energy confinement time) by adjusting plasma beta precisely using feedback control of stored energy. In a high triangularity plasma with an ELMy H-mode edge, the shrinkage of reversed shear region was suppressed and quasi steady sustainment of high confinement was achieved by raising the poloidal beta and enhancing the bootstrap current peaked at the ITB layer. High bootstrap current fraction (∼80%) was obtained in a high q regime (q 95 ∼9), which leaded to full non-inductive current drive condition. The normalized beta (β N ) of ∼ 2 and H-factor of H 89 ∼3.5 (HH 98y2 ∼2.2) were sustained for 2.7 s (∼ 6 times energy confinement time). (author)

  15. On the response of rubbers at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Niemczura, Johnathan Greenberg (University of Texas-Austin)

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  16. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    Science.gov (United States)

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  17. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  18. Some contributions to the high strain rate deformation of solids and the thermally activated deformation of wood

    International Nuclear Information System (INIS)

    Ferguson, W George

    2009-01-01

    The behaviour of metals as a function of rate of loading, strain rate, and temperature is discussed in terms of previous work by the author. Strain rates range from 10 -3 s -1 , obtained in a standard tensile testing machine, to 10 2 s -1 obtained in a hydraulic piston driven machine and up to 10 4 s -1 , very high strain rates with a Kolsky split Hopkinson bar using shear type loading. At rates less 10 3 s -1 the strength is a function of strain rate and temperature, is thermally activated and governed by the stress-assisted thermal activation of dislocations across short-range barriers in the crystal. At very high strain rates however the behaviour is controlled by interaction of dislocations with either phonons or electrons, giving a strength proportional to strain rate. The compressive strength of small clear samples of wood, Pinus radiata and Kahikatea, determined over the strain rate range 10 -3 s -1 to 10 3 s -1 as a function of strain rate, temperature and moisture content shows the behaviour to again be thermally activated with the strength a function of stain rate, temperature and moisture content. A rate theory of deformation is developed where the yield behaviour of wood is assumed to result from the stress-assisted thermally activated motion of elementary fibrils over short-range barriers. The moisture is assumed to affect the bond energy between elementary fibrils and the barrier energy is taken to be a linear decreasing function of increasing moisture content and the moisture to act like a plasticiser in separating the elementary fibrils. The theory more than adequately explains the observed behaviour.

  19. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum

    International Nuclear Information System (INIS)

    Juanicotena, A.

    1998-01-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10 4 to 10 5 s -1 . We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  20. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  1. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  2. Behavior of fiber reinforced metal laminates at high strain rate

    Science.gov (United States)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  3. Advances in analytical tools for high throughput strain engineering

    DEFF Research Database (Denmark)

    Marcellin, Esteban; Nielsen, Lars Keld

    2018-01-01

    The emergence of inexpensive, base-perfect genome editing is revolutionising biology. Modern industrial biotechnology exploits the advances in genome editing in combination with automation, analytics and data integration to build high-throughput automated strain engineering pipelines also known...... as biofoundries. Biofoundries replace the slow and inconsistent artisanal processes used to build microbial cell factories with an automated design–build–test cycle, considerably reducing the time needed to deliver commercially viable strains. Testing and hence learning remains relatively shallow, but recent...... advances in analytical chemistry promise to increase the depth of characterization possible. Analytics combined with models of cellular physiology in automated systems biology pipelines should enable deeper learning and hence a steeper pitch of the learning cycle. This review explores the progress...

  4. Photoelastic colloidal gel for a high-sensitivity strain sensor

    Science.gov (United States)

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-01

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.

  5. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-01-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  6. Deducing the form factors for shear used in the calculus of the displacements based on strain energy methods. Mathematical approach for currently used shapes

    Science.gov (United States)

    Constantinescu, E.; Oanta, E.; Panait, C.

    2017-08-01

    The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.

  7. Noninvasive characterization of carotid plaque strain.

    Science.gov (United States)

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  8. High strain-rate soft material characterization via inertial cavitation

    Science.gov (United States)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  9. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  10. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Cole, Matt [S.A. Technology Inc, 3985 S. Lincoln Ave., Ste. 100, Loveland CO 80537 (United States); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  11. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  12. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  13. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  14. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  15. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-10-15

    tension shear was always more harmful for the copper tube than compression shear. The highest value of the plastic strain in the copper tube was 19% and was reached after 20 cm shear in Ca-bentonite with the density 2,050 kg/m. Higher plastic strain in the copper tube was at the shear angle 90 deg reached at eccentric shear than at centric shear for all cases except the high density Ca-bentonite case. The plastic strain increased with increasing shear displacement although the influence of the shear displacement was reduced the softer the buffer material is. The maximum plastic strain in the copper tube and in the iron insert was for all cases larger for the Ca-bentonite than for the Na-bentonite. Conversion to illite yields that the effect on the canister of a rock shear is insignificant compared to when no transformation has taken place since the stiffness and strength of the illitic clay is only a tenth of the strength of MX-80, which in turn depends on that almost the entire swelling pressure is lost. Cementation of bentonite with the thickness 8.75 cm around the canister yields that the effect of a rock shear is more severe than if the original bentonite is kept due to the increased stiffness of the buffer. However, the properties of cemented bentonite are not known so the calculation must be regarded as an example rather than as a prediction. The plastic strains in the copper lids were in many cases rather large but by making a more optimized design it should be possible to reduce the strains. The calculations are associated with several uncertainties that should be considered when the consequences of a rock shear are analyzed.

  16. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-10-01

    tension shear was always more harmful for the copper tube than compression shear. The highest value of the plastic strain in the copper tube was 19% and was reached after 20 cm shear in Ca-bentonite with the density 2,050 kg/m. Higher plastic strain in the copper tube was at the shear angle 90 deg reached at eccentric shear than at centric shear for all cases except the high density Ca-bentonite case. The plastic strain increased with increasing shear displacement although the influence of the shear displacement was reduced the softer the buffer material is. The maximum plastic strain in the copper tube and in the iron insert was for all cases larger for the Ca-bentonite than for the Na-bentonite. Conversion to illite yields that the effect on the canister of a rock shear is insignificant compared to when no transformation has taken place since the stiffness and strength of the illitic clay is only a tenth of the strength of MX-80, which in turn depends on that almost the entire swelling pressure is lost. Cementation of bentonite with the thickness 8.75 cm around the canister yields that the effect of a rock shear is more severe than if the original bentonite is kept due to the increased stiffness of the buffer. However, the properties of cemented bentonite are not known so the calculation must be regarded as an example rather than as a prediction. The plastic strains in the copper lids were in many cases rather large but by making a more optimized design it should be possible to reduce the strains. The calculations are associated with several uncertainties that should be considered when the consequences of a rock shear are analyzed

  17. Phase retrieval of diffraction from highly strained crystals

    International Nuclear Information System (INIS)

    Newton, Marcus C.; Harder, Ross; Huang Xiaojing; Xiong Gang; Robinson, Ian K.

    2010-01-01

    An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of ±π/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of 'compressive sensing' has emerged, which dictates that an appropriately subsampled (or compressed) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l 1 norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a 'density-modification' phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l 1 norm of the amplitude by a promotion-penalization (or 'propenal') operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered.

  18. Structure of highly perfect semiconductor strained-layer superlattices

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1989-01-01

    High-resolution x-ray diffraction (HRXRD) measurements of strained-layer superlattices (SLS's) have been carried out using a four-crystal monochromator. A wide asymmetric range of sharp higher-order x-ray satellite peaks is observed indicating well-defined periodic structures. Using a kinematical diffraction step model very good agreement between measured and simulated x-ray satellite patterns could be achieved. These results show that this x- ray method is a powerful tool to evaluate the crystal quality of SLS's

  19. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  1. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  2. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  3. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid.

    Science.gov (United States)

    Story, Anna; Jaworski, Zdzisław

    2017-01-01

    Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.

  4. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  5. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  6. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    Science.gov (United States)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  7. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    International Nuclear Information System (INIS)

    Di Stefano, C. A.; Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-01-01

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description

  8. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  9. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  10. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  11. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  12. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Science.gov (United States)

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  13. Extremely high wall-shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  14. Experimental investigation of the failure envelope of unidirectional carbon-epoxy composite under high strain rate transverse and off-axis tensile loading

    Directory of Open Access Journals (Sweden)

    Kuhn Peter

    2015-01-01

    Full Text Available The mechanical response of the carbon-epoxy material system HexPly IM7-8552 was investigated under transverse tension and combined transverse tension / in-plane shear loading at quasi-static and dynamic strain rates. The dynamic tests of the transverse tension and off-axis tension specimens were carried out on a split-Hopkinson tension bar system, while the quasi-static reference tests were performed on a standard electro-mechanical testing machine. Digital image correlation was used for data reduction at both strain rate regimes. For the high rate tests, the strain rate in loading direction was adjusted to reach approximately the same strain rate value in the fracture plane for each specimen. The measured axial strengths were transformed from the global coordinate system into the combined transverse tension-shear stress space of the material coordinate system and compared with the Puck Mode A criterion for inter-fibre failure. A good correlation between the experimental data and the predicted failure envelopes was found for both investigated strain rate regimes.

  15. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  16. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  17. A new highly adaptable design of shear-flow device for orientation of macromolecules for Linear Dichroism (LD) measurement

    KAUST Repository

    Lundahl, P. Johan; Kitts, Catherine C.; Nordé n, Bengt

    2011-01-01

    This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost. © 2011 The Royal Society of Chemistry.

  18. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    Science.gov (United States)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP

  19. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  20. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545 (United States)

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  1. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Directory of Open Access Journals (Sweden)

    JeeYeon N. Plohr

    2016-02-01

    Full Text Available We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands. This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  2. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  3. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  4. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    International Nuclear Information System (INIS)

    Xu, Feng; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Sun, Litao; Ge, Binghui; Chen, Jing; Cui, Yiping; Nathan, Arokia; Xin, Linhuo L; Ma, Hongyu; Wu, Lijun; Zhu, Yimei

    2016-01-01

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ∼1.25 × 10 4 s −1 . The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs. (paper)

  5. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  6. Evidence for modified transport due to sheared E x B flows in high-temperature plasmas

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Austin, M.E.

    1994-11-01

    Sheared mass flows are generated in many fluids and are often important for the dynamics of instabilities in these fluids. Similarly, large values of the E x B velocity have been observed in magnetic confinement machines and there is theoretical and experimental evidence that sufficiently large shear in this velocity may stabilize important instabilities. Two examples of this phenomenon have been observed in the DIII-D tokamak. In the first example, sufficient heating power can lead to the L-H transition, a rapid improvement in confinement in the boundary layer of the plasma. For discharges with heating power close to the threshold required to get the transition, changes in the edge radial electric field are observed to occur prior to the transition itself. In the second example, certain classes of discharges with toroidal momentum input from neutral beam injection exhibit a further improvement of confinement in the plasma core leading to a regime called the VH-mode. In both examples, the region of improved confinement is characterized by an increase of shear in the radial electric field E r , reduced levels of turbulence and increases in gradients of temperatures and densities. These observations are consistent with the hypothesis that the improved confinement is caused by an increase in shear of the E x B velocity which leads to a reduction of turbulence. For the VH-mode, the dominant term controlling E r is the toroidal rotation v φ , indicating that the E r profile is controlled by the source and transport of toroidal momentum

  7. Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate

    International Nuclear Information System (INIS)

    Matteazzi, S.; Paitti, G.; Boerman, D.

    1982-01-01

    The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)

  8. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730

    NARCIS (Netherlands)

    Kralj, S.; Stripling, E.; Sanders, P.; Geel-Schutten, G.H. van; Dijkhuizen, L.

    2005-01-01

    Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (∼70%). This reuteran also

  9. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  10. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  11. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  12. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  13. Effect of dynamic strain ageing on the environmentally assisted cracking of low-alloy steels oxygenated high-temperature water

    International Nuclear Information System (INIS)

    Devrient, B.; Roth, A.; Kuester, K.; Ilg, U.; Widera, M.

    2007-01-01

    The plastic deformation behavior of low-alloy steels (LAS) is significantly influenced by their individual susceptibility to dynamic strain ageing (DSA). Interstitial atoms of nitrogen (N) or carbon (C) in the steel matrix can change the mechanical properties like ductility and strength by interaction with moving dislocations during plastic deformation. The degree of DSA is depending on temperature and strain rate during plastic deformation. Under critical parameter combinations strength increases while ductility decreases. Furthermore, the interaction of dislocations and interstitial atoms can lead to a localization of plastic deformation, which results in planar gliding processes. Shear bands in LAS types with a high susceptibility to DSA show significantly higher slip steps during plastic deformation as compared to heats with low susceptibility to DSA. Since the basic mechanism of environmentally-assisted cracking (EAC) of LAS in high-temperature water (HTW) environment is slip-step-dissolution, slip behavior is of crucial nature for the kinetics of crack initiation and crack growth. Therefore, a program concerning deformation behavior, slip characterization regarding distribution and size, and behavior in oxygenated HTW environment was performed. Analysis of slip steps by advanced techniques for surface morphology investigation showed that the maximum height of slip steps is in the range of freshly formed magnetite layers on LAS in oxygenated HTW environment. This supports the active effect of localized deformation on EAC in LAS types of high susceptibility to DSA. The exposure to oxygenated HTW environment with additional mechanical loading under critical combinations of temperature and strain rate of different LAS types with high, intermediate and low susceptibility to DSA in Slow Strain Rate Tensile-tests (SSRT) showed preferential crack initiation in the areas of coarse shear bands due to localized deformation. Furthermore, a continuous transition of the

  14. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  15. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  16. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  17. Molecular Characterization of Salmonella Typhimurium Highly Successful Outbreak Strains

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Litrup, Eva; Larsson, Jonas T.

    2011-01-01

    we detected changes in three of five MLVA loci in a small fraction of isolates. These changes were mainly due to the gain or loss of single repeats. Optical Mapping of the large cluster strain indicated no increased content of virulence genes; however, Optical Mapping did reveal a large insert......, a probable prophage, in the main cluster. This probable prophage may give the cluster strain a competitive advantage. The molecular methods employed suggested that the four clusters represented four distinct strains, although they seemed to be epidemiologically linked and shared genotypic characteristics....

  18. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  19. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  20. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  1. High strain fatigue behaviour of a high-temperature, low-alloyed forging steel subject to a servicelike loading history

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Rieth, P.

    1979-01-01

    A test plan was developed for selected cases of service-like long-time high strain load of a heated surface of massive components, which includes service-like anisothermic high strain tests with pressure-strain in the start-up phase and pull-strain in the shutdown phase, comparable isothermal tests at the highest cycle temperature, and finally tests with 'packaged' high strain and creep strain periods, which should enable long-time-tests with only short use of the large-scale high-strain-test-technique. The tests started on the melts of the high-temperature steel 28 Cr Mo NiV 4 9 have reached a longest tests time of nearly 1000 at a maximum temperature of 525 0 C. On the basis of there results, the carrying-out of 'packaged' long-time high strain tests with short creep strain periods seem to be a good way of determining the long-time high-strain behaviour of this steel under service-like strain cycles. (orig./RW) 891 RW/orig.- 892 RKD [de

  2. High Temperature Multimode Harvester for Wireless Strain Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monitoring of structural strain is a well-established method for assessing the fatigue life and operational loads of aerospace vessels, aircraft, bridges, and other...

  3. Modelling of behaviour of metals at high strain rates

    OpenAIRE

    Panov, Vili

    2006-01-01

    The aim of the work presented in this thesis was to produce the improvement of the existing simulation tools used for the analysis of materials and structures, which are dynamically loaded and subjected to the different levels of temperatures and strain rates. The main objective of this work was development of tools for modelling of strain rate and temperature dependant behaviour of aluminium alloys, typical for aerospace structures with pronounced orthotropic properties, and their implementa...

  4. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Taher Azimi

    2018-05-01

    Full Text Available Introduction: Tuberculosis (TB still remains an important public health problem in Iran. The genotyping of Mycobacterium tuberculosis isolates is expected to lead to a better understanding of M. tuberculosis transmission in Tehran, the most populated city of Iran. Materials and Methods: A total of 2300 clinical specimens were obtained from TB suspected patients who were referred to a TB center in Tehran from Jan 2014 to Dec 2016. Identification was performed using both conventional and molecular methods. The presence of resistance to rifampicin was examined by the GeneXpert MTB/RIF. The standard 15-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR typing method was applied to genotype of clinical isolates. Results: Of 2300 specimens, 80 isolates were identified as M. tuberculosis by using biochemical and molecular tests. Of 80 M. tuberculosis isolates, 76 (95% had unique genotypic profiles and 4 (5% shared a profile with one or more other strains. Based on single loci variation (SLV 4 clonal complexes were observed. NEW-1 was found to be the most predominant lineage (22.5% followed by West African (1.25%, Central Asian (CAS/Delhi (1.25%, Bovis (1.25%, H37Rv (1.25% and multiple matches (1.25%. Loci MIRU10, MIRU26, MTUB21 and QUB26 were found as highly discriminative. No mutation was detected in the hotspot region of rifampicin by using GeneXpert MTB/RIF. Conclusions: Our study findings show that there was considerable genotypic diversity among M. tuberculosis isolates in Tehran. The 15-locus MIRU-VNTR showed high HGDI and could be used as a first-line genotyping method for epidemiological studies. Keywords: Mycobacterium tuberculosis, Genotyping, MIRU-VNTR, Tehran, Iran

  5. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  6. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  7. A study on the strength of an armour-grade aluminum under high strain-rate loading

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.

    2010-06-01

    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  8. High strain and strain-rate behaviour of PTFE/aluminium/tungsten mixtures

    International Nuclear Information System (INIS)

    Addiss, John; Walley, Stephen; Proud, William; Cai Jing; Nesterenko, Vitali

    2007-01-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed 'heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm 3 ) with small W particles ( 3 ) with larger W particles (44 μm) at the same volume content of components was observed. This is attributed to force chains created by a network of small W particles. Interrupted tests at different levels of strain revealed the mechanisms of fracture under dynamic compression

  9. Adiabatic shear localization in a near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Sun, Jieying; Wang, Xiaoyan; Fu, Ao [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China)

    2015-07-15

    Adiabatic shear localization plays an important role in the deformation and failure of near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy used in aircraft's gear at high rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of an adiabatic shear band under controlled shock-loading experiments. When the nominal shear strain is about 0.68, unstable shear deformation of the alloy emerges after the true flow stress reaches 1100 MPa, the first vibration peak during the split Hopkinson pressure bar testing, and the whole process lasts about 62 μs. The microstructures within the shear band in the Ti–5Al–5Mo–5V–1Cr–1Fe alloy are investigated by means of optical microscopy, scanning electron microscopy and transmission electron microscopy. Phase transformation occurs in the shear band when the nominal shear strain increases to 0.68. A number of equiaxed grains with sizes 50–200 nm and alpha″-phase are in the center of the shear band. Kinetic calculations indicate that during the deformation process, the recrystallized nanosized grains can be formed in the shear band by way of the subgrain boundaries rotation, and the alpha″ phase transformation start after the subgrain boundaries rotated to 30°.

  10. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  11. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  12. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Frentrup, Martin, E-mail: frentrup@physik.tu-berlin.de; Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Hatui, Nirupam; Bhattacharya, Arnab [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2013-12-07

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  13. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  14. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  15. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA; however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11 isolated in this laboratory can produce lipid up to 36% (w/w cell dry weight (CDW. We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  16. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Science.gov (United States)

    Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2015-01-01

    The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  17. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  18. Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation

    National Research Council Canada - National Science Library

    Omar, Mohamed

    2000-01-01

    .... The effect of the shear deformation is accounted for without the need for introducing Timoshenko's shear coefficient By using the absolute coordinates, the nonlinear strain-displacement relationships...

  19. High incidence of multidrug-resistant strains of methicill inresistant ...

    African Journals Online (AJOL)

    Infections of methicillin-resistant Staphylococcus aureus (MRSA) are becoming an increasingly concerning clinical problem. The aim of this study was to assess the development of multidrug resistant strains of MRSA from clinical samples andpossibilities for reducing resistance. This study included a total of seventy-five (75) ...

  20. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  1. High Strain Rate Testing of Welded DOP-26 Iridium

    Energy Technology Data Exchange (ETDEWEB)

    Schneibel, J. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carmichael, C. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fox, E. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimens containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10-3 and 10 s-1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10-4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10-3 s-1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s-1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.

  2. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  3. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  4. High strain rate tensile properties of annealed 2 1/4 Cr--1 Mo steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Oakes, R.E. Jr.

    1975-01-01

    The high strain rate tensile properties of annealed 2 1 / 4 Cr-1 Mo steel were determined and the tensile behavior from 25 to 566 0 C and strain rates of 2.67 x 10 -6 to 144/s were described. Above 0.1/s at 25 0 C, both the yield stress and the ultimate tensile strength increased rapidly with increasing strain rate. As the temperature was increased, a dynamic strain aging peak appeared in the ultimate tensile strength-temperature curves. The peak height was a maximum at about 350 0 C and 2.67 x 10 -6 /s. With increasing strain rate, a peak of decreased height occurred at progressively higher temperatures. The major effect of strain rate on ductility occurred at elevated temperatures, where a decrease in strain rate caused an increase in total elongation and reduction in area

  5. High performance with modified shear in JET D-D and D-T plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    The observation of Internal Transport Barriers (ITBs) in which ion thermal diffusivity is reduced to a neo- classical level and the electron thermal diffusivity is substantially reduced has been made in JET with the optimised shear scenario with the MkII divertor both in D-D and in D-T. Central ion temperatures of 40keV and plasma pressure gradient of 10 6 Pa/m were observed in D-T leading to a fusion triple product n i T i τ E =1x10 21 m -3 keVs and 8.2MW of fusion power. ITBs have also been produced in the new Gas Box divertor configuration with a similar behaviour. With the new divertor an L-mode edge has only been produced using edge radiation cooling. For the first time, ITBs have been triggered by radiating about 40% of the power with a krypton puff. A tentative scaling of the power needed to trigger an ITB with magnetic field is indicated. (author)

  6. Shear induced phase transition in PbO under high pressure

    International Nuclear Information System (INIS)

    Giefers, Hubertus; Porsch, Felix

    2007-01-01

    We have studied the structural behavior of lead monoxide (PbO) as a function of pressure via angular dispersive X-ray diffraction employing two different pressure transmitting media that were quasi-hydrostatic (N 2 ) and non-hydrostatic (MgO), respectively. Besides litharge (α-PbO) and massicot (β-PbO), which are both stable at ambient pressure, there is an orthorhombic γ-PbO phase which appears upon application of pressure to α-PbO. We have found that the orthorhombic γ-PbO phase is favored by shear stress under non-hydrostatic conditions. α-PbO shows strong anisotropy in compressibility. The a-axis is rather incompressible with a linear stiffness coefficient of K a0 =540(30) GPa whereas the c-axis stiffness is K c0 =25(1) GPa. The bulk modulus of α-PbO is K 0 =23.1(3) GPa and its derivative K 0 ' =7.0(3)

  7. Characterization of a highly toxic strain of Bacillus thuringiensis serovar kurstaki very similar to the HD-73 strain.

    Science.gov (United States)

    Reinoso-Pozo, Yaritza; Del Rincón-Castro, Ma Cristina; Ibarra, Jorge E

    2016-09-01

    The LBIT-1200 strain of Bacillus thuringiensis was recently isolated from soil, and showed a 6.4 and 9.5 increase in toxicity, against Manduca sexta and Trichoplusia ni, respectively, compared to HD-73. However, LBIT-1200 was still highly similar to HD-73, including the production of bipyramidal crystals containing only one protein of ∼130 000 kDa, its flagellin gene sequence related to the kurstaki serotype, plasmid and RepPCR patterns similar to HD-73, no production of β-exotoxin and no presence of VIP genes. Sequencing of its cry gene showed the presence of a cry1Ac-type gene with four amino acid differences, including two amino acid replacements in domain III, compared to Cry1Ac1, which may explain its higher toxicity. In conclusion, the LBIT-1200 strain is a variant of the HD-73 strain but shows a much higher toxicity, which makes this new strain an important candidate to be developed as a bioinsecticide, once it passes other tests, throughout its biotechnological development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  9. Bio-Engineering High Performance Microbial Strains for MEOR

    Energy Technology Data Exchange (ETDEWEB)

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different

  10. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  11. Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2016-01-01

    For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)

  12. Measurement of strains at high temperatures by means of electro-optics holography

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  13. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  14. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  15. Split-Hopkinson Pressure Bar: an experimental technique for high strain rate tests

    International Nuclear Information System (INIS)

    Sharma, S.; Chavan, V.M.; Agrawal, R.G.; Patel, R.J.; Kapoor, R.; Chakravartty, J.K.

    2011-06-01

    Mechanical properties of materials are, in general, strain rate dependent, i.e. they respond differently at quasi-static and higher strain rate condition. The Split-Hopkinson Pressure Bar (SHPB), also referred to as Kolsky bar is a commonly used setup for high strain rate testing. SHPB is suitable for high strain rate test in strain rate range of 10 2 to 10 4 s -1 . These high strain rate data are required for safety and structural integrity assessment of structures subjected to dynamic loading. As high strain rate data are not easily available in open literature need was felt for setting up such high strain rate testing machine. SHPB at BARC was designed and set-up inhouse jointly by Refuelling Technology Division and Mechanical Metallurgy Division, at Hall no. 3, BARC. A number of conceptual designs for SHPB were thought of and the optimized design was worked out. The challenges of precision tolerance, straightness in bars and design and proper functioning of pneumatic gun were met. This setup has been used extensively to study the high strain rate material behavior. This report introduces the SHPB in general and the setup at BARC in particular. The history of development of SHPB, the basic formulations of one dimensional wave propagation, the relations between the wave velocity, particle velocity and elastic strain in a one dimensional bar, and the equations used to obtain the final stress vs. strain curves are described. The calibration of the present setup, the pre-test calculations and the posttest analysis of data are described. Finally some of the experimental results on different materials such as Cu, SS305, SA516 and Zr, at room temperature and elevated temperatures are presented. (author)

  16. Electric Field Induced Strain in Electrostrictive Polymers Under High Hydrostatic Pressure - System Development and Material Characterization

    National Research Council Canada - National Science Library

    Zhang, Q

    2000-01-01

    ... of (i) developing a high performance piezo-bimorph based dilatometer which can be used to characterize the electric field induced strain response in polymer films under high hydrostatic pressure, (ii...

  17. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  18. Process analytical technology (PAT) approach to the formulation of thermosensitive protein-loaded pellets: Multi-point monitoring of temperature in a high-shear pelletization.

    Science.gov (United States)

    Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza

    2016-12-01

    In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.

    2013-05-20

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate.

  20. Strain relief InGaN/GaN MQW micro-pillars for high brightness LEDs

    KAUST Repository

    Shen, Chao

    2013-01-01

    Micro-structured group-III-nitrides are considered as promising strain relief structures for high efficiency solid state lighting. In this work, the strain field in InGaN/GaN multi-quantum wells (MQWs) micro-pillars is investigated using micro-Raman spectroscopy and the design of micro-pillars were studied experimentally. We distinguished the strained and strain-relieved signatures of the GaN layer from the E2 phonon peak split from the Raman scattering signatures at 572 cm-1 and 568 cm-1, respectively. The extent of strain relief is examined considering the height and size of micro-pillars fabricated using focused ion beam (FIB) micro-machining technique. A significant strain relief can be achieved when one micro-machined through the entire epi-layers, 3 μm in our study. The dependence of strain relief on micro-pillar diameter (D) suggested that micro-pillar with D < 3 μm showed high degree of strain relief. Our results shed new insights into designing strain-relieved InGaN/GaN microstructures for high brightness light emitting diode arrays. © 2013 IEEE.

  1. Microstructural evolution at high strain rates in solution-hardened interstitial free steels

    International Nuclear Information System (INIS)

    Uenishi, A.; Teodosiu, C.; Nesterova, E.V.

    2005-01-01

    Comprehensive transmission electron microscopical studies have been conducted for solution-hardened steels deformed at high (1000 s -1 ) and low (0.001 s -1 ) strain rates, in order to clarify the effects of strain rate and a jump in strain rate on the evolution of the microstructure and its connection with the mechanical response. It was revealed that the various types of microstructure, observed even within the same specimen, depend on the corresponding grain orientations and their evolution with progressive deformation depends on these microstructure types. At high strain rates, the dislocation density increases especially at low strains and the onset of dislocation organization is delayed. A jump in strain rate causes an increase of the dislocation density inside an organized structure. These results corroborated the mechanical behaviour at high strain rates after compensation for the cross-sectional reduction and temperature increase. The higher work-hardening rate at high strain rates could be connected to a delay in the dislocation organization. The high work-hardening rate just after a jump could be due to an increase of the density of dislocations distributed uniformly inside an organized structure

  2. Comparative Genomic Characterization of the Highly Persistent and Potentially Virulent Cronobacter sakazakii ST83, CC65 Strain H322 and Other ST83 Strains

    Directory of Open Access Journals (Sweden)

    Hannah R. Chase

    2017-06-01

    Full Text Available Cronobacter (C. sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF, thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST 83, clonal complex (CC 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS of this strain together with four more ST83 strains (PIF production environment-associated confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90–100% zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry.

  3. Evaluation of Shear Wall-RC Frame Interaction of High-Rise Buildings using 2-D model Approach

    Directory of Open Access Journals (Sweden)

    Dipali Patel

    2015-09-01

    Full Text Available The usefulness of structural walls in the framing of buildings has long been recognized. It is generally preferred to use shear wall in combination with moment resisting frame. In the present study, an effort is also made to investigate the shear wall-RC frame interaction using 2-D modeling of 20, 30 and 35 storey RC frame building with shear wall. In equivalent simplified 2-D model, two exterior frames with shear wall modeled as single frame with double stiffness, strength and weight. The interior frames without shear wall are modeled as a single frame with equivalent stiffness, strength and weight. The modeled frames are connected with rigid link at each floor level. Using 2-D plane frame model the lateral force distribution between Exterior frame with shear wall and Interior frame without shear wall is investigated. From the analysis, it is observed that up to bottom seven/eight storey more than 50% load is taken by frame with shear wall and the lower most three storeys take about 75% of total storey shear.

  4. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  6. Screening on the high yield validamycin producing strain by implantation with N+ and Ti+ ion source

    International Nuclear Information System (INIS)

    Yu Long; An Xiao

    2007-01-01

    In order to compared the mutagenic effects of the validamycin producing the strain (Streptomyces hygroscopicus var. Jingganggensis Yen.) was implanted with two kinds of ion sources. The results showed that when two kinds of ion sources implanted into the strain by turns, more positive mutants and higher yield would be acquired. Using this method, a high-yielding strain B1-3 was obtained, which produce the titer of validamycin A of 21514, and was 54.4% higher than that of the original strain. (authors)

  7. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  8. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    Science.gov (United States)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  9. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.

    Science.gov (United States)

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2011-05-18

    The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  11. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

    Directory of Open Access Journals (Sweden)

    Xianglin Tao

    Full Text Available Very high gravity (VHG fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2 with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.

  12. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  13. Shear Melting of a Colloidal Glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.

    2010-01-01

    We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.

  14. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  15. Is the association between high strain work and depressive symptoms modified by private life social support

    DEFF Research Database (Denmark)

    Madsen, Ida E H; Jorgensen, Anette F B; Borritz, Marianne

    2014-01-01

    be modified by factors outside the working environment. This article examines the modifying role of private life social support in the relation between high strain work and the development of severe depressive symptoms. METHODS: Data were questionnaire-based, collected from a cross-occupational sample of 1......,074 Danish employees. At baseline, all participants were free of severe depressive symptoms, measured by the Mental Health Inventory. High strain work was defined by the combination of high psychological demands at work and low control, measured with multi-dimensional scales. Private life social support......, neither high strain work nor low private life social support statistically significantly predicted depressive symptoms. However, participants with joint exposure to high strain work and low private life social support had an Odds ratio (OR) for severe depressive symptoms of 3.41 (95% CI: 1...

  16. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Science.gov (United States)

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  17. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

    NARCIS (Netherlands)

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical

  18. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

    NARCIS (Netherlands)

    Hendrikson, W.J.; Deegan, A.J.; Yang, Y; Blitterswijk, C.A. van; Verdonschot, N.J.; Moroni, L.; Rouwkema, J.

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical

  19. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  20. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  1. High-Strain Composite Deployable Radiators for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, lightweight and efficient, low-cost deployable radiators for CubeSats, Roccor proposes to develop a high-strain laminate...

  2. Title: High-level cefotaxime-resistant Proteus mirabilis strain isolated ...

    African Journals Online (AJOL)

    oaca

    High-level cefotaxime-resistant Proteus mirabilis strain isolated from a Tunisian .... UV- visible) at 37°C. Specific activity is calculated on depending of. Ross and ..... Performance standards for antimicrobial susceptibility testing;. Seventeenth ...

  3. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    Science.gov (United States)

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  5. High-Tg TOPAS mPOF strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Markos, Christos; Stefani, Alessio

    2013-01-01

    We demonstrate a mPOF made of high-Tg TOPAS grade 5013 with Tg = 135°C. We inscribe FBGs into the fiber and demonstrate strain sensing of 2.5% strain at 98°C, further we also demonstrate strain sensing at a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, whe...... the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67dB/m at 787nm....

  6. Improved failure prediction in forming simulations through pre-strain mapping

    Science.gov (United States)

    Upadhya, Siddharth; Staupendahl, Daniel; Heuse, Martin; Tekkaya, A. Erman

    2018-05-01

    The sensitivity of sheared edges of advanced high strength steel (AHSS) sheets to cracking during subsequent forming operations and the difficulty to predict this failure with any degree of accuracy using conventionally used FLC based failure criteria is a major problem plaguing the manufacturing industry. A possible method that allows for an accurate prediction of edge cracks is the simulation of the shearing operation and carryover of this model into a subsequent forming simulation. But even with an efficient combination of a solid element shearing operation and a shell element forming simulation, the need for a fine mesh, and the resulting high computation time makes this approach not viable from an industry point of view. The crack sensitivity of sheared edges is due to work hardening in the shear-affected zone (SAZ). A method to predict plastic strains induced by the shearing process is to measure the hardness after shearing and calculate the ultimate tensile strength as well as the flow stress. In combination with the flow curve, the relevant strain data can be obtained. To eliminate the time-intensive shearing simulation necessary to obtain the strain data in the SAZ, a new pre-strain mapping approach is proposed. The pre-strains to be mapped are, hereby, determined from hardness values obtained in the proximity of the sheared edge. To investigate the performance of this approach the ISO/TS 16630 hole expansion test was simulated with shell elements for different materials, whereby the pre-strains were mapped onto the edge of the hole. The hole expansion ratios obtained from such pre-strain mapped simulations are in close agreement with the experimental results. Furthermore, the simulations can be carried out with no increase in computation time, making this an interesting and viable solution for predicting edge failure due to shearing.

  7. The elastic plastic behaviour of a 1/2% Cr Mo V steam turbine steel during high strain thermal fatigue

    International Nuclear Information System (INIS)

    Murphy, M.C.; Batte, A.D.; Stringer, M.B.

    1979-01-01

    High strain fatigue problem in steam turbine. Cyclic stress strain hysteresis loops and stress relaxation behaviour in 16 h dwell period tests. Variation of stress and strain during tests under nominally strain controlled conditions. Definition of test conditions and of criteria for crack initiation and failure. Comparison of reverse bend and push pull failure data. (orig.) 891 RW/orig. 892 RKD [de

  8. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, (8 2015): 0. doi: 10.1557/jmr...rupture • Comparison and validation with experimental observations/ measurements • New dislocation-density crystalline plasticity that accounts for...relationships between coherent interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, Vol. 30

  9. To Crack or Not to Crack: Strain in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Godeke, Arno

    2007-01-01

    Round wire Bi 2212 is emerging as a viable successor of Nb3Sn in High Energy Physics and Nuclear Magnetic Resonance, to generate magnetic fields that surpass the intrinsic limitations of Nb3Sn. Rather bold claims are made on achievable magnetic fields in applications using Bi 2212, due to the materials' estimated critical magnetic field of 100 Tor higher. High transport currents in high magnetic fields, however, lead to large stress on, and resulting large strain in the superconductor. The effect of strain on the critical properties of Bi-2212 is far from understood, and strain is, as with Nb3Sn, often treated as a secondary parameter in the design of superconducting magnets. Reversibility of the strain induced change of the critical surface of Nb3Sn, points to an electronic origin of the observed strain dependence. Record breaking high field magnets are enabled by virtue of such reversible behavior. Strain effects on the critical surface of Bi-2212, in contrast, are mainly irreversible and suggest a non-electronic origin of the observed strain dependence, which appears to be dominated by the formation of cracks in the superconductor volumes. A review is presented of available results on the effects of strain on the critical surface of Bi-2212, Bi-2223 and YBCO. It is shown how a generic behavior emerges for the (axial) strain dependence of the critical current density, and how the irreversible reduction of the critical current density is dominated by strain induced crack formation in the superconductor. From this generic model it becomes clear that magnets using high temperature superconductors will be strain limited far before the intrinsic magnetic field limitations will be approached, or possibly even before the magnetic field limitation of Nb3Sn can be surpassed. On a positive note, in a very promising recent result from NIST on the axial strain dependence of the critical current density in extremely well aligned YBCO, reversible behavior was observed. This

  10. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  11. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    International Nuclear Information System (INIS)

    Aksoy, B; Alaca, B E; Rehman, A; Bayraktar, H

    2017-01-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µ m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  12. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  13. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  14. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  15. The mutagenesis and breeding of high productive strains of streptomyces jingyangensis '5406'

    International Nuclear Information System (INIS)

    Qi Hongyan; Yin Xinyun

    1988-03-01

    The purpose of these experiments is to explore the mutagenesis rhythm and breed high productive strains of actinomycete '5406'. The single colony agar pieces of strain F 358 were treated with fast neutron and 60 Co-γ ray irradiation Two mutants have been selected from 20025 treated single colonies. The output of cytokinins from them is higher than from strain F 358 . The original strain 'Mu-Tan-al' rejuvenated by freezing was treated with several physical and chemical mutagens. The mutagenesis rhythm has been summed up tentatively. Eight mutants obtained from 93014 treated single colonies produced more '5406' antibiotics than that of strain 'Mu-Tan-al,. The effect of mutant 'N2-10-Ra3' was the best

  16. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  17. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    Science.gov (United States)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  18. Strain-temperature monitor of high speed railway switch by fiber Bragg grating gauges

    Science.gov (United States)

    Li, Weilai; Huang, Xiaomei; Cheng, Jian; Pan, Jianjun

    2010-10-01

    On the 350km/h high speed railway there is a seamless track switch on a bridge. 32 Fiber Bragg Grating (FGB) gauges are used along the neutral line of the tracks to monitor the strain generated by thermal, geological and vibrational factors, and these FBG strain gauges have the function of strain expansion. Meanwhile other 6 FBG sensors are used to measure the temperature for strain compensating purpose. The Finite Element Analysis method is used to analyze the special shape of the gauges. A testing unit was used to test the FBG gauges and bare FBG on the track samples under measurable pressure and tension. The fixing and encapsulating technology of FBG gauges on the surface of the track and to protect the fiber cable to survive in the harsh conditions are discussed. The strain status of switch tracks could be obtained by processing the data from FBG strain gauges and FBG temperature sensors. The results of measurement showed that in 9 days, the strain in the track shifted 350 μɛ, and the strain curves closely correlated with the temperature curves.

  19. High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti.

    Directory of Open Access Journals (Sweden)

    Mustafizur Rahman

    Full Text Available In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R phenotype, 80 (46.5% of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010 were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R differed from that of a typical El Tor rugose strain (N16961R by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.

  20. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  1. Improved brachial artery shear patterns and increased flow-mediated dilation after low-volume high-intensity interval training in type 2 diabetes.

    Science.gov (United States)

    Ghardashi Afousi, Alireza; Izadi, Mohammad Reza; Rakhshan, Kamran; Mafi, Farnoosh; Biglari, Soheil; Gandomkar Bagheri, Habibalah

    2018-06-22

    What is the central question of this study? Endothelial function is impaired because of increased oscillatory and retrograde shear in patients with type 2 diabetes. It is unclear whether low-volume high-intensity interval training and continuous moderate intensity exercise can modulate oscillatory and retrograde shear, blood flow and flow-mediated arterial dilation in these patients. What is the main finding and its importance? We found that low-volume high-intensity interval training, by increasing anterograde shear and decreasing retrograde shear and oscillatory index, can increase nitric oxide production and consequently result in increased flow-mediated dilation and outward arterial remodelling in patients with type 2 diabetes. Atherosclerosis in patients with type 2 diabetes is characterized by endothelial dysfunction associated with impaired flow-mediated dilation (FMD) and increases retrograde and oscillatory shear. The present study investigated endothelium-dependent vasodilation and shear rate in patients with type 2 diabetes at baseline and follow-up after 12 weeks of low-volume high-intensity interval training (LV-HIIT) or continuous moderate intensity training (CMIT). Seventy five sedentary patients with type 2 diabetes and untreated pre- or stage I hypertension were randomly divided into LV-HIIT, CMIT and control groups. The LV-HIIT group intervention was 12 intervals of 1.5 min at 85%-90% HR max and 2 min at 55%-60% HR max . The CMIT group intervention was 42 min of exercise at 70% HR max for 3 sessions per week during 12 weeks. High-resolution Doppler ultrasound was used to measure FMD, arterial diameter, anterograde and retrograde blood flow and shear rate patterns. Brachial artery FMD increased significantly in the LV-HIIT group (3.83 ± 1.13 baseline, 7.39 ± 3.6% follow-up), whereas there were no significant increase in the CMIT group (3.45 ± 0.97 baseline, 4.81 ± 2.36% follow-up) compared to the control group (3.16 ± 0

  2. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  3. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  4. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    Science.gov (United States)

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  5. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel

    International Nuclear Information System (INIS)

    Welsch, E.; Ponge, D.; Hafez Haghighat, S.M.; Sandlöbes, S.; Choi, P.; Herbig, M.; Zaefferer, S.; Raabe, D.

    2016-01-01

    The strain hardening mechanism of a high-Mn lightweight steel (Fe-30.4Mn-8Al-1.2C (wt%)) is investigated by electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM). The alloy is characterized by a constant high strain hardening rate accompanied by high strength and high ductility (ultimate tensile strength: 900 MPa, elongation to fracture: 68%). Deformation microstructures at different strain levels are studied in order to reveal and quantify the governing structural parameters at micro- and nanometer scales. As the material deforms mainly by planar dislocation slip causing the formation of slip bands, we quantitatively study the evolution of the slip band spacing during straining. The flow stress is calculated from the slip band spacing on the basis of the passing stress. The good agreement between the calculated values and the tensile test data shows dynamic slip band refinement as the main strain hardening mechanism, enabling the excellent mechanical properties. This novel strain hardening mechanism is based on the passing stress acting between co-planar slip bands in contrast to earlier attempts to explain the strain hardening in high-Mn lightweight steels that are based on grain subdivision by microbands. We discuss in detail the formation of the finely distributed slip bands and the gradual reduction of the spacing between them, leading to constantly high strain hardening. TEM investigations of the precipitation state in the as-quenched state show finely dispersed atomically ordered clusters (size < 2 nm). The influence of these zones on planar slip is discussed.

  6. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  7. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  8. Introduction to the viewpoint set on shear bands

    International Nuclear Information System (INIS)

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  9. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  10. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  12. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  13. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  14. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  15. Reconstructing the highly virulent Classical Swine Fever Virus strain Koslov

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Nielsen, Jens

    -prone nature of the RNA-dependent RNA polymerase resulting in the majority of circulating forms being non-functional. However, since any infectious virus particle should necessarily be the offspring of a functional virus, we hypothesized that it should be possible to synthesize a highly virulent form...

  16. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    Science.gov (United States)

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    Science.gov (United States)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  18. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  19. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  20. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  2. A single social defeat reduces aggression in a highly aggressive strain of Drosophila

    OpenAIRE

    Penn, Jill K. M.; Zito, Michael F.; Kravitz, Edward A.

    2010-01-01

    Genes and prior experience both influence the behavior of animals, but the relative contribution of each to fighting behavior in Drosophila remains unclear. To address this issue, we bred hyperaggressive flies by selecting winners of fights over 34–37 generations. Males of this strain initiate fights sooner, retaliate more often, and regularly defeat opponents from the nonselected parent Canton-S strain. After a defeat, however, these highly aggressive flies lose their second fights against s...

  3. High resolution skin colorimetry, strain mapping and mechanobiology.

    Science.gov (United States)

    Devillers, C; Piérard-Franchimont, C; Schreder, A; Docquier, V; Piérard, G E

    2010-08-01

    Skin colours are notoriously different between individuals. They are governed by ethnicities and phototypes, and further influenced by a variety of factors including photoexposures and sustained mechanical stress. Indeed, mechanobiology is a feature affecting the epidermal melanization. High-resolution epiluminescence colorimetry helps in deciphering the effects of forces generated by Langer's lines or relaxed skin tension lines on the melanocyte activity. The same procedure shows a prominent laddering pattern of melanization in striae distensae contrasting with the regular honeycomb pattern in the surrounding skin.

  4. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  5. Structure and conformation of α-glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization.

    Science.gov (United States)

    Zhang, Anqiang; Deng, Jiaying; Liu, Xiaoqing; He, Pengfei; He, Liang; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2018-07-01

    Agaricus blazei Murill is an edible and medicinal mushroom favored in many countries, by virtue of both its delicious taste and its potential health benefits such as its purported anticancer activity. A neutral α-glucan (ABM40-1) with a carbohydrate content of 96% was purified from the high-speed shearing homogenization extracts of A. Blazei Murill by ethanol precipitation and column chromatography. Methylation analysis along with nuclear magnetic resonance spectroscopy revealed that ABM40-1 was an α-(1→4)-d-glucopyranan with O-6 position occasionally occupied with α-Glcp-(1→or α-Glcp-(1→6)-β-Glcp-(1→side chains. A weight-average molecular weight of 7.34×10 6 Da was determined for ABM40-1 and its chain in solution was revealed as a compact sphere by size exclusion chromatography (SEC) coupled with a laser light scattering. This spherical conformation was also further confirmed by Congo red test and using atom force microscopy. These results suggest it would be worthwhile to further study the potential bioactivities of ABM40-1. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Characteristics of the scrape-off layer in DIII-D high-performance negative central magnetic shear discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C.J. [General Atomics, San Diego, CA (United States); Maingi, R. [General Atomics, San Diego, CA (United States); Leonard, A.W. [General Atomics, San Diego, CA (United States); Allen, S.L. [General Atomics, San Diego, CA (United States); Buchenauer, D.A. [General Atomics, San Diego, CA (United States); Burrell, K.H. [General Atomics, San Diego, CA (United States); Casper, T.A. [General Atomics, San Diego, CA (United States); Cuthbertson, J.W. [General Atomics, San Diego, CA (United States); Fenstermacher, M.E. [General Atomics, San Diego, CA (United States); Hill, D.N. [General Atomics, San Diego, CA (United States); Jong, R.A. [General Atomics, San Diego, CA (United States); Lao, L.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [General Atomics, San Diego, CA (United States); Moyer, R.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Porter, G.D. [General Atomics, San Diego, CA (United States); Rice, B.W. [General Atomics, San Diego, CA (United States); Stallard, B.W. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); Watkins, J.G. [General Atomics, San Diego, CA (United States)

    1997-02-01

    In this paper we present measurements of the global power and particle balance in the high-performance phase of negative central magnetic shear (NCS) discharges and compare with reference VH-mode discharges. The principal differences observed are that NCS has a much lower fraction of the total input power flowing into the boundary, less core radiation, and larger rate of stored energy increase as a fraction of total power. Scrape-off layer (SOL) temperature and divertor heat flux profiles, and radiation profiles at the midplane, are similar to VH-mode. Due to the good core particle confinement and efficient fueling by neutral beam injection (NBI), with little gas puffing, the gas load on the walls and the recycling are very low during the NCS discharges. This results in a rate of density rise relative to beam fueling at the L to H transition time which is 1/3 of the value for VH transitions, which is in turn 1/2 that for L-to-ELMing-H-mode transitions. (orig.).

  7. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Science.gov (United States)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2018-06-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  8. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  9. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  10. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  11. Glutathione is a highly efficient thermostabilizer of poliovirus Sabin strains.

    Science.gov (United States)

    Abdelnabi, Rana; Delang, Leen; Neyts, Johan

    2017-03-07

    Glutathione (GSH) is the most abundant thiol peptide in animal cells and has a critical role in antioxidation. GSH was reported to be essential for stabilization of some enteroviruses, including poliovirus (PV), during viral morphogenesis. Here, we explored the potential use of GSH as a thermostabilizer of oral poliomyelitis vaccine (OPV) formulations. GSH significantly protected the three types of PV from heat-inactivation in a concentration-dependent manner. At a GSH concentration of 20mM, nearly complete protection was observed against heating temperatures up to 53°C for 2min.GSH also markedly protected PV1 from heat-inactivation and this up to 6 h at temperatures of 44°C and 46°C and 3 h at 48°C. The fact that GSH is naturally present at high concentration in the human body makes it an efficient candidate stabilizer for OPV formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inverse methods for the mechanical characterization of materials at high strain rates

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Mechanical material characterization represents a research challenge. Furthermore, special attention is directed to material characterization at high strain rates as the mechanical properties of some materials are influenced by the rate of loading. Diverse experimental techniques at high strain rates are available, such as the drop-test, the Taylor impact test or the Split Hopkinson pressure bar among others. However, the determination of the material parameters associated to a given mathematical constitutive model from the experimental data is a complex and indirect problem. This paper presents a material characterization methodology to determine the material parameters of a given material constitutive model from a given high strain rate experiment. The characterization methodology is based on an inverse technique in which an inverse problem is formulated and solved as an optimization procedure. The input of the optimization procedure is the characteristic signal from the high strain rate experiment. The output of the procedure is the optimum set of material parameters determined by fitting a numerical simulation to the high strain rate experimental signal.

  13. Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p 0.05, 21 (five VGI, five VGII, four VGIII and seven VGIV were less virulent (p <0.05 while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001. No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05. The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature, that maybe crucial for the development and progression of cryptococcosis.

  14. The contribution of the expanding shell test to the modeling of elastoplaticity at high strain rates

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois

    2002-01-01

    The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurements...) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see [Buy01]). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed

  15. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  16. Screening of strains with the high activity and thermostability nattokinase by {sup 60}Co γ-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shuying, Li; Ying, Nie; Huan, Du; Xuanming, Tang [Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing (China); Zhonglin, Zhao [College of Sciences, Henan Agricultural University, Zhengzhou (China); Xin, Ma [Agricultural Information Institute, Chinese Academic of Agricultural Sciences, Beijing (China); Yan, Li [School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou (China)

    2013-06-15

    In this study, Bacillus natto was irradiated by {sup 60}Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy {sup 60}Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  17. Screening of strains with the high activity and thermostability nattokinase by "6"0Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Shuying; Nie Ying; Du Huan; Tang Xuanming; Zhao Zhonglin; Ma Xin; Li Yan

    2013-01-01

    In this study, Bacillus natto was irradiated by "6"0Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy "6"0Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  18. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  19. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  20. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    Science.gov (United States)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  1. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shervin, Shahab; Asadirad, Mojtaba [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Bulashevich, Kirill [STR Group, Inc., Engels av. 27, P.O. Box 89, 194156, St. Petersburg (Russian Federation); Ryou, Jae-Hyun, E-mail: jryou@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204 (United States)

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  2. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  3. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  4. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  5. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  6. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  7. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  8. Sr{sub 2}RuO{sub 4} at high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Steppke, Alexander; Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Zhao, Lishan; Brodsky, Daniel; Barber, Mark; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Maeno, Yoshiteru [Kyoto University (Japan)

    2016-07-01

    We applied high anisotropic strains to high-quality single crystals of the superconductor Sr{sub 2}RuO{sub 4}, to gain information on the influence of anisotropic Fermi surface distortions on its superconductivity. Due to proximity to a van Hove singularity, one of the Fermi surfaces distorts particularly strongly in response to anisotropic strain. The superconducting properties also vary strongly: we show susceptibility and resistivity data indicating that T{sub c} more than doubles as strain is applied, and passes through a sharp peak. Similarly, the upper critical field H{sub c2} for fields both parallel and perpendicular to the crystallographic c axis increases substantially. For fields perpendicular to the c axis, there is strongly hysteretic behaviour at low temperatures, that may be due to Pauli limiting.

  9. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  10. Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains

    DEFF Research Database (Denmark)

    Zhang, Hongwang; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    A quantitative analysis of microstructure and strength as a function of strain is presented for polycrystalline nickel (99.5%) deformed by high-pressure torsion in the strain range vertical bar-300 (epsilon(VM), von Mises strain). Typical lamellar structures consisting of extended boundaries...

  11. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  12. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Science.gov (United States)

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  13. Initiation and strain compatibility of connected extension twins in AZ31 magnesium alloy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao, E-mail: liuxiao0105@163.com [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082 (China); Zhu, Biwu [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Guangjie [College of Materials Science and Engineering, Chongqing University, Chongqing, Chongqing 400045 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082 (China); Xie, Chao [Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211 (China); Tang, Changping [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China)

    2016-12-15

    Uniaxial compression tests were carried out at 350 °C and a strain rate of 0.3 s{sup −1} on as-extruded AZ31 magnesium alloy samples. At a true strain of − 0.1, extension twin pairs in a grain and twin chains across adjacent grains were detected. The orientation of selected twins and their host grains were determined by electron backscattered diffraction (EBSD) techniques. The Schmid factors (SFs), accommodation strains and geometric compatibility factors (m{sup ′}) were calculated. Analysis of the data indicated that the formation of twin pair and twin chain was related to the SF and m{sup ′}. Regarding to twin chain across adjacent grains, accommodation strain was also involved. The selection of twin variants in twin chain was generally determined by m{sup ′}. When the twins required the operation of pyramidal slip or twinning in adjacent grain, the corresponding connected twins with a relative high m{sup ′} were selected in this adjacent grain. - Highlights: •The formation of paired twins is studied during high temperature deformation. •The initiation of twinning in twin pair and twin chain obeys the Schmid law. •The twin variants' selection in twin chain is related to the geometric compatibility factor. •The accommodation strain plays an important role on the formation of twin chain.

  14. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  15. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  16. Shear strength behavior of geotextile/geomembrane interfaces

    Directory of Open Access Journals (Sweden)

    Belén M. Bacas

    2015-12-01

    Full Text Available This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces, the geotextile/geomembrane, typically used for lined containment facilities such as landfills. A large direct shear machine is used to carry out 90 geosynthetic interface tests. The test results show a strain softening behavior with a very small dilatancy (<0.5 mm and nonlinear failure envelopes at a normal stress range of 25–450 kPa. The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail. This study has generated several practical recommendations to help professionals to choose what materials are more adequate. From the three geotextiles tested, the thermally bonded monofilament exhibits the best interface shear strength under high normal stress. For low normal stress, however, needle-punched monofilaments are recommended. For the regular textured geomembranes tested, the space between the asperities is an important factor. The closer these asperities are, the better the result achieves. For the irregular textured geomembranes tested, the nonwoven geotextiles made of monofilaments produce the largest interface shear strength.

  17. Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra.

    Science.gov (United States)

    Hernández, Eduardo; Pawar, Pallavi; Rodriguez, Sandra; Lysenko, Sergiy; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-03-01

    This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles. © The Author(s) 2016.

  18. High-strain-induced deformation mechanisms in block-graft and multigraft copolymers

    KAUST Repository

    Schlegel, Ralf

    2011-12-13

    The molecular orientation behavior and structural changes of morphology at high strains for multigraft and block-graft copolymers based on polystyrene (PS) and polyisoprene (PI) were investigated during uniaxial monotonic loading via FT-IR and synchrotron SAXS. Results from FT-IR revealed specific orientations of PS and PI segments depending on molecular architecture and on the morphology, while structural investigations revealed a typical decrease in long-range order with increasing strain. This decrease was interpreted as strain-induced dissolution of the glassy blocks in the soft matrix, which is assumed to affect an additional enthalpic contribution (strain-induced mixing of polymer chains) and stronger retracting forces of the network chains during elongation. Our interpretation is supported by FT-IR measurements showing similar orientation of rubbery and glassy segments up to high strains. It also points to highly deformable PS domains. By synchrotron SAXS, we observed in the neo-Hookean region an approach of glassy domains, while at higher elongations the intensity of the primary reflection peak was significantly decreasing. The latter clearly verifies the assumption that the glassy chains are pulled out from the domains and are partly mixed in the PI matrix. Results obtained by applying models of rubber elasticity to stress-strain and hysteresis data revealed similar correlations between the softening behavior and molecular and morphological parameters. Further, an influence of the network modality was observed (random grafted branches). For sphere forming multigraft copolymers the domain functionality was found to be less important to achieve improved mechanical properties but rather size and distribution of the domains. © 2011 American Chemical Society.

  19. Uptake of 51Cr-SRBC in low- and high-responder mouse strains (C57BL/10ScSn/A/J mouse strains)

    International Nuclear Information System (INIS)

    Rihova, B.; Vetvicka, V.

    1984-01-01

    51 Cr-SRBC (sheep red blood cells) antigen clearance was studied in two strains of mice differing in the capacity to react with IgG antibody formation. In the B10 strain which is a poor IgG anti SRBC producer, before immunization 80.3% of the injected radioactivity was taken up by the liver, whereas after primary stimulation the uptake was only 31.1%. This value further decreases to 22.8% after secondary stimulation. The well IgG antibody producing A/J strain accumulated less antigen in the liver before immunization than the poorly responding strain (69.8%). On the 10th day after primary immunization a higher uptake of the radioactivity in the liver was shown than in the poor responder strain (53.8%) and this difference was even more pronounced after the secondary stimulation (49.6%). Interaction between peritoneal macrophages of the B10 and A/J strains before and after immunization with SRBC antigen was assessed from the formation of rosettes. Before immunization the low-responder strain B10 exhibited a three times higher level of rosette-forming macrophages (RFM), i.e. 6.1% than the high-responder strain A/J (2.0%). However, after immunization the RFM level in the A/J strain increased sevenfold (13.5%) whereas that in the low-responder strain B10 remained unaffected. These results suggested a role of macrophage population in the control of IgG antibody response. (author)

  20. Robust piezoelectric composites for energy harvesting in high-strain environments

    NARCIS (Netherlands)

    Ende, D.A. van der; Groen, W.A.; Zwaag, S. van der

    2013-01-01

    High-strain environments, such as are found in automobile tires, provide deformation energy that can be harvested using piezoelectric materials, for instance, for powering electronics such as wireless sensors. Despite numerous efforts, none of the present devices easily satisfy the stringent

  1. Recrystallization textures and microstructures of Al-0.3%Cu alloy after deformation to high strains

    DEFF Research Database (Denmark)

    Li, X.R.; Wakeel, A.; Huang, T.L.

    2015-01-01

    An Al-0.3%Cu alloy was deformed to high strains by cold rolling. The as-deformed samples were annealed at different temperatures until complete recrystallization. The cold rolling textures were determined by X-ray diffraction while the recrystallization textures and microstructures were...

  2. Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15.

    Science.gov (United States)

    Du, Lin-Na; Zhao, Ming; Li, Gang; Zhao, Xiao-Ping; Zhao, Yu-Hua

    2011-08-01

    Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. Optical microscope and UV-visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett-Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl(2) and MgCl(2), and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.

  3. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate

    Science.gov (United States)

    Yu, Hao; Young, Marcus L.

    2018-01-01

    A three-dimensional model for phase transformation of shape memory alloys (SMAs) during high strain rate deformation is developed and is then calibrated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this paper presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.

  4. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  5. High-resolution melt PCR analysis for rapid identification of Chlamydia abortus live vaccine strain 1B among C. abortus strains and field isolates.

    Science.gov (United States)

    Vorimore, Fabien; Cavanna, Noémie; Vicari, Nadia; Magnino, Simone; Willems, Hermann; Rodolakis, Annie; Siarkou, Victoria I; Laroucau, Karine

    2012-09-01

    We describe a novel high-resolution melt assay that clearly differentiates Chlamydia abortus live vaccine strain 1B from field C. abortus strains and field wild-type isolates based on previously described single nucleotide polymorphisms. This modern genotyping technique is inexpensive, easy to use, and less time-consuming than PCR-RFLP. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    International Nuclear Information System (INIS)

    Steinle-Neumann, Gerd; Stixrude, Lars; Cohen, Ronald E.

    2001-01-01

    High-pressure structural distortions of the hexagonal close-packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane-wave method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments

  7. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  8. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    Science.gov (United States)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong + dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  9. The screening of bacillus subtilis strain with high-produced antimicrobial substance using N+ ion implantation

    International Nuclear Information System (INIS)

    Shen Juan; Bie Xiaomei; Lu Zhaoxin; Lu Fengxia; Zhu Xiaoyu

    2006-01-01

    N + ion implantation was used to obtain higher-yield antimicrobial substance. Bacillus subtilis fmbJ was mutated by 25 keV N + ion implantation with the dose of 50 x 2.6 x 10 13 , 80 x 2.6 x 10 13 , 100 x 2.6 x 10 13 , 120 x 2.6 x 10 13 and 150 x 2.6 x 10 13 N + /m 2 . Results showed that the optimal N + ion dose was 50 x 2.6 x 10 13 N + /m 2 , and a strain of high-yield antimicrobials was obtained and named as Bacillus subtilis fmbJ224. Its antimicrobial substance yield was increased by 96% than the initial. The fermentation characteristic of the strain was studied, and the mode of producing antimicrobial substance for the selected strain was arrearage synthesis type. (authors)

  10. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  11. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Science.gov (United States)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  12. Dietary B vitamin needs of strains of pigs with high and moderate lean growth.

    Science.gov (United States)

    Stahly, T S; Williams, N H; Lutz, T R; Ewan, R C; Swenson, S G

    2007-01-01

    Ten sets of 5 littermate pigs from each of 2 genetic strains were utilized to determine the impact of the dietary concentration of 5 B vitamins (riboflavin, niacin, pantothenic acid, cobalamin, and folacin) on growth from 9 to 28 kg of BW in pigs with high or moderate capacity for lean growth. All pigs (penned individually) were reared via a segregated, early weaning scheme, so that the lean growth potential of each strain could be expressed. The basal diet provided the 5 test vitamins at concentrations of total and estimated bioavailability equivalent to a minimum of 100 and 70%, respectively, of their estimated requirements (NRC, 1998) for 5- to 10-kg pigs. At a BW of 9 +/- 0.9 kg, pigs within each litter were allotted to the basal diet supplemented with sources of the 5 test vitamins equivalent to an additional 0, 100, 200, 300, or 400% (bioavailable) of the NRC requirements. Pigs from the high lean strain consumed less feed (P vitamin concentrations were increased. However, the dietary B vitamin concentrations needed to optimize G:F were greater (P 470% of NRC, 1998) vs. moderate (270%) lean strain. Based on these data, the dietary needs for 1 or more of the 5 B vitamins are greater than current NRC (1998) estimates, particularly in pigs expressing a high rate of lean tissue growth. The greater need for these vitamins is not associated with greater dietary energy intake or body energy accretion rate but is potentially due to shifts in the predominant metabolic pathways.

  13. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    Science.gov (United States)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  14. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    Science.gov (United States)

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  15. Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM

    Directory of Open Access Journals (Sweden)

    T. Chourushi

    2017-01-01

    Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.

  16. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  17. Detection of highly and minimally leukotoxic Actinobacillus actinomycetemcomitans strains in patients with periodontal disease

    Directory of Open Access Journals (Sweden)

    Cortelli Sheila Cavalca

    2003-01-01

    Full Text Available This study examined the prevalence of highly and minimally leukotoxic Actinobacillus actinomycetemcomitans in patients with periodontal disease. Pooled subgingival plaque samples from 136 patients with some form of periodontal disease were examined. Subjects were between 14 and 76 years of age. Clinical examinations included periodontal pocket depth (PD, plaque index (PI and bleeding index (BI. The obtained plaque samples were examined for the presence of highly or minimally leukotoxic A. actinomycetemcomitans strains by the polymerase chain reaction (PCR. Chi-square and logistic regression were performed to evaluate the results. Forty-seven subjects were diagnosed with gingivitis, 70 with chronic periodontitis and 19 with aggressive periodontitis. According to chi-square there was no significant correlation detected between PD (chi2 = 0.73, PI (chi2 = 0.35, BI (chi2 = 0.09 and the presence of the highly leukotoxic A. actinomycetemcomitans. The highly leukotoxic A. actinomycetemcomitans strains were correlated with subjects that were 28 years of age and younger (chi2 = 7.41. There was a significant correlation between highly leukotoxic A. actinomycetemcomitans and aggressive periodontitis (chi2 = 22.06. This study of a Brazilian cohort confirms the strong association between highly leukotoxic A. actinomycetemcomitans strains and the presence of aggressive periodontitis.

  18. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    Science.gov (United States)

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    Science.gov (United States)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  20. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  1. High strain rates spallation phenomena with relation to the equation of state

    International Nuclear Information System (INIS)

    Dekel, E.

    1997-11-01

    Theoretical spall strength, defined as the stress needed to separate a material along a plane surface instantaneously, is one order of magnitude larger then the measured spell strength at strain rates up to 10 6 s -1 . The discrepancy is explained by material initial flaws and cavities which grow and coalesce under stress and weaken the material. Measurements of spall strength of materials shocked by a high power laser shows a rapid increase in the spall strength with the strain rate at strain rates of about 10 7 s -1 . This indicates that the initial flaws does not have time to coalesce and the interatomic forces become dominant. In order to break the material more cavities must be created. This cavities are characterized by the interatomic forces and are created statistically: material under tensile stress is in a metastable condition and due to thermal fluctuations cavities are formed. Cavities larger than a certain critical size grow due to the stress. They grow until the material disintegrates at the spall plane. The theoretical results predict the increase in spall strength at high strain rates, as observed experimentally. (authors)

  2. Characterization of high exopolysaccharide-producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications.

    Science.gov (United States)

    Huang, Jing-Yao; Kao, Cheng-Yen; Liu, We-Sin; Fang, Tony J

    2017-06-01

    The aim of this study was to characterize high exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) isolated from mustard pickles in Taiwan for potential probiotic applications. Among 39 collected LAB strains, four most productive EPS-producing strains were selected for further analysis. Comparative analyses of 16S rDNA genes rpoA and pheS sequences demonstrated that these strains were members of Lactobacillus plantarum-group (LPG). NCD 2, NLD 4, SLC 13, and NLD 16 showed survival rates of 95.83% ± 0.49%, 95.07% ± 0.64%, 105.84% ± 0.82%, and 99.65% ± 0.31% under simulated gastrointestinal conditions, respectively. No cytotoxic effects on macrophage RAW 264.7 cells were observed when they were treated with a low dose (1 μg/ml) of stimulants extracted from the tested LAB strains. The production of nitric oxide in RAW 264.7 cells incubated with various LAB stimulants showed a dose-dependent increase. Among the four strains, SLC 13 showed higher inhibitory activity on growth of Enterococcus faecalis (BCRC 12302) and Yersinia enterocolitica (BCRC 10807). NLD 4 showed strong inhibitory activity against Escherichia coli O157:H7 (ATCC 43894) as compared with the other three strains. In summary, our results suggest that Lactobacillus pentosus SLC 13 may be a good candidate for probiotic applications and for development of antibacterial compounds. [Int Microbiol 20(2):75-84 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  3. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  4. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    International Nuclear Information System (INIS)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-01-01

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths

  5. Phenotypic and genomic comparisons of highly vancomycin-resistant Staphylococcus aureus strains developed from multiple clinical MRSA strains by in vitro mutagenesis.

    Science.gov (United States)

    Ishii, Kenichi; Tabuchi, Fumiaki; Matsuo, Miki; Tatsuno, Keita; Sato, Tomoaki; Okazaki, Mitsuhiro; Hamamoto, Hiroshi; Matsumoto, Yasuhiko; Kaito, Chikara; Aoyagi, Tetsuji; Hiramatsu, Keiichi; Kaku, Mitsuo; Moriya, Kyoji; Sekimizu, Kazuhisa

    2015-11-25

    The development of vancomycin (VCM) resistance in Staphylococcus aureus threatens global health. Studies of the VCM-resistance mechanism and alternative therapeutic strategies are urgently needed. We mutagenized S. aureus laboratory strains and methicillin-resistant S. aureus (MRSA) with ethyl methanesulfonate, and isolated mutants that exhibited high resistance to VCM (minimum inhibitory concentration = 32 μg/ml). These VCM-resistant strains were sensitive to linezolid and rifampicin, and partly to arbekacin and daptomycin. Beta-lactams had synergistic effects with VCM against these mutants. VCM-resistant strains exhibited a 2-fold increase in the cell wall thickness. Several genes were commonly mutated among the highly VCM-resistant mutants. These findings suggest that MRSA has a potential to develop high VCM resistance with cell wall thickening by the accumulation of mutations.

  6. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    Science.gov (United States)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  7. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  8. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina

    1996-01-01

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  9. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  10. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  11. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    Science.gov (United States)

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    Science.gov (United States)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  14. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  15. Carbon redistribution and precipitation in high temperature ion-implanted strained Si/SiGe/Si multi-layered structures

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects.......Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects....

  16. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, H.W.; Huang, Xiaoxu; Pippan, R.

    2010-01-01

    Polycrystalline Ni of two purities (99.967% (4N) and 99.5% (2N)) was deformed to an ultra-high strain of εvM = 100 (εvM, von Mises strain) by high pressure torsion at room temperature. The 4N and 2N samples at this strain are nanostructured with an average boundary spacing of 100 nm, a high density...

  17. Analysis of the strain-aging phenomena in high purity niobium: competition between hardening and recovery

    International Nuclear Information System (INIS)

    Andreone, C.; Cizeron, G.; Larere, A.

    1981-01-01

    The strain-aging phenomena in high purity niobium were studied using tensile tests. Four parameters were considered which characterize the yield point, the permanent hardening, the recovery and the apparent yield stress. Five successive steps can be distinguished from the changes in these parameters with changes in the aging temperature. The detailed analysis of the phenomena involved concerns mainly the locking of dislocations by first- and second-type segregations and the opposite effect of reorganization of the dislocation network. (Auth.)

  18. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    International Nuclear Information System (INIS)

    Sato, Toshimi; Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki.

    1982-01-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components. (author)

  19. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Inst. Co. Ltd. (Japan)); Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki

    1982-08-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components.

  20. High-rate operant behavior in two mouse strains: a response-bout analysis.

    Science.gov (United States)

    Johnson, Joshua E; Pesek, Erin F; Newland, M Christopher

    2009-06-01

    Operant behavior sometimes occurs in bouts characterized by an initiation rate, within-bout response rate, and bout length. The generality of this structure was tested using high-rate nose-poking in mice. Reinforcement of short interresponse times produced high response rates while a random-interval schedule held reinforcement rates constant. BALB/c mice produced bouts that were more frequent, longer, and contained a higher within-bout rate of responding (nine nose-pokes/s) than did the C57BL/6 mice (five nose-pokes/s). Adding a running wheel decreased total nose-pokes and bout length, and increased bout-initiation rate. Free-feeding reduced nose-poking by decreasing bout-initiation rate. Photoperiod reversal decreased bout-initiation rate but not total nose-poke rate. Despite strain differences in bout structure, both strains responded similarly to the interventions. The three bout measures were correlated with overall rate but not with each other. Log-survival analyses provided independent descriptors of the structure of high-rate responding in these two strains.

  1. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  2. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  3. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  4. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  5. Effect of high-energy electron irradiation of chicken meat on thiobarbituric acid values, shear values, odor, and cooked yield

    International Nuclear Information System (INIS)

    Heath, J.L.; Owens, S.L.; Tesch, S.; Hannah, K.W.

    1990-01-01

    Experiments were conducted to determine whether electron-beam irradiation would affect shear values, yield, odor, and thiobarbituric acid (TBA) values of chicken tissues. Broiler breasts (pectoralis superficialis) and whole thighs were irradiated with an electron-beam accelerator at levels to produce adsorbed doses of 100, 200, and 300 krads on the surface of the sample. The thigh samples were stored for 2, 4, and 8 days before testing for TBA values. The depth to which the radiation had penetrated the pectoralis superficialis muscle was also determined. Radiation penetrated 22 mm into slices of pectoralis superficialis muscle when 100 krad was absorbed by the surface of the tissue. The dose absorbed beneath the tissue surface to a depth of 10 mm was larger than the dose absorbed at the surface. The absorbed dose decreased as the depth of penetration increased. For cooked breast tissue, the shear values and moisture content were not affected by the absorbed radiation. Cooking losses of aged breast tissue were not affected by irradiation, but cooking losses were reduced in breast tissue that had not been aged. Irradiating uncooked thigh and uncooked breast samples produced a characteristic odor that remained after the thighs were cooked but was not detectable after the breast samples were cooked. With two exceptions, no significantly different TBA values were found that could be attributed to irradiation

  6. Strain tolerance of Bi2Sr2Ca1Cu2O8-δ/Ag composites at high field

    International Nuclear Information System (INIS)

    Li, Q.; Ostenson, J.E.; Finnemore, D.K.

    1991-01-01

    Strain tolerance of Bi 2 Sr 2 Ca 1 Cu 2 O 8-δ /Ag composites have been studied at fields up to 20 T and bending strains up to 2.6% in order to determine the factors that control the critical current density. The goal is to find the best way to distribute Ag such as to give both high strain tolerance and high critical current density. Partial melt processed samples prepared from micromilled mixtures containing 30% Ag by volume show a gradually decreasing critical current all the way out to 2.6% strain. Samples typically show about 1000 A/cm 2 at 4.2 K, 20 T, and 0.75% strain. At 20 K, these values occur at 4 T and 0.75% strain

  7. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain

    Science.gov (United States)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.

    2012-07-01

    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  8. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  9. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  10. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  11. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  12. Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs.

    Science.gov (United States)

    Zhang, Qiang; Liu, Lihua; Zhao, Dong; Duan, Qianqian; Ji, Jianlong; Jian, Aoqun; Zhang, Wendong; Sang, Shengbo

    2017-12-04

    Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0-17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0-54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9.

  13. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  14. Use of neutron diffraction in determining strains in high-temperaure superconducting composites

    International Nuclear Information System (INIS)

    Hitterman, R.L.; Faber, J. Jr.; Kupperman, D.S.; Singh, J.P.; Majumdar, S.

    1990-01-01

    The Argonne Intense Pulsed Neutron Source and General Purpose Powder Diffractometer have been used to study high T c metal oxide composites composed of yttrium barium copper oxide and silver. Neutron diffraction techniques were applied to composites with 15, 20 and 30% silver content by volume. The authors have observed that after hot pressing, the 30% Ag specimens contained both orthorhombic high T c and tetragonal, non-superconducting phases near the center of the specimens but only tetragonal near the surface. The relationship of shifts in Bragg peaks to strains of the constituents is discussed

  15. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  16. Comparative Outer Membrane Protein Analysis of High and Low-Invasive Strains of Cronobacter malonaticus

    Directory of Open Access Journals (Sweden)

    Maha A. Aldubyan

    2017-11-01

    Full Text Available Cronobacter are an important group of foodborne pathogens that has been linked to life-threatening infections in both infants and adults. The major infections associated with Cronobacter species are neonatal meningitis, necrotizing enterocolitis, and septicaemia. There are seven species in the Cronobacter genus, of which only three are of clinical importance; Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter turicensis. To date most studies have focussed on C. sakazakii as it is the major species associated with neonatal infections. However, recently C. malonaticus, in particular sequence type 7 (ST7, has been noted as being prevalent in adult infections and therefore warranting further investigation. In this study, eight strains of C. malonaticus ST7, that had been isolated from a wide range of sources and varied in their in vitro virulence, were chosen for proteomic analysis of their outer membrane proteins (OMPs. One-dimensional gel analysis revealed a ~29 kDa size band that was only present in the highly invasive strains. Subsequent mass spectrometric analysis identified several peptides that matched the flagellin protein. The presence of flagellin protein was confirmed in 2D gel spot. Mass spectrometry analysis of total OMPs revealed that the four highly invasive C. malonaticus strains expressed the main flagellum proteins that were absent from the four low invasive strains. These were the flagellar hook protein FlgE, flagellar hook-associated protein 1, flagellar hook-associated protein, flagellin, and flagellar hook-filament junction protein FlgL. This data indicates that C. malonaticus flagellar proteins may have an important role in the organism's invasion properties.

  17. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Tsuji, Nobuhiro

    2009-01-01

    Samples of pure aluminium (99.99%) have been produced by accumulative roll-bonding to a large strain followed by a heat treatment, where a two-step annealing process has been used to produce samples with large variations in structural parameters such as boundary spacing, misorientation angle...... and dislocation density. These parameters have been quantified by a structural analysis applying transmission electron microscopy and electron backscatter diffraction, and the mechanical properties have been determined by tensile testing at room temperature. Strength–structure relationships have been analysed...... based on the operation of two strengthening mechanisms—grain boundary and dislocation strengthening—and good agreement with experiments has been found for the deformed sample. However, for samples where the density of dislocation sources has been reduced significantly by annealing, an additional...

  18. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    Science.gov (United States)

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  19. Use of Mixer Torque Rheometer to Clarify the Relationship between the Kneading States of Wet Mass and the Dissolution of Final Product in High Shear Granulation.

    Science.gov (United States)

    Otsuka, Tomoko; Kuroiwa, Yosuke; Sato, Kazunari; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-01-01

    The properties of wet mass, which indicate the progress of high shear granulation processes, usually have an effect on final product properties, such as tablet dissolution. The mixer torque rheometer (MTR) is a useful tool for quantitatively measuring the 'kneading state' of wet mass and detecting differences in granules. However, there have been no studies of the relationship between the MTR torque and the final product properties to date. In this study, we measured the MTR torque of wet granules at different kneading states, which were prepared by changing the granulation conditions. We then evaluated the relationship between the MTR torque and the dissolution rate of the final product properties. The amperage of the high shear granulator is usually monitored during granulation, but we could not detect a difference in the kneading state through the amperage. However, using MTR torque we were able to quantify the difference of the wet mass. Moreover, MTR torque showed a high correlation with dissolution, compared with the correlations with other intermediate properties, such as granules particle size and tablet hardness. These other properties are affected by following processes and are not properties that directly relate to the kneading state. Thus, MTR torque is a property of wet mass after granulation, and it can be used to directly evaluate differences of the kneading state, and as a result, dissolution. These results indicate the importance of controlling the kneading state, i.e., the progress of granulation, and the utility of M