WorldWideScience

Sample records for high seismic risk

  1. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  2. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  3. Seismic risk evaluation for high voltage air insulated substations

    International Nuclear Information System (INIS)

    Camensig, Carlo; Bresesti, Luca; Clementel, Stefano; Salvetti, Maurizio

    1997-01-01

    This paper describes the results of the analytical and experimental activities performed by ISMES for the evaluation of the structural reliability of electrical substations with respect to seismic events. In the following, the reference station is described along with the methods used to define the site seismic input, the analytical and experimental evaluation of the components' fragility curves and the whole station seismic risk evaluation

  4. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  5. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  6. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  7. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  8. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  9. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  10. Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities

    International Nuclear Information System (INIS)

    Miller, Mahalia; Baker, Jack W.

    2016-01-01

    In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.

  11. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  12. Tourism sector preparedness in zones with a high seismic risk: Case study of the Capital Region of Japan

    Science.gov (United States)

    Lihui, W.; Wang, D.

    2017-12-01

    Japan is a country highly vulnerable to natural disasters, especially earthquakes. Tourism, as a strategic industry in Japan, is especially vulnerable to destructive earthquake disasters owing to the characteristics of vulnerability, sensitivity and substitutability. Here we aim to provide theoretical understanding of the perception and responses of tourism managers towards damaging disasters in tourism destinations with high seismic risks. We conducted surveys among the mangers of tourism businesses in the capital area of Japan in 2014 and applied structural equation modeling techniques to empirically test the proposed model with four latent variables, which are risk perception, threat knowledge, disaster preparedness and earthquake preparedness. Our results show that threat knowledge affects risk perception and disaster preparedness positively. In addition, disaster preparedness positively affects earthquake preparedness. However, the proposed paths from risk perception to disaster preparedness, risk perception to earthquake preparedness, and threat knowledge to earthquake preparedness were not statistically significant. Our results may provide references for policymakers in promoting crisis planning in tourism destination with high seismic risks.

  13. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  14. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  15. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  16. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  17. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  18. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  19. Seismic risk perception test

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  20. Risk perception versus seismic risk: An introduction

    International Nuclear Information System (INIS)

    Cubeddu, Francesca

    2015-01-01

    A seismic event generally has consequences on the social relationships, economy and culture of the impacted territory. As Mary Douglas quotes, a change into the social perception of risk as consequence of an earthquake may have effects on the lifestyle of the local community. The above mentioned statement is the starting point of this article. illustrating the difference between peril and risk is the second point. According to the Aristotelian theory of categories, risk can be considered as a human characteristic depending on social and cultural factors. Risk is here intended as a social category and cannot be de facto reported as a statistical or stochastic function based on a mathematical formula, as long assumed in the past. This approach, then, requires a deep revision. In this sense, and following the concept of risk perception, seismic risk is analysed in this article in terms of impacts, precautionary measures, risk assessment and management. Knowledge of this topic cannot be intended as a simple philosophical exercise, since right on awareness depend risk reduction, humans and goods too [it

  1. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  2. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  3. Seismic risk analysis in the German risk study phase B

    International Nuclear Information System (INIS)

    Hasser, D.; Liemersdorf, J.

    1989-01-01

    The paper discusses some aspects of the seismic risk part of the German risk study for nuclear power plants, phase B. First simplified analyses in phase A of the study allowed a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported, in order to demonstrate the influence of different assumptions for material behavior and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to the distribution assumptions, acceptable simplifications, special results for the PWR reference plant and, finally, the influence of model uncertainties

  4. Seismic risk analyses in the German Risk Study, phase B

    International Nuclear Information System (INIS)

    Hosser, D.; Liemersdorf, H.

    1991-01-01

    The paper discusses some aspects of the seismic risk part of the German Risk Study for Nuclear Power Plants, Phase B. First simplified analyses in Phase A of the study allowed only a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in Phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in Phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported in order to demonstrate the influence of different assumptions for material behaviour and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to distribution assumptions, acceptable simplifications and model uncertainties. Some results for the PWR reference plant are given. (orig.)

  5. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  6. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  7. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  8. Evaluation of Seismic Risk of Siberia Territory

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  9. Research items regarding seismic residual risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  10. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  11. Seismic risk and heavy industrial facilities conference: proceedings

    International Nuclear Information System (INIS)

    1983-01-01

    Summaries of over 50 papers related to seismic risk analysis were presented. The papers cover areas such as seismic input description, response of components and structures, assessment of risk and reliability including human factors, and results of integrated studies. Papers have been individually abstracted for the Energy Data Base

  12. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  13. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  14. Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)

    Science.gov (United States)

    Ismail-Zadeh, A.

    2013-12-01

    Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.

  15. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  16. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  17. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  18. Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy

    Science.gov (United States)

    Diaferio, Mariella; Foti, Dora

    2017-09-01

    The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.

  19. Seismotectonic Conditions and Seismic Risk in Gori

    International Nuclear Information System (INIS)

    Varazanashvili, O.; Tsereteli, N.; Sumbadze, B.; Mukhadze, T.

    2006-01-01

    The seismic history and seismotectonic conditions of earthquake initiation are investigated in Gori and surrounding area. The main parameters of the newly discovered past earthquake at Takhtisdziri are estimated. The levels of seismic risk of 7,8 and 9 intensity scenario earthquakes estimated in Gori. Also damage of sity caused by destroying Kartli earthquake of 1920 is estimated. (author)

  20. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  1. Seismic risk map of Korea

    International Nuclear Information System (INIS)

    Lee, S.H.; Lee, Y.K.; Eum, S.H.; Yang, S.J.; Chun, M.S.

    1983-01-01

    A study on seismic hazard level in Korea has been performed and the main results of the study are summarized as follows: 1. Historians suggest that the quality of historical earthquake data may be accurate in some degree and the data should be used in seismic risk analysis. 2. The historical damage events are conformed in historical literatures and their intensities are re-evaluated by joint researchers. The maximum MM intensity of them is VIII evaluated for 17 events. 3. The relation of earthquakes to surface fault is not clear. It seems resonable to related them to tectonic provinces. 4. Statistical seismic risk analysis shows that the acceleration expected within 50O year return period is less than 0.25G when only instrumental earthquakes are used and less than 0.10G if all of instrumental and historical earthquakes are used. The acceleration in Western Coast and Kyungsang area is higher than the other regions in Korea. 5. The maximum horizontal acceleration determined by conservative method is 0.26G when historical earthquake data are used and less than 0.20G if only instrumental earthquakes are used. The return period of 0.26G is 240 years in Kyungsang province and longer in other provinces. (Author)

  2. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  3. The SISIFO project: Seismic Safety at High Schools

    Science.gov (United States)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the

  4. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, Chingching [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  5. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  6. Seismic risk assessment of Navarre (Northern Spain)

    Science.gov (United States)

    Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.

    2009-04-01

    The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps

  7. Communicating Low-Probability High-Consequence Risk, Uncertainty and Expert Confidence: Induced Seismicity of Deep Geothermal Energy and Shale Gas.

    Science.gov (United States)

    Knoblauch, Theresa A K; Stauffacher, Michael; Trutnevyte, Evelina

    2018-04-01

    Subsurface energy activities entail the risk of induced seismicity including low-probability high-consequence (LPHC) events. For designing respective risk communication, the scientific literature lacks empirical evidence of how the public reacts to different written risk communication formats about such LPHC events and to related uncertainty or expert confidence. This study presents findings from an online experiment (N = 590) that empirically tested the public's responses to risk communication about induced seismicity and to different technology frames, namely deep geothermal energy (DGE) and shale gas (between-subject design). Three incrementally different formats of written risk communication were tested: (i) qualitative, (ii) qualitative and quantitative, and (iii) qualitative and quantitative with risk comparison. Respondents found the latter two the easiest to understand, the most exact, and liked them the most. Adding uncertainty and expert confidence statements made the risk communication less clear, less easy to understand and increased concern. Above all, the technology for which risks are communicated and its acceptance mattered strongly: respondents in the shale gas condition found the identical risk communication less trustworthy and more concerning than in the DGE conditions. They also liked the risk communication overall less. For practitioners in DGE or shale gas projects, the study shows that the public would appreciate efforts in describing LPHC risks with numbers and optionally risk comparisons. However, there seems to be a trade-off between aiming for transparency by disclosing uncertainty and limited expert confidence, and thereby decreasing clarity and increasing concern in the view of the public. © 2017 Society for Risk Analysis.

  8. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  9. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    International Nuclear Information System (INIS)

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures

  10. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    Energy Technology Data Exchange (ETDEWEB)

    George, L.L.; O' Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  11. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  12. A methodology for the quantitative risk assessment of major accidents triggered by seismic events

    International Nuclear Information System (INIS)

    Antonioni, Giacomo; Spadoni, Gigliola; Cozzani, Valerio

    2007-01-01

    A procedure for the quantitative risk assessment of accidents triggered by seismic events in industrial facilities was developed. The starting point of the procedure was the use of available historical data to assess the expected frequencies and the severity of seismic events. Available equipment-dependant failure probability models (vulnerability or fragility curves) were used to assess the damage probability of equipment items due to a seismic event. An analytic procedure was subsequently developed to identify, evaluate the credibility and finally assess the expected consequences of all the possible scenarios that may follow the seismic events. The procedure was implemented in a GIS-based software tool in order to manage the high number of event sequences that are likely to be generated in large industrial facilities. The developed methodology requires a limited amount of additional data with respect to those used in a conventional QRA, and yields with a limited effort a preliminary quantitative assessment of the contribution of the scenarios triggered by earthquakes to the individual and societal risk indexes. The application of the methodology to several case-studies evidenced that the scenarios initiated by seismic events may have a relevant influence on industrial risk, both raising the overall expected frequency of single scenarios and causing specific severe scenarios simultaneously involving several plant units

  13. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  14. The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain)

    Science.gov (United States)

    Rivas-Medina, A.; Gaspar-Escribano, J. M.; Benito, B.; Bernabé, M. A.

    2013-11-01

    This work describes the structure and characteristics of the geographic information system (GIS) developed for the urban seismic risk study of the city of Almería (southern Spain), identifying the stages in which the use of this tool proved to be very beneficial for adopting informed decisions throughout the execution of the work. After the completion of the regional emergency plans for seismic risk in Spain and its subsequent approval by the National Civil Defence Commission, the municipalities that need to develop specific local seismic risk plans have been identified. Hence, the next action is to develop urban seismic risk analyses at a proper scale (Urban Seismic Risk Evaluation - Risk-UR). For this evaluation, different factors influencing seismic risk such as seismic hazard, geotechnical soil characteristics, vulnerability of structures of the region, reparation costs of damaged buildings and exposed population are combined. All these variables are gathered and analysed within a GIS and subsequently used for seismic risk estimation. The GIS constitutes a highly useful working tool because it facilitates data interoperability, making the great volume of information required and the numerous processes that take part in the calculations easier to handle, speeding up the analysis and the interpretation and presentation of the results of the different working phases. The result of this study is based on a great set of variables that provide a comprehensive view of the urban seismic risk, such as the damage distribution of buildings and dwellings of different typologies, the mean damage and the number of uninhabitable buildings for the expected seismic motion, the number of dead and injured at different times of the day, the cost of reconstruction and repair of buildings, among others. These results are intended for interpretation and decision making in emergency management by unspecialised users (Civil Defence technicians and managers).

  15. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  16. Seismic risks at Elsie Lake Main Dam

    International Nuclear Information System (INIS)

    McCammon, N.R.; Momenzadeh, M.; Hawson, H.H.; Nielsen, N.M.

    1991-01-01

    The Elsie Lake dams are located on Vancouver Island in an area of high seismic risk. A safety review in 1986 indicated potential deficiencies in the earthfill main dam with respect to modern earthquake design standards. A detailed field investigation program comprising drilling and penetration tests was carried out and the results used in an assessment of seismic stability. A 0.8 m thick less dense layer in the granular shell of the dam, possibly caused by wet construction conditions, would likely liquefy in a major earthquake but sufficient residual strength would likely remain to prevent catastrophic failure. The dam shell might undergo some distortion, and an assessment was initiated to determine the requirements for reservoir drawdown following an extreme earthquake to ensure the timely lowering of the reservoir for inspection and repair. It was suggested that an adequate evacuation capability would be 25% and 50% drawdown in not more than 30 and 50 days, respectively. 9 refs., 11 figs., 1 tab

  17. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  18. A procedure for seismic risk reduction in Campania Region

    International Nuclear Information System (INIS)

    Zuccaro, G.; Palmieri, M.; Cicalese, S.; Grassi, V.; Rauci, M.; Maggio, F.

    2008-01-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  19. A procedure for seismic risk reduction in Campania Region

    Science.gov (United States)

    Zuccaro, G.; Palmieri, M.; Maggiò, F.; Cicalese, S.; Grassi, V.; Rauci, M.

    2008-07-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  20. Seismic damage assessment for high-rise buildings

    Science.gov (United States)

    Scholl, Roger E.

    1980-01-01

    The problem considered in this project, conducted by URS/John A. Blume & Associates, Engineers (URS/Blume), for the U.S. Geological Survey, is the identification, evaluation, and correlation of ground-motion and structural parameters in order to improve procedures for predicting dollar losses for high-rise structures damaged by earthquakes. Ground-motion data bases, analytical techniques, and known motion-damage relationships already developed for high-rise buildings and for other classes of structures will be refined and extended so that reliable quantitative seismic risk evaluations can be made.

  1. Seismic risk evaluation within the technology neutral framework

    International Nuclear Information System (INIS)

    Johnson, B.C.; Apostolakis, G.E.

    2012-01-01

    Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10 −5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10 −7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10 −7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10 −5 per year to focus on

  2. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.

    2009-03-01

    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  3. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  4. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  5. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  6. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  7. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  8. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  9. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  10. A risk-mitigation approach to the management of induced seismicity

    Science.gov (United States)

    Bommer, Julian J.; Crowley, Helen; Pinho, Rui

    2015-04-01

    Earthquakes may be induced by a wide range of anthropogenic activities such as mining, fluid injection and extraction, and hydraulic fracturing. In recent years, the increased occurrence of induced seismicity and the impact of some of these earthquakes on the built environment have heightened both public concern and regulatory scrutiny, motivating the need for a framework for the management of induced seismicity. Efforts to develop systems to enable control of seismicity have not yet resulted in solutions that can be applied with confidence in most cases. The more rational approach proposed herein is based on applying the same risk quantification and mitigation measures that are applied to the hazard from natural seismicity. This framework allows informed decision-making regarding the conduct of anthropogenic activities that may cause earthquakes. The consequent risk, if related to non-structural damage (when re-location is not an option), can be addressed by appropriate financial compensation. If the risk poses a threat to life and limb, then it may be reduced through the application of strengthening measures in the built environment—the cost of which can be balanced against the economic benefits of the activity in question—rather than attempting to ensure that some threshold on earthquake magnitude or ground-shaking amplitude is not exceeded. However, because of the specific characteristics of induced earthquakes—which may occur in regions with little or no natural seismicity—the procedures used in standard earthquake engineering need adaptation and modification for application to induced seismicity.

  11. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  12. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses of specific action to mitigate the seismic risks from strong deep Vrancea earthquakes should be considered as key to future development projects, including: - Early warning system for industrial facilities; - Short and long term prediction program of strong Vrancea earthquakes; - Seismic hazard map of Romania; - Seismic microzonation of large populated cities; - Shake map; - Seismic tomography of dams for avoiding disasters. The quality of life and the security of infrastructure (including human services, civil and industrial structures, financial infrastructure, information transmission and processing systems) in every nation are increasingly vulnerable to disasters caused by events that have geological, atmospheric, hydrologic, and technological origins. As UN Secretary General Kofi Annan pointed out, 'Building a culture of prevention is not easy. While the costs of prevention have to be paid in the present, its benefits lie in a distant future'. In other words: Prevention pays off. This may not always become apparent immediately, but, in the long run, the benefits from prevention measures will always outweigh their costs by far. Romania is an earthquake prone area and these main specific actions are really contributing to seismic risk mitigation. These specific actions are provided for in Law nr. 372/March 18,2004 -'The National Program of Seismic Risk Management'. (authors)

  13. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  14. Analysis of parameter uncertainties in the assessment of seismic risk for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, S.M.

    1981-04-01

    Probabilistic and statistical methods are used to develop a procedure by which the seismic risk at a specific site can be systematically analyzed. The proposed probabilistic procedure provides a consisted method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. Methods are proposed for including these uncertainties in the final value of calculated risks. Two specific case studies are presented in detail to illustrate the application of the probabilistic method of seismic risk evaluation and to investigate the sensitivity of results to different assumptions

  15. Seismic risk and safety of nuclear installations. A look at the Cadarache Centre

    International Nuclear Information System (INIS)

    Verrhiest-Leblanc, G.; Chevallier, A.

    2010-01-01

    After a brief recall of some important seismic events which occurred in the past in the south-eastern part of France, the authors indicate the nuclear installations present in this region. They outline the difference between requirements for a usual building and for basic nuclear installations. They indicate laws and regulations which are to be applied to these installations like to any hazardous industrial installation. They describe the seismic risk as it has been determined for the Cadarache area, and evoke the para-seismic design of new nuclear installations which are to be built in Cadarache and actions for a para-seismic reinforcement of existing constructions. Finally, they evoke organisational aspects (emergency plans) and the approach for a better information and transparency about the seismic risk

  16. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  17. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  18. Seismic Risk Assessment and Loss Estimation for Tbilisi City

    Science.gov (United States)

    Tsereteli, Nino; Alania, Victor; Varazanashvili, Otar; Gugeshashvili, Tengiz; Arabidze, Vakhtang; Arevadze, Nika; Tsereteli, Emili; Gaphrindashvili, Giorgi; Gventcadze, Alexander; Goguadze, Nino; Vephkhvadze, Sophio

    2013-04-01

    The proper assessment of seismic risk is of crucial importance for society protection and city sustainable economic development, as it is the essential part to seismic hazard reduction. Estimation of seismic risk and losses is complicated tasks. There is always knowledge deficiency on real seismic hazard, local site effects, inventory on elements at risk, infrastructure vulnerability, especially for developing countries. Lately great efforts was done in the frame of EMME (earthquake Model for Middle East Region) project, where in the work packages WP1, WP2 , WP3 and WP4 where improved gaps related to seismic hazard assessment and vulnerability analysis. Finely in the frame of work package wp5 "City Scenario" additional work to this direction and detail investigation of local site conditions, active fault (3D) beneath Tbilisi were done. For estimation economic losses the algorithm was prepared taking into account obtained inventory. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finally loss was estimated resulting from shaking 10%, 5% and 2% exceedance probability in 50 years. Loss resulting from scenario earthquake (earthquake with possible maximum magnitude) also where estimated.

  19. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  20. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a seismic risk analysis that focuses on all possible sources of seismic activity, with the exception of the postulated Verona Fault. The best estimate curve indicates that the Vallecitos facility will experience 30% g with a return period of roughly 130 years and 60% g with a return period of roughly 700 years

  1. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  2. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  3. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  4. Evolution of a seismic risk assessment technique

    International Nuclear Information System (INIS)

    Wells, J.E.; Cummings, G.E.

    1985-01-01

    To assist the NRC in its licensing evaluation role the Seismic Safety Margins Research Program (SSMRP) was started at LLNL in 1978. Its goal was to develop tools and data bases to evaluate the probability of earthquake caused radioactive releases from commercial nuclear power plants. The methodology was finalized in 1982 and a seismic risk assessment of the Zion Nuclear Power Plant was finished in 1983. Work continues on the study of the LaSalle Boiling Water Reactor. This paper will discuss some of the effects of the assumptions made during development of the systems analysis techniques used in SSMRP in light of the results obtained on studies to date. 5 refs

  5. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  6. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  7. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    Science.gov (United States)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  8. Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: The UK case

    Energy Technology Data Exchange (ETDEWEB)

    Medel-Vera, Carlos, E-mail: cbmedel@uc.cl; Ji, Tianjian, E-mail: tianjian.ji@manchester.ac.uk

    2016-10-15

    Highlights: • Strategies to reduce seismic risk for nuclear power stations in the UK are analysed. • Efficiency of devices to reduce risk: viscous-based higher than hysteretic-based. • Scenario-based incremental dynamic analysis is introduced for use in nuclear stations. • Surfaces of seismic unacceptable performance for nuclear stations are proposed. - Abstract: This article analyses three different strategies on the use of seismic protection systems (SPS) for nuclear power plants (NPPs) in the UK. Such strategies are based on the experience reported elsewhere of seismically protected nuclear reactor buildings in other stable continental regions. Analyses are conducted using an example of application based on a 1000 MW Pressurised Water Reactor building located in a representative UK nuclear site. The efficiency of the SPS is probabilistically assessed to achieve possible risk reduction for both rock and soil sites in comparison with conventionally constructed NPPs. Further analyses are conducted to study how the reduction of risk changes when all controlling scenarios of the site are included. This is done by introducing a scenario-based incremental dynamic analysis aimed at the generation of surfaces for unacceptable performance of NPPs as a function of earthquake magnitude (M{sub w}) and distance-to-site (R{sub epi}). General guidelines are proposed to potentially use SPS in future NPPs in the UK. Such recommendations can be used by the British nuclear industry in the future development of 12 new reactors to be built in the next two decades to generate 16 GWe of new nuclear capacity.

  9. Observational studies to mitigate seismic risks in mines: a new Japanese-South African collaborative research project

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2010-10-01

    Full Text Available and High Stress Mining, 6-8 October 2010, Santiago CHILE 1 Observational studies to mitigate seismic risks in mines: a new Japanese - South African collaborative research project R.J. Durrheim SATREPS*, CSIR Centre for Mining Innovation.... 3. To upgrade the South African national seismic network. The project is carried out under the auspices of the SATREPS (Science and Technology Research Partnership for Sustainable Development) program "Countermeasures towards Global Issues through...

  10. Seismic risk assessment in the Mexican Nuclear Center applying the Gumbel-I distribution

    International Nuclear Information System (INIS)

    Flores R, J.H.; Arguelles F, R.; Camacho L, M.E.; Urrutia F, J.

    1997-01-01

    A licensing requirement for the operation of nuclear facilities is the performance of different kinds of studies, one of which is seismic risk assessment. This study is useful for the validation of the seismic coefficient applied in the structural design of the facilities. Thus, for the construction of a pilot nuclear fuel plant at Mexico Nuclear Centre of the Instituto Nacional de Investigaciones Nucleares (ININ), was necessary to make such study. The seismicity data for the period between 1912 and 1990 were used and the extreme values Gumbel-I distribution was applied to them. With this, ground acceleration seismic risk maps for recurrence periods of 1, 25 and 50 years were drawn up, showing maximum values of 1.2, 4.25, and 5.0 gales, respectively. (Author)

  11. Seismic risk analysis for the Westinghouse Electric facility, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    This report presents the results of a detailed seismic risk analysis of the Westinghouse Electric plutonium fuel development facility at Cheswick, Pennsylvania. This report focuses on earthquakes. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. For example, allowance was made for both the uncertainty in predicting maximum possible earthquakes in the region and the effect of the dispersion of data about the best fit attenuation relation. The attenuation relationship is derived from two of the most recent, advanced studies relating earthquake intensity reports and acceleration. Results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented as return period accelerations. The best estimate curve indicates that the Westinghouse facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and each of the source regions contributes almost equally to the cumulative risk at the site

  12. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  13. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  14. Component fragility analysis methodology for seismic risk assessment projects. Proven PSA safety document processing and assessment procedures

    International Nuclear Information System (INIS)

    Kolar, Ladislav

    2013-03-01

    The seismic risk task assessment task should be structured as follows: (i) Define all reactor unit building structures, components and equipment involved in the creation of an initiating event (IE) induced by an seismic event or contributing to the reliability of reactor unit response to an IE; (ii) construct and estimate of the fragility curves for the building and component groups sub (i); (iii) determine the HCLPF for each group of buildings, components or equipment; (iv) determine the nuclear source's seismic resistance (SME) as the minimum HCLPF from the group of equipment in the risk-dominant scenarios; (v) define the risk-limiting group of components, equipment and building structures to the SME value; (vi) based on the fragility levels, identify component groups for which a more detailed fragility analysis is needed; and (vii) recommend groups of equipment or building structures that should be taken into account with respect to the seismic risk, i.e. such groups of equipment or building structures as exhibit a low seismic resistance (HCLPF) and, at the same time, are involved to a significant extent in the reactor unit's seismic risk (are present in the dominant risk scenarios). (P.A.)

  15. Seismic risk analysis for the fast breeder prototype SNR-300 in Kalkar (FRG)

    International Nuclear Information System (INIS)

    Hosser, D.

    1983-01-01

    This paper summarizes the seismic part of the SNR-300 Risk Oriented Analysis. Two different approaches were used for the seismic hazard description. In the first one, similar to the German Risk Study for PWR, the seismic input was given by a site-independent mean acceleration response spectrum and duration of strong motion prescribed for the design of the plant; the spectrum was scaled with the peak ground acceleration the probability of exceedance of which at the site Kalkar had been calculated in a former seismic hazard tudy. For the second approach, site- and intensity- dependent mean acceleration response spectra and duration of strong motion were derived and the probability of exceedance of the site intensity was evaluated in a probabilistic seismic hazard analysis. The seismic responses of safety related and other important buildings were calculated by time-history analyses using artificial acceleration time-histories with the given frequency content and duration of strong motion. The influence of uncertainties in dynamic soil parameters and structural modelling was assessed in parametric studies. Some important structural elements within the buildings were investigated in more detail. Their seismic performance was evaluated using ultimate limit state definitions according to the respective design codes or rotation limits for nonlinear dynamic calculations. (orig./RW)

  16. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  17. A methodology for assessment seismic risk in PSAs

    International Nuclear Information System (INIS)

    Jae, Moo Sung

    2001-01-01

    This paper suggested a new framework for assessing seismic risk in PSAs. The framework used the concepts of requirement and achievement in the reliability physics. The quantified correlation which is a function of the requirement variable (hazard curve) and the achievement variable (fragility curve) results in a quantity, the unconditional frequency of exceeding a damage lelvel. This framework can be applied to any other external safety assessment, such as Fire and Flood Risk in PSAs

  18. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  19. What is the seismic risk of mine flooding?

    CSIR Research Space (South Africa)

    Goldbach, O

    2010-09-01

    Full Text Available of reservoirs and the injection of fluids into rocks at depth. Fluid-induced seismicity has been observed to occur in oil-well stimulation (Parotidis et al., 2004; Gibbs et al., 1973; Raleigh et al., 1976), where high-pressure water is pumped into a... stimulation well in an oil field in order to increase the oil yield of a nearby production well. Reservoir-induced seismicity is another example where the filling of newly constructed dams has resulted in the onset of seismicity around the dam as water...

  20. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  1. Enhancing the seismic margin review methodology to obtain risk insights

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1992-01-01

    This paper discusses methods for obtaining risk insights from the seismic margin review (SMR) methodology. The SMR methodology was originally developed in 1984-1987 with the objective of analyzing an individual nuclear power plant to ascertain whether the plant has the ability to withstand earthquakes substantially beyond the design-basis earthquake without suffering a core-damage accident. Recently, in the context of Nuclear Regulatory Commission's (NRC's) Individual Plant Evaluation for External Events (IPEEE) program, the SMR methodology has been developed further by NRC to allow plants to identify plant-specific vulnerabilities (in the IPEEE sense) to seismic events. The objective of these enhancements has been to provide a methodology for IPEEE seismic review that is substantially less expensive than a full-scope seismic PRA, but that achieves the IPEEE's vulnerability-search objectives. In this paper, the steps involved in the enhanced methodology are discussed

  2. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  3. 76 FR 57767 - Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for...

    Science.gov (United States)

    2011-09-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0204] Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for Operating Reactors AGENCY: Nuclear Regulatory Commission... FR 54507), that requested public comment on Draft NRC Generic Letter 2011- XX: Seismic Risk...

  4. Probability problems in seismic risk analysis and load combinations for nuclear power plants

    International Nuclear Information System (INIS)

    George, L.L.

    1983-01-01

    This workshop describes some probability problems in power plant reliability and maintenance analysis. The problems are seismic risk analysis, loss of load probability, load combinations, and load sharing. The seismic risk problem is to compute power plant reliability given an earthquake and the resulting risk. Component survival occurs if its peak random response to the earthquake does not exceed its strength. Power plant survival is a complicated Boolean function of component failures and survivals. The responses and strengths of components are dependent random processes, and the peak responses are maxima of random processes. The resulting risk is the expected cost of power plant failure

  5. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  6. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  7. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  8. Seismic risk maps of Switzerland; description of the probabilistic method and discussion of some input parameters

    International Nuclear Information System (INIS)

    Mayer-Rosa, D.; Merz, H.A.

    1976-01-01

    The probabilistic model used in a seismic risk mapping project for Switzerland is presented. Some of its advantages and limitations are spelled out. In addition some earthquake parameters which should be carefully investigated before using them in a seismic risk analysis are discussed

  9. Taking into account seismic risk on glove boxes

    Energy Technology Data Exchange (ETDEWEB)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  10. Taking into account seismic risk on glove boxes

    International Nuclear Information System (INIS)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  11. Destructiveness criteria for seismic risk evaluation of nuclear power plant

    International Nuclear Information System (INIS)

    Saragoni, G.R.

    1995-01-01

    Two criteria of destructiveness for seismic risk evaluation of nuclear power plant are presented. The first one is a simple linear criterion that allows to compute average response spectra in terms of earthquake accelerogram characteristics. The second defines the destructiveness potential factor P D which measures the capacity of earthquake to produce nonlinear damage. This second criterion that shows large differences of destructiveness capacity for earthquake accelerograms of different seismic environment, specially between subductive and transcursive, is strongly recommended. (author). 8 refs., 1 fig. 1 tab

  12. Probabilistic Seismic Risk Assessment in Manizales, Colombia:Quantifying Losses for Insurance Purposes

    Institute of Scientific and Technical Information of China (English)

    Mario A.Salgado-Gálvez; Gabriel A.Bernal; Daniela Zuloaga; Mabel C.Marulanda; Omar-Darío Cardona; Sebastián Henao

    2017-01-01

    A fully probabilistic seismic risk assessment was developed in Manizales,Colombia,considering assets of different types.The first type includes elements that are part of the water and sewage network,and the second type includes public and private buildings.This assessment required the development of a probabilistic seismic hazard analysis that accounts for the dynamic soil response,assembling high resolution exposure databases,and the development of damage models for different types of elements.The economic appraisal of the exposed assets was developed together with specialists of the water utilities company of Manizales and the city administration.The risk assessment was performed using several Comprehensive Approach to Probabilistic Risk Assessment modules as well as the R-System,obtaining results in terms of traditional metrics such as loss exceedance curve,average annual loss,and probable maximum loss.For the case of pipelines,repair rates were also estimated.The results for the water and sewage network were used in activities related to the expansion and maintenance strategies,as well as for the exploration of financial retention and transfer alternatives using insurance schemes based on technical,probabilistic,and prospective damage and loss estimations.In the case of the buildings,the results were used in the update of the technical premium values of the existing collective insurance scheme.

  13. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years

  14. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-29

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years.

  15. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  16. Magnitudes and frequencies of earthquakes in relation to seismic risk

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1989-01-01

    Estimating the frequencies of occurrence of earthquakes of different magnitudes on a regional basis is an important task in estimating seismic risk at a construction site. Analysis of global earthquake data provides an insight into the magnitudes frequency relationship in a statistical manner. It turns out that, whereas a linear relationship between the logarithm of earthquake occurrence rates and the corresponding earthquake magnitudes fits well in the magnitude range between 5 and 7, a second degree polynomial in M, the earthquake magnitude provides a better description of the frequencies of earthquakes in a much wider range of magnitudes. It may be possible to adopt magnitude frequency relation for regions, for which adequate earthquake data are not available, to carry out seismic risk calculations. (author). 32 refs., 8 tabs., 7 figs

  17. A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.

  18. A microseismic workflow for managing induced seismicity risk as CO2 storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morency, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pyle, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Templeton, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve the resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.

  19. Safety goals for seismic and tsunami risks: Lessons learned from the Fukushima Daiichi disaster

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2014-12-15

    tsunami water leaked through the truck entrance shutters and louver windows for the Diesel Generators’ air intakes. In view of the difficulties in predicting natural events when establishing the design basis for nuclear facilities, a drastic reappraisal of the safety design approach is essential when considering risks and uncertainties. The author proposes a new probabilistic seismic and tsunami safety goals be developed on the basis of lessons learned from the Fukushima disaster which would fortify the vulnerable systems thereby reducing seismic and tsunami risks as low as practical. The safety goal should also be used to enable stakeholders to find an answer to the question of ‘how safe is safe enough’. Through the development of the safety goals it is demonstrated that the risks of tsunami hazards are by far the largest risk to nuclear facilities in Japan due to its high recurrence period in certain regions of the country. It is essential to guard against tsunami-induced flooding and the need for more robust emergency power supply systems as well as special provisions for the disposal of hydrogen gas in the event of severe accidents.

  20. Safety goals for seismic and tsunami risks: Lessons learned from the Fukushima Daiichi disaster

    International Nuclear Information System (INIS)

    Saji, Genn

    2014-01-01

    water leaked through the truck entrance shutters and louver windows for the Diesel Generators’ air intakes. In view of the difficulties in predicting natural events when establishing the design basis for nuclear facilities, a drastic reappraisal of the safety design approach is essential when considering risks and uncertainties. The author proposes a new probabilistic seismic and tsunami safety goals be developed on the basis of lessons learned from the Fukushima disaster which would fortify the vulnerable systems thereby reducing seismic and tsunami risks as low as practical. The safety goal should also be used to enable stakeholders to find an answer to the question of ‘how safe is safe enough’. Through the development of the safety goals it is demonstrated that the risks of tsunami hazards are by far the largest risk to nuclear facilities in Japan due to its high recurrence period in certain regions of the country. It is essential to guard against tsunami-induced flooding and the need for more robust emergency power supply systems as well as special provisions for the disposal of hydrogen gas in the event of severe accidents

  1. Risk assessment and early warning systems for industrial facilities in seismic zones

    International Nuclear Information System (INIS)

    Salzano, Ernesto; Garcia Agreda, Anita; Di Carluccio, Antonio; Fabbrocino, Giovanni

    2009-01-01

    Industrial equipments and systems can suffer structural damage when hit by earthquakes, so that accidental scenarios as fire, explosion and dispersion of toxic substances can take place. As a result, overall damage to people, environment and properties increases. The present paper deals with seismic risk analysis of industrial facilities where atmospheric storage tanks (anchored or unanchored to ground), horizontal pressurised tanks, reactors and pumps are installed. Simplified procedures and methodologies based on historical database and literature data on natural-technological (Na-Tech) accidents for seismic risk assessment are discussed. Equipment-specific fragility curves have been thus derived depending on a single earthquake measure, peak ground acceleration (PGA). Fragility parameters have been then transformed to linear probit coefficients in order to obtain reliable threshold values for earthquake intensity measure, both for structural damage and loss of containment. These threshold values are of great interest when development of active and passive mitigation actions and systems, safety management, and the implementation of early warning system are concerned. The approach is general and can be implemented in any available code or procedure for risk assessment. Some results of seismic analysis of atmospheric storage tanks are also presented for validation.

  2. Assessing the cost-effectiveness of seismic risk reduction options in oil industry

    International Nuclear Information System (INIS)

    Nasserasadi, K.; Ghafory-Ashtiany, M.

    2007-01-01

    An integrated probabilistic methodology for cost-efficiency estimation of different sort of seismic risk management measures are introduced by adding Cost Benefit Analysis (CBA) module to an integrated seismic risk assessment model. An oil refinery in Iran has been selected for case study and cost-efficiency of software and hardware mitigation measures are evaluated. The results have shown that: (1) software mitigation measures have more benefit than hardware ones, (2) considering indirect loss in CBA lead to more benefit-cost ratio and (3) although increase of discount ratio decreases the benefit-cost ratio, the arrangement of mitigation measures from benefit-cost viewpoint are constant. (authors)

  3. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  4. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  5. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  6. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  7. Prioritization of information using decision support systems for seismic risk in Bucharest city

    Science.gov (United States)

    Armas, Iuliana; Gheorghe, Diana

    2014-05-01

    Nowadays, because of the ever increasing volume of information, policymakers are faced with decision making problems. Achieving an objective and suitable decision making may become a challenge. In such situations decision support systems (DSS) have been developed. DSS can assist in the decision making process, offering support on how a decision should be made, rather than what decision should be made (Simon, 1979). This in turn potentially involves a huge number of stakeholders and criteria. Regarding seismic risk, Bucharest City is highly vulnerable (Mandrescu et al., 2007). The aim of this study is to implement a spatial decision support system in order to secure a suitable shelter in case of an earthquake occurrence in the historical centre of Bucharest City. In case of a seismic risk, a shelter is essential for sheltering people who lost their homes or whose homes are in danger of collapsing while people at risk receive first aid in the post-disaster phase. For the present study, the SMCE Module for ILWIS 3.4 was used. The methodology included structuring the problem by creating a decision tree, standardizing and weighting of the criteria. The results showed that the most suitable buildings are Tania Hotel, Hanul lui Manuc, The National Bank of Romania, The Romanian Commercial Bank and The National History Museum.

  8. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    Full Text Available The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the

  9. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  10. Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations

  11. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  12. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  13. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  14. Nuclear power plant of Fessenheim: evaluation of the seismic risk; Centrale Nucleaire de Fessenheim: appreciation du risque sismique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The seismic risk taken into account during the sizing of the nuclear power plant of Fessenheim seems to have been under evaluated at this time. The revaluation of the seismic risk, as proposed, until this day by EDF in order to the third ten-year visit of the power plant, planned for 2009, leads to a significant under evaluation of the risk and then is not acceptable. The present expertise details point by point the weaknesses of these revaluation. The power plant has been sized in an elastic manner that is generally strongly for the safety side. It is imperative to proceed the most quickly as possible to a deep control of the seismic resistance of the power plant of Fessenheim and then after having proceeded to a revision of the seismic risk in taking into account the actual knowledge in this field. (N.C.)

  15. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  16. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  17. Methodology for seismic PSA of NPPs

    International Nuclear Information System (INIS)

    Jirsa, P.

    1999-09-01

    A general methodology is outlined for seismic PSA (probabilistic safety assessment). The main objectives of seismic PSA include: description of the course of an event; understanding the most probable failure sequences; gaining insight into the overall probability of reactor core damage; identification of the main seismic risk contributors; identification of the range of peak ground accelerations contributing significantly to the plant risk; and comparison of the seismic risk with risks from other events. The results of seismic PSA are typically compared with those of internal PSA and of PSA of other external events. If the results of internal and external PSA are available, sensitivity studies and cost benefit analyses are performed prior to any decision regarding corrective actions. If the seismic PSA involves analysis of the containment, useful information can be gained regarding potential seismic damage of the containment. (P.A.)

  18. New "Risk-Targeted" Seismic Maps Introduced into Building Codes

    Science.gov (United States)

    Luco, Nicholas; Garrett, B.; Hayes, J.

    2012-01-01

    Throughout most municipalities of the United States, structural engineers design new buildings using the U.S.-focused International Building Code (IBC). Updated editions of the IBC are published every 3 years. The latest edition (2012) contains new "risk-targeted maximum considered earthquake" (MCER) ground motion maps, which are enabling engineers to incorporate a more consistent and better defined level of seismic safety into their building designs.

  19. Seismic risks posed by mine flooding

    CSIR Research Space (South Africa)

    Goldbach, OD

    2009-09-01

    Full Text Available are allowed to flood. Such flooding-induced seismicity can have significant environmental, social and economic consequences, and may endanger neighbouring mines and surface communities. While fluid-induced seismicity has been observed in other settings (e...

  20. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  1. An assessment of the low seismic risk of the inherently safe sodium advanced fast reactor (SAFR)

    International Nuclear Information System (INIS)

    Rutherford, P.D.

    1988-01-01

    A recent probabilistic risk assessment (PRA) of the sodium advanced fast reactor (SAFR) demonstrated the inherently low risk of advanced liquid-metal, pool-type fast reactors with inherent safety systems. As a result, it was recognized that external events, especially seismic events, may not only be a major contributor to risk (as shown in several LWR PRAs) but also may completely dominate the risk. Accordingly, a seismic risk assessment has been completed for SAFR, which resulted in a core damage frequency of 2 x 10 -7 /year and a large release frequency of 4 x 10 -9 /year. This paper reports that public health risk in terms of early fatality risk and latent fatality risk were also several orders of magnitude below the NRC safety goals and below recent LWR risks reported in NUREB/CR1150

  2. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  3. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  4. The application of seismic risk-benefit analysis to land use planning in Taipei City.

    Science.gov (United States)

    Hung, Hung-Chih; Chen, Liang-Chun

    2007-09-01

    In the developing countries of Asia local authorities rarely use risk analysis instruments as a decision-making support mechanism during planning and development procedures. The main purpose of this paper is to provide a methodology to enable planners to undertake such analyses. We illustrate a case study of seismic risk-benefit analysis for the city of Taipei, Taiwan, using available land use maps and surveys as well as a new tool developed by the National Science Council in Taiwan--the HAZ-Taiwan earthquake loss estimation system. We use three hypothetical earthquakes to estimate casualties and total and annualised direct economic losses, and to show their spatial distribution. We also characterise the distribution of vulnerability over the study area using cluster analysis. A risk-benefit ratio is calculated to express the levels of seismic risk attached to alternative land use plans. This paper suggests ways to perform earthquake risk evaluations and the authors intend to assist city planners to evaluate the appropriateness of their planning decisions.

  5. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  6. Application of a simplified seismic risk methodology to the La Salle County Station Unit 2 BWR

    International Nuclear Information System (INIS)

    Lappa, D.A.; Wells, J.E.

    1986-01-01

    It is important to bear in mind that no risk assessment of any U.S. nuclear power plant can be interpreted to be generally representative of more than a handful of other U.S. plants. Variations in factors ranging from plant age and operating experience to NRC licensing requirements and design guidelines have led to a wide diversity of power plants in the United States. Except for a few combinations of plants of comparable design and vintage, the extension of plant-specific results to other nuclear power plants should only be done with considerable trepidation. This situation is worsened for a seismic PRA because of the variability in the seismic hazard from site to site. In the case of this study, it would be a mistake to infer that all BWRs are sufficiently resistant to earthquakes because of the generally low seismic failure probabilities at La Salle. Unless those BWRs had similar site characteristics and were of a similar design and vintage as La Salle, no immediate extension of this study's results would be appropriate. With these thoughts in mind, we turn our attention to one of the questions which the La Salle seismic PRA is supposed to address, namely, the comparable seismic vulnerability of BWRs and PWRs. The La Salle study has provided us with some insight to the seismic risk at a particular BWR. This information may or may not be useful to understanding the seismic vulnerability of other BWRs

  7. Keeping focus on earthquakes at school for seismic risk mitigation of the next generations

    Science.gov (United States)

    Saraò, Angela; Barnaba, Carla; Peruzza, Laura

    2013-04-01

    The knowledge of the seismic history of its own territory, the understanding of physical phenomena in response to an earthquake, the changes in the cultural heritage following a strong earthquake, the learning of actions to be taken during and after an earthquake, are piece of information that contribute to keep focus on the seismic hazard and to implement strategies for seismic risk mitigation. The training of new generations, today more than ever subject to rapid forgetting of past events, becomes therefore a key element to increase the perception that earthquakes happened and can happen at anytime and that mitigation actions are the only means to ensure the safety and to reduce damages and human losses. Since several years our institute (OGS) is involved in activities to raise awareness of education on earthquake. We aim to implement education programs with the goal of addressing a critical approach to seismic hazard reduction, differentiating the types of activities according to the age of the students. However, being such kind of activity unfunded, we can act at now only on a very limited number of schools per year. To be effective, the inclusion of the seismic risk issues in school curricula requires specific time and appropriate approaches when planning activities. For this reason, we involve also the teachers as proponents of activities and we encourage them to keep alive memories and discussion on earthquake in the classes. During the past years we acted mainly in the schools of the Friuli Venezia Giulia area (NE Italy), that is an earthquake prone area struck in 1976 by a destructive seismic event (Ms=6.5). We organized short training courses for teachers, we lectured classes, and we led laboratory activities with students. Indeed, being well known that students enjoy classes more when visual and active learning are joined, we propose a program that is composed by seminars, demonstrations and hands-on activities in the classrooms; for high school students

  8. Risk assessment to determine the advisability of seismic trip systems

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.

    1977-01-01

    Seismic trip (scram) systems have been used for many years on certain research, test, and production reactors, but not on commercial power reactors. An assessment is made of the risks associated with the presence and absence of such trip systems on power reactors. An attempt was made to go beyond the reactor per se and to consider the risks to society as a whole; for example, the advantages of tripping to avoid an earthquake-caused accident were weighed against the disadvantages associated with interrupting electric power in a time when it would be needed for emergency services. The comparative risk assessment was performed by means of fault tree analysis

  9. Japanese-South African collaboration to mitigate seismic risks in deep gold mines

    CSIR Research Space (South Africa)

    Ogasawara, H

    2009-09-01

    Full Text Available Japanese-South African collaborative project entitled "Observational study to mitigate seismic risks in mines". The project will build on previous studies carried out by Japanese seismologists in South African mines, and will develop human and instrumental...

  10. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  11. The risks to miners, mines, and the public posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2006-10-01

    Full Text Available are incorporating the risks of seismicity in their disaster management plans, and Johannesburg is urged to do likewise. Some buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks....

  12. SEISMIC RISK CARTOGRAPHIC VISUALIZATION FOR CRISIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Nina I. Frolova

    2014-01-01

    Full Text Available Earthquake loss estimations before future events and following strong earthquakesin emergency mode and their corresponding visualization are extremely important for properdecision on preventive measures and effective response in order to save lives and properties. The paper addresses the methodological issues of seismic risk and vulnerability assessment, mapping with GIS technology application. Requirements for simulation models,databases used at different levels, as well as ways of visualizations oriented for EmergencyManagement Agencies, as well federal and local authorities are discussed. Examples ofmapping at the different levels: global, country, region and urban one are given and theinfluence of input data uncertainties on the reliability of loss computations is analyzed.

  13. Risk management considerations for seismic upgrading of an older facility for short-term residue stabilization

    International Nuclear Information System (INIS)

    Additon, S.L.; Peregoy, W.L.; Foppe, T.L.

    1999-01-01

    Building 707 and its addition, Building 707A, were selected, after the production mission of Rocky Flats was terminated a few years ago, to stabilize many of the plutonium residues remaining at the site by 2002. The facility had undergone substantial safety improvements to its safety systems and conduct of operations for resumption of plutonium operations in the early 1990s and appeared ideally suited for this new mission to support accelerated Site closure. During development of a new authorization basis, a seismic evaluation was performed. This evaluation addressed an unanalyzed expansion joint and suspect connection details for the precast concrete tilt-up construction and concluded that the seismic capacity of the facility is less than half of that determined by previous analysis. Further, potential seismic interaction was identified between a collapsing Building 707 and the seismically upgraded Building 707A, possibly causing the partial collapse of the latter. Both the operating contractor and the Department of Energy sought a sound technical basis for deciding how to proceed. This paper addresses the risks of the as-is facility and possible benefits of upgrades to support a decision on whether to upgrade the seismic capacity of Building 707, accept the risk of the as-is facility for its short remaining mission, or relocate critical stabilization missions. The paper also addresses the Department of Energy's policy on natural phenomena

  14. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  15. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  16. An Investigation of Seismicity for the West Sumatra Region Indonesia

    Science.gov (United States)

    Syafriani, S.

    2018-04-01

    The purpose of this research was to investigate the seismicity of the West Sumatra region in the coordinates area of 94° E – 104° E and 2° N - 4° S. Guttenberg-Richer magnitude-frequency relation and seismic risk have been computed. Historical data of earthquakes used from year of 1970 to 2017 with magnitude higher than 4. The study area was divided into 8 sub-regions based on seismotectonic characteristics, plate tectonic and geological models. The determination of seismotectonic characteristics was based on the level of seismic activity in a region (a value) and rock stress condition (b value). High a value was associated with high seismic activity, whereas high b values were associated with low stress rock conditions, and vice versa. Based on the calculation results, a and b values were obtained in the interval of 5.5-11.3 and 0.7-2. The highest b value was obtained in the sub region 5 (Nias islands), while the lowest b value was obtained in sub region 7 (the Mentawai islands). The sub region 7, Mentawai Islands was indicated as the seismic risk potential areas.

  17. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  18. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  19. Seismic risk reduction for architectural heritage. A comparison between experiences from Colombia and Japan

    OpenAIRE

    Niglio, Olimpia; Valencia Mina, William; Universidad del Quindío

    2015-01-01

    Seismic risk is a problem in many countries, especially in Latin America, the Middle East and the Far East, particularly Japan. From the analysis of seismicity and built heritage in Japan and Colombia, this article presents the first results of a comparative research between the two countries, the different methods of intervention and management to protectthe architectural heritage, which is important to reduce their vulnerability. This paper also presents some thoughts on the legal regulatio...

  20. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  1. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    OpenAIRE

    Lo , Chung-Kung; Pedroni , N.; Zio , Enrico

    2014-01-01

    International audience; The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk a...

  2. High-resolution seismic reflection study, Vacherie Dome

    International Nuclear Information System (INIS)

    1984-06-01

    A high-resolution seismic reflection study, consisting of recording, processing, and interpreting four seismic reflection lines, was made at Vacherie Dome, Louisiana. The presumed shape of the dome, as pictured in the geologic area characterization report by Law Engineering Testing Company in 1982, was based largely on interpretation of gravity data, constrained by a few wells and exploration-type seismic profiles. The purpose of the study was to obtain refined profiles of the dome above -914 m (-3000 ft) elevation. Additional study had been recommended by Louisiana State University in 1967 and the Office of Nuclear Waste Isolation in 1981 because the interpreted size of Vacherie Dome was based on limited seismic and gravity data. Forty-eight traces of seismic data were recorded each time shots were made to generate energy. Twelve-fold, common-depth-point data were obtained using geophone stations spaced at 15-m (50-ft) intervals with shots at 30-m (100-ft) intervals. The time-sampling interval used was 1 ms. Processing intended to enhance resolution included iterative static corrections, deconvolution before stacking, and both time- and depth-migration. The locations of the steep dome sides were inferred primarily from terminations of strong reflections (migrated) from strata near the top of the upper and lower Cretaceous sections. This interpretation agrees closely with the presumed shape from the top of the dome to about -610 m (-2000 ft) elevation, but below this on three of the profiles, this interpretation indicates a steeper salt face than the presumed shape. The area reduction at -914 m (-3000 ft) elevation is estimated to be on the order of 20 percent. 10 references, 11 figures, 4 tables

  3. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  4. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  5. Study on highly efficient seismic data acquisition and processing methods based on sparsity constraint

    Science.gov (United States)

    Wang, H.; Chen, S.; Tao, C.; Qiu, L.

    2017-12-01

    High-density, high-fold and wide-azimuth seismic data acquisition methods are widely used to overcome the increasingly sophisticated exploration targets. The acquisition period is longer and longer and the acquisition cost is higher and higher. We carry out the study of highly efficient seismic data acquisition and processing methods based on sparse representation theory (or compressed sensing theory), and achieve some innovative results. The theoretical principles of highly efficient acquisition and processing is studied. We firstly reveal sparse representation theory based on wave equation. Then we study the highly efficient seismic sampling methods and present an optimized piecewise-random sampling method based on sparsity prior information. At last, a reconstruction strategy with the sparsity constraint is developed; A two-step recovery approach by combining sparsity-promoting method and hyperbolic Radon transform is also put forward. The above three aspects constitute the enhanced theory of highly efficient seismic data acquisition. The specific implementation strategies of highly efficient acquisition and processing are studied according to the highly efficient acquisition theory expounded in paragraph 2. Firstly, we propose the highly efficient acquisition network designing method by the help of optimized piecewise-random sampling method. Secondly, we propose two types of highly efficient seismic data acquisition methods based on (1) single sources and (2) blended (or simultaneous) sources. Thirdly, the reconstruction procedures corresponding to the above two types of highly efficient seismic data acquisition methods are proposed to obtain the seismic data on the regular acquisition network. A discussion of the impact on the imaging result of blended shooting is discussed. In the end, we implement the numerical tests based on Marmousi model. The achieved results show: (1) the theoretical framework of highly efficient seismic data acquisition and processing

  6. Education and Raising Awareness of Seismic Risk in the Black Sea Basin

    Science.gov (United States)

    Florin Balan, Stefan; Alcaz, Vasile; Trifonova, Petya; Uker, Nalan; Tataru, Dragos

    2014-05-01

    more effective and efficient approach being ensured. 3. To increase the capacity of local institutions emergency intervention units for joint response activities in case of disasters. By involving the local emergency units and public administration in the project activities, especially in trainings, conferences and consultations, a better cooperation at cross-border level will be achieved. Step by step, the respective bodies will increase the cooperation and will benefit from each others expertise. Target groups : Research institutions and universities; Emergency intervention units; Local public authorities; NGOs. Final beneficiaries of the project: the population in the regions of the project. The project has a high educational perspective through its: a)training activities and b)training tools applied in the process. A) the training of 20 people from the emergency units from each country (80 in total) by experts in risk management. B) The Seismic Safety Web Portal of the project presenting all activities, maps and materials posted by members of the network agreement and not only. Also for changing expertise, opinions and long distance conferences is available a special software communication tool. An educational book is printed in 3 languages to be distributed in partner countries with main results.

  7. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  8. Ethical Implications of Seismic Risk Communication in Istanbul - Insights from a Transdisciplinary, Film-based Science Communication Workshop

    Science.gov (United States)

    Ickert, Johanna; Stewart, Iain S.

    2016-04-01

    For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city

  9. Seismic upgrading of the Brookhaven High Flux Beam Research Reactor

    International Nuclear Information System (INIS)

    Subudhi, M.

    1985-01-01

    In recent years the High Flux Beam Research (HFBR) reactor facility at Brookhaven National Laboratory (BNL) was upgraded from 40 to 50 MW power level. The reactor plant was built in the early sixties to the seismic design requirements of the period, using the static load approach. While the plant power level was upgraded, the seismic design was also improved according to current design criteria. This included the development of new floor response spectra for the facility and an overall seismic analysis of those systems important to the safe shutdown of the reactor. Items included in the reanalysis are the containment building with its internal structure, the piping systems, tanks, equipment, and heat exchangers. This paper describes the procedure utilized in developing the floor response spectra for the existing facility. Also included in the paper are the findings and recommendations, based on the seismic analysis, regarding the seismic adequacy of structural and mechanical systems vital to achieving the safe shutdown of the reactor. 11 references, 4 figures, 1 table

  10. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  11. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  12. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  13. High-resolution seismic reflection surveying with a land streamer

    Science.gov (United States)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  14. Scram reliability under seismic conditions at the Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Roglans, J.; Wang, C.Y.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment of the Experimental Breeder Reactor II has recently been completed. Seismic events are among the external initiating events included in the assessment. As part of the seismic PRA a detailed study has been performed of the ability to shutdown the reactor under seismic conditions. A comprehensive finite element model of the EBR-II control rod drive system has been used to analyze the control rod system response when subjected to input seismic accelerators. The results indicate the control rod drive system has a high seismic capacity. The estimated seismic fragility for the overall reactor shutdown system is dominated by the primary tank failure

  15. Using 3D Reflection Seismics for Deep Platinum Mine Planning and Risk Mitigation: A Case Study from the Bushveld Complex, South Africa

    Science.gov (United States)

    Scheiber-Enslin, S. E.; Manzi, M. S.; Webb, S. J.

    2017-12-01

    Loss-of-ground in mining is a common problem. Using the integration of high resolution aeromagnetic and 3D reflection seismic data to delineate the causative geological features allows for more efficient mine planning and risk reduction. High resolution data from Impala Platinum mine in the western Bushveld Complex are used to image potholes, iron-rich ultramafic pegmatoids (IRUPs), faults, dykes and diapirs that may impact the economic horizons (UG2). Imaging of these structures was previously limited to outcrop, both on surface and underground, as well as 2D seismic data. These high resolution seismic data are able to resolve faults with throws as small as 10 m. A diapir is imaged in the southwest of the study area with a diameter of approximately 6 km. The diapir has a depth extend of around 4 km below the UG2 horizon and displaces the horizon by 350 m. It has been suggested that topographic highs in the Transvaal Supergroup basement initiate the formation of these diapirs as new magma is injected into the chamber. The origin of the diapir within the layered basement rocks, and disruption of layering within the complex is visible on the seismic section. In the north of the study area a large region of slumping or several merged potholes is identified that is up to 2.5 km in length, with up to 700 m of vertical displacement. Ductile deformation that formed the potholes is imaged on the seismic section, with the UG2 cutting down into the footwall. However, brittle deformation of the UG2 is also imaged with faulting at the edges of the regions of slumping. The edges of these slump regions are also characterised by the emplacement of iron-rich ultramafic pegmatoids (IRUPs), which show up as regions of diffuse reflectivity on the seismic data and magnetic highs. The proximity of these faults and IRUPs to the edges of the slump structure brings in to question whether they contribute to pothole formation. The diapir and slump structure displaces the economic UG2

  16. The contribution of the Global Change Observatory Central Asia to seismic hazard and risk assessment in the Central Asian region

    Science.gov (United States)

    Parolai, S.; Bindi, D.; Haberland, C. A.; Pittore, M.; Pilz, M.; Rosenau, M.; Schurr, B.; Wieland, M.; Yuan, X.

    2012-12-01

    Central Asia has one of the world's highest levels of earthquake hazard, owing to its exceptionally high deformation rates. Moreover, vulnerability to natural disasters in general is increasing, due to rising populations and a growing dependence on complex lifelines and technology. Therefore, there is an urgent need to undertake seismic hazard and risk assessment in this region, while at the same time improving upon existing methodologies, including the consideration of temporal variability in the seismic hazard, and in structural and social vulnerability. Over the last few years, the German Research Center for Geosciences (GFZ), in collaboration with local partners, has initiated a number of scientific activities within the framework of the Global Change Observatory Central Asia (GCO-CA). The work is divided into projects with specific concerns: - The installation and maintenance of the Central-Asian Real-time Earthquake MOnitoring Network (CAREMON) and the setup of a permanent wireless mesh network for structural health monitoring in Bishkek. - The TIPAGE and TIPTIMON projects focus on the geodynamics of the Tien-Shan, Pamir and Hindu Kush region, the deepest and most active intra-continental subduction zone in the world. The work covers time scales from millions of years to short-term snapshots based on geophysical measurements of seismotectonic activity and of the physical properties of the crust and upper mantle, as well as their coupling with other surface processes (e.g., landslides). - Existing risk analysis methods assume time-independent earthquake hazard and risk, although temporal changes are likely to occur due to, for example, co- and post-seismic changes in the regional stress field. We therefore aim to develop systematic time-dependent hazard and risk analysis methods in order to undertake the temporal quantification of earthquake activity (PROGRESS). - To improve seismic hazard assessment for better loss estimation, detailed site effects studies

  17. OpenQuake, a platform for collaborative seismic hazard and risk assessment

    Science.gov (United States)

    Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben

    2013-04-01

    Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental

  18. Seismic and dynamic qualification methods

    International Nuclear Information System (INIS)

    Lin, C.W.

    1985-01-01

    This book presents the papers given at a conference on seismic effects on nuclear power plants. Topics considered at the conference included seismic qualification of equipment, multifrequency test methodologies, damping in piping systems, the amplification factor, thermal insulation, welded joints, and response factors for seismic risk analysis of piping

  19. Application of the neo-deterministic seismic microzonation procedure in Bulgaria and validation of the seismic input against Eurocode 8

    International Nuclear Information System (INIS)

    Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.

    2008-03-01

    The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed. (author)

  20. Seismic and volcanic risk in the Azores: reasons to stay in endangered places

    OpenAIRE

    Arroz, Ana Margarida Moura; Palos, Ana Cristina Pires; Rego, Isabel Estrela

    2008-01-01

    SRA 2008 Annual Meeting "Risk Analysis: The Science and the Art", Boston, Massachusetts, Sunday, 7 December 2008 to Wednesday, 10 December 2008. Earthquakes and volcanic eruptions have been regular phenomena throughout the Azores' six centuries of history. In spite of the knowledge already gathered by local historians and Earth sciences researchers, there are no scientific data on the socio-cultural dimensions of volcanic and seismic risks. A study – TOPOI METUS. Social cosmographies of d...

  1. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  2. High resolution seismic stratigraphy and Mass Transport Deposits of the proximal continental margin, offshore Quarteira, South Portugal: Preliminary Results.

    Science.gov (United States)

    Duarte, Débora; Santos, Joana; Terrinha, Pedro; Brito, Pedro; Noiva, João; Ribeiro, Carlos; Roque, Cristina

    2017-04-01

    More than 300 nautical miles of multichannel seismic reflection data were acquired in the scope of the ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe), off Quarteira, Algarve, South Portugal. The main goal of this very high resolution multichannel seismic survey was to obtain high-resolution images of the sedimentary record to try to discern the existence of high energy events, possibly tsunami backwash deposits associated with large magnitude earthquakes generated at the Africa-Eurasia plate boundary This seismic dataset was processed at the Instituto Português do Mar e da Atmosfera (IPMA), with the SeisSpace PROMAX Seismic Processing software. A tailor-made processing flow was applied, focusing in the removal of the seafloor multiple and in the enhancement of the superficial layers. A sparker source, using with 300 J of energy and a fire rate of 0,5 s was used onboard Xunauta, an 18 m long vessel. The preliminary seismostratigraphic interpretation of the Algarve ASTARTE seismic dataset allowed the identification of a complex sequence seismic units of progradational and agradational bodies as well as Mass Transported Deposits (MTD). The MTD package of sediments has a very complex internal structure, 20m of thickness, is apparently spatially controlled by an escarpment probably associated to past sea level low stands. The MTD covers across an area, approximately parallel to an ancient coastline, with >30 km (length) x 5 km (across). Acknowledgements: This work was developed as part of the project ASTARTE (603839 FP7) supported by the grant agreement No 603839 of the European Union's Seventh. The Instituto Portugues do Mar e da Atmosfera acknowledges support by Landmark Graphics (SeisWorks) via the Landmark University Grant Program.

  3. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  4. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  5. Risks posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2011-01-01

    Full Text Available buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks. It is recommended that an earthquake engineer inspect the building stock and review the content and enforcement of building codes. Appropriate training...

  6. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  7. Reprocessing seismic data: better results below diabase sills

    Energy Technology Data Exchange (ETDEWEB)

    Makler, Marisa [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil); Pellizzon, Marcela

    2008-07-01

    The effect of the diabase sills in the seismic data processing has been studied in the last twenty years. These rocks strongly influence the exploratory activities in a basin, because the diabase disturbs the sign and generates multiple and spherical divergence, increasing the exploratory risk in these areas. In the present work a method of 2D seismic reprocessing will be presented using Prestack Kirchhoff Time Migration in an older seismic data of Solimoes basin. The objective of this paper is to show the high results on the reprocessing seismic data below the diabase sills. The 2D lines processed give relevant improvement of the quality of signal, showing better the faults zones and preserving the geological structures than the older data. (author)

  8. Optimization Criteria In Design Of Seismic Isolated Building

    International Nuclear Information System (INIS)

    Clemente, Paolo; Buffarini, Giacomo

    2008-01-01

    Use of new anti-seismic techniques is certainly suitable for buildings of strategic importance and, in general, in the case of very high risk. For ordinary buildings, instead, the cost of base isolation system should be balanced by an equivalent saving in the structure. The comparison criteria have been first defined, then a large numerical investigation has been carried out to analyze the effectiveness and the economic suitability of seismic isolation in concrete buildings

  9. Seismic risk maps of Switzerland

    International Nuclear Information System (INIS)

    Saegesser, R.; Rast, B.; Merz, H.

    1977-01-01

    Seismic Risk Maps of Switzerland have been developed under the auspices of the Swiss Federal Division on Nuclear Safety. They are primarily destined for the use of owners of future nuclear power plants. The results will be mandatory for these future sites. The results will be shown as contourmaps of equal intensities for average return periods of 500, 1 000, 10 000... years. This general form will not restrict the use of the results to nuclear power plants only, rather allows their applicability to any site or installation of public interest (such as r.a. waste deposits, hydropower plants, etc.). This follows the recommendations of the UNESCO World Conference (Paris, February 1976). In the study MSK 64 INTENSITY was chosen. The detailed scale allowed a precise handling of historical data and separates the results from continuously changing state of the art correlations to acceleration and other input motion parameters. The method used is the probabilistic theory developed by C.A. Cornell and others at MIT in the late 1960's with the program in the version of the US Geological Survey by R. McGuire. (Auth.)

  10. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  11. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  12. Seismic characterization of the NPP Krsko site

    International Nuclear Information System (INIS)

    Obreza, J.

    2000-01-01

    The goal of NPP Krsko PSA Project Update was the inclusion of plant changes (i.e. configuration/operational related) through the period January 1, 1993 till the OUTAGE99 (April 1999) into the integrated Internal/External Level 1/Level 2 NPP Krsko PSA RISK SPECTRUM model. NPP Krsko is located on seismotectonic plate. Highest earthquake was recorded in 1917 with magnitude 5.8 at a distance of 7-9 km. Site (founded) on Pliocene sediments which are as deep as several hundred meters. No surface faulting at the Krsko site has been observed and thus it is not to be expected. NPP Krsko is equipped with seismic instrumentation, which allows it to complete OBE (SSE). The seismic PSA successfully showed high seismic margin at Krsko plant. NPP Krsko seismic design is based on US regulations and standards

  13. CONCIDERATION OF FOUNDATION AND SEISMIC CONDITIONS OF AREA IN ANALYSIS OF SEISMIC RESISTANCE OF REACTOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    SEDIN V. L.

    2015-11-01

    Full Text Available Problem statement. Providing of safe exploitation of nuclear power plants, as well as a safety of staff and environment is a very important problem. A distinct feature of this problem is a necessity to provide not only a strength of structures, but also a safe functioning of all systems that control nuclear process. In particular, the influence of earthquake should be considered on constructions of buildings and structures of nuclear and thermal power plant, taking into account soil-structure interaction. According to IAEA’s SSD-9 recommendations, a risk of vibration of soil should be analyzed for each NPP connected with earthquakes soil that means researches, including general, detailed and microseismic zoning of the area works. One of the distinctive features of the considered problem is an evaluation of the seismicity of area and getting the response spectrum on the free surface. Purpose. Determination of seismic resistance of buildings of high category of safety with the example of the reactor compartment of Zaporoghskaya NPP including the soil structure interaction. Conclusion The seismicity assessment of the area and obtaining of response specters on free surface was made during research and analysis of seismic resistance of buildings of high category of safety including the effects of foundation and structures. The method of modeling of the equivalent dynamic characteristics of the base was considered during the research in seismic impacts.

  14. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  15. Review of seismic probabilistic risk assessment and the use of sensitivity analysis

    International Nuclear Information System (INIS)

    Shiu, K.K.; Reed, J.W.; McCann, M.W. Jr.

    1985-01-01

    This paper presents results of sensitivity reviews performed to address a range of questions which arise in the context of seismic probabilistic risk assessment (PRA). In a seismic PRA, sensitivity evaluations can be divided into three areas: hazard, fragility, and system modeling. As a part of the review of standard boiling water reactor seismic PRA which was performed by General Electric (GE), a reassessment of the plant damage states frequency and a detailed sensitivity analysis were conducted at Brookhaven National Laboratory. The rationale for such an undertaking is that in this case: (1) the standard plant may be sited anywhere in the eastern US (i.e., in regions with safety shutdown earthquake (SSE) values equal to or less than 0.3g peak ground acceleration), (2) it may have equipment whose fragility values could vary over a wide range; and (3) there are variations in system designs outside the original defined scope. Seismic event trees and fault trees were developed to model the different system and plant accident sequences. Hazard curves which represent various sites on the east coast were obtained; alternate structure and equipment fragility data were postulated. Various combinations of hazard and fragility data were analyzed. In addition, system modeling was perturbed to examine the impact upon the final results. Orders of magnitude variation were observed in the plant damage state frequency among the different cases. 7 references, 3 figures, 2 tables

  16. Oklahoma seismic network

    International Nuclear Information System (INIS)

    Luza, K.V.; Lawson, J.E. Jr.; Univ. of Oklahoma, Norman, OK

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent

  17. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  18. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  19. Building an educational seismic network in Romanian schools

    Science.gov (United States)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture

  20. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  1. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    Science.gov (United States)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  2. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  3. SEISMIC Analysis of high-rise buildings with composite metal damper

    Directory of Open Access Journals (Sweden)

    Chen Ruixue

    2015-01-01

    Full Text Available This paper mainly studies on the mechanical characteristics and application effect of composite metal damper in the high-rise buildings via the numerical simulation analysis. The research adopts the elastic and elastic-plastic dynamic approach and the displacement time history response and damper energy dissipation capacity and so on of the high-rise building are compared and analyzed before and after installation. The analysis found that the energy dissipation characteristic of metallic dampers is good. High-rise building story drift significantly is reduced and the extent of damage of the walls and coupling beams is decreased, achieved a good energy dissipation effect. Composite metal damper can effectively and economically improve the seismic performance of high-rise buildings, meet the requirement of the 3-level design for seismic resistance. The result has certain reference significance for the application of metallic damper in the high-rise buildings.

  4. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  5. Strategy for seismic upgrading of chemical plant taking productivity as criterion of judgment

    International Nuclear Information System (INIS)

    Oshima, M.; Kase, T.; Yashiro, H.; Fukushima, S.

    2005-01-01

    Seismic upgrading and modification of existing chemical plant facilities have been performed by means of a procedure of the Seismic Design Code and Guidelines of High-pressure Gas Facilities in Japan. Main purpose of this seismic design code is to ensure public safety at seismic events. From the viewpoints of seismic risk of corporate management, CSR (Corporate Social Responsibility) and productivity of the plants are also important for seismic assessment. In this paper, authors proposed strategy for seismic assessment to select appropriate pre-earthquake upgrading and modification considering productivity of plants based on fault tree analysis. This assessment will enable to select weak damage modes and to allocate countermeasure cost optimally to the selected damage modes. (authors)

  6. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  7. Proceedings of the OECD/NEA workshop on seismic risk - Summary and conclusions - Committee on the Safety of Nuclear Installations PWG3 and PWG5

    International Nuclear Information System (INIS)

    2001-01-01

    wider use of seismic PSA technology for design of NPPs. Improvements in methodology and database and examinations of the importance of issues in the following areas will further enhance the usefulness of seismic PSA/Margin studies: - Database and guidance for evaluation of seismic capacities of components (with consideration of differences in design philosophy and practice); - Correlations; - Effect of ageing of structures and components; - Analysis of post-earthquake operator actions; - Use of seismic PSA for identifying effective strategy for accident management; - Risk goal oriented design methodology including the use of probabilistic seismic hazard analysis; - Extension of the scope of seismic PSA to consider unique situations of other operating modes such as low power/shutdown state. It was also pointed out that the importance of seismic risk is strongly dependent on the geological conditions and design practices of countries and that analysts should select appropriate methodology for their objectives and scope of the seismic PSA/Margin studies with consideration of such conditions in their countries. Efforts by countries and international organisations such as NEA to promote international information exchange in the above areas as well as the experiences in applications and reviewing of seismic PSA/Margin studies are highly recommended

  8. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  9. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  10. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    International Nuclear Information System (INIS)

    Kaelin, B.; Lawrence Berkeley National Lab., CA

    1998-07-01

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles

  11. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  12. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  13. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  14. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  15. DEPENDENCE OF DISTRIBUTION FUNCTION OF COMMERCIAL DAMAGES DUE TO POSSIBLE EARTHQUAKES ON THE CLASS OF SEISMIC RESISTANCE OF A BUILDING

    Directory of Open Access Journals (Sweden)

    Hanzada R. Zajnulabidova

    2017-01-01

    Full Text Available Abstract. Objectives To determine the damage probability of earthquakes of different intensities on the example of a real projected railway station building having a framework design scheme based on the density function of damage distribution. Methods Uncertainty, always existing in nature, invalidates a deterministic approach to the assessment of territorial seismic hazards and, consequently, seismic risk. In this case, seismic risk assessment can be carried out on a probabilistic basis. Thus, the risk will always be there, but it must be minimised. The task of optimising the reinforcement costs is solved by using the density distribution function for seismic effects of varying intensity, taking into account the degree of building responsibility. Results The distribution functions of the expected damage for a building with a reinforced concrete frame located in a highly seismic region with a repetition of 9-point shocks every 500 years and 10-point shocks once every 5000 years are constructed. A significant effect of the seismic resistance class of a building on the form of the distribution functions is shown. For structures of a high seismic resistance class, not only is the seismic risk reduced, but also the variance of the expected damage. From the graphs obtained, it can be seen that the seismic resistance class significantly affects the damage distribution. At a probability of 0.997, the expected damage for a non-reinforced building will exceed 43%; for a reinforced one it is only 10%. It also follows from the graphs that the variance of the damage magnitude decreases with the growth of the seismic resistance class of the building. This fact is an additional incentive for investing in antiseismic reinforcement of buildings. Conclusion The study shows the expediency of working with the damage density distribution function when managing seismic risk. In this case, it becomes possible to strengthen the building with a specified probability of

  16. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  17. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  18. High-resolution seismic imaging of the Sohagpur Gondwana basin ...

    Indian Academy of Sciences (India)

    The quality of the high-resolution seismic data depends mainly on the data ..... metric rift geometry. Based on the .... Biswas S K 2003 Regional tectonic framework of the .... Sheth H C, Ray J S, Ray R, Vanderkluysen L, Mahoney J. J, Kumar A ...

  19. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  20. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Science.gov (United States)

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    Bucharest, capital of Romania (with 1678000 inhabitants in 2011), is one of the most exposed big cities in Europe to seismic damage. The major earthquakes affecting the city have their origin in the Vrancea region. The Vrancea intermediate-depth source generates, statistically, 2-3 shocks with moment magnitude >7.0 per century. Although the focal distance is greater than 170 km, the historical records (from the 1838, 1894, 1908, 1940 and 1977 events) reveal severe effects in the Bucharest area, e.g. intensities IX (MSK) for the case of 1940 event. During the 1977 earthquake, 1420 people were killed and 33 large buildings collapsed. The nowadays building stock is vulnerable both due to construction (material, age) and soil conditions (high amplification, generated within the weak consolidated Quaternary deposits, their thickness is varying 250-500m throughout the city). A number of 373 old buildings, out of 2563, evaluated by experts are more likely to experience severe damage/collapse in the next major earthquake. The total number of residential buildings, in 2011, was 113900. In order to guide the mitigation measures, different studies tried to estimate the seismic risk of Bucharest, in terms of buildings, population or economic damage probability. Unfortunately, most of them were based on incomplete sets of data, whether regarding the hazard or the building stock in detail. However, during the DACEA Project, the National Institute for Earth Physics, together with the Technical University of Civil Engineering Bucharest and NORSAR Institute managed to compile a database for buildings in southern Romania (according to the 1999 census), with 48 associated capacity and fragility curves. Until now, the developed real-time estimation system was not implemented for Bucharest. This paper presents more than an adaptation of this system to Bucharest; first, we analyze the previous seismic risk studies, from a SWOT perspective. This reveals that most of the studies don't use

  1. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    of occurrence compared to FB estimates along slow slipping faults and underestimate them along faster moving faults (e.g. Psathopyrgos, Aigion). The FB approach in this region is still affected by a high degree of uncertainty, because of the poor constraints on the 3D geometries of the faults and the high uncertainties in their slip rates and maximum magnitude. Thus, for example, the Psathopyrgos fault is the fault that shows the highest probability (12%) of hosting a M≥6.0 event in the next 30 years, however, the associated uncertainty is also the greatest (5%-27%). Finally, the cumulative seismic moment rate of the faults is comparable to the seismic moment rate estimated from the earthquake catalogue. Interestingly, the overall seismic moment rate of the CRL region shows a deficit of 50±20 % when compared with an estimate of the equivalent geodetic moment rate. This suggests an important component of aseismic deformation. (author) [fr

  2. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  3. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  4. Seismicity and earthquake risk in western Sicily

    Directory of Open Access Journals (Sweden)

    P. COSENTINO

    1978-06-01

    Full Text Available The seismicity and the earthquake risk in Western Sicily are here
    evaluated on the basis of the experimental data referring to the historical
    and instrumentally recorded earthquakes in this area (from 1248
    up to 1968, which have been thoroughly collected, analyzed, tested and
    normalized in order to assure the quasi-stationarity of the series of
    events.
    The approximated magnitude values — obtained by means of a compared
    analysis of the magnitude and epicentral intensity values of the
    latest events — have allowed to study the parameters of the frequency-
    magnitude relation with both the classical exponential model and
    the truncated exponential one previously proposed by the author.
    So, the basic parameters, including the maximum possible regional
    magnitude, have been estimated by means of different procedures, and
    their behaviours have been studied as functions of the threshold magnitude.

  5. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  6. From Seismic Scenarios to Earthquake Risk Assessment: A Case Study for Iquique, Chile.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; Martin, J. C. D. L. L.; Vasquez, J.

    2015-12-01

    Iquique is a strategic city and economic center in northern Chile, and is located in a large seismic gap where a megathrust earthquake and tsunami is expected. Although it was hit by a Mw 8.2 earthquake on April 1st 2014, which caused moderate damage, geophysical evidence still suggests that there is potential for a larger event, so a thorough risk assessment is key to understand the physical, social, and economic effects of such potential event, and devise appropriate mitigation plans. Hence, Iquique has been selected as a prime study case for the implementation of a risk assessment platform in Chile. Our study integrates research on three main elements of risk calculations: hazard evaluation, exposure model, and physical vulnerabilities. To characterize the hazard field, a set of synthetic seismic scenarios have been developed based on plate interlocking and the residual slip potential that results from subtracting the slip occurred during the April 1st 2014 rupture fault mechanism, obtained using InSAR+GPS inversion. Additional scenarios were developed based of the fault rupture model of the Maule 2010 Mw 8.8 earthquake and on the local plate locking models in northern Chile. These rupture models define a collection of possible realizations of earthquake geometries parameterized in terms of critical variables like slip magnitude, rise time, mean propagation velocity, directivity, and other, which are propagated to obtain a hazard map for Iquique (e.g. PGA, PGV, PDG). Furthermore, a large body of public and local data was used to construct a detailed exposure model for Iquique, including aggregated building count, demographics, essential facilities, and lifelines. This model together with the PGA maps for the April 1st 2014 earthquake are used to calibrate HAZUS outputs against observed damage, and adjust the fragility curves of physical systems according to more detailed analyses of typical Chilean building types and their structural properties, plus historical

  7. InSAR deformation monitoring of high risk landslides

    Science.gov (United States)

    Singhroy, V.; Li, J.

    2013-05-01

    During the past year there were at least twenty five media reports of landslides and seismic activities some fatal, occurring in various areas in Canada. These high risk geohazards sites requires high resolution monitoring both spatially and temporally for mitigation purposes, since they are near populated areas and energy, transportation and communication corridors. High resolution air photos, lidar and satellite images are quite common in areas where the landslides can be fatal. Radar interferometry (InSAR) techniques using images from several radar satellites are increasingly being used in slope stability assessment. This presentation provides examples of using high-resolution (1-3m) frequent revisits InSAR techniques from RADARSAT 2 and TerraSAR X to monitor several types of high-risk landslides affecting transportation and energy corridors and populated areas. We have analyses over 200 high resolution InSAR images over a three year period on geologically different landslides. The high-resolution InSAR images are effective in characterizing differential motion within these low velocity landslides. The low velocity landslides become high risk during the active wet spring periods. The wet soils are poor coherent targets and corner reflectors provide an effective means of InSAR monitoring the slope activities.

  8. Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience... network in the mining districts. Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience The knowledge gained during the course...

  9. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    Science.gov (United States)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  10. SHAM: High-level seismic tests of piping at the HDR

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs

  11. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  12. Implementation guidelines for seismic PSA

    International Nuclear Information System (INIS)

    Coman, Ovidiu; Samaddar, Sujit; Hibino, Kenta; )

    2014-01-01

    The presentation was devoted to development of guidelines for implementation of a seismic PSA. If successful, these guidelines can close an important gap. ASME/ANS PRA standards and the related IAEA Safety Guide (IAEA NS-G-2.13) describe capability requirements for seismic PSA in order to support risk-informed applications. However, practical guidance on how to meet these requirements is limited. Such guidelines could significantly contribute to improving risk-informed safety demonstration, safety management and decision making. Extensions of this effort to further PSA areas, particularly to PSA for other external hazards, can enhance risk-informed applications

  13. Temblor, an app focused on your seismic risk and how to reduce it

    Science.gov (United States)

    Stein, R. S.; Sevilgen, V.; Sevilgen, S.; Kim, A.; Madden, E.

    2015-12-01

    Half of the world's population lives near active faults, and so could suffer earthquake damage. Most do not know they are at risk; many of the rest do too little, too late. So, Temblor is intended to enable everyone in the United States, and eventually the world, to learn their seismic hazard, to determine what most ensures their safety, and to determine the risk reduction measures in their best financial interest. In our free web and mobile app, and Chrome extension for real estate websites, Temblor estimates the likelihood of seismic shaking from all quakes at their occurrence rates, and the consequences of the shaking for home damage. The app then shows how the damage or its costs could be decreased by buying or renting a seismically safer home, securing fragile objects inside your home, retrofitting an older home, or buying earthquake insurance. Temblor uses public data from the USGS in the U.S., SHARE in Europe, and the GEAR model (Bird et al, in press, BSSA) for the globe. Through publicly available modeling methods, the hazard data is combined with public data on homes (construction date and square footage) to make risk calculations. This means that Temblor's results are independently reproducible. The app makes many simplifying assumptions, but users can provide additional information on their site and home for refined estimates. Temblor also lets one see active faults and recent quakes on the screen as they drive through an area. Because fear tends to trigger either panic or denial, Temblor seeks to make the world of earthquakes more fascinating than frightening. We are neither scaring nor soothing people, but rather talking straight. Through maps, globes, push notifications, family connections, and costs and benefit estimates, Temblor emphasizes the personal, local, realtime, and most importantly, rational. Temblor's goal is to distill scientific and engineering information into lucid, trusted, and ideally actionable guidance to renters, home owners, and

  14. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2002-03-01

    Full Text Available Final Project Report Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design. A.v.Z Brink, M.K.C. Roberts, S.M Spottiswoode Research Agency: CSIR: Division of Mining... on the VCR. An industry workshop on local support requirements in areas of higher seismic risk resulted in the specification of support requirements. A maximum design parameter for yielding support in terms of the ground motion velocity is 1 m...

  15. Seismic isolation of lead-cooled reactors: The European project SILER

    International Nuclear Information System (INIS)

    Forni, Massimo; Poggianti, Alessandro; Scipinotti, Riccardo; Dusi, Alberto; Manzoni, Elena

    2014-01-01

    SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the 7th Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the 6th Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

  16. Assessment of Seismic Vulnerability of Reinforced Concrete Frame buildings

    Directory of Open Access Journals (Sweden)

    Fatiha Cherifi

    2018-01-01

    Full Text Available The seismic activity remains strong in the north of Algeria since no less than 30 earthquakes per month are recorded. The large number of structures built before the introduction of the seismic standards represents a high seismic risk. Analysis of damage suffered during the last earthquakes highlighted the vulnerability of the existing structures. In this study the seismic behavior of the existing buildings in Tizi-Ouzou city, located in the north of Algeria, is investigated. To make this assessment, a database was created following a building inventory based on a set of technical folders and field visits. The listed buildings have been classified into different typologies. Only reinforced concrete frame buildings are considered in this paper. The approach adopted to estimate structures damage is based on four main steps: 1 construction of capacity curves using static nonlinear method “push-over”, 2 estimate of seismic hazard, 3 determination of performance points, and finally 4 deduction of damage levels.

  17. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  18. Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale

    OpenAIRE

    Valcarcel, Jairo A.; Mora, Miguel G.; Cardona, Omar D.; Pujades, Lluis G.; Barbat, Alex H.; Bernal, Gabriel A.

    2013-01-01

    This article presents a methodology for an estimate of the benefit cost ratio of the seismic risk reduction in buildings portfolio at broadscale, for a world region, allowing comparing the results obtained for the countries belonging to that region. This methodology encompasses (1) the generation of a set of random seismic events and the evaluation of the spectral accelerations at the buildings location; (2) the estimation of the buildings built area, the economic value, as well as the cla...

  19. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    Directory of Open Access Journals (Sweden)

    John W. van de Lindt

    2011-01-01

    Full Text Available This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA. Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percent of cement in a concrete mix with SDA for the construction of structural members in high seismic zones. This would help significantly redirect spray dryer ash away from landfills, thus, providing a sustainable greener alternative to concrete that uses only Portland cement, or only a small percentage of SDA or fly ash.

  20. Parameters and criteria for repair and strengthening of buildings in the old town core of Dubrovnik based on seismic risk analysis

    Directory of Open Access Journals (Sweden)

    M. Vladimir

    1995-06-01

    Full Text Available Definition of the seismicity conditions, the design seismic parameters and the seismic risk level are important and inevitable phases ol the complex process of repair and strengthening of existing structures in certain towns located in seismically active areas. These should be studied in all necessary details in order to provide corresponding bases and define the necessary preventive measures against expected strong earthquakes. Such an approach becomes even nlore necessary arter the experience regarding the last catastrophic earthquakes that occurred in Former Yugoslavia (Skopje. Banja Luka, Montenegro coast and Kopaonik and inflicted heavy losses of human lives and material properties. The old town core of Dubrovnik is known for the large concentration of buildings of enorrnous cultural-historic importance. Considering the high seismic activity of this area. all these buildings are very likely to experience heavy damage and failure. Tlie history of the town records many catastrophic earthquakes that inflicted heavy material losses and loss of human lives. Here, we can rnention the great Dubrovnik earthquake of 1667 and the last Montenegro earthquake of April 15, 1979 with an epicenter in the Ulcinj-Bar area. The consequences of the latter are well known. The purpose of this paper is to present some results and experience gained from the investigations performed for the area of Dubro~nikil lustrated by several examples of buildings existing in the old town core of Dubrovnik.

  1. A high-speed transmission method for large-scale marine seismic prospecting systems

    International Nuclear Information System (INIS)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-01-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems. (paper)

  2. A high-speed transmission method for large-scale marine seismic prospecting systems

    Science.gov (United States)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-12-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems.

  3. Imaging the Danish Chalk Group with high resolution, 3-component seismics

    Science.gov (United States)

    Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.

    2016-12-01

    The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.

  4. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  5. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  6. Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan)

    Science.gov (United States)

    Picozzi, M.; Bindi, D.; Pittore, M.; Kieling, K.; Parolai, S.

    2013-04-01

    Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake's location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin ( M = 8.2; ±0.2) and the 1885 Belovodsk ( M = 6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482-1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995-1010, 2005); the Sokolov (Earthquake Spectra 161: 679-694, 2002) approach for estimating

  7. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-01-01

    installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single

  8. Seismic history of the Maltese islands and considerations on seismic risk

    Directory of Open Access Journals (Sweden)

    P. Galea

    2007-06-01

    Full Text Available A historical catalogue of felt earthquakes in the Maltese islands has been compiled dating back to 1530. Although no fatalities were officially recorded during this time as a direct consequence of earthquake effects, serious damage to buildings occurred several times. In the catalogue time period, the islands experienced EMS-98 intensity VII-VIII once (11 January 1693 and intensity VII, or VI-VII five times. The northern segment of the Hyblean-Malta plateau is the source region which appears to pose the greatest threat, although large Greek events and lower magnitude Sicily Channel events also produced damage. Estimates of return periods for intensity ?V are presented, and it is shown that expected peak ground accelerations justify the implementation of, at least, minimum anti-seismic provisions. The rapid and continual increase in the local building stock on the densely-populated islands warrants the implementation of an appropriate seismic building code to be enforced.

  9. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  10. Interactive web visualization tools to the results interpretation of a seismic risk study aimed at the emergency levels definition

    Science.gov (United States)

    Rivas-Medina, A.; Gutierrez, V.; Gaspar-Escribano, J. M.; Benito, B.

    2009-04-01

    Results of a seismic risk assessment study are often applied and interpreted by users unspecialised on the topic or lacking a scientific background. In this context, the availability of tools that help translating essentially scientific contents to broader audiences (such as decision makers or civil defence officials) as well as representing and managing results in a user-friendly fashion, are on indubitable value. On of such tools is the visualization tool VISOR-RISNA, a web tool developed within the RISNA project (financed by the Emergency Agency of Navarre, Spain) for regional seismic risk assessment of Navarre and the subsequent development of emergency plans. The RISNA study included seismic hazard evaluation, geotechnical characterization of soils, incorporation of site effects to expected ground motions, vulnerability distribution assessment and estimation of expected damage distributions for a 10% probability of exceedance in 50 years. The main goal of RISNA was the identification of higher risk area where focusing detailed, local-scale risk studies in the future and the corresponding urban emergency plans. A geographic information system was used to combine different information layers, generate tables of results and represent maps with partial and final results. The visualization tool VISOR-RISNA is intended to facilitate the interpretation and representation of the collection of results, with the ultimate purpose of defining actuation plans. A number of criteria for defining actuation priorities are proposed in this work. They are based on combinations of risk parameters resulting from the risk study (such as expected ground motion and damage and exposed population), as determined by risk assessment specialists. Although the values that these parameters take are a result of the risk study, their distribution in several classes depends on the intervals defined by decision takers or civil defense officials. These criteria provide a ranking of

  11. Goals and activities of the JICA technical cooperation project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Vacareanu, R.; Kato, H.

    2007-01-01

    Japan International Cooperation Agency (JICA) Technical Cooperation Project on Reduction of Seismic Risk for Buildings and Structures started in Romania on October 1, 2002. The aim of the Project is to strengthen the capacity of earthquake disaster related activities in Romania. The Project approval is the result of four years of intensive efforts made by professionals from Technical University of Civil Engineering Bucharest (UTCB), Ministry of Transport, Constructions and Tourism (MTCT), Romania, National Building Research Institute (INCERC) Bucharest, JICA, Building Research Institute (BRI), Tsukuba, and National Institute for Land, Infrastructure and Management (NILIM), Tsukuba, Japan. The duration of the Project is five years. The implementing agency is the National Center for Seismic Risk Reduction (NCSRR) as a public institution of national interest under MTCT. The activities are carried out by NCSRR in partnership with UTCB and INCERC. During the Project period, 29 young Romanian engineers were trained in Japan, 7 Japanese experts and 37 Japanese experts worked for long-term and short-term, respectively in Romania. Equipment for seismic instrumentation, dynamic characterization of soil and structural testing rising up approximately to 260 million yens (i.e. 2.17 million USD) were donated by JICA to Romania, through NCSRR. The total cost of the Project is roughly 7 million USD. The paper describes the main activities and results of the Project until the JICA Final Evaluation Mission (March 2007). (authors)

  12. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  13. Worldwide Assessment of the Status of Seismic Zonation, Fourth International Forum on Seismic Zonation, Proceedings

    Science.gov (United States)

    Hays, W.W.

    1994-01-01

    We are pleased to provide you with information developed for the Fourth International Forum on Seismic Zonation which will be convened in two locations year in conjunction two major international meetings. The objectives are: 1) to assess the status of seismic zonation in every country of the world, 2) to evaluate the reasons for advances and new initiatives, and 3) to foster continued cooperation. Seismic zonation is the process that leads to risk reduction and sustainability of new development. It is based on the division of a geographic region into smaller areas or zones on the basis of an integrated assessment of the hazard, built, and policy environments of the region. Seismic zonation depends on hazard mapping performed on national/regional, subregional, and urban (i.e., microzonation) scales depending on the particular application. We gratefully acknowledge the written communications of many professionals who responded to our request for information. Also, we acknowledge the use of information contained in five valuable reports (see directories in the Appendices for information on where to obtain copies of the reports): 1. United Nations, 1990, Cooperative Project for Seismic Risk Reduction in the Mediterranean Region (SEISMED), proceedings, Office of the United Nations Disaster Relief Coordinator, Geneva, Switzerland, 3 vols. (Franco Maranzana -

  14. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  15. Methodology for the Seismic risk assessment in segments of fault

    International Nuclear Information System (INIS)

    1997-02-01

    The present study establishes the most adequate methods of Seismic Hazard Assessment for the Iberian Peninsula, in particular for low seismicity areas, through a review of methods used in other countries and its application to a certain area in Spain. In this area the geological context and recent activity of a specific tectonic structure is studied in detail, in order to asses its slip rate, and therefore, its capability of generating earthquakes. In the first stage of this project a review of Seismic Hazard Assessment methods used outside Spain was carried out, as well as, a study of several spanish cases. This stage also comprises a review of the spanish seismic record and a study of the general peninsular neotectonic context, this latter to select a particular fault for the next stage. (Author) 117 refs

  16. Overview on seismic evaluation and retrofitting within JICA Technical Cooperation Project on reduction of seismic risk in Romania

    International Nuclear Information System (INIS)

    Seki, M.; Vacareanu, R.; Pavel, M.; Lozinca, E.; Cotofana, D.; Chesca, B.; Georgescu, B.; Kaminosono, T.

    2007-01-01

    The objective of this paper is to give an overview on the seismic evaluation and retrofitting procedures of reinforced concrete buildings within JICA technical cooperation project in Romania. The content of the paper covers a) an outline of the seismic evaluation; history and comparison of Romanian seismic design codes with the Japanese seismic evaluation guidelines, b) an outline of the retrofitting techniques which were transferred from Japan to Romania and structural tests for retrofitting techniques employed in Romania and c) retrofitting details that were used by JICA/NCSRR in the retrofitting design of two vulnerable buildings in Bucharest. The above-mentioned retrofitting projects are now under development of detailed design and therefore, in the near future, refining and improvement of solutions will be performed. (authors)

  17. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  18. Evaluation of structural fragilities for an IPEEE seismic probabilistic risk assessment study

    International Nuclear Information System (INIS)

    Ghiocel, D.M.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The paper presents the main issues and results of a structural fragility analysis for a Seismic Probabilistic Risk Assessment (SPRA) study of a nuclear power plant (NPP) in the Eastern US. The fragility evaluations were performed for the Reactor Building, Auxiliary Building, Intake Structure and Diesel Generator Building. The random seismic input is defined in terms of the Uniform Hazard Spectrum (UHS) earthquake on the NPP site anchored to a reference level of 0.40 g Zero Period Ground Acceleration (ZPGA). Because of the soft soil conditions new Soil-Structure Interaction (SSI) analyses were performed using the original finite element (stick) structural models and the complex frequency approach. The soil deposit randomness was described by the variations in both the low strain soil shear modules and in its dependence with the shear strain. The probabilistic SSI analyses were performed using digital simulation techniques. The critical failure modes for each structure are investigated and the fragility evaluations are discussed. Concluding remarks and recommendations for improving the quality of the structural fragility analyses are included

  19. Deterministic and probabilistic approach to determine seismic risk of nuclear power plants; a practical example

    International Nuclear Information System (INIS)

    Soriano Pena, A.; Lopez Arroyo, A.; Roesset, J.M.

    1976-01-01

    The probabilistic and deterministic approaches for calculating the seismic risk of nuclear power plants are both applied to a particular case in Southern Spain. The results obtained by both methods, when varying the input data, are presented and some conclusions drawn in relation to the applicability of the methods, their reliability and their sensitivity to change

  20. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  1. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Directory of Open Access Journals (Sweden)

    X. Fan

    2018-01-01

    Full Text Available The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  2. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Science.gov (United States)

    Fan, Xuanmei; Xu, Qiang; Scaringi, Gianvito

    2018-01-01

    The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  3. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  4. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  5. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  6. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  7. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  8. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  9. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  10. High resolution imaging of vadose zone transport using crosswell radar and seismic methods; TOPICAL

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-01-01

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  11. Seismic performance evaluation of high natural frequency mechanical structure from the viewpoint of energy balance

    International Nuclear Information System (INIS)

    Minagawa, Keisuke; Fujita, Satoshi; Endo, Rokuro; Amemiya, Mitsuhiko

    2009-01-01

    In this study, vibration characteristics of mechanical structure having high natural frequency are investigated from the viewpoint of energy balance. Mechanical structures having high natural frequency in a nuclear power plant are generally designed statically and elastically. However it has been reported that fracture of ordinary piping is produced not by momentary large load but by cumulative fatigue damage. Therefore it is very important to grasp seismic performance dynamically by considering cyclic load. This paper deals with an investigation regarding seismic performance evaluation of high natural frequency mechanical structure. The energy balance equation that is one of valid methods for structural calculation is applied through the investigation. The main feature of the energy balance equation is that it explains accumulated information of motion. Therefore the energy balance equation is adequate for the investigation of the influence of cumulative load such as seismic response. In this paper, vibration experiment and simulation using sinusoidal waves and artificial seismic waves were examined in order to investigate relationship between natural frequency of structure and energy. As a result, we found that input energy decreases with an increase in the natural frequency. (author)

  12. An Investigation of Seismicity for Western Anatolia

    International Nuclear Information System (INIS)

    Sayil, N.

    2007-01-01

    In order to determine the seismicity of western Anatolia limited with the coordinates of 36degree-40degreeN, 26degree-32degreeE, Gutenberg-Richter magnitude-frequency relation, seismic risk and recurrence period have been computed. The data belonging to both the historical period before 1900 (I0 3 6.0 corresponding to MS 3 5.0) and the instrumental period until 2005 (MS 3 4.0) have been used in the analysis. The study area has been divided into 13 sub-regions due to certain seismotectonic characteristics, plate tectonic models and geology of the region. Computations from a and b parameters and seismic risk and recurrence period for each sub-regions have showed that subregions 1 and 8 (Balikesir and Izmir-Sakiz Island), where have the lowest b values, have the highest risks and the shortest recurrence periods

  13. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey

    Directory of Open Access Journals (Sweden)

    Grit Mert

    2016-02-01

    Full Text Available In this study, Multichannel Analysis of Surface Waves Method (MASW, seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul – a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  14. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  15. A High-Resolution View of Global Seismicity

    Science.gov (United States)

    Waldhauser, F.; Schaff, D. P.

    2014-12-01

    We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.

  16. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  17. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    Science.gov (United States)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  18. Risk-Informed Selection of Steel Connections for Seismic Zones

    Directory of Open Access Journals (Sweden)

    De León-Escobedo D.

    2011-04-01

    Full Text Available The findings about the fragile behavior of steel welded connections after the Northridge 1994 earthquake, specially for frames designed to withstand lateral force, has brought an amount of new attention to the design and safety issues of the welded connections for structures located on seismic zones. In México, practitioners and designers are wondering about the seismic effectiveness of the several kinds of connections as used in steel structures. A decision must be made to balance the safety required with the costs incurred after exceeding the serviceability limit state. Structural reliability techniques provide the proper framework to include the inherent uncertainties into the design process. Registered motions after the 1985 Mexico City earthquake are properly scaled according to the seismic hazard curve for soft soil in Mexico City. Earthquake occurrence is modeled as a Poisson process and the expected life-cycle cost is taken as the decision criteria. Parametric analyses allow the identification of dominant variables and ranges where one option is more recommendable than the other one. The proposed formulation may support designers and builders for the decision making process about the selection of the convenient connection type for the seismic zones with soft soil in Mexico City.

  19. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  20. The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation

    Science.gov (United States)

    Wang, Z.

    2008-12-01

    The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.

  1. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  2. The MCE (Maximum Credible Earthquake) - an approach to reduction of seismic risk

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchison, R.J.

    1979-01-01

    It is the responsibility of the Regulatory Body (in Canada, the AECB) to ensure that radiological risks resulting from the effects of earthquakes on nuclear facilities, do not exceed acceptable levels. In simplified numerical terms this means that the frequency of an unacceptable radiation dose must be kept below 10 -6 per annum. Unfortunately, seismic events fall into the class of external events which are not well defined at these low frequency levels. Thus, design earthquakes have been chosen, at the 10 -3 - 10 -4 frequency level, a level commensurate with the limits of statistical data. There exists, therefore, a need to define an additional level of earthquake. A seismic design explicitly and implicitly recognizes three levels of earthquake loading; one comfortably below yield, one at or about yield, and one at ultimate. The ultimate level earthquake, contrary to the first two, has been implicitly addressed by conscientious designers by choosing systems, materials and details compatible with postulated dynamic forces. It is the purpose of this paper to discuss the regulatory specifications required to quantify this third level, or Maximum Credible Earthquake (MCE). (orig.)

  3. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    OpenAIRE

    van de Lindt, John W.; Rechan, R. Karthik

    2011-01-01

    This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA). Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percen...

  4. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  5. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  6. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  7. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  8. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  9. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    Science.gov (United States)

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-06-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  10. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    Directory of Open Access Journals (Sweden)

    V. M. Zobin

    2010-06-01

    Full Text Available A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  11. Estimating the economic impact of seismic activity in Kyrgyzstan

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    Estimating the short and long-term economical impact of large-scale damaging events such as earthquakes, tsunamis or tropical storms is an important component of risk assessment, whose outcomes are routinely used to improve risk awareness, optimize investments in prevention and mitigation actions, as well as to customize insurance and reinsurance rates to specific geographical regions or single countries. Such estimations can be carried out by modeling the whole causal process, from hazard assessment to the estimation of loss for specific categories of assets. This approach allows a precise description of the various physical mechanisms contributing to direct seismic losses. However, it should reflect the underlying epistemic and random uncertainties in all involved components in a meaningful way. Within a project sponsored by the World Bank, a seismic risk study for the Kyrgyz Republic has been conducted, focusing on the assessment of social and economical impacts assessed in terms of direct losses of the residential and public building stocks. Probabilistic estimates based on stochastic event catalogs have been computed and integrated with the simulation of specific earthquake scenarios. Although very few relevant data are available in the region on the economic consequences of past damaging events, the proposed approach sets a benchmark for decision makers and policy holders to better understand the short and long term consequences of earthquakes in the region. The presented results confirm the high level of seismic risk of the Kyrgyz Republic territory, outlining the most affected regions; thus advocating for significant Disaster Risk Reduction (DRR) measures to be implemented by local decision- and policy-makers.

  12. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  13. Risks Associated with Unconventional Gas Extraction Projects. Induced Seismicity, NORM and Ecological Risks

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Hurtado, A.; Eguilior, S.; Recreo, F.

    2015-01-01

    The latest technological advances in hydraulic fracturing (fracking) and horizontal drilling are globally driving the commercial extraction of unconventional resources. Although there is still no commercial exploitation of these resources within the EU, the fact that there are potential reserves in some countries, such as Spain, stimulates the need of performing preliminary studies to define the characteristics that an unconventional gas extraction project should consider. The object of these features are the safety of the project, thus minimizing the probabilities of negative environmental impacts, and especially since there is not any EU Framework Directive focusing on the regulation of the operation of such fossil fuels. A project of this nature, involving natural systems, must start from the knowledge of these systems and from an assessment of its features in order to reach the environmental safety of the operations. Moreover, the implementation of risk management systems, along with the existence of an appropriate legislation and supervision are key elements in the development of unconventional gas extraction projects that are environmentally friendly. The present report includes, among the overall risks associated with such projects, those related to: i) the induced seismicity; ii) the Naturally-Occurring Radioactive Materials (NORM); and iii) the ecology.

  14. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  15. Use of Satellite SAR Data for Seismic Risk Management: Results from the Pre-Operational ASI-SIGRIS Project

    Science.gov (United States)

    Salvi, Stefano; Vignoli, Stefano; Zoffoli, Simona; Bosi, Vittorio

    2010-12-01

    The scope of the SIGRIS pilot project is the development of an infrastructure to provide value-added information services for the seismic risk management, assuring a close integration between ground-based and satellite Earth Observation data. The project is presently in the demonstration phase, and various information products are constantly generated and disseminated to the main user, the Italian Civil Protection Department. We show some examples of the products generated during the Crisis management of the 2009 L'Aquila earthquake in Central Italy. We also show an example of products generated for the Knowledge and Prevention service in support of the seismic hazard assessment in the area of the Straits of Messina.

  16. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  17. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  18. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  19. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  20. French experience in seismic risk analysis and associated research works

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1984-11-01

    This communication reviews the basic principles of the seismic risk analysis for nuclear installations in France practiced by the IPSN of the CEA. The presentation of each stage of the analysis includes an account of the methods used, the difficulties met, and a comparison with the recommendations of the AIEA-SG-S1. First, this paper deals with the sismotectonic analysis and with the definition of two reference earthquakes. Then, the calculation of the ground motion corresponding to the reference earthquakes is presented. A particular attention is paid to the problems of calculation of ground motion in the case of important earthquakes near active faults and to the effect of the soil on these movements. Finally, some criticisms, a description of studies undertaken at the moment and some recommendations are presented [fr

  1. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  2. High-resolution seismic-reflection imaging 25 years of change in I-70 sinkhole, Russell County, Kansas

    Science.gov (United States)

    Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.

    2006-01-01

    Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.

  3. Seismic risk maps of Switzerland

    International Nuclear Information System (INIS)

    Saegesser, R.; Rast, B.; Merz, H.

    1977-01-01

    Seismic Risk Maps of Switzerland have been developed under the auspices of the Swiss Federal Division on Nuclear Safety. They are primarily destined for the use of owners of future nuclear power plants. The results will be mandatory for these future sites. The results will be shown as contourmaps of equal intensities for average return periods of 500, 1000, 10 000... years. This general form will not restrict the use of the results to nuclear power plants only, rather allows their applicability to any site or installation of public interest (such as r.a. waste deposits, hydropower plants, etc.). This follows the recommendations of the UNESCO World Conference (Paris, February 1976). In the study MSK 64 INTENSITY was chosen. The detailed scale allowed a precise handling of historical data and separates the results from continuously changing state-of-the-art correlations to acceleration and other input motion parameters. The method used is the probabilistic theory developed by C.A. Cornell and others at MIT in the late 1960's with the program in the version of the US Geological Survey by R. McGuire. In the study, the program was extended for the use of the continuous attenuation law by Sponheuer, azimuth-dependency in the attenuation relation, a quadratic intensity-frequency relation, large number of gross sources and output modifications with respect to the mapping program used. To determine the basic parameters, more than 3000 independent events in an area of approximately 240 000km 2 -Switzerland with its neighbouring parts of Italy, Austria, Germany and France- were systematically classified (and relocated where necessary)

  4. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    Science.gov (United States)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  5. Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria)

    International Nuclear Information System (INIS)

    Harbi, A.; Maouche, S.; Oussadou, F.; Vaccari, F.; Aoudia, A.; Panza, G.F.; Benouar, D.

    2005-07-01

    Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this capital city, a realistic modelling of the seismic ground motion using the hybrid method that combines the finite-differences method and the modal summation, is conducted. For this purpose, a complete database in terms of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone (2.25 deg. E-3.50 deg. E, 36.50 deg. N-37.00 deg. N) is performed and an earthquake list, for the period 1359-2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross-sections have been built up to model the seismic ground motion in the city, caused by the 1989 Mont-Chenoua and the 1924 Douera earthquakes; a set of synthetic seismograms and response spectral ratio is produced for Algiers. The numerical results show that the soft sediments in Algiers centre are responsible of the noticed amplification of the seismic ground motion. (author)

  6. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  7. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    OpenAIRE

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-01-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure...

  8. The impact of seismically-induced relay chatter on nuclear plant risk

    International Nuclear Information System (INIS)

    Bley, D.C.; McIntyre, T.J.; Smith, B.; Kassawara, R.P.

    1987-01-01

    This paper describes a systematic scheme for analyzing the impact of relay chatter that is amenable to both PRA analysis and seismic margins analysis. It uses knowledge of the systems engineering of the plant to bound the scope of the problem to a tractable size and has been applied to both the Diablo Canyon PRA and the EPRI seismic margines program trial evaluation at the Catawba Nuclear Power Plant. It has also been coordinated with similar EPRI-sponsored work on relay functionality for the Seismic Qualification Utility Group. (orig./HP)

  9. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  10. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  11. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  12. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  13. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  14. NCSRR digital seismic network in Romania

    International Nuclear Information System (INIS)

    Aldea, A.; Albota, E.; Demetriu, S.; Poiata, N.; Kashima, T.

    2007-01-01

    Digital seismic instrumentation donated by Japan International Cooperation Agency (JICA) to the National Center for Seismic Risk Reduction (NCSRR, Romania) allowed the installation in 2003 of a new Romanian seismic network. In 2005-2006 the network was developed by investments from NCSRR within the budget ensured by Ministry of Transports, Construction and Tourism (MTCT). The NCSRR seismic network contains three types of instrumentation: (i) free-field stations - outside the capital city Bucharest (8 accelerometers), (ii) instrumented buildings - in Bucharest (5 buildings), and (iii) stations with free-field and borehole sensors - in Bucharest (8 sites with ground surface sensor and sensors in 15 boreholes with depths up to 153 m). Since its installation, the NCSRR network recorded more than 170 seismic motions from 26 earthquakes with moment magnitudes ranging from 3.2 to 6.0. The seismic instrumentation was accompanied by investigations of ground conditions and site response: PS logging tests, single-station and array microtremor measurements. The development of seismic monitoring in Romania is a major contribution of JICA Project, creating the premises for a better understanding and modelling of earthquake ground motion, site effects and building response. (authors)

  15. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  16. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  17. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  18. An-integrated seismic approach to de-risk hydrocarbon accumulation for Pliocene deep marine slope channels, offshore West Nile Delta, Egypt

    Science.gov (United States)

    Othman, Adel A. A.; Bakr, Ali; Maher, Ali

    2017-12-01

    The Nile Delta basin is a hydrocarbon rich province that has hydrocarbon accumulations generated from biogenic and thermogenic source rocks and trapped in a clastic channel reservoirs ranging in age from Pliocene to Early Cretaceous. Currently, the offshore Nile Delta is the most active exploration and development province in Egypt. The main challenge of the studied area is that we have only one well in a channel system exceeds fifteen km length, where seismic reservoir characterization is used to de-risk development scenarios for the field by discriminating between gas sand, water sand and shale. Extracting the gas-charged geobody from the seismic data is magnificent input for 3D reservoir static modelling. Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition analysis unravels the seismic signal into its initial constituent frequencies. Frequency decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness, geologic discontinuities and channel connectivity. Inversion feasibility study using crossplot between P-wave impedance (Ip) and S-wave impedance (Is) which derived from well logs (P-wave velocity, S-wave velocity and density) is applied to investigate which inversion type would be sufficient enough to discriminate between gas sand, water sand and shale. Integration between spectral analysis, inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which used to extract gas sand and water sand geobodies, which is extremely wonderful for constructing facies depositional static model in area with unknown facies distribution and sand connectivity. Therefore de-risking hydrocarbon accumulation and GIIP estimation for the field became more confident for drilling new development wells.

  19. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  20. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  1. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  2. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  3. Seismic Structure of Southern African Cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Artemieva, Irina; Levander, Alan

    2014-01-01

    functions and finite-frequency tomography based on data from the South Africa Seismic Experiment (SASE). Combining the two methods provides high vertical and lateral resolution. The main results obtained are (1) the presence of a highly heterogeneous crustal structure, in terms of thickness, composition (as......Cratons are extremely stable continental crustal areas above thick depleted lithosphere. These regions have remained largely unchanged for more than 2.5 Ga. This study presents a new seismic model of the seismic structure of the crust and lithospheric mantle constrained by seismic receiver...

  4. Seismic response of buried pipelines: a state-of-the-art review

    International Nuclear Information System (INIS)

    Datta, T.K.

    1999-01-01

    A state-of-the-art review of the seismic response of buried pipelines is presented. The review includes modeling of soil-pipe system and seismic excitation, methods of response analysis of buried pipelines, seismic behavior of buried pipelines under different parametric variations, seismic stresses at the bends and intersections of network of pipelines. pipe damage in earthquakes and seismic risk analysis of buried pipelines. Based on the review, the future scope of work on the subject is outlined. (orig.)

  5. ) A Feasibility Study for High Resolution 3D Seismic In The Deep Offshore Nigeria

    International Nuclear Information System (INIS)

    Enuma, C.; Hope, R.; Mila, F.; Maurel, L.

    2003-01-01

    The conventional Exploration 3D seismic in the Deep Offshore Nigeria is typically acquired with 4000m-6000m cable length at 6-8 depth and with flip-flop shooting, providing a shot point interval of 50m. the average resulting frequency content is typically between 10-60hz which is adequate for exploration interpretation. It has become common in the last few years. E.g. in Angola and the Gulf of Mexico, to re-acquire High Resolution 3D seismic, after a discovery, to improve definition of turbidite systems and accuracy of reservoir geometry for optimized delineation drilling. This feasibility study which was carried out in three different steps was due to the question on whether HR-Seismic should be acquired over TotalFinaElf AKPO discovery for optimized delineation drilling

  6. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  7. IAEA establishes International Seismic Safety Centre

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA today officially inaugurated an international centre to coordinate efforts for protecting nuclear installations against the effects of earthquakes. The International Seismic Safety Centre (ISSC), which has been established within the IAEA's Department of Nuclear Safety and Security, will serve as a focal point on seismic safety for nuclear installations worldwide. ISSC will assist countries on the assessment of seismic hazards of nuclear facilities to mitigate the consequences of strong earthquakes. 'With safety as our first priority, it is vital that we pool all expert knowledge available worldwide to assist nuclear operators and regulators to be well prepared for coping with major seismic events,' said Antonio Godoy, Acting Head of the IAEA's Engineering Safety Section and leader of the ISSC. 'The creation of the ISSC represents the culmination of three decades of the IAEA's active and recognized involvement in this matter through the development of an updated set of safety standards and the assistance to Member States for their application.' To further seismic safety at nuclear installations worldwide, the ISSC will: - Promote knowledge sharing among the international community in order to avoid or mitigate the consequences of extreme seismic events on nuclear installations; - Support countries through advisory services and training courses; and - Enhance seismic safety by utilizing experience gained from previous seismic events in member states. The centre is supported by a scientific committee of high-level experts from academic, industrial and nuclear safety authorities that will advise the ISSC on implementation of its programme. Experts have been nominated from seven specialized areas, including geology and tectonics, seismology, seismic hazard, geotechnical engineering, structural engineering, equipment, and seismic risk. Japan and the United States have both contributed initial funds for creation of the centre, which will be based at

  8. One Decade of Induced Seismicity in Basel, Switzerland: A Consistent High-Resolution Catalog Obtained by Template Matching

    Science.gov (United States)

    Herrmann, M.; Kraft, T.; Tormann, T.; Scarabello, L.; Wiemer, S.

    2017-12-01

    Induced seismicity at the site of the Basel Enhanced Geothermal System (EGS) continuously decayed for six years after injection had been stopped in December 2006. Starting in May 2012, the Swiss Seismological Service was detecting a renewed increase of induced seismicity in the EGS reservoir to levels last seen in 2007 and reaching magnitudes up to ML2.0. Seismic monitoring at this EGS site is running for more than ten years now, but the details of the long-term behavior of its induced seismicity remained unexplored because a seismic event catalog that is consistent in detection sensitivity and magnitude estimation did not exist.We have created such a catalog by applying our matched filter detector to the 11-year-long seismic recordings of a borehole station at 2.7km depth. Based on 3'600 located earthquakes of the operator's borehole-network catalog, we selected about 2'500 reasonably dissimilar templates using waveform clustering. This large template set ensures an adequate coverage of the diversity of event waveforms which is due to the reservoir's highly complex fault system and the close observation distance. To cope with the increased computational demand of scanning 11-years of data with 2'500 templates, we parallelized our detector to run on a high-performance computer of the Swiss National Supercomputing Centre.We detect more than 200'000 events down to ML-2.5 during the six-day-long stimulation in December 2006 alone. Previously, only 13'000 detections found by an amplitude-threshold-based detector were known for this period. The high temporal and spatial resolution of this new catalog allows us to analyze the statistics of the induced Basel earthquakes in great detail. We resolve spatio-temporal variations of the seismicity parameters (a- and b-value) that have not been identified before and derive the first high-resolution temporal evolution of the seismic hazard for the Basel EGS reservoir.In summer 2017, our detector monitored the 10-week pressure

  9. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  10. Seismically induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Henry, D.M.; Ravindra, M.K.; Hashimoto, P.S.; Griffin, M.J.; Tong, W.H.; Nafday, A.M.

    1991-01-01

    A seismic probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The risk from seismic events to the fuel in the core and in the fuel storage canal was evaluated. The key elements of this paper are the integration of seismically induced internal flood and internal fire, and the modeling of human error rates as a function of the magnitude of earthquake. The systems analysis was performed by EG ampersand G Idaho, Inc. and the fragility analysis and quantification were performed by EQE International, Inc. (EQE)

  11. Mini-Sosie - a new concept in high-resolution seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C J

    1977-12-01

    Mini-Sosie is a new approach to high-resolution reflection seismics using a nondynamite source. The basic principles is to use an ordinary earth tamper to produce a long duration pseudo-random input pulse train. Returning signals from suitable geophone arrays are decoded in real time by crosscorrelation with the reference signal recorded from a source-sensor attached to the tamper plate. Relatively weak signals are stacked until sufficient amplitude is obtained; most noise is phased out during the decoding process while in-phase seismic events are added, resulting in good signal-to-noise ratios. The resulting output is the standard field seismogram. The source is relatively quiet and surface damage is insignificant thereby avoiding environmental restrictions. Mini-Sosie is especially useful for shallow investigation to one second (two-way time) and has a wide range of applications from shallow oil and gas exploration, coal, and hard mineral exploration to hydrology and engineering studies.

  12. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  13. IEEE 693 seismic qualification of composites for substation high-voltage equipment

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, A.J. [Precision Measurement Instruments, Los Altos Hills, CA (United States); Kempner, L.Jr. [Bonneville Power Administration, Vancouver, BC (Canada)

    2004-07-01

    Standard 693-1997 of the Institute of Electrical and Electronic Engineers (IEEE) is the recommended practice for seismic design of substations. It represents a significant improvement in the way the power industry seismically qualifies substation high-voltage equipment. This paper described the use of IEEE Standard 693 for hollow-core composite insulators that are used on high-voltage transformers and demonstrated that changes are warranted. The following four failure modes associated with the composite insulator were discussed: bond degradation, bond failure, tube degradation and tube layer delamination. The authors evaluated the IEEE 693 qualification procedure of time history shake-table and static-pull tests and were concerned about acceptance criteria. It was shown that acceptance criteria are not valid for qualifying hollow-core composites and that static-pull tests are needed after the vibration qualification tests are completed. It was suggested that more research is warranted to determine if bonding at the top part of the flange can be eliminated, thereby eliminating bond degradation. The resulting increase in system damping would improve the dynamic response of the unit. 1 ref., 10 figs.

  14. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  15. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  16. Quake warnings, seismic culture

    Science.gov (United States)

    Allen, Richard M.; Cochran, Elizabeth S.; Huggins, Tom; Miles, Scott; Otegui, Diego

    2017-01-01

    Since 1990, nearly one million people have died from the impacts of earthquakes. Reducing those impacts requires building a local seismic culture in which residents are aware of earthquake risks and value efforts to mitigate harm. Such efforts include earthquake early warning (EEW) systems that provide seconds to minutes notice of pending shaking. Recent events in Mexico provide an opportunity to assess performance and perception of an EEW system and highlight areas for further improvement. We have learned that EEW systems, even imperfect ones, can help people prepare for earthquakes and build local seismic culture, both beneficial in reducing earthquake-related losses.

  17. Improvement of high resolution borehole seismics. Part 1: Development of processing methods for VSP surveys. Part 2: Piezoelectric signal transmitter for seismic measurements

    International Nuclear Information System (INIS)

    Cosma, C.; Heikkinen, P.; Pekonen, S.

    1991-05-01

    The purpose of the high resolution borehole seismics project has been to improve the reliability and resolution of seismic methods in the particular environment of nuclear waste repository sites. The results obtained, especially the data processing and interpretation methods developed, are applicable also to other geophysical methods (e.g. Georadar). The goals of the seismic development project have been: the development of processing and interpretation techniques for mapping fractured zones, and the design and construction of a seismic source complying with the requirements of repository site characterization programs. Because these two aspects of the work are very different in nature, we have structured the report as two self contained parts. Part 1 describes the development of interpretive techniques. We have used for demonstrating the effect of different methods a VSP data set collected at the SCV site during Stage 1 of the project. Five techniques have been studied: FK-filtering, three versions of Tau-p filtering and a new technique that we have developed lately, Image Space filtering. Part 2 refers to the construction of the piezoelectric source. Earlier results obtained over short distances with low energy piezoelectric transmitters let us believe that the same principle could be applied for seismic signal transmitters, if solutions for higher energy and lower frequency output were found. The instrument which we have constructed is a cylindrical unit which can be placed in a borehole and is able to produce a radial strain when excited axially. The minimum borehole diameter is 56 mm. (au)

  18. Seismic behaviour of geotechnical structures

    Directory of Open Access Journals (Sweden)

    F. Vinale

    2002-06-01

    Full Text Available This paper deals with some fundamental considerations regarding the behaviour of geotechnical structures under seismic loading. First a complete definition of the earthquake disaster risk is provided, followed by the importance of performing site-specific hazard analysis. Then some suggestions are provided in regard to adequate assessment of soil parameters, a crucial point to properly analyze the seismic behaviour of geotechnical structures. The core of the paper is centered on a critical review of the analysis methods available for studying geotechnical structures under seismic loadings. All of the available methods can be classified into three main classes, including the pseudo-static, pseudo-dynamic and dynamic approaches, each of which is reviewed for applicability. A more advanced analysis procedure, suitable for a so-called performance-based design approach, is also described in the paper. Finally, the seismic behaviour of the El Infiernillo Dam was investigated. It was shown that coupled elastoplastic dynamic analyses disclose some of the important features of dam behaviour under seismic loading, confirmed by comparing analytical computation and experimental measurements on the dam body during and after a past earthquake.

  19. Identification of seismically risk-sensitive systems and components in nuclear power plants: feasibility study

    International Nuclear Information System (INIS)

    Azarm, M.; Boccio, J.; Farahzad, P.

    1983-06-01

    An approach for the identification of risk-sensitive components in a nuclear power plant during and after a seismic event is described. Application of the methodology to two hypothetical power plants - a Boiling Water Reactor and a Pressurized Water Reactor - are presented and the results are given in tabular and graphical form. Conclusions drawn and lessons learned through the course of this study, based on the relative importance of various accident scenarios and sensitivity analyses, are discussed. In addition, the areas that may need further investigation are identified

  20. A repeatable seismic source for tomography at volcanoes

    Directory of Open Access Journals (Sweden)

    A. Ratdomopurbo

    1999-06-01

    Full Text Available One major problem associated with the interpretation of seismic signals on active volcanoes is the lack of knowledge about the internal structure of the volcano. Assuming a 1D or a homogeneous instead of a 3D velocity structure leads to an erroneous localization of seismic events. In order to derive a high resolution 3D velocity model ofMt. Merapi (Java a seismic tomography experiment using active sources is planned as a part of the MERAPI (Mechanism Evaluation, Risk Assessment and Prediction Improvement project. During a pre-site survey in August 1996 we tested a seismic source consisting of a 2.5 l airgun shot in water basins that were constructed in different flanks of the volcano. This special source, which in our case can be fired every two minutes, produces a repeatable, identical source signal. Using this source the number of receiver locations is not limited by the number of seismometers. The seismometers can be moved to various receiver locations while the source reproduces the same source signal. Additionally, at each receiver location we are able to record the identical source signal several times so that the disadvantage of the lower energy compared to an explosion source can be reduced by skipping disturbed signals and stacking several recordings.

  1. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    Science.gov (United States)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  2. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  3. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  4. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  5. Recent Seismicity in Texas and Research Design and Progress of the TexNet-CISR Collaboration

    Science.gov (United States)

    Hennings, P.; Savvaidis, A.; Rathje, E.; Olson, J. E.; DeShon, H. R.; Datta-Gupta, A.; Eichhubl, P.; Nicot, J. P.; Kahlor, L. A.

    2017-12-01

    The recent increase in the rate of seismicity in Texas has prompted the establishment of an interdisciplinary, interinstitutional collaboration led by the Texas Bureau of Economic Geology which includes the TexNet Seismic Monitoring and Research project as funded by The State of Texas (roughly 2/3rds of our funding) and the industry-funded Center for Integrated Seismicity Research (CISR) (1/3 of funding). TexNet is monitoring and cataloging seismicity across Texas using a new backbone seismic network, investigating site-specific earthquake sequences by deploying temporary seismic monitoring stations, and conducting reservoir modeling studies. CISR expands TexNet research into the interdisciplinary realm to more thoroughly study the factors that contribute to seismicity, characterize the associated hazard and risk, develop strategies for mitigation and management, and develop methods of effective communication for all stakeholders. The TexNet-CISR research portfolio has 6 themes: seismicity monitoring, seismology, geologic and hydrologic description, geomechanics and reservoir modeling, seismic hazard and risk assessment, and seismic risk social science. Twenty+ specific research projects span and connect these themes. We will provide a synopsis of research progress including recent seismicity trends in Texas; Fort Worth Basin integrated studies including geological modeling and fault characterization, fluid injection data syntheses, and reservoir and geomechanical modeling; regional ground shaking characterization and mapping, infrastructure vulnerability assessment; and social science topics of public perception and information seeking behavior.

  6. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well

  7. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  8. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    gain insight into how local atmospheric conditions couple with the ground to generate seismic noise, and to explore strategies for reducing this noise post data collection. Comparison of spectra of atmospheric data streams to the three broadband seismic channels for continuous signals recorded during May and June of 2013 shows high coherence between infrasound signals and time variation of air pressure (dP/dt) that we calculated from the air pressure data stream. Coherence between these signals is greatest for the east-west component of the seismic data in northern Chile. Although coherence between seismic, infrasound, and dP/dt is lower for all three seismic channels at other GRO Chile stations, for some of the data streams coherence can jump as much as 6 fold for certain frequency bands, with a common 3-fold increase for periods shorter than 10 seconds and the occasional 6-fold increase at long or very long periods.

  9. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ma, Zhegang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Bob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA models for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.

  10. Probabilistic Seismic Hazard at the Archaeological Site of Gol ...

    Indian Academy of Sciences (India)

    9

    seismic risk assessment and design of seismic protection measures for monuments, ... carried out by taking into account three scenario earthquakes. ... NGA-W2, NGA-East, pan-European models) is anticipated to minimise the ... Heritage structures are precious as they form inextricable components of history, culture and.

  11. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  12. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  13. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  14. Seismic Hazard Management in Mexico City

    Science.gov (United States)

    Wintergerst, L.

    2007-05-01

    Mexico City is one of the largest cities in the world. More than 8.5 million residents and 4.5 million floating population are in the city itself, but with the surrounding suburbs the number of people that could be affected by natural and man-made hazards rises to approximately 20 million. The main risk to the city as a whole is a large magnitude earthquake. Since there is reason to prepare for a credible seismic scenario of Mw = 8.2, which would exceed the damages caused during the 1985 earthquake (Mw = 8.1), we founded the Metropolitan Geologic Service (MGS) in 1998. The MGS has developed geologic and seismic hazard maps for the city (http:www.proteccioncivil.df.gob.mx). The maps include three separate risk maps for low height (3 stories), medium height (10 stories) and tall buildings (10 stories). The maps were prepared by using the maximum horizontal accelerations documented during the 1985 earthquake, and wave propagation modeling for buildings of different resonant periods (T = 0.0, 1.0 and 2.0 sec). In all cases, the risk zones were adjusted to include documented damage during the 1957, 1979 and 1985 earthquakes. All three maps show a high risk zone in the north-central portion of the city, elongated in a N-S direction, which corresponds with a narrow graben where the thickness of alluvial sediments is particularly large, and where wave amplification is accentuated. Preparation of these maps, and others used for planning, has been facilitated by the ongoing elaboration of a Dynamic Geographical Information System, which is based on geo-scientific information, includes all types of risks, and incorporates vulnerability models. From the risk management standpoint, we have elaborated the Permanent Contingency Plan for Mexico City, which in its Earthquakes chapter includes plans for coordination and for organizing attention to the population in the event of a seismic disaster. This Permanent Plan follows the philosophy of Descartes' Method, has 11 processes (6

  15. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koike, G; Yoshikuni, Y [OYO Corp., Tokyo (Japan)

    1996-10-01

    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  16. Optimizing of operational strategies in producting gas fields mitigating induced seismic risk

    NARCIS (Netherlands)

    Chitu, A.G.; Leeuwenburgh, O.; Candela, T.G.G.; Osinga, S.; Kraaijpoel, D.A.; Wassing, B.B.T.

    2017-01-01

    Pore pressure changes caused by the production of gas from reservoir rocks result in reservoir compaction, stress changes on faults, potential fault reactivation and related seismic activity. This seismic activity is expected to be affected by the amount of pressure change, the spatial distribution

  17. Analysis of the seismicity of Southeastern Sicily: a proposed tectonic interpretation

    Directory of Open Access Journals (Sweden)

    M. S. Barbano

    2000-06-01

    Full Text Available Southeastern Sicily is one of the Italian regions with high seismic risk and is characterised by the occurrence in the past of large destructive events (MS = 6.4-7.3 over a territory which is densely urbanised today. The main earthquakes were analysed and some minor damaging shocks reviewed to investigate the main seismogenic features of the region. The comparison between the pattern of seismicity and evidence of Quaternary tectonics allowed us to propose a first tentative, tectonic interpretation of the earthquakes. On the whole, the seismicity of SE Sicily seems distributed along regional fault systems which have had a role in the recent geodynamic evolution of the area. The Malta escarpment, the only structure whose late Quaternary-recent activity is currently known, appears the most probable source for earthquakes with about 7 magnitude. Although no evidence of tectonics subsequent to the middle Pleistocene is available for them, the Scicli line and the NE-SW fault system delimiting the northern sector of the Hyblean plateau seem seismically active with events with maximum magnitude of 5.2 and 6.4, respectively.

  18. Building a risk-targeted regional seismic hazard model for South-East Asia

    Science.gov (United States)

    Woessner, J.; Nyst, M.; Seyhan, E.

    2015-12-01

    The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.

  19. The Temblor mobile seismic risk app, v2: Rapid and seamless earthquake information to inspire individuals to recognize and reduce their risk

    Science.gov (United States)

    Stein, R. S.; Sevilgen, V.; Sevilgen, S.; Kim, A.; Jacobson, D. S.; Lotto, G. C.; Ely, G.; Bhattacharjee, G.; O'Sullivan, J.

    2017-12-01

    Temblor quantifies and personalizes earthquake risk and offers solutions by connecting users with qualified retrofit and insurance providers. Temblor's daily blog on current earthquakes, seismic swarms, eruptions, floods, and landslides makes the science accessible to the public. Temblor is available on iPhone, Android, and mobile web app platforms (http://temblor.net). The app presents both scenario (worst case) and probabilistic (most likely) financial losses for homes and commercial buildings, and estimates the impact of seismic retrofit and insurance on the losses and safety. Temblor's map interface has clickable earthquakes (with source parameters and links) and active faults (name, type, and slip rate) around the world, and layers for liquefaction, landslides, tsunami inundation, and flood zones in the U.S. The app draws from the 2014 USGS National Seismic Hazard Model and the 2014 USGS Building Seismic Safety Council ShakeMap scenari0 database. The Global Earthquake Activity Rate (GEAR) model is used worldwide, with active faults displayed in 75 countries. The Temblor real-time global catalog is merged from global and national catalogs, with aftershocks discriminated from mainshocks. Earthquake notifications are issued to Temblor users within 30 seconds of their occurrence, with approximate locations and magnitudes that are rapidly refined in the ensuing minutes. Launched in 2015, Temblor has 650,000 unique users, including 250,000 in the U.S. and 110,000 in Chile, as well as 52,000 Facebook followers. All data shown in Temblor is gathered from authoritative or published sources and is synthesized to be intuitive and actionable to the public. Principal data sources include USGS, FEMA, EMSC, GEM Foundation, NOAA, GNS Science (New Zealand), INGV (Italy), PHIVOLCS (Philippines), GSJ (Japan), Taiwan Earthquake Model, EOS Singapore (Southeast Asia), MTA (Turkey), PB2003 (plate boundaries), CICESE (Baja California), California Geological Survey, and 20 other state

  20. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  1. On the importance of uncertain factors in seismic fragility assessment

    International Nuclear Information System (INIS)

    Borgonovo, E.; Zentner, I.; Pellegri, A.; Tarantola, S.; Rocquigny, E. de

    2013-01-01

    This paper addresses the definition of importance measures for helping the modeller to detect the factors on which to focus modelling activity and data collection in seismic fragility analysis. We study sensitivity measures consistent with the decision-support criteria of interest, namely, the (mean) fragility curve and the “High Confidence of Low Probability of Failure” (HCLPF) value. The importance measures are obtained analytically for the EPRI safety factor method, which is nowadays used worldwide for seismic risk assessment of nuclear plants. We illustrate and discuss the use of both variance-based and CDF-based importance measures in the application to two case studies, the first analytical and based on the EPRI method, the second numerical.

  2. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  3. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    Science.gov (United States)

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  4. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  5. Nuclear fuel assembly seismic amplitude limiter

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The ability of a nuclear reactor to withstand high seismic loading is enhanced by including, on each fuel assembly, at least one seismic grid which reduces the magnitude of the possible lateral deflection of the individual fuel elements and the entire fuel assembly. The reduction in possible deflection minimizes the possibility of impact of the spacer grids of one fuel assembly on those of an adjacent fuel assembly and reduces the magnitude of forces associated with any such impact thereby minimizing the possibility of fuel assembly damage as a result of high seismic loading. The seismic grid is mounted from the fuel assembly guide tubes, has greater external dimensions when compared to the fuel assembly spacer grids and normally does not support or otherwise contact the fuel elements. The reduction in possible deflection is achieved through reduction of the clearance between adjacent fuel assemblies made possible by the use in the seismic grid of a high strength material characterized by favorable thermal expansion characteristics and minimal irradiation induced expansion

  6. Seismic risk assessment of building based on damaged database of 1995 Hyogoken Nanbu Earthquake; Hyogoken nanbu jishin no hisai database wo mochiita kenchikubutsu no jishin risk hyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, H.; Nobata, A.; Seki, M. [Obayashi Corp., Tokyo (Japan)

    2000-01-10

    The objective of this paper is to evaluate a vulnerability function and a repair cost in terms of each structural damage level based on the damaged database of the 1995 Hyogoken Nanbu Earthquake. The seismic risk of a building in Kobe is calculated through the analytical results. As a result, the following are verified : 1. The expectation of vulnerability function, in which peak ground acceleration is taken for seismic intensity, is about 550 cm/s{sup 2} for minor damage, about 700 cm/s{sup 2} for moderate damage, and about 950 cm/s{sup 2} for major damage respectively. However, the coefficient of variation (C. O. V. ) is about 0.5 for all damage levels. 2. The expectation of repair cost per square meter is about 29000 yen for minor damage, about 60000 yen for moderate damage, and about 64000 yen for major damage respectively. However, the variation is very large, for example, the C. O. V. for repair cost varies from 1.2 to 1.6. 3. The seismic risk of a building in Kobe, that is normalized by new construction cost, is about three percent on condition that the design lifetime is assumed to be 50 years. (author)

  7. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  8. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  9. A Framework for Seismic Design of Items in Safety-Critical Facilities for Implementing a Risk-Informed Defense-in-Depth-Based Concept

    Directory of Open Access Journals (Sweden)

    Tatsuya Itoi

    2017-05-01

    Full Text Available Recently, especially after the 2011 off the Pacific coast of Tohoku earthquake and the Fukushima Daiichi nuclear power plant accident, the need for treating residual risks and cliff-edge effects in safety-critical facilities has been widely recognized as an extremely important issue. In this article, the sophistication of seismic designs in safety-critical facilities is discussed from the viewpoint of mitigating the consequences of accidents, such as the avoidance of cliff-edge effects. For this purpose, the implementation of a risk-informed defense-in-depth-based framework is proposed in this study. A basic framework that utilizes diversity in the dynamic characteristics of items and also provides additional seismic margin to items important for safety when needed is proposed to prevent common cause failure and to avoid cliff-edge effects as far as practicable. The proposed method is demonstrated to be effective using an example calculation.

  10. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    Rangette, A.M.; Peters, K.A.

    1988-01-01

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10 -4 /year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  11. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  12. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  13. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    International Nuclear Information System (INIS)

    Papouchado, K.; Salaymeh, J.

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field

  14. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  15. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  16. Benefits of remote sensing technologies in the assessment of seismicity and environment

    International Nuclear Information System (INIS)

    Wenzel, H.

    2005-01-01

    Estimating the likelihood of seismic hazard and the degree of damage, including damage of secondary effects is essential for damage mitigation planning. The present study is an attempt to integrate various data sets as LANDSAT ETM - and satellite radar (ERS) - data and geological and geophysical data to obtain a better understanding of processes influencing the damage intensity of stronger earthquakes. Special attention is given to the mapping of structural features visible on satellite imageries from the area in order to investigate the tectonic setting and to detect surface traces of fracture and fault zones that might influence the contour and degree of seismic shock and earthquake induced secondary effects as soil liquefaction. Special attention is focussed on active, neotectonic features. Linear features visible on remote sensing - data from the test area, thus, were mapped and risk areas delineated using ArcView - Geographic Information System (GIS) - technology. As risk areas were mapped those regions with higher risk of seismic wave amplification due to water saturated surfaces or due to intersecting fault zones guiding seismic waves. The evaluations were compared, correlated and combined with available geologic and geophysics data. The results of this study allow an application for seismic microzonation purposes

  17. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  18. Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)

    Science.gov (United States)

    karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.

    2015-12-01

    Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.

  19. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  20. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  1. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  2. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  3. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt

    Science.gov (United States)

    Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian

    2018-05-01

    The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.

  4. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  5. Deformation patterns and seismic hazard along the eastern Sunda margin

    Science.gov (United States)

    Kopp, Heidrun; Djajadihardja, Yusuf; Flueh, Ernst R.; Hindle, David; Klaeschen, Dirk; Mueller, Christian; Planert, Lars; Reichert, Christian; Shulgin, Alexey; Wittwer, Andreas

    2010-05-01

    The eastern Sunda margin offshore Java, Bali, Lombok and Sumba is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its seismic risk potential.

  6. Seismic Performance Assessment and Strengthening of Gazimagusa Namik Kemal Lisesi

    OpenAIRE

    Yardımcı, Temuçin

    2009-01-01

    ABSTRACT: Many destructive earthquakes occurred in Cyprus. However, the potential seismic risk of the buildings in Cyprus is not known well since vulnerability is unknown. Especially in the Northern part of the Island building inventory has variation regarding seismic performance. On the other hand, in Northern Cyprus there are more than 150 school buildings with different ages. Most of these buildings have been constructed before the use of modern seismic codes. In other words, only gravity...

  7. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  8. Use of seismic attributes for sediment classification

    Directory of Open Access Journals (Sweden)

    Fabio Radomille Santana

    2015-04-01

    Full Text Available A study to understand the relationships between seismic attributes extracted from 2D high-resolution seismic data and the seafloor's sediments of the surveyed area. As seismic attributes are features highly influenced by the medium through which the seismic waves are propagated, the authors can assume that it would be possible to characterise the geological nature of the seafloor by using these attributes. Herein, a survey was performed on the continental margin of the South Shetland Islands in Antarctica, where both 2D high-resolution seismic data and sediment gravity cores samples were simultaneously acquired. A computational script was written to extract the seismic attributes from the data, which have been statistically analysed with clustering analyses, such as principal components analysis, dendrograms and k-means classification. The extracted seismic attributes are the amplitude, the instantaneous phase, the instantaneous frequency, the envelope, the time derivative of the envelope, the second derivative of the envelope and the acceleration of phase. Statistical evaluation showed that geological classification of the seafloor's sediments is possible by associating these attributes according to their coherence. The methodologies here developed seem to be appropriate for glacio-marine environment and coarse-to-medium silt sediment found in the study area and may be applied to other regions in the same geological conditions.

  9. Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2018-01-01

    Full Text Available This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC, axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code can be safely adopted to evaluate the shear strength of HDC short columns.

  10. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  11. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    Science.gov (United States)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  12. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  13. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    Science.gov (United States)

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude

  14. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  15. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  16. Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hofmayer, C [Brookhaven National Lab. (BNL), Upton, NY (United States); Choun, Y-S [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, MK [Brookhaven National Lab. (BNL), Upton, NY (United States); Choi, I-K [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-04-01

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5

  17. First field test of NAPL detection with high resolution borehole seismic imaging

    International Nuclear Information System (INIS)

    Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

    2002-01-01

    The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration

  18. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  19. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    Science.gov (United States)

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  20. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta

    2016-01-01

    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016 http://link.springer.com/article/10.1007/s00024-016-1304-1

  1. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Gilbert, R.J.; Martelli, A.

    1989-06-01

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  2. DimeRisk Project: Development of an educational and training program for the prevention and mitigation of seismic risk in Spain

    Science.gov (United States)

    Martín-González, Fidel; Martín-Velazquez, Silvia; Giner-Robles, Jorge; Martínez-Díaz, Jose Jesus; Rodríguez-Pascua, Miguel Angel; Béjar, Marta; Pérez-López, Raul; López, Jose Antonio; Morales, Javier; Barranco, Ana; Palomo, Isabel

    2014-05-01

    In Spain, due to the low recurrence of earthquakes in the last century, there is no awareness of seismic risk and prevention plans. For this reason, moderate magnitude earthquakes have generated significant damage and casualties. However, the risk is evident, in Spain during the nineteenth century there were more than five destructive earthquakes with intensities greater than VIII (e.g. Arenas del Rey IX-X, Torrevieja IX-X). A recent example was the 2011 Lorca earthquake, that with moderate magnitudes and intensities (magnitude Mw 5.2, intensity VI) it struck a populated area with old historic buildings and a population unprepared (9 victims, 324 injured, 1,200 million in reparations). In this earthquake many errors were found in the behavior of the population and in the basic self-protection measures. Many countries have educational programs that significantly reduce the damage and losses caused by earthquakes. The objective of this project (Dimerisk project) is to generate training and educational materials that help mitigate the damage and losses caused by earthquakes. This project is based on plans of experienced countries (e.g. U.S.A., Italy, Mexico, New Zealand) but having into account the mistakes made in the last earthquake in Spain, and also the characteristics of the Spanish educational system and building characteristics. This project has been founded by FUNDACION MAPFRE. The team is formed by geologist, earthquake researchers and teachers at secondary schools and universities. The ultimate goal is to generate material that can inform about the seismic and geological processes that participate in an earthquake and the basics of self-protection against earthquakes. This project has focused on scenarios (offices, factories, homes, education centers) and educational levels (schools, colleges and universities). Educational materials have been also developed for different educational levels with basic concepts related to seismicity, how to behave during an

  3. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used at various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. (author)

  4. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  5. Interim Report on Metallic Component Margins Under High Seismic Loads. Survey of Existing Practices and Status of Benchmark Work

    International Nuclear Information System (INIS)

    2015-01-01

    OECD/NEA/CSNI Working Group on Integrity and Ageing of Components and Structures (WGIAGE) has the main mission to advance the current understanding of those aspects relevant to ensuring the integrity of structures, systems and components under design and beyond design loads, to provide guidance in choosing the optimal ways of dealing with challenges to the integrity of operating as well as new nuclear power plants, and to make use of an integrated approach to design, safety and plant life management. The activity (CAPS) of the WGIAGE group, entitled 'Metallic Component Margins under High Seismic Loads (MECOS)', was initially proposed by the metal sub-group of WGIAGE and approved by the CSNI in June 2012 as a Fukushima activity (F-CAPS). The proposal is aimed to assess the consequences of external hazards on plant safety. The main objectives of the MECOS project were to quantify the existing margins in seismic analysis of safety class components for high seismic loads and assess the existing design practices within a benchmark activity. The first phase of MECOS work included a survey on the existing seismic regulations and design analysis methods in the member countries. The survey was conducted by means of a questionnaire and a total of 24 questions were asked. The questionnaire consists of three parts: Seismic Input, Seismic Design Basis, and Beyond Seismic Design Basis. The majority of the respondents use the Standard or Modified Shape Spectrum and only a few countries are using the Uniform Seismic Hazard Spectra (UHS) in their seismic design regulations. All of the respondents have minimum seismic demand in their national or adopted standards. The number of defined and used seismic levels for the design of mechanical components is one or two. Almost all of the respondents are using combined testing and analysis methods for seismic qualification and design. Some countries (e.g. Canada, Finland, USA, France, Japan and UK) have specific requirements for

  6. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2005-12-15

    Several recent improved methods for the EGFM are introduced in order to avoid artificial holes seen in the synthetic acceleration spectrum. Furthermore evaluation of input ground motions at Wolsung NPP are performed by varying the source parameters that may control the high-frequency wave radiation and the deviation of the synthetic motions are revealed. The PSHA case studies for four NPP sites (Wolsung, Kori, Uljin, Younggwang) are performed. In the analysis, site-specific attenuation equations developed for Korean NPP sites are employed, and the seismic hazards for the target sites are evaluated in the case where the four kind of seismic source models are considered. Moreover, the PSHA for Wolsung and Younggwang are conducted by using the site-specific attenuation equation with the index of response spectra and the uniform hazard spectra are evaluated for the two sites. The supporting tool for seismic response analysis and the evaluation tool for evaluating annual probability of failure were integrated in the frame of the seismic risk assessment system. Then, the tools were applied to the seismic risk assessment of the conventional EDG and isolated EDG. General information such as earthquake parameters and regional distribution of seismic intensity is summarized on the 2005 West Off Fukuoka earthquake. Then, the observed strong motion records in Japan and Korea sites are compiled, and regional distribution of peak accelerations are represented. Moreover, the peak accelerations of the records are compared with the values estimated from the existing attenuation equations.

  7. Treating Uncertainties in A Nuclear Seismic Probabilistic Risk Assessment by Means of the Distemper-Safer Theory of Evidence

    International Nuclear Information System (INIS)

    Lo, Chungkung; Pedroni, N.; Zio, E.

    2014-01-01

    The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i. e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest

  8. Treating Uncertainties in A Nuclear Seismic Probabilistic Risk Assessment by Means of the Distemper-Safer Theory of Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Chungkung [Chair on Systems Science and the Energetic Challenge, Paris (France); Pedroni, N.; Zio, E. [Politecnico di Milano, Milano (Italy)

    2014-02-15

    The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i. e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.

  9. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  10. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    Science.gov (United States)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then

  11. Analysis of underground concrete pipelines subjected to seismic high-frequency loads

    OpenAIRE

    Abbasiverki, Roghayeh

    2016-01-01

    Buried pipelines are tubular structures that are used for transportation of important liquid materials and gas in order to provide safety for human life. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages, possibly causing disturbance in vital systems, such as cooling of nuclear power facilities. The high level of safety has caused a demand for reliable seismic analyses, also for structures built in the regions that have not traditionally...

  12. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    capabilities, to improved management of earthquake risk, and to improved public safety policies. The position of the spacecraft, its high optical quality, large field of view, and large field of regard will make it an ideal platform for other scientific studies. The same data could be simply reused for other studies. If different data, such as multi-spectral data, is required, additional instruments could share the telescope.

  13. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  14. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  15. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  16. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  17. Seismic design and evaluation criteria for DOE facilities (DOE-STD-1020-XX)

    International Nuclear Information System (INIS)

    Short, S.A.; Kennedy, R.P.; Murray, R.C.

    1993-01-01

    Seismic design and evaluation criteria for DOE facilities are provided in DOE-STD-1020-XX. The criteria include selection of design/evaluation seismic input from probabilistic seismic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. Conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior and by a seismic load factor. These criteria are based on the performance or risk goals specified in DOE 5480.28. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of desired behavior and of the probability of not achieving that behavior. Following the seismic design/evaluation criteria of DOE-STD-1020-XX is sufficient to demonstrate that the probabilistic performance or risk goals are achieved. The criteria are simple procedures but with a sound, rigorous basis for the achievement of goals

  18. Comparison of elastic and inelastic seismic response of high temperature piping systems

    International Nuclear Information System (INIS)

    Thomas, F.M.; McCabe, S.L.; Liu, Y.

    1994-01-01

    A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields

  19. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used to various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. 6 refs., 4 figs., 3 tabs

  20. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  1. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  2. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  3. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  4. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  5. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  6. Seismic evaluation of commercial plutonium fabrication plants in the United States

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Coats, D.W.; Murray, R.C.; Tokarz, F.J.

    1979-01-01

    This report is an overview of Lawrence Livermore National Laboratory's seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC) before September 2, 1971. The seismic assessment generally has three parts: (1) documentation of the structural condition of each facility and its critical equipment; (2) characterization of the seismic hazard (i.e., determination of peak ground acceleration vs return period for each site); and (3) evaluation of seismic capacity to determine ground motion levels at which critical structures and equipment fail. The failure evaluation used structural capacities of median-centered strength characteristics of the as-built configurations from (1) and seismic hazard input from (2). Results of the assessment were partial input for an overall natural risks study by the NRC

  7. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  8. Seismic PSA method for multiple nuclear power plants in a site

    Energy Technology Data Exchange (ETDEWEB)

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  9. Salvo: Seismic imaging software for complex geologies

    Energy Technology Data Exchange (ETDEWEB)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  10. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  11. Origin and Formation of Giant Mounds in Lake Ladoga (Russia) from High-Resolution Seismic Reflection Data

    Science.gov (United States)

    Gromig, R.; Lebas, E.; Krastel, S.; Averes, T.; Wagner, B.; Melles, M.; Fedorov, G.

    2017-12-01

    In the framework of the German-Russian project `PLOT - Paleolimnological Transect' (for an overview of the project see Gromig et al., this meeting), a pilot seismic survey was carried out in Lake Ladoga (Russia) in late summer 2013. In total, 1500 km of seismic reflection profiles have been acquired using a mini-GI gun and a 32-channel seismic streamer. The high-resolution of the seismic data allows us to document in detail the sedimentary processes that occurred in the lake during the preglacial and postglacial history. The seismic stratigraphic architecture of the lake shows, from top to bottom, acoustically well-stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions are usually bordered by a hard reflector underneath, which may represent coarse-grained sediments or a till. The nature of the material composing the uppermost units have been tied to coring information from core Co1309, which was retrieved during the same survey. Of particular interest, are the single to composite, giant (kilometer-scale) mounds directly overlying the hard reflector. Internal architecture of the mounds reveals a complex formation history, with mound types showing significant structural deformation of different degrees; and other mound types showing a central deformation area, which strongly contrasts with the titled reflections or undisturbed stratification visible at the edges. The deepest seismic unit underlying the mounds is characterized by well-bedded, tilted reflectors in the southeastern part of the lake, while clear synclines are identified in the northwestern part of the lake. An erosional truncation separates the deepest unit from the overlying ones. In the work presented here, we focus on the understanding of the origin and the formation of the giant mounds with respect to the glacial history of Lake Ladoga.

  12. Seismic margin assessment of spanish nuclear power plants: a perspective from industry and regulators

    International Nuclear Information System (INIS)

    Garcia-Monge, Juan; Beltran, Francisco; Sanchez-Cabanero, Jose G.

    2001-01-01

    The worldwide experience with probabilistic safety analysis (PSA) of nuclear power plants shows that the risk derived from earthquakes can be a significant contributor to core damage frequency in some instances. As a consequence, no severe accident safety assessment can be considered complete without giving, due consideration to seismic risk. This fact has been recognized by some regulators. in particular, by the U.S. Nuclear Regulatory Commission (NRC), who has included seismic risk assessment in its severe accident policy. The NRC severe accident policy was adopted by the Spanish nuclear regulator. the Consejo de Seguridad Nuclear (CSN). As a result. all plants in Spain were asked to perform a seismic risk analysis according to Supplements No. 4 and 5 of Generic Letter 88-20 and NUREG-1407, which included the containment failure analysis. At present in Spain there arc nine operating reactors at seven sites: six Westinghouse-PWR, two GE-BWR and one Siemens/KW U-PWR. The vintages are very different: the oldest plant started commercial operation in 1968 and the most recent, in 1988. In this framework, the Spanish Owners Group (SOG) proposed to CSN in 1994 to carry out the seismic risk analysis of the plants using seismic margin methodologies. This kind of methods requires, as a starting point, the definition of a seismic margin earthquake (SNIE), also called review level earthquake (RLL). For this purpose, tile SOG sponsored a general Probabilistic Seismic Hazard Analysis (PSHA) for the seven Spanish sites. The results of this PSHA were used by the SOG to define tile RLE and the scope of the study for each plant (binning of plants). The proposal was submitted to the CSN for evaluation. The CSN evaluation was based on the NRC practical experience and was helped by the technical advise of US Lawrence Livermore National Laboratory. The review showed that the uncertainties on seismic hazard had not been fully captured and that it would have been justified to consider a

  13. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  14. Seismic margins review of nuclear power plants: Fragility aspects

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.

    1987-01-01

    The fragility analysis is utilised in the seismic margin review in initial screening of certain components in the plant based on their generically high seismic capacities. A detailed walkdown of the plant is conducted to confirm that the initial screening is valid i.e., the generically high seismic capacity components do not possess any potential weaknesses (e.g., inadequate bracing, inadequate anchorage and potential systems interaction). For the components that are screened in, their seismic capacities are evaluated using either a probabilistic analysis of a deterministic evaluation. Based on a system analysis, the Boolean expressions for critical accident sequences are derived. These Boolean expressions are quantified using the component fragilities and nonseismic unavailabilities of components. The final product is the High Confidence Low Probability of Failure (HCLPF) capacity of the plant and the identification of potential seismic vulnerabilities in the plant. The objective of the paper is to describe the application of fragility analysis procedures in the seismic margin review of Maine Yankee and to document the insights obtained in this trial plant review. (orig./HP)

  15. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  16. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Oski Energy, LLC,

    2013-03-28

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.

  17. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  18. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  19. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  20. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  1. TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

    Directory of Open Access Journals (Sweden)

    CHUNG-KUNG LO

    2014-02-01

    Full Text Available The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs of Nuclear Power Plants (NPPs are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii providing ‘conservative’ bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF that reflect the (limited state of knowledge of the experts about the system of interest.

  2. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  3. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  4. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  5. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  6. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  7. Evaluating Seismic Activity in Ethiopia

    African Journals Online (AJOL)

    map is constructed from which seismic risks in a given sector ... troyed (10, 11) and the people of Eritrea remember these years ... terms of damage caused to man-made structures; they refer to .... walls of a well designed modern building were deta- ched from ... Although, at present, no theory is satisfactory, the fact remains.

  8. Geoethics and perception of seismic risk: the case of Pollino, Calabria, Southern Italy and the comparison with past societies

    Science.gov (United States)

    De Pascale, Francesco; Bernardo, Marcello; Muto, Francesco

    2013-04-01

    This work is a synthesis of research on the perception of seismic risk in the area of the Pollino, where it is been two years that an ongoing earthquake swarm is affecting the area between Calabria and Basilicata. Mr Downs has distinguished three different aspects in the perception of the environment: structural, preference and evaluation. Within this third aspect, the perception of seismic risk is an important dimension for the schedule. Starting from the territory, understood as the result of reciprocal interactions between humans and the physical space during the later stages of territorialization and reterritorialization, Geoethics can find a synthesis between humanistic and scientific knowledge in relating to the theme of disasters. The risk must be considered in its territorial nature, as a complex phenomenon which involves all aspects of the relations between man and environment. Assuming that the rupture of the dynamic equilibrium among population, environment and resources is the increasingly frequent causes of the outbreak of disasters in the academic increasing attention has been paid to the concept of resilience, for its potential to evaluate a system in a state of equilibrium and adaptation in response to a shock. Thus, the meaning adopted in the social sciences, not only in terms of natural disasters, but more generally for any change to the territory, refers to the ability to resist and recover their losses. Therefore, Geoethics can certainly help especially in educating the territory in terms of integrated risk management to become a tool that can enhance the resilience. In education-teaching, the concept of resilience is used especially for what concerns the sphere of the child's skills in effectively managing stress and difficulties of everyday life. In this context of risk, improve communications, awareness of the complexity of risk and the level of preparation would increase the resilience of the territory and to allow a more effective

  9. Seismic and structural analysis of high density/consolidated spent fuel storage racks

    International Nuclear Information System (INIS)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B.; Harstead, G.A.; Kopecky, B.

    1995-01-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, ad the type of the seismic event. This paper presents several of the mathematical models usually used. The models include features to allow sliding and tipping of the racks and to represent the hydrodynamic coupling which can occur between fuel assemblies and rack cells, between adjacent racks, and between the racks and the reinforced concrete walls. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies

  10. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  11. Fault Lines: Seismicity and the Fracturing of Energy Narratives in Oklahoma

    Science.gov (United States)

    Grubert, E.; Drummond, V. A.; Brandt, A. R.

    2016-12-01

    Fault Lines: Seismicity and the Fracturing of Energy Narratives in Oklahoma Virginia Drummond1, Emily Grubert21Stanford University, Stanford Earth Summer Undergraduate Research Program2Stanford University, Emmett Interdisciplinary Program in Environment and ResourcesOklahoma is an oil state where residents have historically been supportive of the oil and gas industry. However, a dramatic increase in seismic activity between 2009 and 2015 widely attributed to wastewater injection associated with oil production is a new and highly salient consequence of oil development, affecting local communities' relationship to the environment and to the oil industry. Understanding how seismicity plays into Oklahoma's evolving dialogue about energy is integral to understanding both the current realities and the future of energy communities in Oklahoma.This research engages Oklahoma residents through open-ended interviews and mixed quantitative-qualitative survey research to characterize how energy narratives shape identity in response to conflict between environmental outcomes and economic interest. We perform approximately 20 interviews with residents of Oklahoma, with particular attention to recruiting residents from a wide range of age groups and who work either within or outside the oil and gas industry. General population surveys supplementing detailed interviews with information about community characteristics, social and environmental priorities, and experience with hazards are delivered to residents selected at random from zip codes known to have experienced significant seismicity. We identify narratives used by residents in response to tension between economic and environmental concerns, noting Oklahoma as an interesting case study for how a relatively pro-industry community reacts to and reframes its relationship with energy development, given conflict. In particular, seismicity has fractured the dominant narrative of oil development as positive into new narratives

  12. Promoting seismic retrofit implementation through "nudge": using warranty as a driver.

    Science.gov (United States)

    Fujimi, Toshio; Tatano, Hirokazu

    2013-10-01

    This article proposes a new type of warranty policy that applies the "nudge" concept developed by Thaler and Sunstein to encourage homeowners in Japan to implement seismic retrofitting. Homeowner adaptation to natural disasters through loss reduction measures is known to be inadequate. To encourage proactive risk management, the "nudge" approach capitalizes on how choice architecture can influence human decision-making tendencies. For example, people tend to place more value on a warranty for consumer goods than on actuarial value. This article proposes a "warranty for seismic retrofitting" as a "nudge" policy that gives homeowners the incentive to adopt loss reduction measures. Under such a contract, the government guarantees all repair costs in the event of earthquake damage to the house if the homeowner implements seismic retrofitting. To estimate the degree to which a warranty will increase the perceived value of seismic retrofitting, we use field survey data from 1,200 homeowners. Our results show that a warranty increases the perceived value of seismic retrofitting by an average of 33%, and an approximate cost-benefit analysis indicates that such a warranty can be more economically efficient than an ex ante subsidy. Furthermore, we address the failure of the standard expected utility model to explain homeowners' decisions based on warranty evaluation, and explore the significant influence of ambiguity aversion on the efficacy of seismic retrofitting and nonanalytical factors such as feelings or trust. © 2013 Society for Risk Analysis.

  13. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  14. Application of the SSMRP methodology to the seismic risk at the Zion Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bohn, M.P.; Shieh, L.C.; Wells, J.E.

    1983-11-01

    The Seismic Safety Margins Research Program (SSMRP) has the goal of developing a fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. The risk analysis included a detailed seismological evaluation of the region around Zion, Illinois, which provided the earthquake-hazard function and a randomized set of 180 time histories (having peak ground acceleration values up to 1.8 g). These time histories were used as input for dynamic structural response calculations for four different Zion buildings. Detailed finite-element models of the buildings were used. Calculated time histories at piping support points were then used to determine moments throughout critical piping systems. Twenty separate piping models were analyzed. Finally, the responses of piping and safety system components within the buildings were combined with probabilistic failure criteria and event-tree/fault-tree models of the plant safety systems to produce an estimate of the frequency of core melt and radioactive release due to earthquakes

  15. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    Science.gov (United States)

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  16. Estimating of seismic return periods in Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Flores R, J.H.

    1993-01-01

    The study of seismic risk in the site of Laguna Verde Nuclear Power Plant and surroundings was made considering the different periods of seismic return and the probability of occurrence in distinct time intervals (50, 75, 100, 125, 150 years) starting with the distribution of first type of extreme values of Gumbel (G1), the value used for the assessment of lifetime of lump was 50 years, and the rest of the periods are used to evaluate temporary nuclear cemeteries, it is to say for reducing the radioactivity of burned fuel assemblies. The seismic data belongs to the seismicity catalog (1920-1982) elaborated around the site, which average magnitude was 5 in the Richter Scale and are considered as shallow and are located in the Continental crust of North American shelf, and are induced by the pressure of the cocos shelf, being 36 % of the seismic movements of intermediate value and two seismic movements of deep value. (Author)

  17. Some preliminary results of a worldwide seismicity estimation: a case study of seismic hazard evaluation in South America

    Directory of Open Access Journals (Sweden)

    C. V. Christova

    2000-06-01

    Full Text Available Global data have been widely used for seismicity and seismic hazard assessment by seismologists. In the present study we evaluate worldwide seismicity in terms of maps of maximum observed magnitude (Mmax, seismic moment (M 0 and seismic moment rate (M 0S. The data set used consists of a complete and homogeneous global catalogue of shallow (h £ 60 km earthquakes of magnitude MS ³ 5.5 for the time period 1894-1992. In order to construct maps of seismicity and seismic hazard the parameters a and b derived from the magnitude-frequency relationship were estimated by both: a the least squares, and b the maximum likelihood, methods. The values of a and b were determined considering circles centered at each grid point 1° (of a mesh 1° ´1° and of varying radius, which starts from 30 km and moves with a step of 10 km. Only a and b values which fulfill some predefined conditions were considered in the further procedure for evaluating the seismic hazard maps. The obtained worldwide M max distribution in general delineates the contours of the plate boundaries. The highest values of M max observed are along the circum-Pacific belt and in the Himalayan area. The subduction plate boundaries are characterized by the largest amount of M 0 , while areas of continental collision are next. The highest values of seismic moment rate (per 1 year and per equal area of 10 000 km 2 are found in the Southern Himalayas. The western coasts of U.S.A., Northwestern Canada and Alaska, the Indian Ocean and the eastern rift of Africa are characterized by high values of M 0 , while most of the Pacific subduction zones have lower values of seismic moment rate. Finally we analyzed the seismic hazard in South America comparing the predicted by the NUVEL1 model convergence slip rate between Nazca and South America plates with the average slip rate due to earthquakes. This consideration allows for distinguishing between zones of high and low coupling along the studied convergence

  18. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  19. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references

  20. Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan

    Directory of Open Access Journals (Sweden)

    G. Babayev

    2010-12-01

    Full Text Available A rapid growth of population, intensive civil and industrial building, land and water instabilities (e.g. landslides, significant underground water level fluctuations, and the lack of public awareness regarding seismic hazard contribute to the increase of vulnerability of Baku (the capital city of the Republic of Azerbaijan to earthquakes. In this study, we assess an earthquake risk in the city determined as a convolution of seismic hazard (in terms of the surface peak ground acceleration, PGA, vulnerability (due to building construction fragility, population features, the gross domestic product per capita, and landslide's occurrence, and exposure of infrastructure and critical facilities. The earthquake risk assessment provides useful information to identify the factors influencing the risk. A deterministic seismic hazard for Baku is analysed for four earthquake scenarios: near, far, local, and extreme events. The seismic hazard models demonstrate the level of ground shaking in the city: PGA high values are predicted in the southern coastal and north-eastern parts of the city and in some parts of the downtown. The PGA attains its maximal values for the local and extreme earthquake scenarios. We show that the quality of buildings and the probability of their damage, the distribution of urban population, exposure, and the pattern of peak ground acceleration contribute to the seismic risk, meanwhile the vulnerability factors play a more prominent role for all earthquake scenarios. Our results can allow elaborating strategic countermeasure plans for the earthquake risk mitigation in the Baku city.

  1. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  2. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    Science.gov (United States)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    The March 11, 2011 Tohoku-oki earthquake brought a great impact to the Tokyo metropolitan area in both seismological aspect and seismic risk management although Tokyo is located 340 km from the epicenter. The event generated very strong ground motion even in the metropolitan area and resulted severe requifaction in many places of Kanto district. National and local governments have started to discuss counter measurement for possible seismic risks in the area taking account for what they learned from the Tohoku-oki event which is much larger than ever experienced in Japan Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. We will discuss the main results that are obtained in the respective fields which have been integrated to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area; the project has been much improved after the Tohoku event. In order to image seismic structure beneath the Metropolitan Tokyo area we have developed Metropolitan Seismic Observation network (MeSO-net; Hirata et al., 2009). We have installed 296 seismic stations every few km (Kasahara et al., 2011). We conducted seismic

  3. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    . Three groups of reflections are observed. A sub.horizontal set that is interpreted to originate from greenstone lenses; a moderately dipping one consisting of two sub.groups, one dipping to the NNW and the other to the SSE; and a steeply dipping one that strikes at 50-70 deg and dips at 70-80 deg to the SE. Reflections from the two latter groups probably originate from fracture zones. The last group being responsible for the highly fractured zone between 1550 m and 1700 m. Reflections from the first sub.horizontal group and the NNW dipping sub.group are also observed on the surface seismic with the same general strike and dips. However, the estimated dips on the surface seismic are consistently lower. This may be explained by the VSP imaging the local reflector dip, while the surface seismic images the more larger scale regional dip. Dips and depth estimates to reflectors are generally known to an accuracy of better than ± 5% on both surface seismic and VSP data if its strike is known and it is planar. A special high resolution VSP survey was run in the cased part of the hole down to 200 m to image a clear 45 deg N dipping reflector on the surface seismic that intersects the borehole at the bottom of the casing at 200 m depth. This reflector generates PP and PS reflections and misinterpretation of the data can easily be done if the PS conversion is not taken into account

  4. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    . Three groups of reflections are observed. A sub.horizontal set that is interpreted to originate from greenstone lenses; a moderately dipping one consisting of two sub.groups, one dipping to the NNW and the other to the SSE; and a steeply dipping one that strikes at 50-70 deg and dips at 70-80 deg to the SE. Reflections from the two latter groups probably originate from fracture zones. The last group being responsible for the highly fractured zone between 1550 m and 1700 m. Reflections from the first sub.horizontal group and the NNW dipping sub.group are also observed on the surface seismic with the same general strike and dips. However, the estimated dips on the surface seismic are consistently lower. This may be explained by the VSP imaging the local reflector dip, while the surface seismic images the more larger scale regional dip. Dips and depth estimates to reflectors are generally known to an accuracy of better than {+-} 5% on both surface seismic and VSP data if its strike is known and it is planar. A special high resolution VSP survey was run in the cased part of the hole down to 200 m to image a clear 45 deg N dipping reflector on the surface seismic that intersects the borehole at the bottom of the casing at 200 m depth. This reflector generates PP and PS reflections and misinterpretation of the data can easily be done if the PS conversion is not taken into account.

  5. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Science.gov (United States)

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  6. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  7. Evaluation of the 3D high resolution seismic method at the Tournemire site around the IPSN experimental station

    International Nuclear Information System (INIS)

    Cabrera Nunez, J.

    2003-01-01

    The IPSN experimental station of Tournemire is localized at a 200 m depth inside an abandoned railway tunnel dug in a Jurassic clayey formation. The a priori knowledge of the existing geologic structures of the clayey formations allows to test the reliability of the 3D high resolution seismic survey technique and its capability to detect these structures and discontinuities. This test study is reported in this technical note. It comprises several steps: a bibliographic synthesis and a state-of-the-art of the 3D seismic survey technique, the construction of a velocity model for the different strata of the site, a simulation of the possible seismic response of these strata with respect to the velocities chosen, the processing of the data and finally their interpretation. (J.S.)

  8. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  9. Program outline of seismic fragility capacity tests on nuclear power plant equipment

    International Nuclear Information System (INIS)

    Lijima, T.; Abe, H.; Fujita, T.

    2004-01-01

    A seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risk of nuclear plant that is designed with definitive seismic design condition. Seismic fragility capacity data are necessary for seismic PSA, but we don't have sufficient data of active components of nuclear plants in Japan. This paper describes a plan of seismic fragility capacity tests on nuclear power plant equipment. The purpose of those tests is to obtain seismic fragility capacity of important equipment from a safety design point of view. And the equipment for the fragility capacity tests were selected considering effect on core damage frequency (CDF) that was evaluated by our preliminary seismic PSA. Consequently horizontal shaft pump, electric cabinets, Control Rod Drive system (CRD system) of BWR and PWR plant and vertical shaft pump were selected. The seismic fragility capacity tests are conducted from phase-1 to phase-3, and horizontal shaft pump and electric cabinets are tested on phase-1. The fragility capacity test consists of two types of tests. One is actual equipment test and another is element test. On actual equipment test, a real size model is tested with high-level seismic motion, and critical acceleration and failure mode are investigated. Regarding fragility test phase-1, we selected typical type horizontal shaft pump and electric cabinets for the actual equipment test. Those were Reactor Building Closed Cooling Water (RCW) Pump and eight kinds of electric cabinets such as relay cabinet, motor control center. On the test phase-1, maximum input acceleration for the actual equipment test is intended to be 6-G-force. Since the shaking table of TADOTSU facility did not have capability for high acceleration, we made vibration amplifying system. In this system, amplifying device is mounted on original shaking table and it moves in synchronization with original table. The element test is conducted with many samples and critical acceleration, median and

  10. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  11. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  12. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    International Nuclear Information System (INIS)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K.

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs

  13. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    Science.gov (United States)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    ) with head scarps near mountain tops and close to faults is similar to the one of large mass movements for which a seismic origin is proved (such as in the Tien Shan, Pamir, Longmenshan, etc.). Thus, correlations between landslide occurrence and combined seismotectonic and climatic factors are needed to support a regional multi-hazard risk assessment. The purpose of this paper is to harmonize for the first time at a regional scale the landslide predisposing factors and seismotectonic triggers and to present a first qualitative insight into the earthquake-induced landslide susceptibility for the Vrancea Seismic Region in terms of a GIS-based analysis of Newmark displacement (ND). In this way, it aims at better defining spatial and temporal distribution patterns of earthquake-triggered landslides. Arias Intensity calculation involved in the assessment considers both regional seismic hazard aspects and singular earthquake scenarios (adjusted by topography amplification factors). The known distribution of landslides mapped through digital stereographic interpretation of high-resolution aerial photos is compared with digital active fault maps and the computed ND maps to statistically outline the seismotectonic influence on slope stability in the study area. The importance of this approach resides in two main outputs. The fist one, of a fundamental nature, by providing the first regional insight into the seismic landslides triggering framework, is allowing us to understand if deep-focus earthquakes may trigger massive slope failures in an area with a relatively smooth relief (compared to the high mountain regions in Central Asia, the Himalayas), considering possible geologic and topographic site effects. The second one, more applied, will allow a better accelerometer instrumentation and monitoring of slopes and also will provide a first correlation of different levels of seismic shaking with precipitation recurrences, an important relationship within a multi-hazard risk

  14. Proceedings of the Specialist Meeting on the Seismic Probabilistic Safety Assessment of Nuclear Facilities

    International Nuclear Information System (INIS)

    2007-01-01

    The main objectives of the Meeting were to review recent advances in the methodology of Seismic Probabilistic Safety Assessment (SPSA), to discuss practical applications, to review the current state of the art, and to identify methodological issues where further research would be beneficial in enhancing the usefulness of the methodology. Applications of the Seismic Margin Assessment methodology (SMA), a methodology related to SPSA, were also discussed. One specific objective was to compare the situation today with the situation at the time of the 1999 Tokyo workshop, and to develop a set of findings and recommendations that would update those from that earlier workshop. There was a consensus at the Specialists Meeting that SPSA is now in widespread use throughout the nuclear-power industry worldwide, by the operating nuclear power plants (NPPs) themselves, by the various national regulatory agencies, and by the designers of new NPPs. It was also widely agreed that it can systematically accomplish several very important objectives; specifically, it can contribute: - To understanding the seismic risk arising from NPPs. - To understanding the safety significance of seismic design shortfalls. - To prioritizing seismic safety improvements. - To evaluating and improving seismic regulations. - To modifying the seismic regulatory/licensing basis of an individual NPP. Compared to the situation in 1999, when the first Workshop was held in Tokyo, there have been significant expansions in the use of SPSA in many different areas. Some countries provided detailed information on their regulatory framework for using seismic PSA. Many other countries also provided some information in their papers as background for conducting SPSA. During the Meeting, a small number of important weaknesses in SPSA methodology were identified. None of these are new, all having been widely recognized for many years. However, for some of the weaknesses, extensive discussions during the Meeting provided

  15. Proceedings of the Specialist Meeting on the Seismic Probabilistic Safety Assessment of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-14

    The main objectives of the Meeting were to review recent advances in the methodology of Seismic Probabilistic Safety Assessment (SPSA), to discuss practical applications, to review the current state of the art, and to identify methodological issues where further research would be beneficial in enhancing the usefulness of the methodology. Applications of the Seismic Margin Assessment methodology (SMA), a methodology related to SPSA, were also discussed. One specific objective was to compare the situation today with the situation at the time of the 1999 Tokyo workshop, and to develop a set of findings and recommendations that would update those from that earlier workshop. There was a consensus at the Specialists Meeting that SPSA is now in widespread use throughout the nuclear-power industry worldwide, by the operating nuclear power plants (NPPs) themselves, by the various national regulatory agencies, and by the designers of new NPPs. It was also widely agreed that it can systematically accomplish several very important objectives; specifically, it can contribute: - To understanding the seismic risk arising from NPPs. - To understanding the safety significance of seismic design shortfalls. - To prioritizing seismic safety improvements. - To evaluating and improving seismic regulations. - To modifying the seismic regulatory/licensing basis of an individual NPP. Compared to the situation in 1999, when the first Workshop was held in Tokyo, there have been significant expansions in the use of SPSA in many different areas. Some countries provided detailed information on their regulatory framework for using seismic PSA. Many other countries also provided some information in their papers as background for conducting SPSA. During the Meeting, a small number of important weaknesses in SPSA methodology were identified. None of these are new, all having been widely recognized for many years. However, for some of the weaknesses, extensive discussions during the Meeting provided

  16. An Intelligent Network Proposed for Assessing Seismic Vulnerability Index of Sewerage Networks within a GIS Framework (A Case Study of Shahr-e-Kord

    Directory of Open Access Journals (Sweden)

    Mohamadali Rahgozar

    2016-01-01

    Full Text Available Due to their vast spread, sewerage networks are exposed to considerable damages during severe earthquakes, which may lead to catastrophic environmental contamination. Multiple repairs in the pipelines, including pipe and joint fractures, could be costly and time-consuming. In seismic risk management, it is of utmost importance to have an intelligent tool for assessing seismic vulnerability index at any given point in time for such important utilities as sewerage networks. This study uses a weight-factor methodology and proposes an online GIS-based intelligent algorithm to evaluate the seismic vulnerability index (VI for metropolitan sewerage networks. The proposed intelligent tool is capable of updating VI as the sewerage network conditions may change with time and at different locations. The city of Shahr-e-Kord located on the high risk seismic belt is selected for a case study to which the proposed methodology is applied for zoning the vulnerability index in GIS. Results show that the overall seismic vulnerability index for the selected study area ranges from low to medium but that it increases in the southern parts of the city, especially in the old town where brittle pipes have been laid

  17. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  18. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  19. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California. Final report, part II

    International Nuclear Information System (INIS)

    1980-01-01

    This report is the second of a two part study addressing the seismic risk or hazard of the special nuclear materials (SNM) facility of the General Electric Vallecitos Nuclear Center at Pleasanton, California. The Part I companion to this report, dated July 31, 1978, presented the seismic hazard at the site that resulted from exposure to earthquakes on the Calaveras, Hayward, San Andreas and, additionally, from smaller unassociated earthquakes that could not be attributed to these specific faults. However, while this study was in progress, certain additional geologic information became available that could be interpreted in terms of the existance of a nearby fault. Although substantial geologic investigations were subsequently deployed, the existance of this postulated fault, called the Verona Fault, remained very controversial. The purpose of the Part II study was to assume the existance of such a capable fault and, under this assumption, to examine the loads that the fault could impose on the SNM facility. This report first reviews the geologic setting with a focus on specifying sufficient geologic parameters to characterize the postulated fault. The report next presents the methodology used to calculate the vibratory ground motion hazard. Because of the complexity of the fault geometry, a slightly different methodology is used here compared to the Part I report. This section ends with the results of the calculation applied to the SNM facility. Finally, the report presents the methodology and results of the rupture hazard calculation

  20. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  1. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  2. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  3. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  4. Simplified static method for determining seismic loads on equipment in moderate and high hazard facilities

    International Nuclear Information System (INIS)

    Scott, M.A.; Holmes, P.A.

    1991-01-01

    A simplified static analysis methodology is presented for qualifying equipment in moderate and high-hazard facility-use category structures, where the facility use is defined in Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards, UCRL-15910. Currently there are no equivalent simplified static methods for determining seismic loads on equipment in these facility use categories without completing dynamic analysis of the facility to obtain local floor accelerations or spectra. The requirements of UCRL-15910 specify the use of open-quotes dynamicclose quotes analysis methods, consistent with Seismic Design Guidelines for Essential Buildings, Chapter 6, open-quotes Nonstructural Elements,close quotes TM5-809-10-1, be used for determining seismic loads on mechanical equipment and components. Chapter 6 assumes that the dynamic analysis of the facility has generated either floor response spectra or model floor accelerations. These in turn are utilized with the dynamic modification factor and the actual demand and capacity ratios to determine equipment loading. This complex methodology may be necessary to determine more exacting loads for hard to qualify equipment but does not provide a simple conservative loading methodology for equipment with ample structural capacity

  5. Seismic-induced accelerations detected by two parallel gravity meters in continuous recording with a high sampling rate at Etna volcano

    Directory of Open Access Journals (Sweden)

    P. Stefanelli

    2008-06-01

    Full Text Available We analyse a microgravity data set acquired from two spring LaCoste & Romberg gravity meters operated in parallel at the same site on Etna volcano (Italy for about two months (August – September 2005. The high sampling rate acquisition (2Hz allowed the correlation of short-lasting gravity fluctuations with seismic events. After characterizing the oscillation behavior of the meters, through the study of spectral content and the background noise level of both sequences, we recognized fluctuations in the gravity data, spanning a range of periods from 1 second to about 30 seconds dominated by components with a period of about 15 ÷ 25 seconds, during time intervals encompassing both local seismic events and large worldwide earthquakes. The data analyses demonstrate that observed earthquake-induced gravity fluctuations have some differences due to diverse spectral content of the earthquakes. When local seismic events which present high frequency content excite the meters, the correlation between the two gravity signals is poor (factor < 0.3. Vice versa, when large worldwide earthquakes occur and low frequency seismic waves dominate the ensuing seismic wavefield, the resonance frequencies of the meters are excited and they react according to more common features. In the latter case, the signals from the two instruments are strongly correlated to each other (up to 0.9. In this paper the behaviors of spring gravimeters in the frequency range of the disturbances produced by local and large worldwide earthquakes are presented and discussed.

  6. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  7. Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada

    Science.gov (United States)

    Malehmir, R.; Schmitt, D. R.; Chan, J.

    2014-12-01

    Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic

  8. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis

    Science.gov (United States)

    Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang

    2009-05-01

    As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity

  9. La protezione del patrimonio monumentale dal rischio sismico / The protection of monuments from the seismic risk

    Directory of Open Access Journals (Sweden)

    Giovanni Urbani

    2017-06-01

    Full Text Available Il classico pubblicato nel n. 15/2017 è il testo Protezione del patrimonio monumentale dal rischio sismico  scritto da Giovanni Urbani, direttore dell'Istituto centrale del Restauro (ICR di Roma dal 1973 al 1983, come introduzione alla prima mostra organizzata in Italia sul rischio sismico nel 1983.   The classic published in the issue n. 15/2017 is the text Protezione del patrimonio monumentale dal rischio sismico written by Giovanni Urbani, director of the Central Institue of Restoration ICR in Rome from 1973 to 1983, as introduction to the first exhibition organized in Italy about the seismic risk in 1983.

  10. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  11. Seismic Hazard Maps for the Maltese Archipelago: Preliminary Results

    Science.gov (United States)

    D'Amico, S.; Panzera, F.; Galea, P. M.

    2013-12-01

    The Maltese islands form an archipelago of three major islands lying in the Sicily channel at about 140 km south of Sicily and 300 km north of Libya. So far very few investigations have been carried out on seismicity around the Maltese islands and no maps of seismic hazard for the archipelago are available. Assessing the seismic hazard for the region is currently of prime interest for the near-future development of industrial and touristic facilities as well as for urban expansion. A culture of seismic risk awareness has never really been developed in the country, and the public perception is that the islands are relatively safe, and that any earthquake phenomena are mild and infrequent. However, the Archipelago has been struck by several moderate/large events. Although recent constructions of a certain structural and strategic importance have been built according to high engineering standards, the same probably cannot be said for all residential buildings, many higher than 3 storeys, which have mushroomed rapidly in recent years. Such buildings are mostly of unreinforced masonry, with heavy concrete floor slabs, which are known to be highly vulnerable to even moderate ground shaking. We can surely state that in this context planning and design should be based on available national hazard maps. Unfortunately, these kinds of maps are not available for the Maltese islands. In this paper we attempt to compute a first and preliminary probabilistic seismic hazard assessment of the Maltese islands in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at different periods. Seismic hazard has been computed using the Esteva-Cornell (1968) approach which is the most widely utilized probabilistic method. It is a zone-dependent approach: seismotectonic and geological data are used coupled with earthquake catalogues to identify seismogenic zones within which earthquakes occur at certain rates. Therefore the earthquake catalogues can be reduced to the

  12. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  13. Seismic motions from project Rulison

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    In the range from a few to a few hundred km, seismic measurements from the Rulison event are shown and compared with experimentally and analytically derived pre-event estimates. Seismograms, peak accelerations, and response spectra are given along with a description of the associated geologic environment. Techniques used for the pre-event estimates are identified with emphasis on supportive data and on Rulison results. Of particular interest is the close-in seismic frequency content which is expected to contain stronger high frequency components. This higher frequency content translates into stronger accelerations within the first tens of km, which in turn affect safety preparations. Additionally, the local geologic structure at nearby population centers must be considered. Pre-event reverse profile refraction surveys are used to delineate the geology at Rifle, Rulison, Grand Valley, and other sites. The geologic parameters are then used as input to seismic amplification models which deliver estimates of local resonant frequencies. Prediction of such resonances allows improved safety assurance against seismic effects hazards. (author)

  14. High resolution seismic tomography imaging of Ireland with quarry blast data

    Science.gov (United States)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  15. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    International Nuclear Information System (INIS)

    MORGAN, R.G.

    1999-01-01

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve

  16. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-04-06

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve.

  17. Probabilistic risk assessment of earthquakes at the Rocky Flats Plant and subsequent upgrade to reduce risk

    International Nuclear Information System (INIS)

    Day, S.A.

    1989-01-01

    An analysis to determine the risk associated with earthquakes at the Rocky Flats Plant was performed. Seismic analyses and structural evaluations were used to postulate building and equipment damage and radiological releases to the environment from various magnitudes of earthquakes. Dispersion modeling and dose assessment to the public were then calculated. The frequency of occurrence of various magnitudes of earthquakes were determined from the Department of Energy natural Phenomena Hazards Modeling Project. Risk to the public was probabilistically assessed for each magnitude of earthquake and for overall seismic risk. Based on the results of this Probabilistic Risk Assessment and a cost/benefit analysis, seismic upgrades are being implemented for several plutonium-handling facilities for the purpose of risk reduction

  18. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  19. Assessment of seismic margin calculation methods

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs

  20. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Science.gov (United States)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.