WorldWideScience

Sample records for high scan result

  1. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  2. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  3. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry.

    Science.gov (United States)

    Chieh, J J; Hong, C Y

    2011-08-01

    Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.

  4. High resolution RGB color line scan camera

    Science.gov (United States)

    Lynch, Theodore E.; Huettig, Fred

    1998-04-01

    A color line scan camera family which is available with either 6000, 8000 or 10000 pixels/color channel, utilizes off-the-shelf lenses, interfaces with currently available frame grabbers, includes on-board pixel by pixel offset correction, and is configurable and controllable via RS232 serial port for computer controlled or stand alone operation is described in this paper. This line scan camera is based on an available 8000 element monochrome line scan camera designed by AOA for OEM use. The new color version includes improvements such as better packaging and additional user features which make the camera easier to use. The heart of the camera is a tri-linear CCD sensor with on-chip color balancing for maximum accuracy and pinned photodiodes for low lag response. Each color channel is digitized to 12 bits and all three channels are multiplexed together so that the resulting camera output video is either a 12 or 8 bit data stream at a rate of up to 24Megpixels/sec. Conversion from 12 to 8 bit, or user-defined gamma, is accomplished by on board user-defined video look up tables. The camera has two user-selectable operating modes; lows speed, high sensitivity mode or high speed, reduced sensitivity mode. The intended uses of the camera include industrial inspection, digital archiving, document scanning, and graphic arts applications.

  5. The Ulysses fast latitude scans: COSPIN/KET results

    Directory of Open Access Journals (Sweden)

    B. Heber

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields

  6. Comparison of avian biochemical test results with Abaxis VetScan and Hitachi 911 analyzers.

    Science.gov (United States)

    Greenacre, Cheryl B; Flatland, Bente; Souza, Marcy J; Fry, Michael M

    2008-12-01

    To compare results of clinical biochemical analysis using an Abaxis VetScan bench-top analyzer with reagents specifically marketed for avian use and a Hitachi 911 analyzer, plasma (both methods) and whole blood (VetScan method) samples from 20 clinically healthy Hispaniolan Amazon parrots (Amazona ventralis) were analyzed. Correlation between methods was very high (r = 0.9-1.0) for aspartate aminotransferase (AST), calcium, glucose, and uric acid; high (r = 0.7-0.89) for creatine kinase (CK), phosphorus, potassium, and total protein; moderate (r = 0.5-0.69) for globulin; and low (r = 0.3-0.49) for albumin and sodium. VetScan analyzer results for globulin, sodium, and uric acid had a constant negative bias (values below those from the Hitachi method). Based on difference plot analysis, results for AST, calcium, CK, and glucose are comparable. Because 16 of 20 values fell below the lower detection limit of the VetScan analyzer, bile acid data were excluded from analysis. By using a relatively small sample size (0.1 ml whole blood or plasma), the VetScan analyzer offers rapid in-house results, compact size, and ease of operation. For 4 of the most clinically relevant biochemical analytes used in avian medicine (AST, calcium, CK, glucose), it offers reliable values. For an additional 4 analytes (phosphorous, potassium, total protein, uric acid), establishing analyzer-specific reference intervals is recommended. Neither the VetScan nor the Hitachi method is recommended to assess albumin and globulin concentrations.

  7. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  8. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  9. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  10. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  11. Subsystem for processing, storage and editing of the results of the chamber film scanning

    International Nuclear Information System (INIS)

    Balgansurehn, Ya.; Dirner, A.; Ivanov, V.G.

    1987-01-01

    A subsystem which is an element of the high-automated system for film data processing and intended for run with the scanning information is described. The subsystem consists of routines which allow to create, to edit and to print the file of scanning results both in batch and interactive mode on the CDC-6500 computer

  12. Atomized scan strategy for high definition for VR application

    Science.gov (United States)

    Huang, Shuping; Ran, Feng; Ji, Yuan; Chen, Wendong

    2017-10-01

    Silicon-based OLED (Organic Light Emitting Display) microdisplay technology begins to attract people's attention in the emerging VR and AR devices. The high display frame refresh rate is an important solution to alleviate the dizziness in VR applications. Traditional display circuit drivers use the analog method or the digital PWM method that follow the serial scan order from the first pixel to the last pixel by using the shift registers. This paper proposes a novel atomized scan strategy based on the digital fractal scan strategy using the pseudo-random scan order. It can be used to realize the high frame refresh rate with the moderate pixel clock frequency in the high definition OLED microdisplay. The linearity of the gray level is also improved compared with the Z fractal scan strategy.

  13. Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2013-01-01

    Full Text Available We describe a prototype compact mobile laser scanning system that may be operated from a backpack or unmanned aerial vehicle. The system is small, self-contained, relatively inexpensive, and easy to deploy. A description of system components is presented, along with the initial calibration of the multi-sensor platform. The first field tests of the system, both in backpack mode and mounted on a helium balloon for real-world applications are presented. For both field tests, the acquired kinematic LiDAR data are compared with highly accurate static terrestrial laser scanning point clouds. These initial results show that the vertical accuracy of the point cloud for the prototype system is approximately 4 cm (1σ in balloon mode, and 3 cm (1σ in backpack mode while horizontal accuracy was approximately 17 cm (1σ for the balloon tests. Results from selected study areas on the Sacramento River Delta and San Andreas Fault in California demonstrate system performance, deployment agility and flexibility, and potential for operational production of high density and highly accurate point cloud data. Cost and production rate trade-offs place this system in the niche between existing airborne and tripod mounted LiDAR systems.

  14. SU-E-T-594: Preliminary Active Scanning Results of KHIMA

    International Nuclear Information System (INIS)

    Kim, C; Yang, T; Chang, S; Kim, H; Lee, H; Kim, J; Jang, H; Han, G; Park, D; Hwang, W; Kim, G

    2014-01-01

    Purpose: To verify the design criteria on heavy ion beam irradiation, developing a proto type active scanning system was purposed. The active scanning system consists of scanning magnet, power supplies, beam monitors, energy modulation system, and irradiation control system. Methods: Each components of the active scanning system was designed for carbon beam first. For the fast ramping a laminated yoke was purposed. To measure incoming dose and profile, a plate and strip type of ion chambers were designed. Also, ridge filter and range shifter was manufactured. And, the scanning system was modified to adopt 45 MeV of proton beam because of the absence of carbon ion beam in Korea. The system was installed in a beam line at MC-50, KIRAMS. Also, the irradiation control system and planning software was provided. Results: The scanning experiment was performed by drawing KHIMA logo on GaF film. The logo was scanned by 237 scanning points through time normalized intensity modulation. Also, a grid points scanning was performed to measure the scanning resolution and intensity resolution. Conclusion: A prototype active scanning system was successfully designed and manufactured. Also, an initial experiment to print out a drawing on GaF film through the scanning system was completed. More experiments would be required to specify the system performance

  15. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    International Nuclear Information System (INIS)

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-01-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study

  16. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  17. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  18. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  19. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    Yang, H-C; Wu, T-Y; Horng, H-E; Wu, C-C; Yang, S Y; Liao, S-H; Wu, C-H; Jeng, J T; Chen, J C; Chen, Kuen-Lin; Chen, M J

    2006-01-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T c (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  20. High resolution techniques using scanning proton microprobe (SPM)

    International Nuclear Information System (INIS)

    Cholewa, M.; Saint, A.; Prawer, S.; Laird, J.S.; Legge, G.J.F.; Bardos, R.A.; Moorhead, G.F.; Taylor, G.N.; Stuart, S.A.; Howard, J.

    1994-01-01

    The very high resolution (down to 50 nm) achieved with low beam currents (fA) in a scanning ion microprobe have lead to many nondestructive techniques of microanalysis. This paper discusses recent developments and applications in the use of 3-D STIM (scanning transmission ion microscopy) Tomography, channeling STIM and IBIC (ion beam induced charge). (orig.)

  1. High Definition Colonoscopy Combined with i-SCAN Imaging Technology Is Superior in the Detection of Adenomas and Advanced Lesions Compared to High Definition Colonoscopy Alone.

    Science.gov (United States)

    Bowman, Erik A; Pfau, Patrick R; Mitra, Arnab; Reichelderfer, Mark; Gopal, Deepak V; Hall, Benjamin S; Benson, Mark E

    2015-01-01

    Background. Improved detection of adenomatous polyps using i-SCAN has mixed results in small studies. Utility of i-SCAN as a primary surveillance modality for colorectal cancer screening during colonoscopy is uncertain. Aim. Comparing high definition white light endoscopy (HDWLE) to i-SCAN in their ability to detect adenomas during colonoscopy. Methods. Prospective cohort study of 1936 average risk patients who had a screening colonoscopy at an ambulatory procedure center. Patients underwent colonoscopy with high definition white light endoscopy withdrawal versus i-SCAN withdrawal during endoscopic screening exam. Primary outcome measurement was adenoma detection rate for i-SCAN versus high definition white light endoscopy. Secondary measurements included polyp size, pathology, and morphology. Results. 1007 patients underwent colonoscopy with i-SCAN and 929 with HDWLE. 618 adenomas were detected in the i-SCAN group compared to 402 in the HDWLE group (p definition white light endoscopy.

  2. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  3. Emergency medicine summary code for reporting CT scan results: implementation and survey results.

    Science.gov (United States)

    Lam, Joanne; Coughlin, Ryan; Buhl, Luce; Herbst, Meghan; Herbst, Timothy; Martillotti, Jared; Coughlin, Bret

    2018-06-01

    The purpose of the study was to assess the emergency department (ED) providers' interest and satisfaction with ED CT result reporting before and after the implementation of a standardized summary code for all CT scan reporting. A summary code was provided at the end of all CTs ordered through the ED from August to October of 2016. A retrospective review was completed on all studies performed during this period. A pre- and post-survey was given to both ED and radiology providers. A total of 3980 CT scans excluding CTAs were ordered with 2240 CTs dedicated to the head and neck, 1685 CTs dedicated to the torso, and 55 CTs dedicated to the extremities. Approximately 74% CT scans were contrast enhanced. Of the 3980 ED CT examination ordered, 69% had a summary code assigned to it. Fifteen percent of the coded CTs had a critical or diagnostic positive result. The introduction of an ED CT summary code did not show a definitive improvement in communication. However, the ED providers are in consensus that radiology reports are crucial their patients' management. There is slightly increased satisfaction with the providers with less than 5 years of experience with the ED CT codes compared to more seasoned providers. The implementation of a user-friendly summary code may allow better analysis of results, practice improvement, and quality measurements in the future.

  4. Comparative investigations of high resolution scanning systems for digitising X-ray films

    International Nuclear Information System (INIS)

    Wessel, H.; Rose, P.

    1992-01-01

    The visual or computer-aided evaluation of digitised X-ray films in non-destructive material testing requires highly sensitive scanning systems. They must be able to resolve differences in blackening and convert them into digital data without loss, if possible. Only in this way is the detection of the finest cracks in weld seams or contraction in areas of great sudden changes in blackening of cast parts guaranteed. In the context of this work, measurements were carried out which describe the reproduction properties of different scanning systems. After a short explanation of the different scanning systems, the results of the measurements are shown and evaluated. (orig.) [de

  5. Centimeter-scale MEMS scanning mirrors for high power laser application

    Science.gov (United States)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  6. A non-contact time-domain scanning brain imaging system: first in-vivo results

    Science.gov (United States)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  7. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  8. [Results of therapy of children with amblyopia by scanning stimulating laser].

    Science.gov (United States)

    Chentsova, O B; Magaramova, M D; Grechanyĭ, M P

    1997-01-01

    A new effective method for the treatment of amblyopia was used in 113 children: stimulation with ophthalmological SLSO-208A scanning laser by two methods differing by the transmission coefficient and scanning pattern. Good results were attained, the best when laser exposure was combined with traditional therapy for amblyopia and in the patients with the central fixation. The results were assessed by the main parameters of visual functions and the stability of the effect.

  9. Results of immunoscintigraphy of osteomyelitis (LeukoScan) trademark

    International Nuclear Information System (INIS)

    Gratz, S.; Becker, W.

    2000-01-01

    99mTc-labeled antigranulocyte monoclonal antibody Fab' fragments have shown a high sensitivity and specificity for detecting osteomyelitis in prospective studies. We retrospectively evaluated the use of LeukoScan trademark (Immunomedics, Morris Plains, N.J.) in clinical routine for the detection of bone and soft tissue infections and we want to present the results of our findings as well as some of the more interesting cases in this occasion. Imaging infection can be performed fast and easy with 99m Tc-Fab' fragments due to a fast targeting of infection and good background clearance, which increases in imaging quality. The application of 99m Tc-Fab' fragments gives good results in patients with bone and soft tissue infections of peripheral bones, as well as in patients with infected prostheses and infected arthritis. The use of 99m Tc-Fab' fragments should not be limited to these patients only, since good results can also be achieved in patients with infections of vascular grafts, of appendicitis and of endocarditis as well. A higher number of false-negative results has to be expected in case of subacute/chronic infections instead. Independent of the grade of infection acute/subacute infections of the spine always show 'cold lesions'. If cold lesions are used as guide for diagnosing a pathologic finding, an increase in sensitivity together with a decrease in specificity can be achieved. (orig.) [de

  10. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  11. Study of CT Scan Flooding System at High Temperature and Pressure

    Science.gov (United States)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  12. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  13. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  14. Sample size choices for XRCT scanning of highly unsaturated soil mixtures

    Directory of Open Access Journals (Sweden)

    Smith Jonathan C.

    2016-01-01

    Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.

  15. Quantifying the impact of µCT-scanning of human fossil teeth on ESR age results.

    Science.gov (United States)

    Duval, Mathieu; Martín-Francés, Laura

    2017-05-01

    Fossil human teeth are nowadays systematically CT-scanned by palaeoanthropologists prior to any further analysis. It has been recently demonstrated that this noninvasive technique has, in most cases, virtually no influence on ancient DNA preservation. However, it may have nevertheless an impact on other techniques, like Electron Spin Resonance (ESR) dating, by artificially ageing the apparent age of the sample. To evaluate this impact, we µCT-scanned several modern enamel fragments following the standard analytical procedures employed by the Dental Anthropology Group at CENIEH, Spain, and then performed ESR dose reconstruction for each of them. The results of our experiment demonstrate that the systematic high-resolution µCT-scanning of fossil hominin remains introduces a nonnegligible X-ray dose into the tooth enamel, equivalent to 15-30 Gy depending on the parameters used. This dose may be multiplied by a factor of ∼8 if no metallic filter is used. However, this dose estimate cannot be universally extrapolated to any µCT-scan experiment but has instead to be specifically assessed for each device and set of parameters employed. The impact on the ESR age results is directly dependent on the magnitude of the geological dose measured in fossil enamel but could potentially lead to an age overestimation up to 40% in case of Late Pleistocene samples, if not taken into consideration. © 2017 Wiley Periodicals, Inc.

  16. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2014-05-01

    Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.

  17. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  18. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  19. A novel ultra-short scanning nuclear microprobe: Design and preliminary results

    International Nuclear Information System (INIS)

    Lebed, S.; Butz, T.; Vogt, J.; Reinert, T.; Spemann, D.; Heitmann, J.; Stachura, Z.; Lekki, J.; Potempa, A.; Styczen, J.; Sulkio-Cleff, B.

    2001-01-01

    The paper describes an optimized scanning nuclear microprobe (MP) with a new ultra-short (total length of 1.85 m) probe forming system based on a divided Russian quadruplet (DRQ) of magnetic quadrupole lenses. Modern electrostatic accelerators have a comparatively high beam brightness of about 10-25 pA/μm 2 /mrad 2 /MeV. This allows the MP proposed to provide a high lateral resolution even with large (1%) parasitic (sextupole and octupole) pole tip field components in all lenses. The features of the design permit the MP operation in the high current and low current modes with a short working distance and inexpensive quadrupole lenses. A new quadrupole doublet design has been developed for the MP. In the present work the calculated features of the new MP are compared with preliminary experimental results obtained with a similar system (total length of 2.3 m) at the INP in Cracow. The new MP is promising for studies of solids or biological samples with high resolutions (0.08-2 μm) in both modes under ambient conditions. A vertical version of the ultra-short MP can be very useful for single ion bombardments of living cells

  20. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses

    Directory of Open Access Journals (Sweden)

    Ariel E. Marcy

    2018-06-01

    Full Text Available Background Advances in 3D shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (µCT scanners have been the “gold standard,” recent improvements in 3D surface scanners may make this technology a faster, portable, and cost-effective alternative. Several studies have already compared the two devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent to test whether a 3D scanner produces similar results to a µCT scanner. Methods We captured 19 delicate mouse (Pseudomys delicatulus crania with a µCT scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to test how variation due to scan device compared to other sources such as biologically relevant variation and operator error. We quantified operator error as levels of variation and repeatability. Further, we tested if the two devices performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected scatterplots of principal component analysis (PCA scores for non-random patterns. Results In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability score. However, the 3D scan and µCT scan datasets performed identically in classifying individuals based on intra-specific patterns of sexual dimorphism. Discussion Compared to µCT scans, we find that even low resolution 3D scans of very small specimens are

  1. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  2. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  3. The comparing results of carcinoma between three-phase and delayed whole body bone scan

    International Nuclear Information System (INIS)

    Si Hongwei; Li Xianfeng

    2004-01-01

    Purpose: Three phase bone scan is an imaging technology in nuclear medicine, which composed of blood flow phase, blood pool phase and delayed phase and the last one is often performed in routine works in department of nuclear medicine. The purpose of this study is to evaluate the merit of three-phase bone scan.Methods: In this study, we chose 54 patients who were having an regional pain which caused by benign or malignant carcinoma that diagnosed by CT, X-ray, ECT, MRI or other examinations. The imaging were acquired simultaneously from both anterior and posterior views, after a bolus injection of 1110 MBq technetium-99m-labelled methylene diphosphonate (MDP), blood phase contains 20 frame sand 3 seconds per frame, blood pool phase contains 5 frames and 1 minute per frame, delayed phase was performed 2.5 hour later. According to the results of three-phase bone scan, the patients were divided into 2 groups: normal and abnormal groups. The abnormal group includes early phase positive,delay positive and all three phase positive sets. The comparing among the 3 sets were analyzed by chi-square test and other statistic means.Results: There were 54 patients who had suffered lung cancer, breast cancer and other cancer,involved in this study, 34 males and 20 females, ranged age 17 to 88 years, were normal in 15 cases,positive in 22 cases, the results in delayed phase were positive in 9 cases, blood flow and blood pool phase showed blood flow changes in 4 cases and soft tissue tumors were seen in 4 cases. Three phase bone scan was more sensitive than delayed whole body bone scan in detecting the abnormal sites (p 0.05) The sensitivity of detecting tumors in blood flow and blood pool phase,delayed phase were respectively lower than in three phase bone scan (p<0.001).Conclusion: It is more sensitivity of detecting tumor lesions in three phase bone scan than in delayed phase whole body bone scan and the changes of blood flow and soft tissue can be seen in three phase bone scan

  4. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    Science.gov (United States)

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  5. hepawk - A language for scanning high energy physics events

    International Nuclear Information System (INIS)

    Ohl, T.

    1992-01-01

    We present the programming language hepawk, designed for convenient scanning of data structures arising in the simulation of high energy physics events. The interpreter for this language has been implemented in FORTRAN-77, therefore hepawk runs on any machine with a FORTRAN-77 compiler. (orig.)

  6. Factors related to cancer information scanning and seeking behavior among high school students in Korea.

    Science.gov (United States)

    Kye, Su Yeon; Yun, E Hwa; Park, Keeho

    2012-01-01

    This paper aimed to determine the relationship between cancer information scanning and seeking experience of adolescents and cancer preventive behavior, perceived cancer risk, and levels of cancer- related knowledge. The study sample comprised 1,000 second-year students from 6 high schools: the general and vocational school systems were each represented by 1 boys', 1 girls', and 1 coeducational high school. In July 2011, trained researchers visited each classroom, explained the purpose of the study, distributed questionnaires to the students who agreed to participate, instructed them to complete the survey by self-reporting, and collected the completed questionnaires. The students who attended general high schools (as compared with vocational high schools), earned higher grades, consumed more vegetables, had a higher perceived cancer risk, and answered the cancer-related questions more correctly and had more cancer information scanning and seeking experience. These results reinforce the importance of cancer prevention health education. Furthermore, the results may help in preparing a strategy that enables people to acquire accurate cancer-related information easily and quickly.

  7. Surgical retroperitoneoscopic and transperitoneoscopic access in varicocelectomy: duplex scan results in pediatric population.

    Science.gov (United States)

    Mancini, Stefano; Bulotta, Anna Lavinia; Molinaro, Francesco; Ferrara, Francesco; Tommasino, Giulio; Messina, Mario

    2014-12-01

    This is a retrospective study to compare duplex scan results of laparoscopic Palomo's technique through retroperitoneal and transperitoneal approach for varicocelectomy in children. We statistically analyzed recurrence, testicular volume growth and complications. Surgical intervention was performed utilizing transperitoneoscopic (group A) or retroperitoneoscopic access (group B). Duplex scan control was performed after 12 months (T1), after 2 years (T2) and the last one at 18 years old in most patients. Statistical analysis was performed using the t-test for parametric data. Differences in proportions were evaluated using χ2 or Fisher's exact test. We treated 120 children (age range 10-17 years) who presented an asymptomatic IV grade of reflux, Coolsaet 1, associated with a left testicular hypotrophy in 36.6% of the cases (44 patients). No post-operative complications were verified. Duplex scan exam showed an increase of left testicular growth in both groups, with complete hypotrophy disappear in patients in both groups after 24 months. Hydrocele, diagnosed clinically and confirmed with duplex scan, was the most frequent post-operative complication (22/120 cases; 18.3%). This study showed the importance of duplex scan at all steps of this vascular pathology in children, and that there is no significantly difference in results between the two surgical techniques except for hydrocele in transperitoneoscopic access. Copyright © 2014 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  8. Value of the ventilation/perfusion scan in acute pulmonary embolism: Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    To determine the sensitivities and specificities of ventilation/perfusion lung scans for acute pulmonary embolism, a random sample of 933 of 1,493 patients was studied prospectively. Nine hundred thirty-one underwent scintigraphy and 755 underwent pulmonary angiography; 251 (33%) of 755 demonstrated pulmonary embolism. Almost all patients with pulmonary embolism had abnormal scans of high, intermediate, or low probability, but so did most without pulmonary embolism. Of 116 patients with high-probability scans and definitive angiograms, 102 (88%) had pulmonary embolism, but only a minority with pulmonary embolism had high-probability scans. Of 322 with intermediate-probability scans and definitive angiograms, 105 (33%) had pulmonary embolism. Follow-up and angiography together suggest pulmonary embolism occurred among 12% of patients with low-probability scans. Clinical assessment combined with the ventilation/perfusion scan established the diagnosis or exclusion of pulmonary embolism only for a minority of patients--those with clear and concordant clinical and ventilation/perfusion scan findings

  9. Study of a scanning HIFU therapy protocol, Part II: Experiment and results

    Science.gov (United States)

    Andrew, Marilee A.; Kaczkowski, Peter; Cunitz, Bryan W.; Brayman, Andrew A.; Kargl, Steven G.

    2003-04-01

    Instrumentation and protocols for creating scanned HIFU lesions in freshly excised bovine liver were developed in order to study the in vitro HIFU dose response and validate models. Computer-control of the HIFU transducer and 3-axis positioning system provided precise spatial placement of the thermal lesions. Scan speeds were selected in the range of 1 to 8 mm/s, and the applied electrical power was varied from 20 to 60 W. These parameters were chosen to hold the thermal dose constant. A total of six valid scans of 15 mm length were created in each sample; a 3.5 MHz single-element, spherically focused transducer was used. Treated samples were frozen, then sliced in 1.27 mm increments. Digital photographs of slices were downloaded to computer for image processing and analysis. Lesion characteristics, including the depth within the tissue, axial length, and radial width, were computed. Results were compared with those generated from modified KZK and BHTE models, and include a comparison of the statistical variation in the across-scan lesion radial width. [Work supported by USAMRMC.

  10. High-resolution photoluminescence electro-modulation microscopy by scanning lock-in

    Science.gov (United States)

    Koopman, W.; Muccini, M.; Toffanin, S.

    2018-04-01

    Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.

  11. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  12. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  13. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  14. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  15. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  16. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    International Nuclear Information System (INIS)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-01-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  17. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp [Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science 1001-1, Kishioka-cho, Suzuka 510-0293 (Japan); Notohara, Daisuke; Sakai, Takihito [R and D Department, Medical Systems Division, Shimadzu Corporation 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan)

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  18. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.

    Science.gov (United States)

    Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.

  19. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  20. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  1. Alveolar architecture of clear cell renal carcinomas (≤5.0 cm) show high attenuation on dynamic CT scanning

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Wakao, Fumihiko; Moriyama, Noriyuki; Tobisu, Kenichi; Kakizoe, Tadao; Sakamoto, Michiie

    1999-01-01

    To establish the correlation between tumor appearance on CT and tumor histology in renal cell carcinomas. The density and attenuation patterns of 96 renal cell carcinomas, each ≤5 cm in greatest diameter, were studied by non-enhanced CT and early and late after bolus injection of contrast medium using dynamic CT. The density and attenuation patterns and pathological maps of each tumor were individually correlated. High attenuated areas were present in 72 of the 96 tumors on early enhanced dynamic CT scanning. All 72 high attenuated areas were of the clear cell renal cell carcinoma and had alveolar architecture. The remaining 24 tumors that did not demonstrate high attenuated foci on early enhanced scanning included three clear cell, nine granular cell, six papillary, five chromophobe and one collecting duct type. With respect to tumor architecture, all clear cell tumors of alveolar architecture demonstrated high attenuation on early enhanced scanning. Clear cell renal cell carcinomas of alveolar architecture show high attenuation on early enhanced dynamic CT scanning. A larger number of patients are indispensable to obtaining clear results. However, these findings seem to be an important clue to the diagnosis of renal cell carcinomas as having an alveolar structure. (author)

  2. A survey of 110 cases of primary hyperparathyroidism in Dr.Shariati Hospital and the results of localizing the adenoma via MIBI scanning

    Directory of Open Access Journals (Sweden)

    Hedayat A

    1998-07-01

    Full Text Available Primary Hyperparathyroidism is a fairly common disease that is much more predominant in females. Treatment is surgery and includes removing the parathyroid adenoma or the hyperplastic parathyroid glands. Considering the difficulty of this operation procedure, localization test are utilized including ultrasound, MRI, CT scan, Thallium-Technesium subtraction scan, MIBI scan and a series of other tests. According to the studies regarding these tests, MIBI scan is superior to all the others. In this survery we have studied 110 primary hyperparathyroidism patients that were operated on in Dr.Shariati Hospital between 1356 and 1376. In order to localize the adenoma ultrasound was used in ten patients, thallium-technesium subtraction scan in 38 patients. MIBI scan in 30 patients and CT scan in 3 patients. The sensitivity of MIBI scan was 86% and its specificity was 100%. In comparison, the sensitivity of thallium-technesium scan was found to be about 65%. Our results show that MIBI scan has had a high degree of sensitivity and specificity in our patients and has shown to be the best localization test. Therefore we suggest this test for the localization of all parathyroid adenomas.

  3. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  4. Measurement needs guided by synthetic radar scans in high-resolution model output

    Science.gov (United States)

    Varble, A.; Nesbitt, S. W.; Borque, P.

    2017-12-01

    Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time

  5. Serial follow up V/P scanning in assessment of treatment response in high probability scans for pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, H; Elhaddad, SH; Wagih, SH; Ziada, G; Samy, A; Saber, R [Department of nuclear medicine and radiology, faculty of medicine, Cairo university, Cairo, (Egypt)

    1995-10-01

    138 patients proved with V/P scan to have different probabilities of pulmonary emboli event. Serial follow up scanning after 3 days, 2 weeks, 1 month and 3 months was done, with anticoagulant therapy. Out of the remaining 10 patients, 6 patients died with documented P.E. by P.M. study and lost follow up recorded in 4 patients. Complete response with disappearance of all perfusion defects after 2 weeks was detected in 37 patients (49.3%), partial improvement of lesions after 3 months was elicited in 32%. The overall incidence of response was (81.3%) such response was complete in low probability group (100%), (84.2%) in intermediate group and (79.3%) in high probability group with partial response in 45.3%. New lesions were evident in 18.7% of this series. To conclude that serial follow up V/P scan is mandatory for evaluation of response to anticoagulant therapy specially in first 3 months. 2 figs., 3 tabs.

  6. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  7. Parallel-scanning tomosynthesis using a slot scanning technique: fixed-focus reconstruction and the resulting image quality.

    Science.gov (United States)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-11-01

    Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)-(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of -100, -50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance from the IFP increased. A

  8. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  9. Clinical importance of technetium-99m-methoxyisobutylisonitrile (MIBI) scintigraphy in differentiated thyroid carcinoma patients with elevated thyroglobulin levels and negative I-131 scanning results

    International Nuclear Information System (INIS)

    Kuecuek, N.O.; Kulak, H.A.; Aras, G.

    2006-01-01

    The aim of this study was to evaluate the potential contribution of Tc-99m-MIBI scintigraphy to the follow-up of patients with differentiated thyroid carcinoma, who had elevated Tg levels and negative I-131 whole-body scan (WBS) results. In this retrospective study, we evaluated 28 patients with differentiated thyroid carcinoma, who had total or near total thyroidectomy followed by an ablative dose of I-131 at various time intervals (15 women, 13 men; mean age 43±17 years). All patients were treated with T4 suppression. After a mean follow-up period of 6.1 years (range 3-15) all patients were determined to have a high serum Tg concentrations (>2 ng/ml) and previous negative I-131 WBS results. All patients were examined for metastatic sites using Tc-99m-MIBI scan. Scans were visually evaluated for detecting lymph node metastases and/or local recurrence, lung metastases and skeletal metastases. Tc-99m-MIBI scan demonstrated lesions in 23 patients (83.3%). In five patients with negative Tc-99m-MIBI scan findings (FN results): Chest CT showed small-sized mediastinal LN metastases in 2 patients and lung metastases in another 2 patients (<1 cm); Neck CT showed small-sized cervical LN involvement in 1 patient. The sensitivity of detection for neck was 94.4%, for lung 63.6%, and for bone lesions 100%. For all scan sites taken together, the sensitivity of disease detection was 83.3%, the specificity was 50%, positive predictive value (PPV) was 96.2%, and finally negative predictive value (NPV) was 16.7%. We concluded that Tc-99m-MIBI scan should be considered as a supplementary scintigraphic method for the follow-up of patients with high serum Tg levels and negative I-131 WBS results, and it can help clinicians in making the decision to treat these patients. (author)

  10. Development of an angle-scanning spectropolarimeter: Preliminary results

    Science.gov (United States)

    Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk

    2018-02-01

    A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.

  11. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  12. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  13. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing

    2013-03-01

    Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.

  14. High-speed scanning: an improved algorithm

    Science.gov (United States)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  15. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  16. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  17. Prevalence of 'high-riding' superior pericardial recesses on thin-section 16-MDCT scans

    Energy Technology Data Exchange (ETDEWEB)

    Basile, Antonio [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy)]. E-mail: antodoc@yahoo.com; Bisceglie, Paola [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy); Giulietti, Giorgio [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy); Calcara, Giacomo [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy); Figuera, Michele [Department of Radiology, Ospedale Vittorio Emanuele, Via Plebiscito 628, 95124 Catania (Italy); Mundo, Elena [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy); Granata, Antonio [Department of Nephrology, Ospedale Vittorio Emanuele, Via Plebiscito 628, 95124 Catania (Italy); Runza, Giuseppe [Department of Radiology, Policlinico Universitario, Via del Vespro 129, 90127 Palermo (Italy); Privitera, Carmelo [Department of Radiology, Ospedale Vittorio Emanuele, Via Plebiscito 628, 95124 Catania (Italy); Privitera, Giambattista [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy); Patti, Maria Teresa [Department of Radiology and Interventional Radiology, Ospedale Ferrarotto, via Citelli, 8 95124 Catania (Italy)

    2006-08-15

    Objective: The aim of this study was to evaluate the prevalence of 'high-riding' superior pericardial recess (HRSPR) on thin-section (1 mm) 16-multidetector computed tomography (MDCT) scans. Materials and methods: Three hundred and fourteen consecutive chest CT scans obtained with a thin-section 16 MDCT were retrospectively evaluated. The prevalence and characteristic of HRSPR were analyzed. Results: HRSPR was depicted in 21 patients (11 men and 10 women) (6.6%) who ranged in age from 28 to 72 years (mean age, 57 years). The extended recesses were rounded/oval shaped in five patients and triangular, spindle, half moon or irregular shaped in the other 16 patients. Conclusion: Our data suggest as HRSPRs are more frequently and better depicted on thinsection MDCT scans, and this improves the capability to distinguish this superior extension of the superior aortic recess from abnormal findings such as lymphadenopathy, cystic lesions, and aortic dissection.

  18. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  19. Not all trees sleep the same - High temporal resolution terrestrial laser scanning shows differences in nocturnal plant movement

    DEFF Research Database (Denmark)

    Zlinszky, András; Barfod, Anders; Molnár, Bence

    2017-01-01

    Circadian leaf movements are widely known in plants, but nocturnal movement of tree branches were only recently discovered by using terrestrial laser scanning (TLS), a high resolution three-dimensional surveying technique. TLS uses a pulsed laser emitted in a regular scan pattern for rapid...... surveyed a series of 18 full scans over a 12-h night period to measure nocturnal changes in shape simultaneously for an experimental setup of 22 plants representing different species. Resulting point clouds were evaluated by comparing changes in height percentiles of laser scanning points belonging...... to the canopy. Changes in crown shape were observed for all studied trees, but clearly distinguishable sleep movements are apparently rare. Ambient light conditions were continuously dark between sunset (7:30 p.m.) and sunrise (6:00 a.m.), but most changes in movement direction occurred during this period, thus...

  20. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  1. SU-F-T-213: Commissioning Results of the Prototype Active Scanning Irradiation System of Korea Heavy Ion Medical Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C; Seduk, J; Yang, T [Korea Institute of Radiological And Medical Sciences, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiation plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.

  2. High rates of clinically relevant incidental findings by total-body CT scanning in trauma patients; results of the REACT-2 trial

    Energy Technology Data Exchange (ETDEWEB)

    Treskes, K.; Bos, S.A.; Sierink, J.C.; Luitse, J.S.K.; Goslings, J.C. [Academic Medical Center, Trauma Unit, Department of Surgery, Amsterdam (Netherlands); Beenen, L.F.M. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Edwards, M.J.R. [Radboud University Medical Center, Department of Trauma and emergency surgery, Nijmegen (Netherlands); Beuker, B.J.A. [University Medical Center Groningen, Trauma Unit, Department of Surgery, Groningen (Netherlands); Muradin, G.S.R. [University Medical Center Rotterdam, Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hohmann, J. [University of Basel Hospital, Department of Radiology and Nuclear Medicine, Basel (Switzerland); Hollmann, M.W. [Academic Medical Center, Department of Anaesthesiology, Amsterdam (Netherlands); Dijkgraaf, M.G.W. [Academic Medical Center, Clinical Research Unit, Amsterdam (Netherlands); Collaboration: REACT-2 study group

    2017-06-15

    To determine whether there is a difference in frequency and clinical relevance of incidental findings detected by total-body computed tomography scanning (TBCT) compared to those by the standard work-up (STWU) with selective computed tomography (CT) scanning. Trauma patients from five trauma centres were randomized between April 2011 and January 2014 to TBCT imaging or STWU consisting of conventional imaging with selective CT scanning. Incidental findings were divided into three categories: 1) major finding, may cause mortality; 2) moderate finding, may cause morbidity; and 3) minor finding, hardly relevant. Generalized estimating equations were applied to assess differences in incidental findings. In total, 1083 patients were enrolled, of which 541 patients (49.9 %) were randomized for TBCT and 542 patients (50.1 %) for STWU. Major findings were detected in 23 patients (4.3 %) in the TBCT group compared to 9 patients (1.7 %) in the STWU group (adjusted rate ratio 2.851; 95%CI 1.337-6.077; p < 0.007). Findings of moderate relevance were detected in 120 patients (22.2 %) in the TBCT group compared to 86 patients (15.9 %) in the STWU group (adjusted rate ratio 1.421; 95%CI 1.088-1.854; p < 0.010). Compared to selective CT scanning, more patients with clinically relevant incidental findings can be expected by TBCT scanning. (orig.)

  3. Nuclear emulsion scanning in opera: methods and results

    CERN Document Server

    Bozza, C.

    2008-01-01

    The design of the OPERA experiment was also motivated and justified by the revival of nuclear emulsion handling and scanning in a modem, automatic fashion, as it took previously place, although at a smaller scale, for the CHORUS experiment. Nuclear emulsions are still the only detector to allow a very detailed topological study of an interaction/decay vertex at the sub-micrometer level. They are most suitable in experiments where topology is a non-ambiguous signature of a certain class of events. This is for instance the case of neutrino oscillation detection and measurement by the study of a tau-appearance signal. The design and performance of the two different scanning systems used in OPERA (ESS and S-UTS) are discussed. Their unique features in terms of speed, precision, background suppression, particle identification, and kinematical reconstruction are shown in close connection with the technical details that make them possible. Unequalled precision, almost vanishing background, and a wealth of informati...

  4. The value of repeat scintigraphy in patients with a high clinical suspicion for Meckel diverticulum after a negative or equivocal first Meckel scan

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Reza; Daneman, Alan; McQuattie, Susan; Shammas, Amer [Hospital for Sick Children, Diagnostic Imaging, Toronto (Canada)

    2015-09-15

    Technetium {sup 99m}Tc-pertechnetate is the most common and accurate noninvasive method of preoperative investigation for Meckel diverticulum. Despite introducing various methods to increase the sensitivity of the study, there are many case reports of false-negative Meckel scans. A repeat scan is sometimes requested in patients with a high suspicion for Meckel diverticulum and negative or equivocal first Meckel scan. The purpose of this retrospective study is to evaluate the value of repeat scintigraphy for these patients. Seven hundred fifty-three Meckel scans were recorded retrospectively. In 33 cases (22 male and 11 female; mean age: 6.8 years), the Meckel scintigraphy was repeated either due to a high clinical suspicion of Meckel diverticulum and a negative study (n = 21) or due to equivocal findings in the first scan (n = 12). The study was interpreted as positive if an abnormal focal activity was identified in the abdomen and pelvis during the procedure. The results were correlated with pathology and clinical symptoms. Seven out of 12 (58%) equivocal studies were positive on the second study. Six of them were proven to be positive at operation (confirmed by pathology) while one of them was negative on laparoscopy. From 21 negative first scans with a high suspicion for Meckel diverticulum, three (14%) were positive on the second study. All three were proven to be Meckel diverticulum on pathology. Repeat Meckel scans in patients with equivocal findings on the first study or a negative result with a high clinical suspicion for a Meckel diverticulum are useful especially in cases in which the first study had been done without appropriate preparation. (orig.)

  5. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark D Mathew

    Full Text Available BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the

  6. Is a positive L-dimer result a sufficient indication for performing a V/Q lung scan?

    International Nuclear Information System (INIS)

    Salanitri, G.C.; Kelly, M.J.; O'Donnell, M.; Kalff, V.

    2002-01-01

    Full text: At our institution there has developed a practice of referring some patients for assessment of pulmonary embolism (PE) because of a positive L-dimer test but without standard clinical indications. Therefore this study aimed to determine whether a positive L-dimer test result by itself is a sufficient indication to perform a ventilation/perfusion V/Q study. V/Q lung scan results, L-dimer test results and appropriate radiology results of 949 consecutive patients from August 2000 to October 2001 were retrospectively reviewed. Prediction of V/Q results by L-dimer results was compared with that of clinical risk factors for PE (Risk factor + or -) These factors were dyspnoea, current deep vein thrombosis (DVT), recent orthopaedic procedure or a past history of PE/DVT, Of the 949 patients in the study population, 254 patients had an L-dimer study, with 206 positive and 48 negative L-dimer results. Helical CT was performed in 8 patients with an equivocal V/Q - 4 showed PE and 4 did not. In the 27 patients with a positive L-dimer result and PE on either V-Q scan or CT, 25 (92.6%) had additional recognised major risk factors for PE. A positive L-dimer test is a poor predictor of a positive V/Q scan compared to conventional clinical indications. Thus, a positive L-dimer test result in isolation does not constitute an appropriate indication to perform a V/Q scan. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    International Nuclear Information System (INIS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach. (paper)

  8. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  9. Dynamic computed tomography scanning of benign bone lesions: Preliminary results

    International Nuclear Information System (INIS)

    Levine, E.; Neff, J.R.

    1983-01-01

    The majority of benign bone lesions can be evaluated adequately using conventional radiologic techniques. However, it is not always possible to differentiate reliably between different types of benign bone lesions on the basis of plain film appearances alone. Dynamic computed tomography (CT) scanning provides a means for further characterizing such lesions by assessing their degree of vascularity. Thus, it may help in distinguishing an osteoid osteoma, which has a hypervascular nidus, from a Brodie's abscess, which is avascular. Dynamic CT scanning may also help in the differentiation between a fluid-containing simple bone cyst, which is avascular, and other solid or semi-solid benign bone lesions which slow varying degrees of vascularity. However, because of the additional irradiation involved, dynamic CT scanning should be reserved for evaluation of selected patients with benign bone lesions in whom the plain film findings are not definitive and in whom the CT findings may have a significant influence on management. (orig.)

  10. PhC-4 new high-speed camera with mirror scanning

    International Nuclear Information System (INIS)

    Daragan, A.O.; Belov, B.G.

    1979-01-01

    The description of the optical system and the construction of the high-speed PhC-4 photographic camera with mirror scanning of the continuously operating type is given. The optical system of the camera is based on the foursided rotating mirror, two optical inlets and two working sectors. The PhC-4 camera provides the framing rate up to 600 thousand frames per second. (author)

  11. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  12. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  13. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-01-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices

  14. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  15. Does aspiration of bones and joints affect results of later bone scanning

    International Nuclear Information System (INIS)

    Canale, S.T.; Harkness, R.M.; Thomas, P.A.; Massie, J.D.

    1985-01-01

    To determine the effect, if any, of needle aspiration on /sup 99m/Tc bone scanning, three different areas of 15 dogs were first aspirated and then imaged with technetium bone scintigraphy. The hip joint was aspirated, the distal femoral metaphysis was drilled and aspirated, and the tibial periosteum was scraped with an 18- or 20-gauge needle. Varying amounts of trauma were inflicted to simulate varying difficulties at aspiration. /sup 99m/Tc bone scans were obtained from 5 h to 10 days later. There was no evidence of focal technetium uptake after any hip joint aspiration. This was consistent regardless of the amount of trauma inflicted or the time from aspiration to bone scanning. Metaphyseal cortical drilling and tibial periosteal scraping occasionally caused some focal uptake when scanning was delayed greater than 2 days. When osteomyelitis or pyarthrosis is clinically suspected, joint aspiration can be performed without fear of producing a false- positive bone scan

  16. High resolution melting for mutation scanning of TP53 exons 5–8

    International Nuclear Information System (INIS)

    Krypuy, Michael; Dobrovic, Alexander; Ahmed, Ahmed Ashour; Etemadmoghadam, Dariush; Hyland, Sarah J; Australian Ovarian Cancer Study Group; Fazio, Anna de; Fox, Stephen B; Brenton, James D; Bowtell, David D

    2007-01-01

    p53 is commonly inactivated by mutations in the DNA-binding domain in a wide range of cancers. As mutant p53 often influences response to therapy, effective and rapid methods to scan for mutations in TP53 are likely to be of clinical value. We therefore evaluated the use of high resolution melting (HRM) as a rapid mutation scanning tool for TP53 in tumour samples. We designed PCR amplicons for HRM mutation scanning of TP53 exons 5 to 8 and tested them with DNA from cell lines hemizygous or homozygous for known mutations. We assessed the sensitivity of each PCR amplicon using dilutions of cell line DNA in normal wild-type DNA. We then performed a blinded assessment on ovarian tumour DNA samples that had been previously sequenced for mutations in TP53 to assess the sensitivity and positive predictive value of the HRM technique. We also performed HRM analysis on breast tumour DNA samples with unknown TP53 mutation status. One cell line mutation was not readily observed when exon 5 was amplified. As exon 5 contained multiple melting domains, we divided the exon into two amplicons for further screening. Sequence changes were also introduced into some of the primers to improve the melting characteristics of the amplicon. Aberrant HRM curves indicative of TP53 mutations were observed for each of the samples in the ovarian tumour DNA panel. Comparison of the HRM results with the sequencing results revealed that each mutation was detected by HRM in the correct exon. For the breast tumour panel, we detected seven aberrant melt profiles by HRM and subsequent sequencing confirmed the presence of these and no other mutations in the predicted exons. HRM is an effective technique for simple and rapid scanning of TP53 mutations that can markedly reduce the amount of sequencing required in mutational studies of TP53

  17. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  18. A case of diffuse hemispheric gyral high density on CT scan following acute subdural hematoma in children

    International Nuclear Information System (INIS)

    Kannuki, Seiji; Oi, Shizuo

    1986-01-01

    A case of diffuse hemispheric gyral high density area following acute subdural hematoma was reported. A 2 - 10/12 year-old male was admitted to our hospital in comatous state after head injury by fall. Neurological examination revealed deep coma with anisocoria (R < L), absence of light reflex and positive bilateral Babinski reflex. CT scan disclosed left acute subdural hematoma with remarkable midline shift and tentorial herniation sign. Emergency decompressive craniectomy was performed. Posttraumatic hydrocephalus appeared after 10 days. So, ventriculoperitoneal shunt was done. The patient became gradually improved, but was in appalic state. 23 days after craniectomy, suddenly diffuse hemispheric gyral high density appeared on plain CT scan. In spite of this change, no clinical change was found. This high density spontaneously disappeared 10 days after appearance. Cerebral infarction-like phenomenon on postoperative CT scan of acute subdural hematoma in infants was sometimes reported. This phenomenon was sometimes accompanied with hemorrhagic infarction-like high density on CT scan. Diffuse hemispheric gyral high density was probably a kind of those hemorrhagic infarction-like phenomenon. Possible mechanism of this peculiar high density is discussed on the basis of characteristics of child's cerebral artery and pathophysiology of cerebral infarction. (author)

  19. High-reliability, 4. pi. -scan, leakage-x-ray dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T; Iida, H; Yoshida, T; Sugimoto, H [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan). Tamagawa Works

    1978-04-01

    A world-wide movement is growing for the protection of living bodies against leakage radiations. In Japan, detailed regulations have been established for the enforcement of the law in regard to this problem. The substances of the measurement provided in the regulations are extremely diversified, much affecting the reliability and the economic efficiency of the equipment. Now a new 4..pi..-scan X-ray dosimeter with high reliability has been developed and proved to effect qualitative improvement of measurement as well as elevation of productivity.

  20. Results of immunoscintigraphy of osteomyelitis (LeukoScan) {sup trademark}; Ergebnisse zur Immunszintigraphie der Osteomyelitis (LeukoScan) {sup trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, S.; Becker, W. [Goettingen Univ. (Germany). Abt. fuer Nuklearmedizin

    2000-05-01

    99mTc-labeled antigranulocyte monoclonal antibody Fab' fragments have shown a high sensitivity and specificity for detecting osteomyelitis in prospective studies. We retrospectively evaluated the use of LeukoScan {sup trademark} (Immunomedics, Morris Plains, N.J.) in clinical routine for the detection of bone and soft tissue infections and we want to present the results of our findings as well as some of the more interesting cases in this occasion. Imaging infection can be performed fast and easy with {sup 99m}Tc-Fab' fragments due to a fast targeting of infection and good background clearance, which increases in imaging quality. The application of {sup 99m}Tc-Fab' fragments gives good results in patients with bone and soft tissue infections of peripheral bones, as well as in patients with infected prostheses and infected arthritis. The use of {sup 99m}Tc-Fab' fragments should not be limited to these patients only, since good results can also be achieved in patients with infections of vascular grafts, of appendicitis and of endocarditis as well. A higher number of false-negative results has to be expected in case of subacute/chronic infections instead. Independent of the grade of infection acute/subacute infections of the spine always show 'cold lesions'. If cold lesions are used as guide for diagnosing a pathologic finding, an increase in sensitivity together with a decrease in specificity can be achieved. (orig.) [German] {sup 99m}Tc-markierte Antigranulozytenantikoerper-Fab'-Fragmente konnten in prospektiven Studien eine hohe Sensitivitaet und Spezifitaet bei der Detektion von Osteomyelitiden unter Beweis stellen. Retrospektiv haben wir die Anwendung von {sup 99m}Tc-markierten Fab'-Fragmenten ({sup 99m}Tc-Fab') (LeukoScan {sup trademark}, Immunomedics, Morris Plains, N.J.) in der klinischen Routine zum Nachweis von Knochen- und Weichteilentzuendungen ausgewertet und moechten einen Teil unserer Ergebnisse sowie einige

  1. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  2. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  3. Bio-physical effects of scanned proton beams: measurements and models for discrete high dose rates scanning systems

    International Nuclear Information System (INIS)

    De-Marzi, Ludovic

    2016-01-01

    The main objective of this thesis is to develop and optimize algorithms for intensity modulated proton therapy, taking into account the physical and biological pencil beam properties. A model based on the summation and fluence weighted division of the pencil beams has been used. A new parameterization of the lateral dose distribution has been developed using a combination of three Gaussian functions. The algorithms have been implemented into a treatment planning system, then experimentally validated and compared with Monte Carlo simulations. Some approximations have been made and validated in order to achieve reasonable calculation times for clinical purposes. In a second phase, a collaboration with Institut Curie radiobiological teams has been started in order to implement radiobiological parameters and results into the optimization loop of the treatment planning process. Indeed, scanned pencil beams are pulsed and delivered at high dose rates (from 10 to 100 Gy/s), and the relative biological efficiency of protons is still relatively unknown given the wide diversity of use of these beams: the different models available and their dependence with linear energy transfers have been studied. A good agreement between dose calculations and measurements (deviations lower than 3 % and 2 mm) has been obtained. An experimental protocol has been set in order to qualify pulsed high dose rate effects and preliminary results obtained on one cell line suggested variations of the biological efficiency up to 10 %, though with large uncertainties. (author) [fr

  4. SSC High Energy Booster resonance corrector and dynamic tune scanning simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Machida, S.

    1993-05-01

    A resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSCL) was investigated by means of dynamic multiparticle tracking. In the simulation the operating tune is scanned as a function of time so that the bunch goes through a resonance. The performance of the half integer and third integer resonance correction system is demonstrated.

  5. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  6. Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results

    Science.gov (United States)

    Mutlow, C. T.; ZáVody, A. M.; Barton, I. J.; Llewellyn-Jones, D. T.

    1994-11-01

    The along-track scanning radiometer (ATSR) was launched in July 1991 on the European Space Agency's first remote sensing satellite, ERS 1. An initial analysis of ATSR data demonstrates that the sea surface temperature (SST) can be measured from space with very high accuracy. Comparison of simultaneous measurements of SST made from ATSR and from a ship-borne radiometer show that they agree to within 0.3°C. To assess data consistency, a complementary analysis of SST data from ATSR was also carried out. The ATSR global SST field was compared on a daily basis with daily SST analysis of the United Kingdom Meteorological Office (UKMO). The ATSR global field is consistently within 1.0°C of the UKMO analysis. Also, to demonstrate the benefits of along-track scanning SST determination, the ATSR SST data were compared with high-quality bulk temperature observations from drifting buoys. The likely causes of the differences between ATSR and the bulk temperature data are briefly discussed. These results provide early confidence in the quantitative benefit of ATSR's two-angle view of the Earth and its high radiometric performance and show a significant advance on the data obtained from other spaceborne sensors. It should be noted that these measurements were made at a time when the atmosphere was severely contaminated with volcanic aerosol particles, which degrade infrared measurements of the Earth's surface made from space.

  7. Gyral high density on CT scan after head injury; [sup 123]I-IMP SPECT and MRI findings in three children

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Matsumoto, Kiyoshi (Showa Univ., Tokyo (Japan). School of Medicine); Sakamoto, Tetsuya; Aruga, Tohru

    1994-02-01

    The authors treated three children who had 'gyral high density' on plain CT scans after head injury with acute subdural hematoma. [sup 123]I-IMP SPECT (IMP) and MRI in the chronic stage were performed. All were males, about one year of age, with acute subdural hematoma. CT scan 48 hours after injury showed diffuse low density in the ipsilateral parenchyma with minimum midline shift, and IMP showed decreased activity in the same area. Plain CT scan 1 to 3 weeks after injury showed remarkably high density along the gyri in part of the same area. This area was markedly enhanced on CT with contrast medium and showed decreased blood flow on IMP. This high density area disappeared within 2 months after injury and the area concerned showed brain atrophy. In the chronic stage (after 6 months), only the high density area along the gyri seen in the CT scan showed MRI evidence of ishemia, but there was no definite evidence of hemorrhage. All three children had hemiplegia at the time of discharge. The gyral high density suggests ischemic brain, but the pathophysiological process might be different from that of so-called hemorrhagic infarction. Presumably, it is due to incomplete autoregulation, the incomplete blood-brain barrier and the sensitivity to stimulation of cerebral blood vessels in the brains of infants. The intensity and range of the gyral high density are considered to be important in estimating the future amount of atrophic change in the insulted brain and the resulting sequelae. (author).

  8. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope

    OpenAIRE

    Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is...

  9. Soft control of scanning probe microscope with high flexibility.

    Science.gov (United States)

    Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing

    2007-01-01

    Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.

  10. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Mendrik, Adrienne M; Van Ginneken, Bram; Viergever, Max A [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Vonken, Evert-jan; De Jong, Hugo W; Riordan, Alan; Van Seeters, Tom; Smit, Ewoud J; Prokop, Mathias, E-mail: a.m.mendrik@gmail.com [Radiology Department, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2011-07-07

    Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise. To detect areas of abnormal perfusion, perfusion parameters are derived from the CTP data, such as the cerebral blood flow (CBF). Algorithms to determine perfusion parameters, especially singular value decomposition, are very sensitive to noise. Therefore, noise reduction is an important preprocessing step for CTP analysis. In this paper, we propose a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in 4D CTP scans, while preserving the time-intensity profiles (fourth dimension) that are essential for determining the perfusion parameters. The proposed TIPS bilateral filter is compared to standard Gaussian filtering, and 4D and 3D (applied separately to each sequential scan) bilateral filtering on both phantom and patient data. Results on the phantom data show that the TIPS bilateral filter is best able to approach the ground truth (noise-free phantom), compared to the other filtering methods (lowest root mean square error). An observer study is performed using CBF maps derived from fifteen CTP scans of acute stroke patients filtered with standard Gaussian, 3D, 4D and TIPS bilateral filtering. These CBF maps were blindly presented to two observers that indicated which map they preferred for (1) gray/white matter differentiation, (2) detectability of infarcted area and (3) overall image quality. Based on these results, the TIPS bilateral filter ranked best and its CBF maps were scored to have the best overall image quality in 100% of the cases by both observers. Furthermore, quantitative CBF and cerebral blood volume values in both the phantom and the

  11. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    Science.gov (United States)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  12. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    International Nuclear Information System (INIS)

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2005-01-01

    Purpose: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the performance of the algorithm to localize the prostate on cone-beam CT (CBCT) scans acquired on the treatment machine was evaluated. Methods and Materials: Five to 17 CBCT scans of 32 prostate cancer patients (332 scans in total) were used. For 18 patients (190 CBCT scans), the CBCT scans were acquired with a collimated field of view (FOV) (craniocaudal). This procedure improved the image quality considerably. The prostate (i.e., prostate plus seminal vesicles) in each CBCT scan was registered to the prostate in the planning CT scan by automatic 3D gray-value registration (normal GR) starting from a registration on the bony anatomy. When these failed, registrations were repeated with a fixed rotation point locked at the prostate apex (fixed apex GR). Registrations were visually assessed in 3D by one observer with the help of an expansion (by 3.6 mm) of the delineated prostate contours of the planning CT scan. The percentage of successfully registered cases was determined from the combined normal and fixed apex GR assessment results. The error in gray-value registration for both registration methods was determined from the position of one clearly defined calcification in the prostate gland (9 patients, 71 successful registrations). Results: The percentage of successfully registered CBCT scans that were acquired with a collimated FOV was about 10% higher than for CBCT scans that were acquired with an uncollimated FOV. For CBCT scans that were acquired with a collimated FOV, the percentage of successfully registered cases improved from 65%, when only normal GR was applied, to 83% when the results of normal and fixed apex GR were combined. Gray-value registration mainly failed (or

  13. Reversible bronchial dilatation in children: comparison of serial high-resolution computer tomography scans of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, E.A. E-mail: erol.gaillard@lwh-tr.nwest.nhs.uk; Carty, H.; Heaf, D.; Smyth, R.L

    2003-09-01

    Introduction: bronchiectasis is generally considered irreversible in the adult population, largely based on studies employing bronchography in cases with a significant clinical history. It is assumed, that the same is true for children. Few studies have examined the natural history of bronchiectasis in children and diagnostic criteria on high-resolution computer tomography of the lungs are derived from studies on adults. Frequently, bronchiectasis is reported in children in cases where localised bronchial dilatation is present, incorrectly labelling these children with an irreversible life-long condition. Objective: to evaluate changes in appearance of bronchial dilatation, unrelated to cystic fibrosis in children, as assessed by sequential high-resolution computer tomography (HRCT) of the lungs. Methods: the scans of 22 children with a radiological diagnosis of bronchiectasis, seen at Alder Hey Children's Hospital between 1994 and 2000, who had at least two CT scans of the lungs were reviewed by a single radiologist, who was blinded to the original report. Results: following a median scan interval of 21 months (range 2-43), bronchial dilatation resolved completely in six children and there was improvement in appearances in a further eight, with medical treatment alone. Discussion: a radiological diagnosis of bronchiectasis should be considered with caution in children as diagnostic criteria derived from studies in adults have not been validated in children and the condition is generally considered irreversible.

  14. High-voltage scanning ion microscope: Beam optics and design

    Energy Technology Data Exchange (ETDEWEB)

    Magilin, D., E-mail: dmitrymagilin@gmail.com; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  15. The Role of Biased Scanning in Counterattitudinal Advocacy

    Science.gov (United States)

    Cunningham, John D.; Collins, Barry E.

    1977-01-01

    Experiments tested biased-scanning hypothesis that high financial inducement leads to greater cognitive contact with counterattitudinal arguments and thus to greater attitude change. No differences in biased scanning or attitude change were observed as a function of financial inducement. Results were interpreted in framework of reactance and…

  16. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  17. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  18. The sensitivity of computed tomography (CT) scans in detecting trauma: are CT scans reliable enough for courtroom testimony?

    Science.gov (United States)

    Molina, D Kimberley; Nichols, Joanna J; Dimaio, Vincent J M

    2007-09-01

    Rapid and accurate recognition of traumatic injuries is extremely important in emergency room and surgical settings. Emergency departments depend on computed tomography (CT) scans to provide rapid, accurate injury assessment. We conducted an analysis of all traumatic deaths autopsied at the Bexar County Medical Examiner's Office in which perimortem medical imaging (CT scan) was performed to assess the reliability of the CT scan in detecting trauma with sufficient accuracy for courtroom testimony. Cases were included in the study if an autopsy was conducted, a CT scan was performed within 24 hours before death, and there was no surgical intervention. Analysis was performed to assess the correlation between the autopsy and CT scan results. Sensitivity, specificity, positive predictive value, and negative predictive value were defined for the CT scan based on the autopsy results. The sensitivity of the CT scan ranged from 0% for cerebral lacerations, cervical vertebral body fractures, cardiac injury, and hollow viscus injury to 75% for liver injury. This study reveals that CT scans are an inadequate detection tool for forensic pathologists, where a definitive diagnosis is required, because they have a low level of accuracy in detecting traumatic injuries. CT scans may be adequate for clinicians in the emergency room setting, but are inadequate for courtroom testimony. If the evidence of trauma is based solely on CT scan reports, there is a high possibility of erroneous accusations, indictments, and convictions.

  19. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  20. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  1. Simultaneous Confocal Scanning Laser Ophthalmoscopy Combined with High-Resolution Spectral-Domain Optical Coherence Tomography: A Review

    Directory of Open Access Journals (Sweden)

    Verônica Castro Lima

    2011-01-01

    Full Text Available We aimed to evaluate technical aspects and the clinical relevance of a simultaneous confocal scanning laser ophthalmoscope and a high-speed, high-resolution, spectral-domain optical coherence tomography (SDOCT device for retinal imaging. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure. Enhanced contrast, details, and image sharpness are generated using confocality. The real-time SDOCT provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combined system allows for simultaneous recordings of topographic and tomographic images with accurate correlation between them. Also it can provide simultaneous multimodal imaging of retinal pathologies, such as fluorescein and indocyanine green angiographies, infrared and blue reflectance (red-free images, fundus autofluorescence images, and OCT scans (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany. The combination of various macular diagnostic tools can lead to a better understanding and improved knowledge of macular diseases.

  2. Some elaborating methods of gamma scanning results on irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Sternini, E.

    1979-01-01

    Gamma scanning, as a post-irradiation examination, is a technique which provides a large number of informations on irradiated nuclear fuels. Power profile, fission products distribution, average and local burn-up of single elements structural and nuclear behaviour of fuel materials are examples of the obtained informations. In the present work experimental methods and theoretical calculations used at the CNEN hot cell laboratory for the mentioned purposes are described. Errors arising from the application of the gamma scanning technique are also discussed

  3. Fast-scan NMR imaging

    International Nuclear Information System (INIS)

    Iwaoka, Hideto; Matsuura, Hiroyuki; Sugiyama, Tadashi; Hirata, Takaaki

    1987-01-01

    This paper describes the Fast Recovery (FR) method for fast-scan Nuclear Magnetic Resonance imaging. The FR method uses a sequence of four radio frequency pulses - alternating selective 90 deg nutation pulses and nonselective 180 deg pulses. One free induction decay (FID) signal and one echo signal are detected and averaged to compute a 2-D image. In the modified FR method, extra 180 deg pulses are applied between 90 deg pulses to cause refocusing and the resultant spin echo signals are averaged to improve the signal to noise ratio. For the FR and modified FR sequences, the macroscopic magnetization is restored to equilibrium quickly and exactly; scan time can consequently be less than that for conventional pulse sequences, such as used in the saturation recovery method, without any penalty in signal to noise ratio. This paper derives expressions for the signal to noise ratio, scan time ratio and contrast noise ratio, compares the FR and modified FR methods with the saturation recovery method and presents experimental results for human body images. In theory and practice, the signal to noise ratio for the FR method is larger than that for the modified FR method. For a given signal to noise ratio the scan time is between one half and one fourth that for the saturation recovery method. The optimum repetition period, T r , is 0.07 ∼ 0.25 s for the FR method, and 0.1 ∼ 0.5 s for the modified FR method. Contrast noise ratio is low for high speed imaging, T r = 0.07 ∼ 0.25 s, but, high contrast noise ratio image is obtained for T r > 0.5 s. (author)

  4. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  5. A high stability and repeatability electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  6. Theoretical analysis of open aperture reflection Z-scan on materials with high-order optical nonlinearities

    International Nuclear Information System (INIS)

    Petris, Adrian I.; Vlad, Valentin I.

    2010-03-01

    We present a theoretical analysis of open aperture reflection Z-scan in nonlinear media with third-, fifth-, and higher-order nonlinearities. A general analytical expression for the normalized reflectance when third-, fifth- and higher-order optical nonlinearities are excited is derived and its consequences on RZ-scan in media with high-order nonlinearities are discussed. We show that by performing RZ-scan experiments at different incident intensities it is possible to put in evidence the excitation of different order nonlinearities in the medium. Their contributions to the overall nonlinear response can be discriminated by using formulas derived by us. A RZ-scan numerical simulation using these formulas and data taken from literature, measured by another method for the third-, fifth-, and seventh-order nonlinear refractive indices of As 2 S 3 chalcogenide glass, is performed. (author)

  7. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  8. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  9. High definition endoscopy with or without I-Scan increases the detection of celiac disease during routine endoscopy.

    Science.gov (United States)

    Penny, Hugo A; Mooney, Peter D; Burden, Mitchell; Patel, Nisha; Johnston, Alexander J; Wong, Simon H; Teare, Julian; Sanders, David S

    2016-06-01

    Celiac disease remains underdiagnosed at endoscopy. We aimed to assess the utility of I-Scan (virtual chromo-endoscopy) to improve sensitivity of endoscopy to detect markers of villous atrophy in this condition. Patients from 2 UK hospitals were studied in 3 groups. Group 1: standard high definition, white light endoscopy (WLE); Group 2: WLE plus I-Scan; Group 3: non-high definition control group. The presence of endoscopic markers was recorded. At least 4 duodenal biopsies were taken from all patients. Serology was performed concurrently and observations were compared with histology. 758 patients (62% female, mean age 52) were recruited (Group 1: 230; Group 2: 228; Group 3: 300). 135 (17.8%) new diagnoses of coeliac disease were made (21 Group 1; 24 Group 2; 89 Group 3). The sensitivity for detection of endoscopic markers of villous atrophy was significantly higher in both Group 1 (85.7%, p=0.0004) and Group 2 (75%, p=0.005) compared to non-high definition controls (41.6%). There was no significant difference between high definition only and I-Scan groups (p=0.47). In non-high definition endoscopy a missed diagnosis was associated with lesser degrees of villous atrophy (p=0.019) and low tTG titre (p=0.007). High definition endoscopy with or without I-Scan increases the detection of celiac disease during routine endoscopy. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. The use of indium-111 labeled platelet scanning for the detection of asymptomatic deep venous thrombosis in a high risk population

    International Nuclear Information System (INIS)

    Siegel, R.S.; Rae, J.L.; Ryan, N.L.; Edwards, C.; Fortune, W.P.; Lewis, R.J.; Reba, R.C.

    1989-01-01

    Five hundred indium-111 labeled platelet imaging studies (387 donor and 113 autologous) were performed postoperatively in 473 patients who had undergone total hip replacement, total knee replacement, or internal fixation of a hip fracture to detect occult deep venous thrombosis. All patients had been anticoagulated prophylactically with aspirin, warfarin sodium (Coumadin), or dextran. Thirty-four possible cases of proximal deep venous thrombosis were identified in 28 asymptomatic patients. To verify the scan results, 31 venograms were performed in 25 patients (three refused). In 21 of 31 cases, totally occlusive thrombi were detected; in 5 cases, partially occlusive thrombi were detected; in 5 cases, no thrombus was seen. No patient who had a negative scan nor any patient who had a verified positive scan (and received appropriate heparin therapy) subsequently developed symptoms or signs of pulmonary embolism. One hundred forty-one indium study patients also underwent Doppler ultrasonography/impedance plethysmography (Doppler/IPG) as a comparative non-invasive technique. In 137 cases, the results of the indium study and Doppler/IPG studies were congruent. The indium study had no false negative results that were detected by Doppler/IPG. No patient had any clinically evident toxicity. These results suggest that indium-111 labeled platelet scanning is a safe, noninvasive means for identifying DVT in high risk patients

  11. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  12. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  13. Influence of PET/CT-introduction on PET scanning frequency and indications. Results of a multicenter study

    International Nuclear Information System (INIS)

    Stergar, H.; Bockisch, A.; Eschmann, S.M.; Krause, B.J.; Roedel, R.; Tiling, R.; Weckesser, M.

    2007-01-01

    Aim: to evaluate the influence of the introduction of combined PET/CT scanners into clinical routine. This investigation addresses the quantitative changes between PET/CT and stand alone PET. Methods: the study included all examinations performed on stand alone PET- or PET/CT-scanners within 12 month prior to and after implementation of PET/CT. The final data analysis included five university hospitals and a total number of 15 497 exams. We distinguished exams on stand alone tomographs prior to and after installation of the combined device as well as PET/CT scans particularly with regard to disease entities. Various further parameters were investigated. Results: the overall number of PET scans (PET and PET/CT) rose by 146% while the number of scans performed on stand alone scanners declined by 22%. Only one site registered an increase in stand alone PET. The number of exams for staging in oncology increased by 196% while that of cardiac scans decreased by 35% and the number of scans in neurology rose by 47%. The use of scans for radiotherapy planning increased to 7% of all PET/CT studies. The increase of procedures for so-called classic PET oncology indications was moderate compared to the more common tumors. An even greater increase was observed in some rare entities. Conclusions: the introduction of PET/CT led to more than a doubling of overall PET procedures with a main focus on oncology. Some of the observed changes in scanning frequency may be caused by a rising availability of new radiotracers and advancements of competing imaging methods. Nevertheless the evident increase in the use of PET/CT for the most common tumour types demonstrates its expanding role in cancer staging. The combination of molecular and morphologic imaging has not only found its place but is still gaining greater importance with new developments in technology and radiochemistry. (orig.)

  14. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  15. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  16. High throughput, parallel scanning probe microscope for nanometrology and nanopatterning applications

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Paul, P.C.; Herfst, R.W.; Dekker, A.; Winters, J.; Maturova, K.

    2017-01-01

    Scanning Probe microscope (SPM) is an important nanoinstrument for several applications such as bioresearch, metrology, inspection and nanopatterning. Single SPM is associated with relatively slow rate of scanning and low throughput measurement, thus not being suitable for scanning large samples

  17. A new ultrasensitive scanning calorimeter.

    Science.gov (United States)

    Plotnikov, V V; Brandts, J M; Lin, L N; Brandts, J F

    1997-08-01

    A new ultrasensitive differential scanning calorimeter is described, having a number of novel features arising from integration between hardware and software. It is capable of high performance in either a scanning or isothermal mode of operation. Upscanning is carried out adiabatically while downscanning is nonadiabatic. By using software-controlled signals sent continuously to appropriate hardware devices, it is possible to improve adiabaticity and constancy of scan rate through use of empirical prerun information stored in memory rather than by using feedback systems which respond in real time and generate thermal noise. Also, instrument response time is software-selectable, maximizing performance for both slow- and fast-transient systems. While these and other sophisticated functionalities have been introduced into the instrument to improve performance and data analysis, they are virtually invisible and add no additional complexities into operation of the instrument. Noise and baseline repeatability are an order of magnitude better than published raw data from other instruments so that high-quality results can be obtained on protein solutions, for example, using as little as 50 microg of protein in the sample cell.

  18. Evolution of traumatic intracerebral hematoma. Analysis of sequential CT scans since per-acute stage

    Energy Technology Data Exchange (ETDEWEB)

    Nagaseki, Yoshishige; Horikoshi, Satoru [Gunma Univ., Maebashi (Japan). School of Medicine; Tamura, Masaru

    1984-05-01

    To clarify the evolution of traumatic intracerebral hematoma (TICH), initial computerized tomography (CT) scans of 28 TICH cases performed within one hour after head trauma were studied along with their follow-up CT scans. They were classified into the following two groups; per-acute group included seven cases in which TICH was completed on the initial CT scans taken within one hour after head injury and acute group included 21 cases in which the initial CT scans revealed isodensity or high density spot and repeat CT scans disclosed TICH by 48 hours after injury. In the per-acute group, initial CT scans showed a homogeneous, well defined, and high density mass (1.5-6.5 cm in diameter). In sequential CT scans of the three cases, the hematoma did not increase but spontaneously disappeared. Other four cases died early after head trauma. Their initial CT scans revealed a large high density mass (3-6.5 cm in diameter) combined with other extracerebral hemorrhages. In the acute group, initial CT scans demonstrated isodensity or high density spot and sequential CT scans showed mottled appearance of salt and pepper appearance, and after a while showed fusion of small high density areas to become a massive high density area (contusional hematoma) by 48 hours after injury. In six cases of this group, the contusional hematoma was removed within 24 hours after injury and in one case at 3.5 days. In other 14 cases, the hematomas shrank or disappeared spontaneously. From these results, it was considered that evolution of TICH's were classified into the two groups; per-acute group resulting from rupture of vessels and acute group resulting from contusion.

  19. Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruess, F J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Goh, K E J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Butcher, M J [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Reusch, T C G [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Oberbeck, L [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Weber, B [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Hamilton, A R [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Simmons, M Y [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia)

    2007-01-31

    We demonstrate the use of a scanning tunnelling microscope (STM) to pattern buried, highly planar phosphorus-doped silicon wires with widths down to the sub-10 nm level. We confirm the structural integrity of these wires using both buried dopant imaging techniques and ex situ electrical characterization. Four terminal I-V characteristics at 4 K show ohmic behaviour for all wires with resistivities between 1 and 24 x 10{sup -8} {omega} cm. Magnetotransport measurements reveal that conduction is dominated by disordered scattering with quantum corrections consistent with 2D weak localization theory. Our results show that these quantum corrections become more pronounced as the electron phase coherence length approaches the width of the wire.

  20. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  1. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  2. Aortoiliac reconstructive surgery based upon the results of duplex scanning

    NARCIS (Netherlands)

    van der Zaag, E. S.; Legemate, D. A.; Nguyen, T.; Balm, R.; Jacobs, M. J.

    1998-01-01

    OBJECTIVE: To evaluate whether duplex scanning can replace angiography in patients operated for aortoiliac obstructive disease. DESIGN: Retrospective. MATERIALS AND METHODS: Between January 1995 and October 1996, 44 patients underwent vascular surgery of the aortoiliac tract. The study population

  3. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    Science.gov (United States)

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  4. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  5. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  6. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  7. MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    LIXIN LIU

    2014-01-01

    Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.

  8. High-speed automated NDT device for niobium plate using scanning laser acoustic microscopy

    International Nuclear Information System (INIS)

    Oravecz, M.G.; Yu, B.Y.; Riney, K.; Kessler, L.W.; Padamsee, H.

    1988-01-01

    This paper presents a nondestructive testing (NDT) device which rapidly and automatically identifies defects throughout the volume of a 23.4 cm x 23.4 cm x 0.3 cm, pure niobium plate using Scanning Laser Acoustic Microscope (SLAM), high-resolution, 60 MHz, ultrasonic images. A principle advantage of the SLAM technique is that it combines a video scan rate with a high scan density (130 lines/mm at 60 MHz). To automate the inspection system they integrated under computer control the following: the SLAM RS-170/330 video output, a computerized XY plate scanner, a real-time video digitizer/integrator, a computer algorithm for defect detection, a digital mass storage device, and a hardcopy output device. The key element was development of an efficient, reliable defect detection algorithm using a variance filter with a locally determined threshold. This algorithm is responsible for recognizing valid flaws in the midst of random texture. This texture was seen throughout the acoustic images and was caused by the niobium microstructure. The images, as analyzed, contained 128 x 120 pixels with 64 grey levels per pixel. This system allows economical inspection of the large quantities (eg. 100 tons) of material needed for future particle accelerators based on microwave superconductivity. Rapid nondestructive inspection of pure niobium sheet is required because current accelerator performance is largely limited by the quality of commercially available material. Previous work documented critical flaws that are detectable by SLAM techniques. 15 references, 9 figures

  9. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  10. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  11. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available We present an image postprocessing framework for Scanning Tunneling Microscope (STM to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA. The numerical results on measurement from copper(111 surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  12. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  13. SU-F-T-173: One-Scan Protocol: Verifying the Delivery of Spot-Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M; Li, J [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States); Chen, C; Mah, D [Procure Treatment Center, Somerset, NJ (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Li, X [Memorial Sloan Kettering Cancer Center, Rockville Centre, NY (United States); Tang, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: Radiochromic film for spot-scanning QA provides high spatial resolution and efficiency gains from one-shot irradiation for multiple depths. However, calibration can be a tedious procedure which may limit widespread use. Moreover, since there may be an energy dependence, which manifests as a depth dependence, this may require additional measurements for each patient. We present a one-scan protocol to simplify the procedure. Methods: We performed the calibration using an EBT3 film at depths of 18, 20, 24cm of Plastic Water exposed by a 6-level step-wedge plan on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged 65–250 cGy(RBE) for proton energies of 170–200MeV. A clinical prostate+nodes plan was used for validation. The planar doses at selected depths were measured with EBT3 films and analyzed using one-scan protocol (one-scan digitization of QA film and at least one film exposed to known dose). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film, IBA MatriXX PT, versus TPS calculations were analyzed and compared. Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate of ∼95% for 2%/2mm and slightly lower passing rates were obtained from an ion chamber array detector. We were able to demonstrate that the use of a proton step-wedge provided clinically acceptable results and minimized variations between film-scanner orientation, inter-scan, and scanning conditions. Furthermore, it could be derived from no more than two films exposed to known doses (one could be zero) for rescaling the master calibration curve at each depth. Conclusion: The use of a proton step-wedge for calibration of EBT3 film increases efficiency. The sensitivity of the calibration to depth variations has been explored. One-scan protocol results appear to be comparable to that of the ion chamber array detector. One author has a research grant from

  14. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  15. Laser scan of the Grimming Mts. (Austria) with the latest LiDAR VZ-4000 equipment: preliminary results

    Science.gov (United States)

    Bauer, Harald; Hatzenbichler, Georg; Amon, Philipp; Fallah, Mohammad; Tari, Gabor; Grasemann, Bernhard

    2013-04-01

    As part of a cooperation project between OMV, RIEGL and the University of Vienna the new LiDAR (Light Detection and Ranging) VZ-4000 laser scanner was tested at the Grimming Mts. of the Eastern Alps in Austria. The prominent Grimming Mts. lies in the eastern part of the Dachstein Massif at the southern margin of the Northern Calcareous Alps. The Grimming, with a peak of 2,351 m above sea level, is one of the highest isolated mountains in Europe. Because of its spectacular topography, the Grimming has been used as an important surface reference mark since 1822. From a structural geology standpoint, the Grimming forms a huge antiform made up of dominantly well-bedded Triassic Dachstein Limestone. Because of the relatively well exposed bedrock surfaces above the tree-line and the fairly complex internal structure, the Grimming Mts. provides an ideal target for testing new high resolution laser scan techniques and devices. The maximum distance from the scanning positions on the nearby valley floor to the mountain face was about 4,500 m and the generated point cloud has an average resolution of 25 points per square meter. The purpose of this work was to test the latest version of the high resolution LiDAR laser equipment in a setting which falls beyond the capabilities of most existing LiDAR devices. The results of the pilot study include high-resolution spatial data on bedding planes, fault planes and the thickness variations of individual beds within the Dachstein Limestone. For the first time, the data obtained can be directly used to generate the proper 3D geometry of folds and faults observed on the Grimming Mts. This leads to a modern understanding of this prominent Alpine anticline in terms of structural geology.

  16. Results of post-laparoscopic cholecystectomy duplex scan without deep vein thrombosis prophylaxis prior to surgery

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Pakaneh

    2012-11-01

    Full Text Available  Abstract Backgrounds: There are controversies among surgeons about prophylaxis of deep vein thrombosis (DVT in laparoscopic cholecystectomy. The aim of this study was the assessment of patients’ condition after laparoscopic cholecystectomy without any prophylactic measure. Methods: 100 cases of laparoscopic cholecystectomy without DVT prophylaxis were followed by duplex scanning in the first postoperative day and by physical examination and patient history at the first to second postoperative week however no clinical sign was found for DVT. Results: Only one case of partially thrombosis (1% was found by duplex scanning which was managed conservatively. Conclusion: Laparoscopic cholecystectomy may consider as a low-risk procedure and routine prophylaxis may not be justified in the absence of other risk factor. 

  17. Use of Bone Scan During Initial Prostate Cancer Workup, Downstream Procedures, and Associated Medicare Costs

    Energy Technology Data Exchange (ETDEWEB)

    Falchook, Aaron D. [Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Salloum, Ramzi G. [Department of Health Services Policy and Management, University of South Carolina, Columbia, South Carolina (United States); Hendrix, Laura H. [Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Chen, Ronald C., E-mail: ronald_chen@med.unc.edu [Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States)

    2014-06-01

    Purpose: For patients with a high likelihood of having metastatic disease (high-risk prostate cancer), bone scan is the standard, guideline-recommended test to look for bony metastasis. We quantified the use of bone scans and downstream procedures, along with associated costs, in patients with high-risk prostate cancer, and their use in low- and intermediate-risk patients for whom these tests are not recommended. Methods and Materials: Patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database diagnosed with prostate cancer from 2004 to 2007 were included. Prostate specific antigen (PSA), Gleason score, and clinical T stage were used to define D'Amico risk categories. We report use of bone scans from the date of diagnosis to the earlier of treatment or 6 months. In patients who underwent bone scans, we report use of bone-specific x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) scans, and bone biopsy within 3 months after bone scan. Costs were estimated using 2012 Medicare reimbursement rates. Results: In all, 31% and 48% of patients with apparent low- and intermediate-risk prostate cancer underwent a bone scan; of these patients, 21% underwent subsequent x-rays, 7% CT, and 3% MRI scans. Bone biopsies were uncommon. Overall, <1% of low- and intermediate-risk patients were found to have metastatic disease. The annual estimated Medicare cost for bone scans and downstream procedures was $11,300,000 for low- and intermediate-risk patients. For patients with apparent high-risk disease, only 62% received a bone scan, of whom 14% were found to have metastasis. Conclusions: There is overuse of bone scans in patients with low- and intermediate-risk prostate cancers, which is unlikely to yield clinically actionable information and results in a potential Medicare waste. However, there is underuse of bone scans in high-risk patients for whom metastasis is likely.

  18. CLASP Middle School/High School Boys of Color Policy Scan and Information Gathering

    Science.gov (United States)

    Toldson, Ivory A.; Crowell, Candice

    2012-01-01

    The purpose of this project is to provide an analysis of policy issues affecting middle school and high school-aged boys and young men of color in the areas of education, health, and pathways to employment. This policy scan and subsequent recommendations will provide valuable background knowledge to inform the future direction of policy efforts…

  19. Scanning fluorescence detector for high-throughput DNA genotyping

    Science.gov (United States)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  20. Point Cloud Analysis for Uav-Borne Laser Scanning with Horizontally and Vertically Oriented Line Scanners - Concept and First Results

    Science.gov (United States)

    Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.

    2017-08-01

    In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  1. The result analysis of 18F-FDG imaging in suspected malignant pleural effusion or atelectasis on CT scanning

    International Nuclear Information System (INIS)

    Wang Huoqiang; Wu Jiyong; Pan Huizhong; Liu Jinjun; Zhao Xianguo

    2004-01-01

    Objective: To determine the ability of 18 F-fluorodeoxyglucose (FDG) dual-head tomography with coincidence (DHTC) imaging in detecting lung cancer in patients with suspected malignant pleural effusion or malignant atelectasis on CT scanning and to differentiate benign and malignant pleural effusions in patients with lung cancer. Methods: One hundred and ten patients with suspected malignant pleural effusion (n=84) or atelectasis (n=26) but without primary lesions in the lungs on CT scanning underwent 18 F-FDG DHTC. Results: Thirty-eight of 110 patients were proven with lung cancer. Among the 38 lung cancer patients, 30 of them had pleural effusion and 8 of them had atelectasis. Seventy-two of 110 patients were proven with benign lung diseases. The sensitivity, specificity and accuracy of 18 F-FDG DHTC for detecting lung cancer in patients with suspected malignant pleural effusion or atelectasis were 97%, 78% and 85%, respectively. In 30 patients with lung cancer plus pleural effusion, 18 F-FDG DHTC correctly detected the presence of malignant pleural effusion and malignant pleural metastatic involvement in 18 of 21 patients and excluded malignant pleural effusion or pleural metastatic involvement in 8 of 9 patients (sensitivity, specificity and accuracy of 86%, 8/9 and 87%, respectively). Conclusion: 18 F-FDG DHTC imaging is a highly accurate and reliable noninvasive test for detecting primary malignant lesions in lung in patients with pleural effusion or atelectasis findings on CT scanning and is useful to differentiate malignant from benign pleural effusion in patients with lung cancer. (authors)

  2. Scanning probe microscopy competency development

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  3. High-resolution scanning near-field EBIC microscopy: Application to the characterisation of a shallow ion implanted p+-n silicon junction

    International Nuclear Information System (INIS)

    Smaali, K.; Faure, J.; El Hdiy, A.; Troyon, M.

    2008-01-01

    High-resolution electron beam induced current (EBIC) analyses were carried out on a shallow ion implanted p + -n silicon junction in a scanning electron microscope (SEM) and a scanning probe microscope (SPM) hybrid system. With this scanning near-field EBIC microscope, a sample can be conventionally imaged by SEM, its local topography investigated by SPM and high-resolution EBIC image simultaneously obtained. It is shown that the EBIC imaging capabilities of this combined instrument allows the study of p-n junctions with a resolution of about 20 nm

  4. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  5. HIGH RESOLUTION AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGING WITH A SMALL UAV PLATFORM

    Directory of Open Access Journals (Sweden)

    M. Gallay

    2016-06-01

    Full Text Available The capabilities of unmanned airborne systems (UAS have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology in high spectral and spatial resolution.

  6. First result from x-ray pulse height analyzer with radial scanning system for LHD

    Science.gov (United States)

    Muto, Sadatsugu; Morita, Shigeru

    2001-01-01

    Radial profiles of x-ray spectrum have been successfully obtained using an assembly of x-ray pulse height analyzer in large helical device. The observed profile is obtained from plasma heated by ICRF and neutral beam injection (NBI). As a detector, Si(Li) semiconductor is used with a histogramming memory and analog-to-digital converter (ADC) basically working at high counting rate up to 500 kcps. In routine operation a count rate of 62 kcps has been normally obtained with energy resolution better than 400 eV at iron Kα line. The assembly is equipped with four detectors and a radial scanning system which modulates sight lines of the detectors in major radius direction. The profiles of electron temperature and the intensity of metallic impurities have been obtained with a spatial resolution of a few centimeters. Measured electron temperature is in good agreement with that from Thomson scattering. The system is applicable to steady-state discharge. The design philosophy of the assembly and recent results on the performance tests are also presented.

  7. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    Science.gov (United States)

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  8. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    of hydrate growth. Additionally, hydrate formed in the presence of inhibitor decomposed at higher temperatures compared to pure water, indicating that while hydrate formation is initially inhibited; once hydrates form, they are more stable in the presence of inhibitor. Overall, this method proved a viable......Methane hydrate formation and decomposition were investigated in the presence of the kinetic inhibitor (Luvicap EG) and synergist (polyethylene oxide; PEO) using a high pressure micro-differential scanning calorimeter (HP-μDSC) with both temperature ramping and isothermal temperature programs....... These investigations were performed using small samples in four different capillary tubes in the calorimeter cell. When the isothermal method was employed, it was found that Luvicap EG significantly delays the hydrate nucleation time as compared to water. The results obtained from the ramping method demonstrated...

  9. Diagnostic leg scanning for deep venous thrombosis in the recently heparinized patient

    International Nuclear Information System (INIS)

    Mant, M.J.; O'Brien, B.D.; Russell, D.B.

    1981-01-01

    Leg scanning with fibrinogen 125I, either alone on in combination with other procedures, has been proposed as an alternative to venography for diagnosis of deep venous thrombi. Clinical circumstances may necessitate anticoagulation before scanning can be performed, which could alter its reliability. We have compared the results of scanning with venographic findings in heparinized patients with venous thromboembolism. Different criteria for an abnormal leg scan gave different sensitivities and specificities. During the first four days of scanning with a requirement for a persistently abnormal result, five of eight criteria had high specificity (greater than 92%). However, sensitivities did not exceed 55%. With the use of transiently abnormal results and six days of scanning, higher sensitivities were obtained but specificities were reduced. No criterion gave results considered acceptable for a diagnostic test for deep venous thrombosis. Leg scanning should therefore not be used for this purpose in patients who have received anticoagulants. Our results also suggest that duration of symptoms has little effect on the sensitivity of leg scanning and that the test is more reliable for establishing the presence of thrombus than at defining its location

  10. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    Science.gov (United States)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  11. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  12. High-resolution computed tomography scan of lumbosacral spine

    International Nuclear Information System (INIS)

    Lifson, A.; Heithoff, K.B.; Burton, C.V.; Ray, C.D.

    1981-01-01

    A GE 8800 computed tomography (CT) scanner was used in over 4,000 cases of acute and chronic low back pain. Practically unlimited potentials of the study were clearly demonstrated in the diagnosis of such conditions as central and lateral spinal stenosis, overgrowth of fusions, disk herniation and free extrusion. Nonenhanced CT scanning is capable of clear visualization of soft-tissue structures: nerve roots and ganglia, epidural fat, epidural fibrous tissue, and epidural veins. CT scanning has become a primary diagnostic modality in the Low Back Clinic at our institute, replacing myelography in the majority of cases. Enhancement of the image with metrizamide was found to be of limited diagnostic value in lumbar degenerative disk disease. However, the utilization of a radiopaque material is indicated in selected circumstances. (Auth.)

  13. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  14. [Comparison of radiation dose reduction of prospective ECG-gated one beat scan using 320 area detector CT coronary angiography and prospective ECG-gated helical scan with high helical pitch (FlashScan) using 64 multidetector-row CT coronary angiography].

    Science.gov (United States)

    Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi

    2010-12-20

    A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.

  15. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    Directory of Open Access Journals (Sweden)

    Gil Lopes

    2016-04-01

    Full Text Available This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel. Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  16. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    Science.gov (United States)

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-04-19

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  17. High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement.

    Science.gov (United States)

    Yang, Guowei; Sun, Changku; Wang, Peng; Xu, Yixin

    2014-01-10

    A high-speed scanning stroboscopic fringe-pattern projection system is designed. A high-speed rotating polygon mirror and a line-structured laser cooperate to produce stable and unambiguous stroboscopic fringe patterns. The system combines the rapidity of the grating projection with the high accuracy of the line-structured laser light source. The fringe patterns have fast frame rate, great density, high precision, and high brightness, with convenience and accuracy in adjusting brightness, frequency, linewidth, and the amount of phase shift. The characteristics and the stability of this system are verified by experiments. Experimental results show that the finest linewidth can reach 40 μm and that the minimum fringe cycle is 80 μm. Circuit modulation makes the light source system flexibly adjustable, easy to control in real time, and convenient to project various fringe patterns. Combined with different light intensity adjustment algorithms and 3D computation models, the 3D topography with high accuracy can be obtained for objects measured under different environments or objects with different sizes, morphologies, and optical properties. The proposed system shows a broad application prospect for fast 3D shape precision measurements, particularly in the industrial field of 3D online detection for precision devices.

  18. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  19. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  20. Detecting Distributed Scans Using High-Performance Query-DrivenVisualization

    Energy Technology Data Exchange (ETDEWEB)

    Stockinger, Kurt; Bethel, E. Wes; Campbell, Scott; Dart, Eli; Wu,Kesheng

    2006-09-01

    Modern forensic analytics applications, like network trafficanalysis, perform high-performance hypothesis testing, knowledgediscovery and data mining on very large datasets. One essential strategyto reduce the time required for these operations is to select only themost relevant data records for a given computation. In this paper, wepresent a set of parallel algorithms that demonstrate how an efficientselection mechanism -- bitmap indexing -- significantly speeds up acommon analysist ask, namely, computing conditional histogram on verylarge datasets. We present a thorough study of the performancecharacteristics of the parallel conditional histogram algorithms. Asacase study, we compute conditional histograms for detecting distributedscans hidden in a dataset consisting of approximately 2.5 billion networkconnection records. We show that these conditional histograms can becomputed on interactive timescale (i.e., in seconds). We also show how toprogressively modify the selection criteria to narrow the analysis andfind the sources of the distributed scans.

  1. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  2. POINT CLOUD ANALYSIS FOR UAV-BORNE LASER SCANNING WITH HORIZONTALLY AND VERTICALLY ORIENTED LINE SCANNERS – CONCEPT AND FIRST RESULTS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2017-08-01

    Full Text Available In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  3. Whole Body Bone Scan Findings after High Intensity Focused Ultrasound (HIFU) Treatment

    International Nuclear Information System (INIS)

    Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon

    2011-01-01

    This study aims to examine the findings of 99mT c diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary of metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57±9 years) were studied. HIFU treatment was performed in the liver (n=40), pancreas (n=40), pancreas (n=16), and breast (n=6). Mean interval time between HIFU treatment and bone scan was 106±105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary of metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.

  4. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    Science.gov (United States)

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  6. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  7. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, A., E-mail: poswalashwini@gmail.com; Yadav, A. K., E-mail: poswalashwini@gmail.com; Nayak, C., E-mail: poswalashwini@gmail.com; Basu, S., E-mail: poswalashwini@gmail.com; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India); Kane, S. R.; Garg, C. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore- 452013 (India)

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  8. Mapping Henry: Synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII

    Energy Technology Data Exchange (ETDEWEB)

    Dredge, Paula; Ives, Simon [Art Gallery of New South Wales (AGNSW), Sydney, NSW (Australia); Howard, Daryl L.; Spiers, Kathryn M. [Australian Synchrotron, Clayton, VIC (Australia); Yip, Andrew [Art Gallery of New South Wales (AGNSW), Sydney, NSW (Australia); University of New South Wales, Laboratory for Innovation in Galleries, Libraries, Archives and Museums (iGLAM), National Institute for Experimental Arts, Sydney, NSW (Australia); Kenderdine, Sarah [University of New South Wales, Laboratory for Innovation in Galleries, Libraries, Archives and Museums (iGLAM), National Institute for Experimental Arts, Sydney, NSW (Australia)

    2015-11-15

    A portrait of Henry VIII on oak panel c. 1535 has recently undergone technical examination to inform questions regarding authorship and the painting's relationship to a group of similar works in the collections of the National Portrait Gallery, London, and the Society of Antiquaries. Due to previous conservation treatments of the painting, the conventional transmission X-radiograph image was difficult to interpret. As a result, the painting underwent high-definition X-ray fluorescence (XRF) elemental mapping on the X-ray fluorescence microscopy beamline of the Australian Synchrotron. Scans were conducted at 12.6 and 18.5 keV, below and above the lead (Pb) L edges, respectively. Typical scan parameters were 120 μm pixel size at 7 ms dwell time, with the largest scan covering an area 545 x 287 mm{sup 2} collected in 23 h (10.8 MP). XRF mapping of the panel has guided the conservation treatment of the painting and the revelation of previously obscured features. It has also provided insight into the process of making of the painting. The informative and detailed elemental maps, alongside ultra-high-definition scans of the painting undertaken before and after varnish and over-paint removal, have assisted in comparison of the finely painted details with the London paintings. The resolution offered by the combination of imaging techniques identifies pigment distribution at an extremely fine scale, enabling a new understanding of the artist's paint application. (orig.)

  9. Mapping Henry: Synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII

    International Nuclear Information System (INIS)

    Dredge, Paula; Ives, Simon; Howard, Daryl L.; Spiers, Kathryn M.; Yip, Andrew; Kenderdine, Sarah

    2015-01-01

    A portrait of Henry VIII on oak panel c. 1535 has recently undergone technical examination to inform questions regarding authorship and the painting's relationship to a group of similar works in the collections of the National Portrait Gallery, London, and the Society of Antiquaries. Due to previous conservation treatments of the painting, the conventional transmission X-radiograph image was difficult to interpret. As a result, the painting underwent high-definition X-ray fluorescence (XRF) elemental mapping on the X-ray fluorescence microscopy beamline of the Australian Synchrotron. Scans were conducted at 12.6 and 18.5 keV, below and above the lead (Pb) L edges, respectively. Typical scan parameters were 120 μm pixel size at 7 ms dwell time, with the largest scan covering an area 545 x 287 mm 2 collected in 23 h (10.8 MP). XRF mapping of the panel has guided the conservation treatment of the painting and the revelation of previously obscured features. It has also provided insight into the process of making of the painting. The informative and detailed elemental maps, alongside ultra-high-definition scans of the painting undertaken before and after varnish and over-paint removal, have assisted in comparison of the finely painted details with the London paintings. The resolution offered by the combination of imaging techniques identifies pigment distribution at an extremely fine scale, enabling a new understanding of the artist's paint application. (orig.)

  10. Bone scanning in Shin Splint evaluation

    International Nuclear Information System (INIS)

    Dumont, M.; Lamoureux, F.; Lamoureux, J.; Danais, S.; Lacoste, P.; Duranceau, J.

    1983-01-01

    Jogging is increasingly popular; in U.S.A., in 1979 more than 25 millions people were considered joggers. Lesions of the locomotive system of the lower limbs are very frequent in athletes and the Shin Splint syndrome, for one, is very frequent. However this precise clinical entity, usually X-Ray negative, is ill-known. A bone scan study in a series of 30 athletes suffering from Shin Splints is presented. The bone scans being positive and typical were highly useful in confirming the clinical diagnosis. Moreover, follow-up studies were done in a number of these patients and results correlated well with the clinical evolution [fr

  11. Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization

    International Nuclear Information System (INIS)

    Cambel, V; Fedor, J; Gregusova, D; Kovac, P; Husek, I

    2005-01-01

    The scanning Hall probe microscope (SHPM) is an important imaging tool used for detailed studies of superconductors in basic science as well as in the industrial sector. It can be used for the studies of losses, current distribution, and effects at grain boundaries. However, only a few SHPMs for magnetic field imaging at temperatures below 77 K have been proposed up to now, most of them designed for small-area (∼10x10 μm 2 ) scanning. We present a large-scale low-temperature SHPM developed for imaging the entire magnetic field in close proximity to magnetic and superconducting samples at 4.2-300 K. The microscope combines a large scanned area and high spatial and magnetic field resolution. The instrument is designed as an insert of standard helium flowing cryostats. The Hall sensor scans an area up to 7 x 25 mm 2 in the whole temperature interval with a spatial resolution better than 5 μm. The presented system is used for the study of ex situ prepared MgB 2 filament. We show that external magnetic field induces local supercurrents in the MgB 2 , from which the critical current can be estimated. Moreover, it indicates the microstructure and space homogeneity of the superconductor

  12. Study of 67Ga scan in sarcoidosis

    International Nuclear Information System (INIS)

    Han Lijun; Qu Wanyin; Liu Xiuqin

    1997-01-01

    Gallium scan and serum angiotensin-converting enzyme assay (SACE) were compared in patients with sarcoidosis. The examination of 67 Ga scan, SACE determination, pulmonary function test, chest CT and chest X-ray in 24 cases with sarcoidosis were studied. The results revealed that 4 of 24 cases had obviously high uptake of 67 Ga exceeding hepatic activity (3+) in clinical active stage, 3 patients had resembling the Greek letter lambda, symmetrically located in bilateral hilar lymph nodes, and among them two had an uptake of 67 Ga in the bilateral lacrimal and parotid gland simulating 'Panda Face'. 8 of 20 cases with inactive sarcoidosis had an abnormal 67 Ga scan (1+). In those patients with normal SACE level but increased uptake of 67 Ga, active stage of disease was demonstrated and steroid therapy was indicated. Gallium scan is a valuable method for the staging of its activity and evaluation of the therapeutic effect in the follow-up patients with sarcoidosis

  13. Fabrication of tungsten tip for scanning tunneling microscope by the lever principle

    International Nuclear Information System (INIS)

    Wang Yang; Wang Huabin; Chinese Academy of Sciences, Beijing; Gong Jinlong; Zhu Dezhang

    2007-01-01

    A novel experimental setup was designed to fabricate tungsten tips for scanning tunneling microscope (STM), based on simple mechanical lever principle. The equipment can quickly separate the tip from electrolyte to avoid the further etching of the fine-shaped tungsten tip. The setup is advantageous for its simplicity over complex electronic control systems. The use result in scanning electron microscope demonstrates that the radius of the tip can reach 50 nm. The tip was applied to scan the surface of highly-oriented pyrolytic graphite, and the results were satisfactory. It is shown that the tip can be used for the scanning of atomically resolved images. (authors)

  14. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  15. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    Science.gov (United States)

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  16. Mouse manipulation through single-switch scanning.

    Science.gov (United States)

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  17. Prosthetic graft infection: limitations of indium white blood cell scanning

    International Nuclear Information System (INIS)

    Brunner, M.C.; Mitchell, R.S.; Baldwin, J.C.; James, D.R.; Olcott, C. IV; Mehigan, J.T.; McDougall, I.R.; Miller, D.C.

    1986-01-01

    The lack of a rapid, noninvasive, and accurate method to confirm or rule out prosthetic graft infection continues to constitute a compelling and vexing clinical problem. A host of adjunctive diagnostic techniques has been used in the past, but early promising results subsequently have usually not yielded acceptable sensitivity (reflecting false negatives) and specificity (reflecting false positive) data. White blood cell (WBC) indium 111 scanning has recently been added to this list. The utility and accuracy of 111 In WBC scans were assessed by retrospective review of WBC scan results in 70 patients undergoing evaluation for possible prosthetic graft infection over a 7-year period. Operative and autopsy data (mean follow-up, 18 months for survivors with negative scans) were used to confirm the 22 positive, 45 negative, and three equivocal WBC scans. The false positive rate (+/- 70% confidence limits) was 36% +/- 6% (n = 8) among the 22 patients with positive scans (44% +/- 6% [11 of 25] if the three equivocal scans are included as false positive), yielding a specificity of 85% +/- 5% and an overall accuracy rate of 88% +/- 4% (80% +/- 5% and 84% +/- 5%, respectively, if the three equivocal cases are considered as false positive). All three patients with equivocal scans ultimately were judged not to have prosthetic graft infection. As implied by the high accuracy rate, the sensitivity of the test was absolute (100% [14 of 14]); there were no false negative results

  18. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    International Nuclear Information System (INIS)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-01-01

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  19. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  20. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  1. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yurui [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296 (Sweden); Zhang, Zhenglong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); School of Physics and Information Technology, Shaanxi Normal University, 710062 Xi’an (China); Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Sun, Mengtao, E-mail: mtsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China)

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  2. Diagnosis of hearing impairment by high resolution CT scanning of inner ear anomalies

    International Nuclear Information System (INIS)

    Murata, Kiyotaka; Isono, Michio; Ohta, Fumihiko

    1988-01-01

    High resolution CT scanning of the temporal bone in our clinic has provided a more detailed radiological classification of inner ear anomalies than before. The statistical analysis of inner ear malformations based on the theory of quantification II has produced discriminant equations for the measurable diagnosis of hearing impairment and development of the inner ear. This analysis may make it possible to diagnose total and partial deafness on ipsi- and contralateral sides. (author)

  3. Determination of plant components degradation using ultrasonic C-scan

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Abdul Nassir Ibrahim

    2002-01-01

    C-scan Ultrasonic Inspection technique is increasingly used for the assessment of plant integrity. Due to the advancement of the equipment, Probability of Detection (POD) of this technique increased significantly as compared with the conventional techniques. Thus in many cases, the technique is accepted by engineers to be used to replace the conventional inspection methods such as visual inspections, thickness gauging and ultrasonic B-Scan. Thickness gauging and ultrasonic B-scan is still widely used by industries. However, both techniques have their own disadvantages. The most notable disadvantages of these techniques are related to the reliability of readings given by the equipment. In addition to this, thickness gauge would only provide data at certain points and B-scan would only provide data for certain lines. This paper presents and discusses results of C-scan measurement performed in power generation, chemical and petro-chemical plants. Due to its high accuracy, results from these measurements were used to establish the true condition of plant and to calculate its remaining safe life. Results presented in this paper include those related to corrosion, erosion and lamination in acid and gas pipelines, finger sludge catcher, steam drums in vessels and piping and electron beam machine. (Author)

  4. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  5. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  6. Corrosion mapping in ducts using the automated ultrasonic technique C-Scan - correlation with results given by pig inspection; Mapeamento de corrosao em dutos atraves da tecnica ultrassonica C-Scan

    Energy Technology Data Exchange (ETDEWEB)

    Feres Filho, Pedro; Moura, Nestor Carlos de [Physical Acoustics South America (PASA), Sao Paulo, SP (Brazil)

    2005-07-01

    In-service inspection has received diverse contributions from technologies and documents with the objective of maximizing equipment availability and minimizing inadequate repairs. Amongst the available technologies, there are the automated ultrasound tests, in the B and C-scan versions. This paper describes an evaluation methodology based on the correlation between the test techniques of instrumented electromagnetic PIG and automated ultrasound, both applied with the purpose of detecting and mapping areas with corrosion in pipes for oil transport. The main objective of the application of the C-scan methodology, in this case, was the measuring and detailing of the corroded area, thus providing an adequate maintenance plan through the substitution or installation of a double gutter. The result demonstrates the correlation between the measurements taken by the PIG and the sizing of the regions done using the C-scan method, consisting of the length, width and thickness values in the points affected by the corrosion. (author)

  7. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  8. Evaluation of gas chromatography – electron ionization – full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis

    International Nuclear Information System (INIS)

    Mol, Hans G.J.; Tienstra, Marc; Zomer, Paul

    2016-01-01

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50–500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg"−"1) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5–250 μg kg"−"1. The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive alternative to

  9. Evaluation of gas chromatography – electron ionization – full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Hans G.J., E-mail: hans.mol@wur.nl; Tienstra, Marc; Zomer, Paul

    2016-09-07

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50–500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg{sup −1}) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5–250 μg kg{sup −1}. The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive

  10. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  11. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  12. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  13. A new generation scanning system for the high-speed analysis of nuclear emulsions

    Science.gov (United States)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Lauria, A.; Montesi, M. C.; Tioukov, V.; Vladymyrov, M.

    2016-06-01

    The development of automatic scanning systems was a fundamental issue for large scale neutrino detectors exploiting nuclear emulsions as particle trackers. Such systems speed up significantly the event analysis in emulsion, allowing the feasibility of experiments with unprecedented statistics. In the early 1990s, R&D programs were carried out by Japanese and European laboratories leading to automatic scanning systems more and more efficient. The recent progress in the technology of digital signal processing and of image acquisition allows the fulfillment of new systems with higher performances. In this paper we report the description and the performance of a new generation scanning system able to operate at the record speed of 84 cm2/hour and based on the Large Angle Scanning System for OPERA (LASSO) software infrastructure developed by the Naples scanning group. Such improvement, reduces the scanning time by a factor 4 with respect to the available systems, allowing the readout of huge amount of nuclear emulsions in reasonable time. This opens new perspectives for the employment of such detectors in a wider variety of applications.

  14. A new generation scanning system for the high-speed analysis of nuclear emulsions

    International Nuclear Information System (INIS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; Lellis, G. De; Crescenzo, A. Di; Galati, G.; Lauria, A.; Montesi, M.C.; Tioukov, V.; D'Ambrosio, N.; Vladymyrov, M.

    2016-01-01

    The development of automatic scanning systems was a fundamental issue for large scale neutrino detectors exploiting nuclear emulsions as particle trackers. Such systems speed up significantly the event analysis in emulsion, allowing the feasibility of experiments with unprecedented statistics. In the early 1990s, R and D programs were carried out by Japanese and European laboratories leading to automatic scanning systems more and more efficient. The recent progress in the technology of digital signal processing and of image acquisition allows the fulfillment of new systems with higher performances. In this paper we report the description and the performance of a new generation scanning system able to operate at the record speed of 84 cm 2 /hour and based on the Large Angle Scanning System for OPERA (LASSO) software infrastructure developed by the Naples scanning group. Such improvement, reduces the scanning time by a factor 4 with respect to the available systems, allowing the readout of huge amount of nuclear emulsions in reasonable time. This opens new perspectives for the employment of such detectors in a wider variety of applications.

  15. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    Science.gov (United States)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  16. A design of a high speed dual spectrometer by single line scan camera

    Science.gov (United States)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  17. Results of the survey activities and mobile gamma scanning in Monticello, Utah

    International Nuclear Information System (INIS)

    Little, C.A.; Berven, B.A.

    1985-11-01

    The town of Monticello, Utah, was once the site of an active mill which processed vanadium ore (1942 to 1948), and uranium ore (1948 to 1960). Properties in the vicinity of that mill have become contaminated with radioactive material from ore processing. The Radiological Survey Activities (RASA) group at Oak Ridge National Laboratory (ORNL) was requested by the Division of Remedial Action Projects (DRAP) in the Department of Energy (DOE) to: (1) identify potentially contaminated properties; (2) assess natural background radiation levels; and (3) rapidly assess the magnitude, extent, and type (i.e. ore, tailings, etc.) of contamination present on these properties (if any). This survey was conducted by RASA during April 1983. In addition to the 114 properties previously identified from historical information, the ORNL mobile gamma scanning van located 36 new properties exhibiting anomalous gamma radiation levels. Onsite surveys were conducted on 145 of the 150 total properties identified either historically or with the gamma scanning van. Of these 145 properties, 122 of them appeared to have some type of contaminated material present on them; however, only 48 appeared to be contaminated to the extent where they were in excess of Environmental Protection Agency (EPA) criteria (40 CFR 192). Twenty-one other properties were recommended for additional investigation (indoor gamma scanning and radon daughter measurements); of these, only ten required further analysis. This report provides the detailed data and analyses related to the radiological survey efforts performed by ORNL in Monticello, Utah

  18. Slit-scanning differential phase-contrast mammography: first experimental results

    Science.gov (United States)

    Roessl, Ewald; Daerr, Heiner; Koehler, Thomas; Martens, Gerhard; van Stevendaal, Udo

    2014-03-01

    The demands for a large field-of-view (FOV) and the stringent requirements for a stable acquisition geometry rank among the major obstacles for the translation of grating-based, differential phase-contrast techniques from the laboratory to clinical applications. While for state-of-the-art Full-Field-Digital Mammography (FFDM) FOVs of 24 cm x 30 cm are common practice, the specifications for mechanical stability are naturally derived from the detector pixel size which ranges between 50 and 100 μm. However, in grating-based, phasecontrast imaging, the relative placement of the gratings in the interferometer must be guaranteed to within micro-meter precision. In this work we report on first experimental results on a phase-contrast x-ray imaging system based on the Philips MicroDose L30 mammography unit. With the proposed approach we achieve a FOV of about 65 mm x 175 mm by the use of the slit-scanning technique. The demand for mechanical stability on a micrometer scale was relaxed by the specific interferometer design, i.e., a rigid, actuator-free mount of the phase-grating G1 with respect to the analyzer-grating G2 onto a common steel frame. The image acquisition and formation processes are described and first phase-contrast images of a test object are presented. A brief discussion of the shortcomings of the current approach is given, including the level of remaining image artifacts and the relatively inefficient usage of the total available x-ray source output.

  19. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  20. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Directory of Open Access Journals (Sweden)

    Huiyuan Zhu

    Full Text Available The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT scan with a small scan field of view (FOV provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P 0.05. These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  1. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  2. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  3. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  4. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  5. Inflammation Scan Using {sup 99m}Tc-HMPAO Labelled Leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Woo Jin; Chung, Soo Kyo; Shinn, Kyung Sub; Bahk, Yong Whee; Kim, Hoon Kyo [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1989-07-15

    Inflammation scan using radiolabelled leukocytes has high sensitivity and specificity. Several methods for labelling leukocytes have been evaluated using P-32 diisopropyl fluorophosphate (DFP -32), H-3 thymidine, Cr-51 chromate, Ga-67 citrate and {sup 99m}Tc-sulfur colloid. In-111-oxine has proved so far to be the most reliable agent for labelling leukocytes. In-111-oxine is, however, expensive, not easily available when needed, and its radiation dose to leukocytes is relatively high. Moreover, resolution of the resultant image is relatively poor. {sup 99m}Tc is still the agent of choice because of, as compared with the indium, its favorable physical characteristics, lower cost and availability. Now the technique for labelling the leukocytes with technetium is successfully obtained using the lipophilic HMPAO with higher efficiency for granulocytes than for other cells. With this technique it is possible to label leukocytes in plans to improve the viability of the leukocytes. Inflammation scan using {sup 99m}Tc-HMPAO has been evaluated in several laboratories, and difference in methods for separation and labelling accounts for difference in efficiency, viability and biodistribution of the labelled leukocytes. We performed inflammation scan using leukocytes labelled with {sup 99m}Tc-HMPAO in three dogs 24 hours after inoculation of live E. Coli and S. Aureus in their right abdominal wall. We separated mixed leukocytes by simple sedimentation using 6% hetastarch (HES) and labelled the leukocytes with {sup 99m}Tc-HMPAO in 20% cell free plasma diluted with phosphate buffer solution. Uptake was high in the liver and spleen but is was minimal in the lungs on whole body scan. Kidneys and intestine showed minimal activity although it was high in the urinary bladder. Uptake of labelled leukocytes in the inflammation site was definite on 2 hour-postinjection scan and abscess was clearly delineated on 24 hour-delayed scan with high target-to-nontarget ratio. 4). Inflammation

  6. Clinical efficacy of FDG-PET scan as preoperative diagnostic tool in cervical cancer stage Ib and IIa: comparison between the results of FDG-PET scan and operative findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hoon

    1999-12-01

    This study was done to evaluate the clinical feasibility of FDG-PET scan for routine preoperative diagnostic methods in cervical carcinoma. PET-scans were performed from March, 1999 to November, 1999. There were 6 stage Ib and 7 IIa patients and all patients were performed radical hysterectomy and bilateral pelvic lymph node dissections and were evaluated by FDG-PET scan before operation. The mean age of the patients were 50.3 years old. Six cases had lymph node metastases by pelvis MRI, and three cases by FDG-PET scan. We could not find any lymph node metastases at surgery in 3 patients (50.0%) among 6 patients who were diagnosed by nodal metastases by pelvis MRI. And we found 1 patients with nodal metastases who had negative findings by pelvis MRI. By FDG-PET scan, we could find metastases in all positive patients. But we also found 2 additional metastatic cases in the patients with negative findings. In this study, the comparison was very difficult due to the individual differences in the comparison would be made by site-specific not person. The sensitivity of MRI and FDG-PET scan were 50.0% and 30.0%. The specificity were 94.1 % and 95.6%. The positive predictive value were 55.6 % and 50.0 %. In conclusion, we could find any superiority of FDG-PET scan in the diagnosis of lymph node metastases the pelvis MRI. So there are limitations to use the FDG-PET scan in the routine preoperative diagnostic tools in cervical cancer. But if we have more experiences to use the FDG-PET scan such as precise cut-off value of SUV and combination of other imaging technique, the FDG-PET scan are still promising diagnostic tools in cervical cancer.

  7. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    Science.gov (United States)

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  8. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Directory of Open Access Journals (Sweden)

    Tobias Meier

    2015-02-01

    Full Text Available We describe an atomic force microscope (AFM for the characterization of self-sensing tunneling magnetoresistive (TMR cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  9. "We Actually Saw Atoms with Our Own Eyes": Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School

    Science.gov (United States)

    Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava

    2004-01-01

    The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).

  10. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Detection of Recurrent Cervical Cancer by Whole-body FDG PET Scans

    Institute of Scientific and Technical Information of China (English)

    Jiaxin Yang; Jinhui Wang; Zhaohui Zhu; Keng Shen; Bocheng Wang

    2008-01-01

    OBJECTIVE To evaluate the role of whole-body {18F} fluro-2-dexoxyglucose (FDG) positron emission tomography (PET) scans in the detection of recurrent cervical cancer.METHODS Between June, 2000 and January, 2006, 25 patients had undergone a PET scan at the Peking Union Medical College Hospital to evaluate possible recurrent cervical cancer. All the PET findings were reviewed and compared to available clinical data to classify each PET scan result as a true positive, true negative, false positive, or false negative.RESULTS A total of 38 PET scans were conducted on the 25patients whose median age was 46 years. The Stage distributions were IA (n = 1), IB (n = 11), IIA (n = 5), IIB (n = 4), IIIB (n = 2), WB (n= 1), and unknown Stage (n = 1). There were 22 cases of squamous cell carcinoma and 3 cases of adenocarcinoma resulting in 9 true positive PET scans, 27 true negatives, 2 false positives and no false negatives. The sensitivity of the FDG PET scans for detecting recurrent cervical cancer was 100%, specificity 93.1%, positive predictive value 81.8%, and negative predictive value 100%.CONCLUSION The whole body FDG PET scans are a sensitive and specific imaging modality for the detection of recurrent cervical cancer. However the cost of PET scans is too high at this time. A large prospective study will determine whether this modality should be used routinely and take the place of other imaging methods in the early detection of recurrent cervical carcinoma

  12. Rapid line scan MR angiography

    International Nuclear Information System (INIS)

    Frahm, J.; Merboldt, K.D.; Hanicke, W.; Bruhn, H.

    1987-01-01

    Direct MR angiography may be performed using line scan imaging techniques combined with presaturation of stationary spins. Thus, a single line scan echo yields a projection of vessels due to the signal from reflowing unsaturated spins. Reconstruction of an angiographic image is performed line by line at slightly incremented positions. In particular, line scan angiography is direct and fast without a sensitivity to artifacts even for high flow rates. Image resolution and field of view may be chosen without restrictions, and zoom images using enhanced gradients may be recorded without aliasing artifacts. The method is robust with respect to eddy currents and pulsatile flow. Line scan MR angiograms of phantoms, animals, and human volunteers have been recorded using 90 0 radio frequency pulses and gradient-recalled echoes

  13. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  14. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  15. High resolution CT in cystic fibrosis--the contribution of expiratory scans

    International Nuclear Information System (INIS)

    Dorloechter, Ludger; Nes, Harald; Fluge, Gjermund; Rosendahl, Karen

    2003-01-01

    Introduction: The use of high-resolution computed tomography (HRCT) is well accepted as an accurate method for evaluation of lung parenchyma in cystic fibrosis (CF). Several scoring methods exist and, in common, all are based on HRCT findings during inspiration alone. Objective: To examine whether expiratory HRCT scans could add information about the degree of mosaic perfusion in patients with CF. Methods and patients: Pulmonary HRCT was performed in 17 CF patients (median age of 12 years) with 1-mm thin sections and 10-mm intervals during inspiration, followed by 1-mm thin sections with 20-mm intervals during expiration. HRCT was scored by using a modified Bhalla method. Results: The mean HRCT score was 8.2. Out of 17 patients, 11 (65%) demonstrated a pathological mosaic perfusion in expiration, while only three patients showed mosaic perfusion in inspiration. The degree of expiratory mosaic perfusion was graded as severe in nine patients and moderate in two patients. There was a significant correlation between our modified HRCT score and lung function, as measured by forced expiratory volume in 1 s (FEV1% predicted, P<0.01). Conclusion: Mosaic perfusion in expiration was a common pathological HRCT finding in our study group. The clinical significance of this finding needs further evaluation

  16. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of Optimizing the Scan-Path on Scanning Keyboards with QWERTY-Layout for English Text.

    Science.gov (United States)

    Sandnes, Frode Eika; Medola, Fausto Orsi

    2017-01-01

    Scanning keyboards can be essential tools for individuals with reduced motor function. However, most research addresses layout optimization. Learning new layouts is time-consuming. This study explores the familiar QWERTY layout with alternative scanning paths intended for English text. The results show that carefully designed scan-paths can help QWERTY nearly match optimized layouts in performance.

  18. Hepatobiliary scan in neonatal Jaundice

    International Nuclear Information System (INIS)

    Nahar, Nurun; Hasan, Mizanul; Karim, M.A.

    2002-01-01

    Jaundice is more or less common in newborn babies. Through physiological jaundice is most common cause of neonatal jaundice, possibility of obstructive jaundice especially biliary atresia should be kept in mind. Early diagnosis of biliary atresia followed by surgical treatment can save baby's life. Otherwise death is inevitable due to liver failure. Hepatobiliary scan is the imaging study of choice in neonatal jaundice especially when there is persistent conjugated hyperbilirubinaemia. Total 27 newborn babies of suspected biliary atresia, aged 14 days to 4 months were referred to Institute of Nuclear Medicine for Hepatobiliary scan. All of them had high serum bilirubin ranged from 6.0 mg/dl with an average of 9.35 ng/dl serum bilirubin level. Ultrasonography of hepatobiliary system was performed in 14 cases showing normal sized liver in 4 cases and hepatomegaly in 10 cases. Hepatobiliary scan was done with 99m Tc-Mebrofenin (Br IDA) after preparing the baby with phenobarbitone for 3-5 days. 20 (67%) cases were scan positive suggesting biliary atresia (BA) and 7(27%) cases were scan negative. In BA there will be increased hepatic uptake of the radionuclide without any significant excretion even in 24 hours delayed images. Presence of radiotracer in the bowel exclude the diagnosis of BA. Early diagnosis of biliary atresia is very important because in this condition surgery should be performed early (within 60 days of life). Studies suggest that hepatobiliary scan after hepatic stimulation with phenobarbitone for a period of 3-5 days is highly accurate for differentiating biliary atresia from other causes of neonatal jaundice. It is very important to perform hepatobiliary scan in a case of neonatal jaundice to exclude biliary atresia for the sake of baby's life.(author)

  19. Operational results for the raster scanning power supply system constructed at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Halliwell, J.; Nyman, M.; Dwinell, R.

    1989-03-01

    A raster scanning power supply for controlling an 8.0 Tesla-meter relativistic heavy-ion beam at the Biomedical Facility has been recently completed and is undergoing electrical testing before on- line operation in 1989. The scanner system will provide tightly controlled beam uniformity and off-axis treatment profiles with large aspect ratios and unusual dimensions. This article will discuss original specifications, agreement with measured results and special device performance (i.e. GTOs, FET actuator assembly, etc.). 5 refs., 4 figs

  20. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  1. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Giraldo, J [Siemens Medical Solutions USA, Inc (United States); Mileto, A.; Hurwitz, L.; Marin, D. [Duke University Medical Center, Durham NC (United States)

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  2. Rapid-scan EPR imaging.

    Science.gov (United States)

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Science.gov (United States)

    Zhu, Huiyuan; Zhang, Lian; Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen

    2017-01-01

    The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P images than of CHRCT images (Pimages (P 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  4. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  5. The pictures of CT scan of gold pneumonitis

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Iwata, Takekuni; Kuroda, Yasumasa; Sadato, Norihiro; Tanemoto, Kiichiro; Adachi, Kazuhiko.

    1987-01-01

    We experienced two cases of gold pneumonitis and their interesting findings of CT scan. After the cessation of gold salt, both cases were treated with the corticosteroid, resulting in the disappearance of pulmonary manifestations and clearing of shadows on chest roentgenograms. The findings of CT scan on both cases were very interesting. They were the high density shadows along the bronchovascular bundles, the fluffy figures surroundings these shadows and band like shadows reached to the thoracic wall. We considered that each shadows were pathologically compatible with severe exudative changes of interstitial pneumonitis, shrinkage surroundings them and thickness of interlobular septum. (author)

  6. Medical Radioisotope Scanning, Vol. II. Proceedings of the Symposium on Medical Radioisotope Scanning

    International Nuclear Information System (INIS)

    1964-01-01

    Medical applications of radioisotopes continue to grow in number and importance and medical centres in almost all countries of the world are now using radioactive materials both in the diagnosis and treatment of disease. An increasing proportion of these applications involves studies of the spatial distribution of radioactive material within the human body, for which purpose highly specialized scanning methods have been elaborated. By these methods it is possible to study the position, size and functional state of different organs, to detect tumours, cysts and other abnormalities and to obtain much useful information about regions of the body that are otherwise inaccessible, except by surgery. Progress in scanning methods in recent years has been very rapid and there have been many important advances in instrumentation and technique. The development of new forms of the gamma camera and of colour-scanning techniques are but two examples of recent improvements. The production of new radioisotopes and new labelled compounds has further extended the scope of these methods. To survey these new advances the International Atomic Energy Agency held a Symposium on Medical Radioisotope Scanning in Athens from 20-24 April 1964. The scientific programme of the meeting covered all aspects of scanning methods including theoretical principles, instrumentation, techniques and clinical applications. The World Health Organization assisted in the selection of papers by providing a consultant to the selection committee. The meeting followed the earlier IAEA/WHO Seminar on Medical Radioisotope Scanning in Vienna in 1959, which was attended by 36 participants and at which 14 papers were presented. Some idea of the growth of interest in the subject may be gained from the fact that the Symposium was attended by 160 participants from 26 countries and 4 international organizations, and that 58 papers were presented. The published proceedings, comprising two volumes, contain all the

  7. Geometrical modelling of scanning probe microscopes and characterization of errors

    International Nuclear Information System (INIS)

    Marinello, F; Savio, E; Bariani, P; Carmignato, S

    2009-01-01

    Scanning probe microscopes (SPMs) allow quantitative evaluation of surface topography with ultra-high resolution, as a result of accurate actuation combined with the sharpness of tips. SPMs measure sequentially, by scanning surfaces in a raster fashion: topography maps commonly consist of data sets ideally reported in an orthonormal rectilinear Cartesian coordinate system. However, due to scanning errors and measurement distortions, the measurement process is far from the ideal Cartesian condition. The paper addresses geometrical modelling of the scanning system dynamics, presenting a mathematical model which describes the surface metric x-, y- and z- coordinates as a function of the measured x'-, y'- and z'-coordinates respectively. The complete mathematical model provides a relevant contribution to characterization and calibration, and ultimately to traceability, of SPMs, when applied for quantitative characterization

  8. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    Science.gov (United States)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  9. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  10. Ultrafast photon counting applied to resonant scanning STED microscopy.

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Method and apparatus for scanning a transverse field

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    A transverse radionuclide scan-field imaging apparatus is described for use in scanning with particular reference to the brain. It comprises a plurality of highly focussed collimators surrounding and being focussed inwardly with respect to the scan-field and means for imparting movement to the collimators. Adjacent collimators can be stepped in radially opposite directions after each tangential scan, so that the focal point of each collimator scans at least one half of the scan-field. Each collimator is associated with a scintillator crystal and photodetector whose output is used to calculate the radioactive emission intensity at a number of points in the scan-field. (author)

  12. Scanning probe microscopy experiments in microgravity

    International Nuclear Information System (INIS)

    Drobek, Tanja; Reiter, Michael; Heckl, Wolfgang M.

    2004-01-01

    The scanning probe microscopy setups are small, lightweight and do not require vacuum or high voltage supply. In addition, samples can be investigated directly without further preparation. Therefore, these techniques are well-suited for applications in space, in particular, for operation on the International Space Station (ISS) or for high resolution microscopy on planetary missions. A feasibility study for a scanning tunneling microscopy setup was carried out on a parabolic flight campaign in November 2001 in order to test the technical setup for microgravity applications. With a pocket-size design microscope, a graphite surface was imaged under ambient conditions. Atomic resolution was achieved although the quality of the images was inferior in comparison to laboratory conditions. Improvements for future scanning probe microscopy experiments in microgravity are suggested

  13. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  14. 'Crazy-Paving' Patterns on High-Resolution CT Scans in Patients with Pulmonary Complications after Hematopoietic Stem Cell Transplantation

    International Nuclear Information System (INIS)

    Marchiori, Edson; Escuissato, Dante L.; Gasparetto, Taisa Davaus; Considera, Daniela Peixoto; Franquet, Tomas

    2009-01-01

    To describe the pulmonary complications following hematopoietic stem cell transplantation (HSCT) that can present with a 'crazy-paving' pattern in high-resolution CT scans. Retrospective review of medical records from 2,537 patients who underwent HSCT. The 'crazy-paving' pattern consists of interlobular and intralobular septal thickening superimposed on an area of ground-glass attenuation on high-resolution CT scans. The CT scans were retrospectively reviewed by two radiologists, who reached final decisions by consensus. We identified 10 cases (2.02%), seven male and three female, with pulmonary complications following HSCT that presented with the 'crazy-paving' pattern. Seven (70%) patients had infectious pneumonia (adenovirus, herpes simplex, influenza virus, cytomegalovirus, respiratory syncytial virus, and toxoplasmosis), and three patients presented with non-infectious complications (idiopathic pneumonia syndrome and acute pulmonary edema). The 'crazy-paving' pattern was bilateral in all cases, with diffuse distribution in nine patients (90%), predominantly in the middle and inferior lung regions in seven patients (70%), and involving the anterior and posterior regions of the lungs in nine patients (90%). The 'crazy-paving' pattern is rare in HSCT recipients with pulmonary complications and is associated with infectious complications more commonly than non-infectious conditions

  15. Usefulness of lung scanning in the evaluation of patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Powe, J.; McCarthy, K.; Palevsky, H.; Fishman, A.P.; Alavi, A.

    1986-01-01

    The ventilation-perfusion scans of 30 patients with pulmonary arterial hypertension and established final diagnoses were blindly classified as to the probability of showing pulmonary embolism. Eleven of 12 patients with primary pulmonary hypertension had normal or low-probability scans; one had an intermediate-probability scan. All six patients with thromboembolic pulmonary hypertension had high-probability scans. However, three of 12 patients with nonembolic secondary pulmonary hypetension also had high-probability scans. Although a normal or low-probability scan excludes the possibility of emboli as a cause, a high-probability scan may often be associated with nonembolic causes of secondary pulmonary hypertension

  16. Copying of holograms by spot scanning approach.

    Science.gov (United States)

    Okui, Makoto; Wakunami, Koki; Oi, Ryutaro; Ichihashi, Yasuyuki; Jackin, Boaz Jessie; Yamamoto, Kenji

    2018-05-20

    To replicate holograms, contact copying has conventionally been used. In this approach, a photosensitive material is fixed together with a master hologram and illuminated with a coherent beam. This method is simple and enables high-quality copies; however, it requires a large optical setup for large-area holograms. In this paper, we present a new method of replicating holograms that uses a relatively compact optical system even for the replication of large holograms. A small laser spot that irradiates only part of the hologram is used to reproduce the hologram by scanning the spot over the whole area of the hologram. We report on the results of experiments carried out to confirm the copy quality, along with a guide to design scanning conditions. The results show the potential effectiveness of the large-area hologram replication technology using a relatively compact apparatus.

  17. Metabolic lung scanning with N-isopropyl-I-123-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Touya, J.; Akber, S.F.; Rashimian, J.; Bennett, L.R.

    1982-01-01

    The mechanisms of uptake of N-Isopropyl-I-123-p-Iodoamphetamine (IMP) in the lung was studied in dogs. It has been concluded that this amine is taken in low specificity - high capacity endothelial receptors. Competitive effect of propranolol guanethidine, amphetamine and ketanine for the binding sites of IMP in the pulmonary endothelial cells was observed. These results show that IMP can be an agent for nonparticulate lung perfusion scans as well as for metabolic lung scans

  18. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  19. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  20. The structure of formate on TiO{sub 2}(110) by scanned-energy and scanned-angle photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, S.; Kim, Y.J.; Herman, G.S. [Pacific Northwest National Laboratory, Richland, WA (United States)] [and others

    1997-04-01

    There is a considerable interest in understanding the interaction of small organic molecules with oxide surfaces. The chemistry of formate interactions with TiO{sub 2}(110) has been investigated by several groups, but there is little information on the structure of the adsorbate/surface complex. Recently the authors combined high-energy x-ray photoelectron diffraction (XPD) measurements at PNNL with low-energy scanned-angle and scanned-energy photoelectron diffraction measurements at the ALS to investigate the structure of the formate ion on TiO{sub 2}(110) in detail. The high-energy XPD results reveal that formate binds through the oxygens in a bidentate fashion to Ti cation rows along the [001] direction with an O-C-O bond angle of about 126{degrees}. Low-energy photoelectron diffraction data, which is briefly described below, was used to identify the specific bonding geometry, including the bond length between the Ti cation and the oxygen in the formate.

  1. A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2 genes

    International Nuclear Information System (INIS)

    Hondow, Heather L; Fox, Stephen B; Mitchell, Gillian; Scott, Rodney J; Beshay, Victoria; Wong, Stephen Q; Dobrovic, Alexander

    2011-01-01

    Detection of mutations by DNA sequencing can be facilitated by scanning methods to identify amplicons which may have mutations. Current scanning methods used for the detection of germline sequence variants are laborious as they require post-PCR manipulation. High resolution melting (HRM) is a cost-effective rapid screening strategy, which readily detects heterozygous variants by melting curve analysis of PCR products. It is well suited to screening genes such as BRCA1 and BRCA2 as germline pathogenic mutations in these genes are always heterozygous. Assays for the analysis of all coding regions and intron-exon boundaries of BRCA1 and BRCA2 were designed, and optimised. A final set of 94 assays which ran under identical amplification conditions were chosen for BRCA1 (36) and BRCA2 (58). Significant attention was placed on primer design to enable reproducible detection of mutations within the amplicon while minimising unnecessary detection of polymorphisms. Deoxyinosine residues were incorporated into primers that overlay intronic polymorphisms. Multiple 384 well plates were used to facilitate high throughput. 169 BRCA1 and 239 BRCA2 known sequence variants were used to test the amplicons. We also performed an extensive blinded validation of the protocol with 384 separate patient DNAs. All heterozygous variants were detected with the optimised assays. This is the first HRM approach to screen the entire coding region of the BRCA1 and BRCA2 genes using one set of reaction conditions in a multi plate 384 well format using specifically designed primers. The parallel screening of a relatively large number of samples enables better detection of sequence variants. HRM has the advantages of decreasing the necessary sequencing by more than 90%. This markedly reduced cost of sequencing will result in BRCA1 and BRCA2 mutation testing becoming accessible to individuals who currently do not undergo mutation testing because of the significant costs involved

  2. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  3. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  4. A Study on Liver Scan using 113mIn Colloid

    International Nuclear Information System (INIS)

    Koh, Chang Soon; Rhee, Chong Hoen; Chang, Kochang; Hong, Chang Gi

    1969-01-01

    There have been reported numberous cases of liver scanning in use of 198 Au colloid by many investigators, however, one in use of 113m In colloid has not been reported as yet in this country. The dose of 113 mIn for high diagnostic value in examination of each organ was determined and the diagnostic interpretability of liver scanning with the use of 113m In was carefully evaluated in comparison with the results of the liver scanning by the conventionally applied radioisotope. The comparative study of both figures of liver scanning with the use of 113m In colloid and 198 Au colloid delivered following results:1) The liver uptake rate and clearance into peripheral blood were accentuated more in case of 113m In colloid than in case of 198 Au colloid. 2) The interpretability of space occupying lesion in liver scanning with 113m In was also superior to one with 198 Au. 3) The figure of liver scanning with 113m In colloid corresponds not always to the figure with 198 Au. This difference can be explained by difference of phagocytic ability of reticuloendothelial system within liver. 4) In the liver scanning with 113m In colloid, the spleen is also visualized even in normal examine. 5) In the cases of disturbed liver function, uptake is more decreased in use of 113m In colloid than in 198 Au, in the spleen, however, the way is contrary. 6) With use of 113m In colloid, the time required for scanning could be shortened in comparison with 198 Au. 7) The filtration of 113m In colloid for scanning prior to human administration gives an expectation for better scanning figure.

  5. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands)

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  6. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    International Nuclear Information System (INIS)

    Haemmerli, Alexandre J.; Pruitt, Beth L.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David

    2015-01-01

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip

  7. A Small Crack Length Evaluation Technique by Electronic Scanning

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Kim, Jae Hoon

    2009-01-01

    The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detectability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination

  8. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  9. Uninformative polymorphisms bias genome scans for signatures of selection

    Directory of Open Access Journals (Sweden)

    Roesti Marius

    2012-06-01

    Full Text Available Abstract Background With the establishment of high-throughput sequencing technologies and new methods for rapid and extensive single nucleotide (SNP discovery, marker-based genome scans in search of signatures of divergent selection between populations occupying ecologically distinct environments are becoming increasingly popular. Methods and Results On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’ polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding technical artifacts in the data (PCR and sequencing errors, as a high proportion of SNPs with a low minor allele frequency is a general biological feature of natural populations. Conclusions We suggest that uninformative markers should be excluded from genome scans based on empirical criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together, this should increase the quality and comparability of genome scans, and hence promote our understanding of the processes driving genomic differentiation.

  10. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  11. Recovery of high purity proteins from polyacrylamide gels using ultraviolet scanning densitometry

    International Nuclear Information System (INIS)

    Bartolini, P.; Arkaten, R.; Ribela, M.T.C.P.

    1988-07-01

    We present here a technique for the purification of proteins carried out by a quantitative analytical method used in conjunction with a preparative gel electrophoresis. Both methods employ densitometric ultraviolet scanning of unstained protein bands, a procedure wich is particulary suitable for the purification and recovery of biologically active polypeptides. In short, the purified extracted protein, isolated in a segment cut out from a preparative gel, is recovered by a second (reversed) electrophoresis. We performed the extractions and recoveries of different amounts of two standard proteins (BSA and STI) and a polypeptide hormone (hGH). Our main interest, especially for the hormone is the complete protein recovery with retention of bio and immunoactivity and high purity. For the proteins tested, the mean recovery was of 93 + - 5% obtaining a mean purity of 95 + - 7%. We conclude that the proposed method should have interesting applications, particularly in the obtention of very pure hormones, as are needed for radioligand assays, for radiolabelling and specific antibody raising. We emphasize the simplicity and rapidity of the method (the entire preparative process: first electrophoresis, UV scanning and reversed electrophoresis can be performed in approximately six hours) and its efficiency in recovering pure proteins even on a milligram scale. We thank the support from the IAEA (4299/RB) and FINEP (43.86.0351.00) and CENE (Brazil). (author) [pt

  12. Scanning fiber microdisplay: design, implementation, and comparison to MEMS mirror-based scanning displays.

    Science.gov (United States)

    Khayatzadeh, Ramin; Civitci, Fehmi; Ferhanoglu, Onur; Urey, Hakan

    2018-03-05

    In this study, we propose a compact, lightweight scanning fiber microdisplay towards virtual and augmented reality applications. Our design that is tailored as a head-worn-display simply consists of a four-quadrant piezoelectric tube actuator through which a fiber optics cable is extended and actuated, and a reflective (or semi-reflective) ellipsoidal surface that relays the moving tip of the fiber onto the viewer's retina. The proposed display, offers significant advantages in terms of architectural simplicity, form-factor, fabrication complexity and cost over other fiber scanner and MEMS mirror counterparts towards practical realization. We demonstrate the display of various patterns with ∼VGA resolution and further provide analytical formulas for mechanical and optical constraints to compare the performance of the proposed scanning fiber microdisplay with that of MEMS mirror-based microdisplays. Also we discuss the road steps towards improving the performance of the proposed scanning fiber microdisplay to high-definition video formats (such as HD1440), which is beyond what has been achieved by MEMS mirror based laser scanning displays.

  13. Screening of plant toxins in food,feed and botanicals using full-scan high-resolution (Orbitrap) mass spectrometry

    NARCIS (Netherlands)

    Mol, J.G.J.; Dam, van R.C.J.; Zomer, P.; Mulder, P.P.J.

    2011-01-01

    A generic method based on LC with full-scan high-resolution (Orbitrap) mass spectrometry (MS) was systematically investigated for the simultaneous detection of a wide range of plant toxins in a variety of food and feed matrices. For a selection of 150 substances, representing various chemical

  14. Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System.

    Science.gov (United States)

    Poon, Candice C; Ebacher, Vincent; Liu, Katherine; Yong, Voon Wee; Kelly, John James Patrick

    2018-05-03

    Automated slide scanning and segmentation of fluorescently-labeled tissues is the most efficient way to analyze whole slides or large tissue sections. Unfortunately, many researchers spend large amounts of time and resources developing and optimizing workflows that are only relevant to their own experiments. In this article, we describe a protocol that can be used by those with access to a widefield high-content analysis system (WHCAS) to image any slide-mounted tissue, with options for customization within pre-built modules found in the associated software. Not originally intended for slide scanning, the steps detailed in this article make it possible to acquire slide scanning images in the WHCAS which can be imported into the associated software. In this example, the automated segmentation of brain tumor slides is demonstrated, but the automated segmentation of any fluorescently-labeled nuclear or cytoplasmic marker is possible. Furthermore, there are a variety of other quantitative software modules including assays for protein localization/translocation, cellular proliferation/viability/apoptosis, and angiogenesis that can be run. This technique will save researchers time and effort and create an automated protocol for slide analysis.

  15. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Liu, Q; Qiu, J; Zhuo, W [Institute of Radiation Medicine Fudan University, Shanghai (China); Majer, M; Knezevic, Z; Miljanic, S [Radiation Chemistry and Dosimetry Laboratory, Ruder Boskovic Institute, Zagreb (Croatia); Hrsak, H [Clinical Hospital Centre Zagreb, Zagreb (Croatia)

    2016-06-15

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the top of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)

  16. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  17. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    Science.gov (United States)

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CT-scanning of ancient Greenlandic Inuit temporal bones

    International Nuclear Information System (INIS)

    Homoe, P.; Videbaek, H.

    1992-01-01

    Additional morphological evidence of former infectious middle ear disease (IMED) was found by CT-scanning in 5 of 6 Greenlandic Inuit crania strongly suspected for former IMED due to earlier examination revealing either bilateral hypocellularity or asymmetry of the pneumatized area of the temporal bones. The CT-scans showed sclerosing and obliteration of the air cells and even destruction of the cellular septae, and a high degree of irregularity of the cells. Sclerosing of the surrounding bone tissue was also found. The findings in one cranium were dubious and could both be regarded as a congenital malformation or an infection in infanthood. CT-scan confirms and even adds to the results of conventional X-ray of temporal bones making hypotheses of paleopathology more reliable. The findings also support the environmental theory of pneumatization of the air cell system in the temporal bones. (13 refs., 10 figs.)

  19. CT-scanning of ancient Greenlandic Inuit temporal bones

    Energy Technology Data Exchange (ETDEWEB)

    Homoe, P [Copenhagen Univ. (Denmark). Lab. of Biological Anthropology and Dept. of Otolaryngology, Head and Neck Surgery; Lynnerup, N [Copenhagen Univ., Lab. of Biological Anthropology and Univ. Inst. of Ferensic Medicine, Copenhagen (Denmark); Videbaek, H [Hvidovre Univ. Hospital, Copenhagen (Denmark). Dept. of Radiology

    1992-01-01

    Additional morphological evidence of former infectious middle ear disease (IMED) was found by CT-scanning in 5 of 6 Greenlandic Inuit crania strongly suspected for former IMED due to earlier examination revealing either bilateral hypocellularity or asymmetry of the pneumatized area of the temporal bones. The CT-scans showed sclerosing and obliteration of the air cells and even destruction of the cellular septae, and a high degree of irregularity of the cells. Sclerosing of the surrounding bone tissue was also found. The findings in one cranium were dubious and could both be regarded as a congenital malformation or an infection in infanthood. CT-scan confirms and even adds to the results of conventional X-ray of temporal bones making hypotheses of paleopathology more reliable. The findings also support the environmental theory of pneumatization of the air cell system in the temporal bones. (13 refs., 10 figs.).

  20. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  1. The use of radionuclides in brain scan

    International Nuclear Information System (INIS)

    Boasquevisque, E.M.

    1979-01-01

    Brain scanning is easy to perform, safe and well tolerated by the patient. It has a high sensitivity, and accuracy (85-90%) in detecting focal lesions with a minimal size of 1.5-2cm, located superior to the brain stem; however, it lacks specificity. It does not compete with other procedures such as CT scan and angiography bit they rather complement one another. The brain scan is useful as a screening exam. (Author) [pt

  2. Improving the scanning speed of atomic force microscopy at the scanning range of several tens of micrometers

    International Nuclear Information System (INIS)

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan; Hu, Xiaotang

    2013-01-01

    The atomic force microscope (AFM) is a powerful instrument which can measure the surface of samples at the nanoscale. The resonance of the scanner in xy directions, and the feedback control in the z direction are two major sources of image distortion at high scan speed. In order to improve the scanning speed of the AFM, a low-cost and easy method, which includes sinusoidal scans in the fast scan direction, and an intelligent fuzzy controller in the z direction, is proposed in this paper. The use of a single-frequency driving signal in the fast scan direction allows the scanner to move at a higher speed without exciting its mechanical resonance. The intelligent fuzzy controller automatically selects appropriate PI parameters through the analysis of the tracking errors, thus improving the dynamic tracking performance of the z scanner. The development and functioning of the sinusoidal fast scans and the intelligent fuzzy controller are demonstrated, as well as how this approach significantly achieves faster scans and a higher resolution AFM imaging. -- Highlights: ► The sinusoidal scan and the intelligent controller are used to improve AFM's rate. ► A new method is raised to overcome the nonlinearity caused by the sinusoidal scan. ► A new controller is proposed to improve the performance of the vertical direction.

  3. First results of astrometric and photometric processing of scanned plates DLFA MAO NAS of Ukraine

    Science.gov (United States)

    Shatokhina, S.; Andruk, V.; Yatsenko, A.

    2011-02-01

    In the paper the first estimation of astrometric and photometric results of digitization of images on plates of Double Long Focus Astrograph (DLFA) was made. The digitization of plates was carried out with the scanner Microtek ScanMaker 9800XL TMA. For image processing the package LINUX/MIDAS/ROMAFOT was used. For selected plates DLFA mean square errors for equatorial coordinates (in a system of TYCHO-2 catalogue) and stellar magnitudes (in the Johnson B-system) per one image are 0.06" and 0.13m. The errors are of random nature and there are no systematic dependences on coordinates, magnitudes and colour of stars. The comparison of obtained results with that of earlier plate measurements obtained with complex PARSEC was made.

  4. Technical errors in planar bone scanning.

    Science.gov (United States)

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  5. Huffman and linear scanning methods with statistical language models.

    Science.gov (United States)

    Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

    2015-03-01

    Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  7. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  8. Introduction of helical computed tomography affects patient selection for V/Q lung scan

    International Nuclear Information System (INIS)

    Zettinig, G.; Baudrexel, S.; Leitha, Th.

    2002-01-01

    Aim: Retrospective analysis for determination of the effect of helical computed tomography (HCT) on utilization of V/Q lung scanning to diagnose pulmonary embolism (PE) in a large general hospital. Methods: A total number of 2676 V/Q scans of in- and out-patients referred to our department between March 1992 and December 1998 and between April 1997 and December 1998 were analyzed by an identical group of nuclear physicians. Results: Neither the total number of annually performed V/Q scans (446 ± 135) nor the mean age of patients (56 years ± 17) changed significantly since the introduction of HCT. However, the referral pattern was different. The percentage of patients with high and intermediate probability for PE decreased significantly from 15.2% to 9.4% (p <0.01) and from 10.2% to 7.3% (p <0.05), respectively. Low probability scans significantly increased from 37.8% to 42.7% (p <0.05). The percentage of normal scans did not change significantly, however, there was a highly significant increase summarizing patients with normal and low probability scans (74.6% to 83.3%; p <0.01). Conclusion: The introduction of HCT affected the selection of patients referred for V/Q lung scanning since V/Q scanning was primarily used to exclude rather to confirm PE. (orig.)

  9. The utility of bone scans in rheumatology

    International Nuclear Information System (INIS)

    Duncan, I.; Dorai-Raj, A.; Khoo, K.; Tymans, K.; Brook, A.

    1997-01-01

    Full text: Introduction: Bone scans are the commonest diagnostic imaging services requested by Australian rheumatologists. Medicare figures suggest that an average rheumatologist orders about $50 000 (AUS) of bone scans annually. Aims: To ascertain the reasons why rheumatologists request bone scans and how it affects their patient management. Methods: A two-part prospective survey was administered before and after every bone scan ordered by four rheumatologists over a six-month period in 1996. Results: A total of 136 bone scans were requested (66.2% whole body; 33.8% regional; 6% SPECT). The primary indications for scanning were (1) to confirm a clinical diagnosis (38%); (2) to exclude a diagnosis (34%); (3) to localize site of pain (17%); and (4) to assist in management (6%). The common diseases that rheumatologists were attempting to confirm/exclude with bone scanning were inflammatory arthritis, malignancy, and fracture. However, the commonest provisional and final diagnosis was soft tissue rheumatism (18%) followed by inflammatory arthritis (15%) and osteoarthritis (11%). In 24% of patients with a provisional diagnosis of soft tissue rheumatism the diagnosis was changed by the bone scan. The scan was successful in excluding a diagnosis in 88 per cent where this was the primary indication for the test. It was successful in confirming a diagnosis in 79 per cent where this was the primary indication. In 32 per cent the bone scan altered the clinical diagnosis and in 43 per cent it altered management. The bone scan result prevented further investigations in 60 per cent. Conclusions: The commonest pre-scan and post-scan diagnosis is soft tissue rheumatism. Rheumatologists predominantly request bone scanning to confirm or exclude their clinical suspicion of inflammatory arthritis, malignancy, and fracture. Bone scans were successful in achieving these objectives in at least 79 per cent of cases

  10. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    International Nuclear Information System (INIS)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M; Marsac, L

    2009-01-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  11. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris (France); Marsac, L [Supersonic Imagine, Les Jardins de la Duranne, 510 rue Rene Descartes, 13857 Aix-en-Provence (France)], E-mail: fabrice.marquet@espci.org

    2009-05-07

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  12. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  13. BENCHMARKING MOBILE LASER SCANNING SYSTEMS USING A PERMANENT TEST FIELD

    Directory of Open Access Journals (Sweden)

    H. Kaartinen

    2012-07-01

    Full Text Available The objective of the study was to benchmark the geometric accuracy of mobile laser scanning (MLS systems using a permanent test field under good coverage of GNSS. Mobile laser scanning, also called mobile terrestrial laser scanning, is currently a rapidly developing area in laser scanning where laser scanners, GNSS and IMU are mounted onboard a moving vehicle. MLS can be considered to fill the gap between airborne and terrestrial laser scanning. Data provided by MLS systems can be characterized with the following technical parameters: a point density in the range of 100-1000 points per m2 at 10 m distance, b distance measurement accuracy of 2-5 cm, and c operational scanning range from 1 to 100 m. Several commercial, including e.g. Riegl, Optech and others, and some research mobile laser scanning systems surveyed the test field using predefined driving speed and directions. The acquired georeferenced point clouds were delivered for analyzing. The geometric accuracy of the point clouds was determined using the reference targets that could be identified and measured from the point cloud. Results show that in good GNSS conditions most systems can reach an accuracy of 2 cm both in plane and elevation. The accuracy of a low cost system, the price of which is less than tenth of the other systems, seems to be within a few centimetres at least in ground elevation determination. Inaccuracies in the relative orientation of the instruments lead to systematic errors and when several scanners are used, in multiple reproductions of the objects. Mobile laser scanning systems can collect high density point cloud data with high accuracy. A permanent test field suits well for verifying and comparing the performance of different mobile laser scanning systems. The accuracy of the relative orientation between the mapping instruments needs more attention. For example, if the object is seen double in the point cloud due to imperfect boresight calibration between two

  14. Bone scans in nasopharyngeal carcinoma: local experience

    International Nuclear Information System (INIS)

    Tiong, S.

    2004-01-01

    scans (both treated), 2 had false positive bone scans (1 newly diagnosed and 1 treated), and 2 (both treated) had true negative bone scan with no increased radio-tracer uptake and no confirmed X ray imagings for metastasis.In the true positive group of patients, the radiologists were correct in their reports of consistency of bone metastasis in 3 patients and uncertain in their reports of differential causes of the increased uptake in 1 patient. In the false positive group of patients, the radiologist were correct in their reports of causes other than bone metastasis in 3 patients, incorrect in their reports of consistency of bone metastasis in 2 patients, and uncertain in their reports of differential causes of the increased uptake in 13 patients. Showing the positive bone scans are 7 patients having degenerative spine disease on Xray imagings and 3 dental diseases on clinical findings.The ages of the patients range from 18 to 88 years, with a mean age being 50.5. In the 41 patients, 35 patients had advanced stages ( Stages III and IV ) and 6 early stages ( Stages I and II). Among the patients of advanced stages, 3 having true positive and 13 false positives, whereas among the patients of early stages, 1 true positive and 1 false positive. Discussion: The results show that 44% of the patients had positive bone scans and this could be due to large number of patients (10/41)having degenerative spine diseases and dental diseases.These show that the bone scans have high sensitivity. However they do not have high specificity as only 9.8% of total or 2.2% (4/18) of the positive bone scans patients have true positives. The specificity in the treated group of patients appear to be higher being 25% (3/12 treated patients)The bone scans are therefore regarded as a screening test and if positive, they help guide and target the Xray imaging studies to confirm the bone metastasis one way or another. It is therefore useful in NPC management. The radiologists were most of the times

  15. Scanning transmission ion microscopy on Fudan SPM facility

    International Nuclear Information System (INIS)

    Li Yongqiang; Shen Hao; Zheng Yi; Li Xinyi; Liu Bo; Satoh Takahiro

    2011-01-01

    In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode(Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, Paramecium attached on the top of Kapton tube was measured by STIM. (authors)

  16. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    International Nuclear Information System (INIS)

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-01-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented

  17. The along track scanning radiometer for ERS-1 - Scan geometry and data simulation

    Science.gov (United States)

    Prata, A. J. Fred; Cechet, Robert P.; Barton, Ian J.; Llewellyn-Jones, David T.

    1990-01-01

    The first European remote-sensing satellite (ERS-1), due to be launched in 1990, will carry the along track scanning radiometer (ATSR), which has been specifically designed to give accurate satellite measurements of sea surface temperature (SST). Details of the novel scanning technique used by the ATSR are given, and data from the NOAA-9 AVHRR instrument are used to simulate raw ATSR imagery. Because of the high precision of the onboard blackbodies, the active cooling of the detectors, 12-b digitization, and dual-angle capability, the ATSR promises to achieve higher-accuracy satellite-derived SSTs than are currently available.

  18. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  19. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  20. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  1. CT scanning of the breast in problem cases

    Energy Technology Data Exchange (ETDEWEB)

    John, V.; Ewen, K. (Essen Univ. (Gesamthochschule) (Germany, F.R.). Radiologisches Zentrum; Zentralstelle fuer Sicherheitstechnik, Duesseldorf (Germany, F.R.))

    1989-09-01

    This is a report of the experience with 200 patients who during 1981 to 1984 underwent breast scanning on a conventional body scanner. Pre- and post-contrast scans of the breast were obtained. A postcontrast enhancement of 50 HU and more turned out to be specific for malignant lesions. Radiation dose to the breast was in the same range as with high filtration xeromammography and high resolution film-screen mammography with additional grid. Breast scanning is recommended in cases in which mammography alone is of limited value, including dense fibrocystic breasts in women at high risk, follow-up in breast cancer patients after breast conserving therapy, in patients with silastic implants and in the follow-up of breasts with huge scars due to multiple biopsies. (orig.).

  2. Development of scanning holographic display using MEMS SLM

    Science.gov (United States)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  3. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  4. Final Results of the Telaprevir Access Program: FibroScan Values Predict Safety and Efficacy in Hepatitis C Patients with Advanced Fibrosis or Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Antonia Lepida

    Full Text Available Liver stiffness determined by transient elastography is correlated with hepatic fibrosis stage and has high accuracy for detecting severe fibrosis and cirrhosis in chronic hepatitis C patients. We evaluated the clinical value of baseline FibroScan values for the prediction of safety and efficacy of telaprevir-based therapy in patients with advanced fibrosis and cirrhosis in the telaprevir Early Access Program HEP3002.1,772 patients with HCV-1 and bridging fibrosis or cirrhosis were treated with telaprevir plus pegylated interferon-α and ribavirin (PR for 12 weeks followed by PR alone, the total treatment duration depending on virological response and previous response type. Liver fibrosis stage was determined either by liver biopsy or by non-invasive markers. 1,282 patients (72% had disease stage assessed by FibroScan; among those 46% were classified as Metavir F3 at baseline and 54% as F4.Overall, 1,139 patients (64% achieved a sustained virological response (SVR by intention-to-treat analysis. Baseline FibroScan values were tested for association with SVR and the occurrence of adverse events. By univariate analysis, higher baseline FibroScan values were predictive of lower sustained virological response rates and treatment-related anemia. By multivariate analysis, FibroScan was no longer statistically significant as an independent predictor, but higher FibroScan values were correlated with the occurrence of infections and serious adverse events.FibroScan has a limited utility as a predictor of safety and efficacy in patients treated with telaprevir-based triple therapy. Nevertheless it can be used in association with other clinical and biological parameters to help determine patients who will benefit from the triple regiments.ClinicalTrials.gov NCT01508286.

  5. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  6. Critical current measurements of high Tc superconductors in a scanning low temperature cryostat

    International Nuclear Information System (INIS)

    Telschow, K.L.; O'Brien, T.K.

    1991-01-01

    Maintaining uniformity of properties over long distances is one of the fabrication problems encountered with the new high T c superconductors. Uniform properties are crucial in long tapes or wires with high critical current since local nonuniformities can limit the current carrying capacity of the whole piece. Transport critical currents in high T c superconductors are conventionally measured with the contact 4-point probe DC current-voltage technique. This technique requires contact with the sample and and spatially averages over the region between the two voltage contacts. Two techniques have been used to infer the critical state model. The first uses the net magnetization of a suitably shaped sample in an external magnetic field. The second combines a DC magnetic field with AC induced currents to infer spatial flux profiles. The AC magnetization technique offers an advantage in that it is noncontacting; however, it also averages the measurement over a large area and requires that the sample be shaped and positioned such that it exhibits zero demagnetizing factor. This paper describes a measurement technique and a scanning cryostat assembly that are capable of determining local critical current in a tape or wire with high resolution and without any direct sample electrical contact. A small compensated coil was used to induce AC currents in slab-shaped samples. The coil was situated near the surface on one side of the slab. With this method, the AC probe can be used as a noncontacting dissipation probe, replacing the voltage probe in the 4-point contact method, when an externally driven transport current is used, or by itself as a local critical state generator and dissipation detector. The results are shown to be meaningful even when the internal magnetic field is not uniform due to shape demagnetizing effects. 10 refs., 5 figs

  7. Development and applications of radiotracers technologies and gamma scanning

    International Nuclear Information System (INIS)

    Conejo, Mario; Chaverri, Oscar; Chine, Bruno; Vargas, Celso

    2008-01-01

    The radiotracers and gamma scanning technologies are very consolidated tools for studying, analyzing and evaluating of industrial processes. The development and the results of radiotracers and gamma scanning technologies applied in laboratory and more complex systems, are reported. The radiotracers technology was used to study boron diffusion during the curing process of the wood, to evaluate a lagoon of sewage treatment with aquatic iris plants and to carry out experimental work with controlled variables in a laboratory hydraulic circuit (flow rig). The gamma scanning technique was used to analyze a pilot tower in the laboratories. The main results achieved with the experiments were the following: 1) the boron absorption as a wood curing agent depends on the section of wood exposed to the curing solution; 2) during the tests effectuated with Iodine 131, the aquatic iris plants situated in the water treatment lagoon absorb part of the radiotracer, making difficult the residence time determination; 3) the sensibility of the system Cesium 137 source and detector is sufficiently high and can detect low radioactive absorption materials, situated inside columns with steel walls. (author) [es

  8. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  9. Developments in Scanning Hall Probe Microscopy

    Science.gov (United States)

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  10. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  11. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  12. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  13. Scanning laser ophthalmoscope design with adaptive optics

    OpenAIRE

    Laut, SP; Jones, SM; Olivier, SS; Werner, JS

    2005-01-01

    A design for a high-resolution scanning instrument is presented for in vivo imaging of the human eye at the cellular scale. This system combines adaptive optics technology with a scanning laser ophthalmoscope (SLO) to image structures with high lateral (∼2 μm) resolution. In this system, the ocular wavefront aberrations that reduce the resolution of conventional SLOs are detected by a Hartmann-Shack wavefront sensor, and compensated with two deformable mirrors in a closed-loop for dynamic cor...

  14. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  15. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    Science.gov (United States)

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Diagnosis of thromboembolic disease: combined ventilation perfusion lung scan and compression ultrasonography

    International Nuclear Information System (INIS)

    Dadparvar, S.; Woods, K.; Magno, R.M.; Sabatino, J. C.; Patil, S.; Dou, Y.

    2002-01-01

    The clinical management of pulmonary embolism and deep venous thrombosis of the legs are similar and require prolonged anticoagulation therapy. The standard diagnostic approach in patients suspected of pulmonary embolism is ventilation-perfusion (V/Q) lung scan and compression ultrasonography to detect deep venous thrombosis. This retrospective study analyzed the role of V Q lung scan and compression ultrasonography in detection of thromboembolic disease. One hundred-twenty consecutive patients (65 female, 55 male) age range 18-95 (mean age 60.7) suspected for pulmonary embolism underwent concomitant V/Q lung scan and compression ultrasonography of the lower extremities. The clinical and radiographic correlation was performed. Of patients with non-diagnostic (low or intermediate probability ) lung scans, 15.4 % (14/91) received anticoagulation therapy for pulmonary embolism. This patients had either high pre-clinical suspicion for PE or underwent pulmonary arterio gram. However, there was an additional 7 % (7/91) increase in the number of patients who received anticoagulation therapy based on the results of ultrasound with confidence interval (3 %-16 %). We conclude that V/Q lung scan is a more sensitive examination for thromboembolic disease, and has a high negative predictive value. Ultrasonography of lower extremities demonstrated higher specificity and positive value. Among patients with non-diagnostic lung scan, the detection rate of thromboembolic disease is improved with addition of ultrasound

  17. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2017-08-01

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC] 2 body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  18. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  19. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  20. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  1. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  2. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  3. The diagnostic value of monoclonal antibody scan (leucoscan) compared with 99mTc MDP bone scan and Ga 67 in diagnosing bone and joint infection

    International Nuclear Information System (INIS)

    Koukouraki, S.I.; Velidaki, A.; Prassopoulos, V.; Karkavitsas, N.; Vavouranakis, H.; Hatjipavlou, A.

    2002-01-01

    Full text: Nowadays different radiopharmaceuticals have been developed as 99mTc MDP, 67Ga citrate, 111In oxine- and 99mTc HMPAO labeled leucocytes for the accurate localization of bone/joint infection, but all of them have limitations that encouraged the search of new agents characterized from high and early uptake in infectious/inflammatory tissues, low toxicity and no accumulation in non inflamed tissues. The purpose of this study is to compare the diagnostic value of a 99mTc labeled antigranulocyte Fab' fragment (Leucoscan) with 99mTc MDP bone scan and 67 Ga. The monoclonal antibody, Leucoscan, is an IgG murine Fab' fragment directed against a NCA-90 epitope located on the surface of granulocytes. 45 patients with suspected bone and joint infection (18 total hip prosthesis, 4 knee prosthesis, 8 vertebral infection and 15 long bones) were included in this study. All patients underwent conventional Rx, bone scan, 67Ga scan and Leucoscan. Three phase 99mTc MDP bone scan and 67Ga scan were performed using standard procedures. For Leucoscan the antibody was labeled with 25 mCi of 99mTc and was infected intravenously over 30 seconds. Ten minutes planar images were taken 1 h and 2 hrs p.i using a GE Millennium γ camera provided with a LEGP collimator. Images were evaluated as score 1 (no abnormal uptake), score 2 (probably positive), score 3 (definitely infected) according the intensity of abnormally increased uptake. Results were compared with 99mTc MDP bone scan and 67Ga scans. The final diagnosis was given by the surgical verification with histopathology or culture. All 45 patients had pathologic proof of presence/absence of bone and joint infection. 36/45 were positive for bone or joint infection and 9/45 were negative.30/36 patients with surgically proven bone and joint infection had true positive Leucoscan, 26/36 had true positive MDP bone scan and 20/36 true positive 67Ga scan. Nine out of 9 patients with proven absence of inflammation had true negative

  4. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    Science.gov (United States)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  5. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  7. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  8. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  9. Qualitative doping area characterization of SONOS transistor utilizing scanning capacitance microscopy (SCM) and scanning spread resistance microscopy (SSRM)

    International Nuclear Information System (INIS)

    Heo, Jinhee; Kim, Deoksu; Kim, Chung woo; Chung, Ilsub

    2005-01-01

    Continuous shrinkage in the memory devices demands further understanding about the doping concentration variations at shallow junction and channel region. Scanning capacitance microscopy (SCM) and scanning spread resistance microscopy (SSRM) can provide reliable information about the electrical and physical junction structure simultaneously. In this work, we attempt to visualize the doping concentration variations of split-gate structure silicon-oxide-nitride-oxide-silicon (SONOS) transistor with thin oxide-nitride-oxide (ONO; 4/7/11 nm). From SCM image, we could identify the source and drain region, which have different doping concentrations from that at channel region. In addition, a gate oxide layer and a depletion region were also identified. Similar results were obtained using SSRM. However, SSRM shows a better resolution, in particular, for highly doped region. For this experiment, the cross-sectional sample has been prepared using focused ion beam (FIB) and hand-polishing method. The results show that SCM and SSRM are very useful methods to analyze the doping profile near the junction as well as the channel

  10. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    Science.gov (United States)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  11. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions.

    Science.gov (United States)

    Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D

    2012-04-13

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.

  12. Value of Indium-111m labeled platelet scans for predicting early renal allograft loss

    International Nuclear Information System (INIS)

    Shaffer, P.; Hinkle, G.; Olsen, J.; Sommer, B.; Henry, M.; Ferguson, R.

    1985-01-01

    In order to determine if In-111m labeled platelet scanning could be of use in predicting renal allograft prognosis, 41 patients (pts) thought to be at risk for graft loss were studied. In vitro labeling of platelets was performed followed by reinjection into the pt and scanning at 24 hours. The graft activity on platelet scan was compared to hepatic activity and classified as being either less than or equal to hepatic activity (NEG) or much greater than hepatic activity (POS). Results are compared to graft prognosis and are presented in this paper. The observed increase in early loss rate in the pts with POS scan over those with NEG scan was highly significant. (p .001). All pts with a POS scan were on cyclosporin A (CYA); no pt on conventional therapy (excluding CYA) had a POS scan. The authors conclude that the presence of a POS scan is a grave prognostic sign and that there appears to be a relationship between CYA, POS scan, and early graft loss

  13. High Performance Protein Sequence Database Scanning on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Adrianto Wirawan

    2009-01-01

    Full Text Available The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel multicore accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the Cell Broadband Engine can be used as a computational platform to accelerate two approaches for protein sequence database scanning: exhaustive and heuristic. We present efficient parallelization techniques for two representative algorithms: the dynamic programming based Smith–Waterman algorithm and the popular BLASTP heuristic. Their implementation on a Playstation®3 leads to significant runtime savings compared to corresponding sequential implementations.

  14. Liver-lung scan in the diagnosis of right subphrenic abscess

    International Nuclear Information System (INIS)

    Middleton, H.M. III; Patton, D.D.; Hoyumpa, A.M. Jr.; Schenker, S.

    1976-01-01

    To assess the value of liver-lung scanning in the diagnosis of right subphrenic abscess, 148 scans were reviewed against corresponding charts. Of 91 scans with adequate clinical data, overall scanning error was 19.3 percent with 14 false positive and 3 false negative scans. Among 49 scans (of the initial group of 91 studies) with presence or absence of actual pathology proved by surgery and/or autopsy, there were 3 true positive, 12 false positive, 29 true negative, and 3 false negative scans. Analysis of data indicated lower accuracy of scan interpretation than generally reported, low specificity for positive scans and high specificity for negative scans, correlation of false interpretations with atypical degrees of liver-lung separation and with scanning defects in liver and lung, and failure of rereading significantly to improve accuracy of interpretation

  15. Does high-power computed tomography scanning equipment affect the operation of pacemakers?

    International Nuclear Information System (INIS)

    Yamaji, Satoshi; Imai, Shinobu; Saito, Fumio; Yagi, Hiroshi; Kushiro, Toshio; Uchiyama, Takahisa

    2006-01-01

    Computed tomography (CT) is widely used in clinical practice, but there has not been a detailed report of its effect on the functioning of pacemakers. During CT, ECGs were recorded in 11 patients with pacemakers and the electromagnetic field in the CT room was also measured. The effect of CT on a pacemaker was also investigated in a human body model with and without shielding by rubber or lead. Transient malfunctions of pacemakers during CT occurred in 6 of 11 patients. The model showed that malfunctioning of the pacemaker was induced by CT scanning and this was prevented by lead but not by rubber. The alternating electrical field was 150 V/m on the CT scanning line, which was lower than the level influencing pacemaker functions. The alternating magnetic field was 15μT on the CT scanning line, which was also lower than the level influencing pacemaker functions. Malfunctions of the pacemaker during CT may be caused by diagnostic radiant rays and although they are transient, the possibility of lethal arrhythmia cannot be ignored. (author)

  16. Diagnosis of Stomach Carcinoma by Radioisotope Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Czerniak, P.; Meytes, E.; Sinkover, A.; Bank, H. [Tel-Hashomer Government Hospital, University of Tel Aviv School of Medicine (Israel)

    1969-05-15

    Scanning of the stomach after administration of {sup 131}I and {sup 99m}Tc is presented. Experiments on 20 dogs were performed and 105 patients were examined. The studies with {sup 131}I are only mentioned briefly as they have been summarized in a previous publication and we have concentrated on our experience with {sup 99m}Tc and on stomach carcinoma. The turnover of the nuclide in blood, urine, gastric juice and gastric mucosa was tested: in-vivo and post-operative scannings were performed. The scans are classified in four groups. Carcinoma of the stomach results in space-occupying lesions or foggy scans. A correlation of 85 - 90% between scan results and clinical findings is noted. A special group of 10 volunteers was examined to establish the possibility of a screening examination for the detection of stomach cancer using the technique presented. (author)

  17. Significance of leukocyte scanning in infected endoprostheses

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; Pasurka, B.; Boerner, W.

    1989-03-01

    31 patients with suspected septic loosening of an endoprosthesis (hip endoprosthesis n=30; knee endoprosthesis n=1) were examined with leukocyte scans (10 MBq /sup 111/In-oxine: n=22; 300 MBq /sup 99m/Tc-HMPAO: n=9). The results were compared with results of the bacterial growth (n=22), the histology (n=12) and of the bone scans (/sup 99m/Tc-MDP: n=20) which were performed within 4 days. The sensitivity of the bone scan was 100%, the specificity 30% and the diagnostic accuracy regarding a septic loosening of the arthroplasty was 55%. For the leukocyte scans a comparable sensitivity of 100%, but a higher specificity (86%) and accuracy (91%) could be calculated. A false positive leukocyte scan could be observed in a periprosthetic granuloma, an ossifying periarthritis and in a patient with negative bacterial growth with the histological proof of an inflammation.

  18. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  19. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  20. The renal scan in pregnant renal transplant patients

    International Nuclear Information System (INIS)

    Goldstein, H.A.; Ziessman, H.A.; Fahey, F.H.; Collea, J.V.; Alijani, M.R.; Helfrich, G.B.

    1985-01-01

    With the greater frequency of renal transplant surgery, more female pts are becoming pregnant and carrying to term. In the renal allograft blood vessels and ureter may be compressed resulting in impaired renal function and/or, hypertension. Toxemia of pregnancy is seen more frequently than normal. Radionuclide renal scan monitoring may be of significant value in this high risk obstetrical pt. After being maintained during the pregnancy, renal function may also deteriorate in the post partum period. 5 pregnant renal transplant pts who delivered live babies had renal studies with Tc-99m DTPA to assess allograft perfusion and function. No transplanted kidney was lost during or after pregnancy as a result of pregnancy. No congenital anomalies were associated with transplant management. 7 studies were performed on these 5 pts. The 7 scans all showed the uterus/placenta. The bladder was always distorted. The transplanted kidney was rotated to a more vertical position in 3 pts. The radiation dose to the fetus is calculated at 0.024 rad/mCi administered. This study demonstrates the anatomic and physiologic alterations expected in the transplanted kidney during pregnancy when evaluated by renal scan and that the radiation burden may be acceptable in management of these pts

  1. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    Science.gov (United States)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean Squares (RMS) in terms of their

  2. Status of automated nuclear scanning systems

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; McNeece, J.P.; Ruddy, F.H.

    1983-07-01

    Present day minicomputers and microprocessors enable a range of automation, from partial to total, of tasks once thought beyond approach. The status of three computer controlled systems for quantitative track measurements is reviewed. Two systems, the Hanford optical track scanner (HOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third systems, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Current limitations of these systems for quantitative track scanning are presented. Experimental uncertainties attained with these computer controlled systems are described using results obtained from reactor neutron dosimetry

  3. Overview of the low energy accelerator scanning system

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Muhamad Zahidee Taat; Abu Bakar Ghazali; Mohd Rizal Ibrahim; Mohd Rizal Chulan Md Chulan; Azaman Ahmad; Abdul Halim Baijan; Rokiah Mohd Sabri

    2009-01-01

    This paper describes the specification of the low energy accelerator (Baby-EBM; Electron Beam Machine) scanning system. It comprises a discussion of coil inductance measurement, power supply design and the test results. The scanning horn system was completely assembled and tested; it was found that the system is able to scan the beam across the scanning window with a required beam profile. (Author)

  4. Studies in radioaerosol lung scanning in urban health survey subjects

    International Nuclear Information System (INIS)

    Doshi, V.B.; Gregat, I.K.; Kamat, S.R.; Papewar, V.N.; Raikar, U.R.; Sharma, S.M.; Ganatra, R.D.

    1984-01-01

    As a part of health survey in relation to air pollution, 16 smokers(11 from 'high' and 5 from 'low' zone) were studied with extensive serial lung functions, chest radiography and radioaerosol lung scanning. The clinical diagnosis were chronic bronchitis(COPD) in 9 subjects; but others (4 'High' and 3 'Low') were considered normal. The values of FVC, FEV were normal in most of these three groups, but FEV 1 /FVC percent values were lower in subjects from 'high' zone.The functional declines were higher in normals of 'high' zone. Radioaerosol (ventilation) scans (with technetium 99 ) showed a normal picture in 2 COPD and 3 normal subjects; in 3 COPD and 1 normal subjects the abnormalities were definite. For perfusion scans, 2 COPD and 3 normal subjects showed a normal pattern while definite abnormalities were seen in 1 COPD and 1 normal subjects. Lung scans may pick up abnormalities in normal smokers at an early stage. (author)

  5. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  6. Relevance and indications of the bone scan - an assessment

    International Nuclear Information System (INIS)

    Reinartz, P.; Buell, U.

    2002-01-01

    Due to its high sensitivity, the bone scan is one of the most frequently performed procedures in nuclear medicine. Although specificity is often criticized as its weak point, excellent results can be achieved under employment of modern acquisition techniques like SPECT imaging and multi-phased scintigraphy or under consideration of disease-specific scintigraphic patterns. Concerning the indication for a bone scan, the former rigid diagnostic plans are more and more replaced by flexible criteria or scores. This aspect as well as the growing use of CT and MRI leads to a slight decrease in the number of performed examinations. Further competition arises by the employment of positron emission tomography for the diagnosis of pathological osseous lesions using 18 F-FDG or 18 F-fluoride ion, especially in cases of malign or inflammatory disease. Although promising results have been achieved, it is doubtful whether PET will be able to replace bone scintigraphy, especially under consideration of the economic situation of the German health care system. In conclusion it can be stated that at least in the near future the conventional bone scan will remain an essential procedure within the realm of nuclear medicine. (orig.) [de

  7. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  8. Gamma ray scanning as troubleshooting tool for unusual and large diameter refinery vacuum columns

    International Nuclear Information System (INIS)

    Sarkar, T.K.; Chawla, R.; Banik, S.; Chopra, S.J.; Singh, G.; Pant, H.J.; Sreeramakrishnan, P.; Dhar, D.C.; Pushpangathan, P.N.; Sharma, V.K.

    1997-01-01

    Gamma scanning of trayed and packed columns is widely used to obtain density profiles and identify on-line problems such as: damaged tray or packing, foaming, flooding, maldistribution, weeping and entrainment, etc. However, scanning of large diameter tray or packed columns requires expertise in handling high intensity gamma sources along with thorough understanding of distillation engineering. Engineers India Limited and the Bhabha Atomic Research Centre undertook scanning of two such large diameter (8.4 m and 7.4 m) trayed and packed refinery vacuum distillation columns and successfully diagnosed the problems and suggested remedial actions. Radiography testing of small diameter columns can be used to confirm gamma scanning results. One such example for ammonia separator column is given

  9. Doppler ultrasound scan during normal gestation: umbilical circulation

    International Nuclear Information System (INIS)

    Ruiz, T.; Sabate, J.; Martinez-Benavides, M. M.; Sanchez-Ramos, J.

    2002-01-01

    To determine normal umbilical circulation patterns by means of Doppler ultrasound scan in a healthy gestating population without risk factors and with normal perinatal results, and to evaluate any occurring modifications relative to gestational age by obtaining records kept during pregnancy. One hundred and sixteen pregnant women carrying a single fetus have been studied. These women had no risk factors, with both clinical and analytical controls, as well as ultrasound scans, all being normal. There were performed a total of 193 Doppler ultrasound scans between weeks 15 and 41 of gestation, with blood-flow analysis in the arteries and vein of the umbilical cord. The obtained information was correlated with parameters that evaluate fetal well-being (fetal monitoring and/or oxytocin test) and perinatal result (delivery type, birth weight, Apgar score). Statistical analysis was performed with the programs SPSS 6.0.1 for Windows and EPIINFO 6.0.4. With pulsed Doppler, the umbilical artery in all cases demonstrated a biphasic morphology with systolic and diastolic components and without retrograde blood flow. As the gestation period increased, there was observed a progressive decrease in resistance along with an increase in blood-flow velocity during the diastolic phase. The Doppler ultrasound scan is a non-invasive method that permits the hemodynamic study of umbilical blood circulation. A knowledge of normal blood-flow signal morphology, as well as of the normal values for Doppler indices in relation to gestational age would permit us to utilize this method in high-risk pregnancies. (Author) 30 refs

  10. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  11. Diagnostic value of the coronary CT scan

    International Nuclear Information System (INIS)

    Kiuchi, Sousuke

    1982-01-01

    Using high-resolution computed tomography, coronary scanning has been made to investigate the radiographical details of the middle and inner ear organs. Twenty patients with chronic otitis media, secondary cholesteatoma, sensorineural hearing loss, facial spasm, and suspected meningitis, were evaluated. In 26 of 40 ears in this series, the coronary scans sharply outlined almost all of the bony structures, and showed also the eardrum as a clearly defined soft tissue, but no abnormal radiographical findings were recognized. In the remaining ears with chronic otitis media, the scans were valuable in demonstration of mucosal thickening, granulation tissue, and destruction of the auditory ossicles. (author)

  12. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  13. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  14. PRELIMINARY RESULTS OF THE MONUMENTAL TREE MONITORING BASED ON TERRESTRIAL LASER SCANNING - A CASE STUDY OF THE OAK BARTEK IN ZAGNAŃSK (POLAND

    Directory of Open Access Journals (Sweden)

    Wezyk Piotr

    2015-12-01

    Full Text Available In April 2013, the Laboratory of Geomatics launched the project under the acronym “Bartek 3D” in cooperation with the Research Section of Students from the AGH in Krakow, Pedagogical University and the Jagiellonian University as well. The main aim of the project is to monitor the biggest and probably one of the oldest treesin Poland - Oak Bartek in Zagnańsk (N 50o59’14”; E 20o38’59”, based on multi-temporal Terrestrial Laser Scanning (TLS technology. One of the results of the project should be a 3D model ofOak Bartek and detection of the changes in the shape of the tree. Terrestrial Laser Scanning and the traditional forest inventory measurements were performed during the Leaf-OFF season in April 2013 and April 2014 and repeated in Leaf-ON period in July 2013 and October 2014 with using scanners: FARO FOCUS 3D, RIEGL VZ-400, LEICA C10 and RevScan (HandyScan. The results based on TLS technology showed some differences comparing to existing data obtained by traditional measurements for forestry inventory: • Height (H of the tree: altimeter Vertex (Haglöf H = 29.31m; HTLS= 28.49 m; • Trunk circumference (L measured with stretched tape: LST = 9.80 m; adjacent along the shape of bark: LT= 13.70 m; TLS measurments: LTLS1/4 = 9.97 m and LRevScan= 13.54 m • The average diameter at breast height (DBH130cm calculated on the basis of 3D basal area of stem DBHTLS1/4 = 3.03 m (DBHT= 3.12 m.

  15. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  16. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  17. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  18. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the 'Needleman-Wunsch' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  19. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  20. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  1. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  2. Role of combined perfusion/ventilation scanning in diagnosis of pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, H; Elhaddad, SH; Wageeh, SH; Samy, A; Abdo, S [Nuclear medicine and radiology department, faculty of medicine and Cairo university, Cairo, (Egypt)

    1995-10-01

    This study was conducted on 200 patients with suspected pulmonary embolism. Their age ranged 9-74 years with a mean age of 41.9+14.6 years.The commonest symptoms were dyspnea; chest pain and haemoptysis in 67.5%,49.5% and 14.5% respectively, whereas the main signs were tachycardia in 64.5% followed by rales and oedema of lower limbs in 28.5% and 14% respectively. Cardiac diseases were presenting the main risk factors in 47% followed by DVT, surgery, COLD in 24%,10% and 9.5% respectively. perfusion lung scan was normal in 27.5%, whereas low, intermediate and high probability scans were seen in 7%,23.5% and 42% respectively. The addition of ventilation scan, change probability of perfusion defects into 18.5%,19% and 31.5% in low, intermediate and high probability scans respectively. In addition 3.5% of patient diagnosed as non- embolic disease. There was significant correlation with increase number of symptoms and signs in relation to scan probability in both whole group and high probability group. Also, the incidence of pulmonary embolism appear to be additive with increase number of risk factors in the group of high probability scans. 3 figs., 3 tabs.

  3. Role of combined perfusion/ventilation scanning in diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Moustafa, H.; Elhaddad, SH.; Wageeh, SH.; Samy, A.; Abdo, S.

    1995-01-01

    This study was conducted on 200 patients with suspected pulmonary embolism. Their age ranged 9-74 years with a mean age of 41.9+14.6 years.The commonest symptoms were dyspnea; chest pain and haemoptysis in 67.5%,49.5% and 14.5% respectively, whereas the main signs were tachycardia in 64.5% followed by rales and oedema of lower limbs in 28.5% and 14% respectively. Cardiac diseases were presenting the main risk factors in 47% followed by DVT, surgery, COLD in 24%,10% and 9.5% respectively. perfusion lung scan was normal in 27.5%, whereas low, intermediate and high probability scans were seen in 7%,23.5% and 42% respectively. The addition of ventilation scan, change probability of perfusion defects into 18.5%,19% and 31.5% in low, intermediate and high probability scans respectively. In addition 3.5% of patient diagnosed as non- embolic disease. There was significant correlation with increase number of symptoms and signs in relation to scan probability in both whole group and high probability group. Also, the incidence of pulmonary embolism appear to be additive with increase number of risk factors in the group of high probability scans. 3 figs., 3 tabs

  4. 'Crazy-Paving' Patterns on High-Resolution CT Scans in Patients with Pulmonary Complications after Hematopoietic Stem Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, Edson; Escuissato, Dante L.; Gasparetto, Taisa Davaus; Considera, Daniela Peixoto [Federal University, Sao Paulo (Brazil); Franquet, Tomas [Hospital de Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-02-15

    To describe the pulmonary complications following hematopoietic stem cell transplantation (HSCT) that can present with a 'crazy-paving' pattern in high-resolution CT scans. Retrospective review of medical records from 2,537 patients who underwent HSCT. The 'crazy-paving' pattern consists of interlobular and intralobular septal thickening superimposed on an area of ground-glass attenuation on high-resolution CT scans. The CT scans were retrospectively reviewed by two radiologists, who reached final decisions by consensus. We identified 10 cases (2.02%), seven male and three female, with pulmonary complications following HSCT that presented with the 'crazy-paving' pattern. Seven (70%) patients had infectious pneumonia (adenovirus, herpes simplex, influenza virus, cytomegalovirus, respiratory syncytial virus, and toxoplasmosis), and three patients presented with non-infectious complications (idiopathic pneumonia syndrome and acute pulmonary edema). The 'crazy-paving' pattern was bilateral in all cases, with diffuse distribution in nine patients (90%), predominantly in the middle and inferior lung regions in seven patients (70%), and involving the anterior and posterior regions of the lungs in nine patients (90%). The 'crazy-paving' pattern is rare in HSCT recipients with pulmonary complications and is associated with infectious complications more commonly than non-infectious conditions.

  5. Abdominal fat-evaluation by use of single scan computed tomography

    International Nuclear Information System (INIS)

    Jacobi, V.; Steinkamp, M.; Kirchner, J.; Fischer, H.; Diedrich, C.F.; Kollath, J.

    1997-01-01

    Purpose: Several studies emphasised the importance of the relationship between intraabdominal and total body adipose tissue as a risk factor for the development of metabolic or cardiovascular diseases. Therefore, the aim of the present study was to examine whether a single scan computed tomography is able to determine the whole intraabdominal fat volume with high accuracy and reproducibility. Materials and methods: Regions of interests (ROIs) were drawn manually for measuring intraabdominal fat in 51 unsuspicious abdominal CT. Results: The sexual differentiation of adipose tissue already described in a lot of studies could be confirmed in this study. Fat still predominates in females in lower half of the body (gynoid obesity). In men it predominates in the upper half (android obesity). Significant correlation concerning measuring the whole intraabdominal fat volume could be found in L1-level in women (r=0.992) and in L2-level in men (r=0.992). Measurement of a single scan enables us to assess whole intraabdominal fat volume due to a special formula. Conclusion: The determination of intraabdominal fat measured by a single scan computed tomography is a procedure associated with high accuracy and reproducibility. (orig.) [de

  6. Bone scan and joint scan of hands and feet in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Carpentier, N.; Verbeke, S.; Perdrisot, R.; Grilo, R.M.; Quenesson, E.; Bonnet, C.; Vergne, P.; Treves, R.; Bertin, P.; Boutros-Toni, F.

    2000-01-01

    The aim of this study was to determine the ability of joint scan and bone scan of hands and feet, in patients with rheumatoid arthritis, to localize the altered joints. The sensitivity, the specificity, the positive predictive value (PPV) and the negative predictive value (NPV) of joint scan were determined in comparison with clinical joint assessment. Fifteen patients (780 joints) were clinically examined (pain and synovitis); during the same day, a bone scan and a joint scan were realized by oxidronate 99m Tc intravenous injection. Patients were scanned 5 minutes (tissual time, T t ) and 3 hours 1/4 (bone time, T 0 ) after the administration. The uptake of the bi-phosphonate was evaluated with a qualitative method using a grey scale. The uptake of 99m Tc oxidronate was quantitated using an extra-articular region of interest. The sensitivity, specificity, PPV and NPV of the scan at Tt were 46%, 96%, 85% et 78%. The same parameters were 75%, 66%, 53% and 84% for the scan realized at T 0 . The joint scan has showed 22% of false positive. These false positives could be a consequence of an earlier detection of joint alterations by scan. The joint scan should forecast the evolution of joints in patients with rheumatoid arthritis. (author)

  7. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  8. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  9. Results of the mobile gamma scanning activities in Wayne and Pequannock Townships, New Jersey

    International Nuclear Information System (INIS)

    Johnson, C.A.; Roberts, D.A.; Patania, V.P.; Foley, R.D.

    1994-01-01

    During the early 1980s the W. R. Grace site and the adjacent area were the focus of several radiological investigations. Radiological surveys revealed surface radionuclide concentrations greater than those acceptable under US Department of Energy (DOE) remedial action guidelines. In 1984, Congress assigned responsibility for cleanup of the W.R. Grace site to the Department of Energy. The property was redesignated as the Wayne Interim Storage Site (WISS) and in 1985 DOE began plans for survey/monitoring, and remedial action of nearby vicinity properties and the interim storage site. Evaluations of the radiological survey data in 1986 indicated radioactive contamination above current DOE guidelines at the off-site areas of parts of Township Park southwest of WISS, and parts of the Sheffield Brook area and railroad siding in Pequannock Township. Remedial action was conducted over several years of most of these areas and independent verification of remedial action was performed. A team from Oak Ridge National Laboratory conducted a mobile radiological scanning survey of a stretch of public roadway in the immediate vicinity south of the WISS, extending northwest to the Pompton turnpike. A mobile gamma scanning van with an on-board computer system was used to identify at least 24 anomalous areas, some attributable to the naturally elevated levels in concrete, asphalt, and natural granite found in streets, driveways and landscaping materials in the area. Analyses of the biased soil samples taken in the ballpark also revealed slightly elevated thorium concentrations. However, soil concentration measurements when averaged over 100 m 2 fall below the limits prescribed by DOE radiological guidelines established for this site. The anomalies may result from a wide range of sources, such as ash, granite, and fertilizer as well as materials from the former Grace facility

  10. A Scanning scheimpflug lidar system developed for urban pollution monitoring

    Science.gov (United States)

    Yang, Yang; Guan, Peng; Mei, Liang

    2018-04-01

    A scanning Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing a high power multimode 808 nm laser diode and a highly integrated CMOS sensor in Dalian University of Technology, Dalian, Northern China. Atmospheric scanning measurements in urban area were performed for the studies of particle emission sources.

  11. Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

    International Nuclear Information System (INIS)

    Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.

    2012-01-01

    The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)

  12. Gallium-67 citrate scan in extrapulmonary tuberculosis

    International Nuclear Information System (INIS)

    Lin Wanyu

    1999-01-01

    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [de

  13. Scanning-time evaluation of Digimarc Barcode

    Science.gov (United States)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  14. Minimising medically unwarranted computed tomography scans

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    As computed tomography (CT) is such a superb diagnostic tool and individual CT risks are small, whenever a CT scan is clinically warranted, the CT benefit/risk balance is by far in the patient’s favour. However, if a CT scan is not clinically warranted, this balance shifts dramatically. It is likely that at least 25% of CT scans fall into this latter category, in that they could either be replaced with alternative imaging modalities or could be avoided entirely. Use of clinical decision rules for CT usage represents a powerful approach for slowing down the increase in CT usage, because they have the potential to overcome some of the major factors that result in some CT scans being undertaken when they may not be clinically helpful.

  15. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  16. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  17. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  18. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  19. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    Science.gov (United States)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  20. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  1. Scanning Micromirror Platform Based on MEMS Technology for Medical Application

    Directory of Open Access Journals (Sweden)

    Eakkachai Pengwang

    2016-02-01

    Full Text Available This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility.

  2. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  3. An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hofer, Werner A

    2012-01-01

    In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.

  4. Three phase bone scan , Ga-67 and Tc-99m nanocoll scan in detection of osteomyelitis caused by war injuries

    International Nuclear Information System (INIS)

    Banek, T.; Reljica-Kostic, Z.; Kurnik, G.

    1994-01-01

    Thirty three injured soldiers were surgically treated because of pierce wounds of extremities. Treatment was either osteosynthesis or external fixation. Two to four weeks post treatment clinical signs of osteomyelitis appeared. X-ray was negative in all patients. Three-phase bone scan was performed in order to establish diagnosis. Bone scan was positive in all patients. For 11 patients only bone scan was sufficient for decision of further treatment. In 22 patients Ga-67 or Tc-99m- nanocoll or both examinations were performed on surgeon's request. In 2 patients out of 5 with additional Ga-67 scan, Ga-67 scan showed more lesions than it was seen on bone scan. In 3 patients out of 5 with additional Tc-99m-nanocoll scan, Tc-99m-nanocoll scan showed more lesions than it was seen on bone scan. In 12 patients with positive bone scan and negative or unclear Ga-67, Tc-99m-nanocoll scan was performed. In 5 out of 12 patients Tc-99m- nanocoll scan established diagnosis in others confirmed finding on bone and Ga-67 scan. Our results showed that in one third of our causes bone scan was sufficient for diagnosing of osteomyelitis caused by war injuries. In selected cases where bone scan was not sufficient for diagnosis and decision for treatment Tc-99m-nanocoll was more sensitive than Ga-67. In our experience three-phase bone scan is more sensitive than Ga-67. In our opinion three-phase bone scan is the method of choice for diagnosing osteomyelitis in war situation with a lot of casualties. (author)

  5. Reevaluation of the Thyroid Scan for the Assessment of Pathophysiologic Status of Thyroid Disease

    International Nuclear Information System (INIS)

    Woo, In Sook; Nah, Jung Il; Kim, Deog Yoon

    1991-01-01

    To diagnosis and understand the pathophysiologic status of thyroid disease, not only hormonal measurements but also thyroid scan is believed to have a unique role. Especially in the cases of the change of the thyroid function by thyroiditis, it is emphasized that thyroid scan can be helpful in differential diagnosis, Discordant results of thyroid hormone levels and thyroid scan are found in transient hyperthyroidism, or in transient hypothyroidism. We analysed and reevaluated thyroid scan to look at the importance of thyroid scan. The results are summarised as follows: 1) 80%. of hyperthyroid patients had hyperthyroidism increased RAIU with even density, they are compatible with Graves' disease. 2) 2.1% of hyperthyroid patients had normal or decreased RAIU, which are classified as high iodine turn over genuine hyperthyroidism. 3) 8.5% of hyperthyroid patients had markedly decreased RAIU at both 2 hour and 24 hour, whose pathologic processes are suggested to be heterogenous namely subacute thyroiditis, postpartum thyroiditis, Hashimoto's thyroiditis, and pamless thyroiditis. 4) 45% of hypothyroid patients had increased 24 hr RAIU, 30% of hypothyroid patients were normal, 25%, decreased. In conclusion, thyroid scan should be reevaluated its useful role to asses the pathophysiologic status of thyroid disease. Especially in cases of transient thyrotoxicosis, thyroid scan is essential to diagnose and follow up the disease process.

  6. Reevaluation of the Thyroid Scan for the Assessment of Pathophysiologic Status of Thyroid Disease

    Energy Technology Data Exchange (ETDEWEB)

    Woo, In Sook; Nah, Jung Il; Kim, Deog Yoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1991-03-15

    To diagnosis and understand the pathophysiologic status of thyroid disease, not only hormonal measurements but also thyroid scan is believed to have a unique role. Especially in the cases of the change of the thyroid function by thyroiditis, it is emphasized that thyroid scan can be helpful in differential diagnosis, Discordant results of thyroid hormone levels and thyroid scan are found in transient hyperthyroidism, or in transient hypothyroidism. We analysed and reevaluated thyroid scan to look at the importance of thyroid scan. The results are summarised as follows: 1) 80%. of hyperthyroid patients had hyperthyroidism increased RAIU with even density, they are compatible with Graves' disease. 2) 2.1% of hyperthyroid patients had normal or decreased RAIU, which are classified as high iodine turn over genuine hyperthyroidism. 3) 8.5% of hyperthyroid patients had markedly decreased RAIU at both 2 hour and 24 hour, whose pathologic processes are suggested to be heterogenous namely subacute thyroiditis, postpartum thyroiditis, Hashimoto's thyroiditis, and pamless thyroiditis. 4) 45% of hypothyroid patients had increased 24 hr RAIU, 30% of hypothyroid patients were normal, 25%, decreased. In conclusion, thyroid scan should be reevaluated its useful role to asses the pathophysiologic status of thyroid disease. Especially in cases of transient thyrotoxicosis, thyroid scan is essential to diagnose and follow up the disease process.

  7. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    Science.gov (United States)

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Assessment of myocardial perfusion using a new scanning agent

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.N

    1987-01-01

    This work assessed a new compound: Tc-99m tertiary butyl isonitrile (T-BIN) in scanning the normal myocardium in dogs. Experimentally induced myocardial infarcts (M.I.) were detected. The compound cleared significantly from the blood within 15 minutes and from the lungs within an hour after intravenous administration. Liver uptake was high and remained so. Cardiac uptake occurred quickly and continued for 6 hours. Comparable results were obtained in normal humans and patients. Myocardial scanning was best after 60 minutes at rest or 30 minutes after exercise. Liver uptake sometimes obscured the detection of inferior M.I. but this problem was reduced using a 45/sup 0/ left anterior oblique view with a 20/sup 0/ cranial tilt. At rest 9/10 patients with M.I. showed defects corresponding to the infarct sites. In 20 patients with angina pectoris 16 had perfusion defects on exercise. In 15/16 patients reversible ischaemia was demonstrated. The reperfusion scans were best obtained at 4 hours post exercise. Both Tl-201 and T-BIN detected equally the infarcts (3/3) but in patients with angina 8/10 with T-BIN and 6/10 with Tl-201 showed defects. ECG gating of the T-BIN scans was also studied.

  9. Magnetically scanned proton therapy beams: rationales and techniques

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Schreuder, A.N.

    2000-01-01

    Perhaps the most important advantages of beam scanning systems for proton therapy in comparison with conventional passive beam spreading systems are: (1) Intensity modulation and inverse planning are possible. (2) There is negligible reduction in the range of the beam. (3) Integral dose is reduced as dose conformation to the proximal edge of the lesion is possible. (4) In principle no field-specific modifying devices are required. (5) There is less activation of the surroundings. (6) Scanning systems axe almost infinitely flexible. The main disadvantages include: (1) Scanning systems are more complicated and therefore potentially less reliable and more dangerous. (2) The development of such systems is more demanding in terms of cost, time and manpower. (3) More stable beams are required. (4) Dose and beam position monitoring are more difficult. (5) The problems associated with patient and organ movement axe more severe. There are several techniques which can be used for scanning. For lateral beam spreading, circular scanning (wobbling) or linear scanning can be done. In the latter case the beam can be scanned continuously or in a discrete fashion (spot scanning). Another possibility is to undertake the fastest scan in one dimension (strip scanning) and translate the patient or the scanning magnet in the other dimension. Depth variation is achieved by interposing degraders in the beam (cyclotrons) or by changing the beam energy (synchrotrons). The aim of beam scanning is to deliver a predetermined dose at any point in the body. Special safety precautions must be taken because of the high instantaneous dose rates. The beam position and the dose delivered at each point must be accurately and redundantly determined. (author)

  10. Efficient scanning of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1978-01-01

    Lead containers fabricated for transport of radioactive materials need to be evaluated for their shielding integrity. The common method of locating a strong gamma source inside the vessel and scanning the external surface by conventional detectors suffers from high radiation dose and low sensitivity. A new method has been proposed and tried. It is found to be more efficient. In the new method, 60 Co source is loaded at the centre of the lead vessel and the outer surface is scanned by NaI(Tl) detector. The transmitted virgin flux is scanned under the 60 Co channel in a single channel analyser. An area of 25 cm 2 is scanned for 10 to 20 seconds each time. The source strength required is considerably reduced by a factor of 10 or more as compared to the common method and external dose rates do not exceed 50 mR/h (130 nC. kg -1 h -1 ) on the vessel surface. The advantages are improved sensitivity, no interference from scattered radiation and assurance in repeatability of measurements. (M.G.B.)

  11. Robust Adaptive Thresholder For Document Scanning Applications

    Science.gov (United States)

    Hsing, To R.

    1982-12-01

    In document scanning applications, thresholding is used to obtain binary data from a scanner. However, due to: (1) a wide range of different color backgrounds; (2) density variations of printed text information; and (3) the shading effect caused by the optical systems, the use of adaptive thresholding to enhance the useful information is highly desired. This paper describes a new robust adaptive thresholder for obtaining valid binary images. It is basically a memory type algorithm which can dynamically update the black and white reference level to optimize a local adaptive threshold function. The results of high image quality from different types of simulate test patterns can be obtained by this algorithm. The software algorithm is described and experiment results are present to describe the procedures. Results also show that the techniques described here can be used for real-time signal processing in the varied applications.

  12. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  13. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  14. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    Science.gov (United States)

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A quality improvement project to reduce hypothermia in infants undergoing MRI scanning

    International Nuclear Information System (INIS)

    Dalal, Priti G.; Parekh, Uma; Dhar, Padmani; McQuillan, Patrick M.; Porath, Janelle; Mujsce, Dennis; Wang, Ming; Hulse, Michael

    2016-01-01

    Hypothermia prevention strategies during MRI scanning under general anesthesia in infants may pose a challenge due to the MRI scanner's technical constraints. Previous studies have demonstrated conflicting results related to increase or decrease in post-scan temperatures in children. We noted occurrences of post-scan hypothermia in anesthetized infants despite the use of routine passive warming techniques. The aims of our quality improvement project were (a) to identify variables associated with post-scan hypothermia in infants and (b) to develop and implement processes to reduce occurrence of hypothermia in neonatal intensive care unit (NICU) infants undergoing MRI. One hundred sixty-four infants undergoing MRI scanning were prospectively audited for post-scan body temperatures. A multidisciplinary team identified potential variables associated with post-scan hypothermia and designed preventative strategies: protocol development, risk factor identification, vigilance and use of a vacuum immobilizer. Another audit was performed, specifically focusing on NICU infants. In the initial phase, we found that younger age (P = 0.002), lower weight (P = 0.005), lower pre-scan temperature (P < 0.01), primary anesthetic technique with propofol (P < 0.01), advanced airway devices (P = 0.02) and being in the NICU (P < 0.01) were associated with higher odds for developing post-scan decrease in body temperature. Quality improvement processes decreased the occurrence of hypothermia in NICU infants undergoing MRI scanning from 65% to 18% (95% confidence interval for the difference, 26-70%, P < 0.001). Several variables, including being in the NICU, are associated with a decrease in post-scan temperature in infants undergoing MRI scanning under sedation/general anesthesia. Implementation of strategies to prevent hypothermia in infants may be challenging in the high-risk MRI environment. We were able to minimize this problem in clinical practice by applying quality improvement

  16. A Study for Reappearance According to the Scan Type, the CT Scanning by a Moving Phantom

    International Nuclear Information System (INIS)

    Choi, Jae Hyock; Jeong, Do Hyeong; Choi, Gye Suk; Jang, Yo Jong; Kim, Jae Weon; Lee, Hui Seok

    2007-01-01

    CT scan shows that significant tumor movement occurs in lesions located in the proximity of the heart, diaphragm, and lung hilus. There are differences concerning three kinds of type to get images following the Scan type called Axial, Helical, Cine (4D-CT) mode, when the scanning by CT. To know how each protocol describe accurately, this paper is going to give you reappearance using the moving phantom. To reconstruct the movement of superior-inferior and anterior-posterior, the manufactured moving phantom and the motor following breathing were used. To distinguish movement from captured images by CT scanning, a localizer adhered to the marker on the motor. The moving phantom fixed the movement of superior-inferior upon 1.3 cm /1 min. The motor following breathing fixed the movement of anterior-posterior upon 0.2 cm /1 min. After fixing each movement, CT scanning was taken by following the CT protocols. The movement of A localizer and volume-reappearance analyzed by RTP machine. Total volume of a marker was 88.2 cm 3 considering movement of superior-inferior. Total volume was 184.3 cm 3 . Total volume according to each CT scan protocol were 135 cm 3 by axial mode, 164.9 cm 3 by helical mode, 181.7 cm 3 by cine (4D-CT) mode. The most closely describable protocol about moving reappearance was cine mode, the marker attached localizer as well. CT scan should reappear concerning a exact organ-description and target, when the moving organ is being scanned by three kinds of CT protocols. The cine (4D-CT) mode has the advantage of the most highly reconstructible ability of the three protocols in reappearance of the marker using a moving phantom. The marker on the phantom has always regular motion but breathing patients don't move like a phantom. Breathing education and devices setting patients were needed so that images reconstruct breathing as exactly as possible. Users should also consider that an amount of radiation to patients is being bombed.

  17. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  18. Establishing locoregional control of malignant pleural mesothelioma using high-dose radiotherapy and 18F-FDG PET/CT scan correlation

    International Nuclear Information System (INIS)

    Feigen, Malcolm; Lawford, Catherine; Churcher, Katheryn; Zupan, Eddy; Hamilton, Chris; Lee, Sze Ting; Scott, Andrew M.

    2011-01-01

    The management of malignant pleural mesothelioma represents one of the most challenging issues in oncology, as there is no proven long-term benefit from surgery, radiotherapy or chemotherapy alone or in combination. Locoregional progression remains the major cause of death, but radical surgical resection may produce major postoperative morbidity. While radical or postoperative radiotherapy using conventional techniques has resulted in severe toxicity with no impact on survival, recent advances in radiotherapy delivery may be more effective. We treated patients with locally advanced mesothelioma whose tumours had been sub optimally resected with high-dose three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) to large volumes of one hemithorax, using CT and positron emission tomography (PET) scan-based treatment planning. Clinical outcomes were assessed by determining patterns of failure and metabolic changes in total glycolytic volume (TGV) between pre- and post-irradiation 18 F-FDG PET/CT scans and by recording acute and late toxicity grades. Fourteen patients were analysed with 40 PET scans performed before and up to 4.5 years after radiotherapy. Eleven patients had pleurectomy/decortications, one had an extrapleural pneumonectomy and two had no surgery. Four patients who received chemotherapy had all progressed prior to radiotherapy. After radiotherapy, the in-field local control rate was 71%. No progression occurred in two patients, one was salvaged with further radiotherapy to a new site, four recurred inside the irradiated volume all with concurrent distant metastases and the other seven had distant metastases only. The TGVs were reduced by an average of 67% (range 12–100%) after doses of 45 to 60 Gy to part or all of one hemithorax. There were no serious treatment-related toxicities. Median survival was 25 months from diagnosis and 17 months after starting radiotherapy. We have established that mesothelioma can be

  19. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    International Nuclear Information System (INIS)

    Horvat, Stephen

    2017-01-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS. (paper)

  20. Diagnosis of arterial prosthetic graft infection by 111In oxine white blood cell scans

    International Nuclear Information System (INIS)

    McKeown, P.P.; Miller, D.C.; Jamieson, S.W.; Mitchell, R.S.; Reitz, B.A.; Olcott, C.; Mehigan, J.T.; Silberstein, R.J.; McDougall, I.R.

    1982-01-01

    Early and accurate diagnosis of infected prosthetic arterial grafts is difficult, despite the application of diverse diagnostic modalities. Delay in making the diagnosis is largely responsible for the high amputation and mortality rates associated with this complication. In nine patients with suspected graft infections, 111 In white blood cell scanning was useful and accurate. Graft infection was proved in five cases and ruled out in three. One false-positive scan was due to a sigmoid diverticular abscess overlying the graft. 111 In white blood cell scans may improve the accuracy of diagnosing infected prosthetic grafts, which may result in better limb and patient salvage rates

  1. Unbiased Scanning Method and Data Banking Approach Using Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry for Quantitative Comparison of Metabolite Exposure in Plasma across Species Analyzed at Different Dates.

    Science.gov (United States)

    Gao, Hongying; Deng, Shibing; Obach, R Scott

    2015-12-01

    An unbiased scanning methodology using ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry was used to bank data and plasma samples for comparing the data generated at different dates. This method was applied to bank the data generated earlier in animal samples and then to compare the exposure to metabolites in animal versus human for safety assessment. With neither authentic standards nor prior knowledge of the identities and structures of metabolites, full scans for precursor ions and all ion fragments (AIF) were employed with a generic gradient LC method to analyze plasma samples at positive and negative polarity, respectively. In a total of 22 tested drugs and metabolites, 21 analytes were detected using this unbiased scanning method except that naproxen was not detected due to low sensitivity at negative polarity and interference at positive polarity; and 4'- or 5-hydroxy diclofenac was not separated by a generic UPLC method. Statistical analysis of the peak area ratios of the analytes versus the internal standard in five repetitive analyses over approximately 1 year demonstrated that the analysis variation was significantly different from sample instability. The confidence limits for comparing the exposure using peak area ratio of metabolites in animal plasma versus human plasma measured over approximately 1 year apart were comparable to the analysis undertaken side by side on the same days. These statistical analysis results showed it was feasible to compare data generated at different dates with neither authentic standards nor prior knowledge of the analytes.

  2. Comparison of MRI fast SPGR single slice scan and continuous dynamic scan in patients with obstructive sleep apnea-hypopnea syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinyu [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: myginny2@sina.com; Yang Xue [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: yangxueqyfy@126.com; Hua Hui [Department of Otorhinolaryngology-Head and Neck Surgery, Medical School Hospital of Qingdao University, Qingdao (China)], E-mail: huahuisky@163.com; Chen Jingjing [Department of Radiology, Medical School Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003 (China)], E-mail: chenjingjingsky@126.com

    2009-07-15

    Objective: To evaluate the application value of MRI fast SPGR single slice scan in patients with obstructive sleep apnea-hypopnea syndrome when comparing the images between fast SPGR single slice scan and continuous dynamic scan. Methods: Eighteen patients with obstructive sleep apnea-hypopnea syndrome were examined by fast SPGR single slice scan and continuous dynamic scan in turn. Fast SPGR single slice scans were conducted when the phases of apnea, inspiration and expiration appeared on the respiratory wave of the subjects. Fast SPGR continuous dynamic scans were conducted when the patients were awake and apneic. The scan planes were median sagittal plane and axial planes (the slice of middle part of palate, the slice of inferior part of palate, the slice of middle part of lingual root and the slice of 0.5 cm beneath the free margin of epiglottis). The obstructed sites and the cross-sectional areas of upper airway were compared between the two scan methods. Results: Seven cases showed complete obstruction at the narrowest sites of upper airway when apnea appeared; eleven cases showed marked decrease in cross-sectional areas at the narrowest sites compared with the areas when the patients were awake; two cases manifested multiple narrowness. The obstructed sites showed by the two scan methods were same. The difference of the cross-sectional areas of upper airway between the two scan methods was insignificant (P > 0.05). Conclusion: Fast SPGR single slice scan can accurately reflect the obstructed sites of upper airway when the breath breaks off and is the complementary method of continuous dynamic scan. Sometimes, single slice scan can replace continuous dynamic scan.

  3. High Rate User Ka-Band Phased Array Antenna Test Results

    Science.gov (United States)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  4. First performance results of two novel spectroradiometers developed for fast scanning of solar spectra UV irradiance

    Science.gov (United States)

    Feister, Uwe; Kaifel, Anton K.; Grewe, Rolf-Dieter; Kaptur, Jasmine; Reutter, Oliver; Wohlfart, Michael; Gericke, Klaus

    2003-11-01

    Two recently developed different types of fast spectroradiometers measuring solar UV irradiance have been compared in a field campaign: i) the UV spectroradiometer on filter model basis (UV-SPRAFIMO) and ii) the modified version of the spectroradiometer SPECTRO 320D by Instrument Systems. The all-weather UV-SPRAFIMO instrument combines a UV filter radiometer with 5 narrow-band (FBHM ~ 2.0 to 2.5 nm) filters centered within +/- 0.01 nm at 303.5, 309.0, 314.5, 327.0 and 387.0 nm, and an advanced neural network-based model. It allows up to 5 measurements per second to be taken that are averaged within time intervals between 5 and 30 s. The neural networks model that is embedded in the PC-based processing software converts the 5 measured irradiances into a full spectrum from 280 to 450 nm at small wavelength steps (>= 0.05 nm). These spectra can be convoluted with user-defined slit function and integrated to broad-band and action-spectra-weighted irradiance values. Users can access the data stored in the internal data logger by a serial RS232 interface or by a modem and display them on a PC-based Graphical User Interface. The spectroradiometer SPECTRO320D consists of a grating double monochromator with a cooled (-20°C) PMT receiver. The modified instrument version run by DWD uses a Schreder type cosine diffuser that directs the solar global irradiance via quartz fiber optics onto the spectroradiometer's entrance slit. The spectroradiometer used at the campaign was installed in a thermostatted (22 +/- 0.02)°C aluminum box. The modified instrument version performs a spectral scan over the whole UV region in two subsequent parts, with a lower speed in the UV-B than in the UV-A to account for the exponential changes of solar irradiance with increasing wavelengths in the UV-B and for the almost linear change in the UV-A region. In the configuration applied in the comparison, i.e. wavelength steps of 0.2 nm within the scan range from 290 nm to 450 nm, the resulting scan

  5. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    Directory of Open Access Journals (Sweden)

    David G Rosenegger

    Full Text Available Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  6. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    Science.gov (United States)

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  7. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    NARCIS (Netherlands)

    A. Mendrik (Adrienne); E.J.P.A. Vonken; B.T.J. van Ginneken (Berbke); J.R. Riordan (John ); H.W.A.M. de Jong (Hugo); T. van Seeters (Tom); E.J. Smit (Ewoud); M.A. Viergever (Max); M. Prokop (Mathias)

    2011-01-01

    textabstractCerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of

  8. Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Yong, Yue; Yap, Jeffrey T.; Killoran, Joseph H.; Allen, Aaron M.; Berbeco, Ross I.; Chen, Aileen B.

    2012-01-01

    Purpose: Whole body (3D) and respiratory gated (4D) FDG-PET/CT scans performed pre-radiotherapy (pre-RT) and post-radiotherapy (post-RT) were analyzed to investigate the impact of 4D PET in evaluating 18F-fluorodeoxyglucose (FDG) uptake changes due to therapy, relative to traditional 3D PET. Methods and materials: 3D and 4D sequential FDG-PET/CT scans were acquired pre-RT and approximately one month post-RT for patients with non-small cell lung cancer (NSCLC). The lesions of high uptake targeted with radiotherapy were identified on the pre-RT scan of each patient. Each lesion on the 3D and each of the five phases of the 4D scan were analyzed using a region of interest (ROI). For each patient the ROIs of the pre-RT scans were used to locate the areas of initial FDG uptake on the post-RT scans following rigid registration. Post-RT ROIs were drawn and the FDG uptake was compared with that of the pre-RT scans. Results: Sixteen distinct lesions from 12 patients were identified and analyzed. Standardized uptake value (SUV) maxima were significantly higher (p-value <0.005) for the lesions as measured on the 4D compared to 3D PET. Comparison of serial pre and post-RT scans showed a mean 62% decrease in SUV with the 3D PET scan (range 36–89%), and a 67% decrease with the 4D PET scan (range 30–89%). The mean absolute difference in SUV change on 3D versus 4D scans was 4.9%, with a range 0–15% (p-value = 0.07). Conclusions: Signal recovery with 4D PET results in higher SUVs when compared to standard 3D PET. Consequently, differences in the evaluation of SUV changes between pre and post-RT plans were observed. Such difference can have a significant impact in PET-based response assessment.

  9. On the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    International Nuclear Information System (INIS)

    Van Humbeeck, J.; Planes, A.

    1996-01-01

    Experimentally, two distinct classes of martensitic transformations are considered: athermal and isothermal. In the former class, on cooling, at some well-defined start temperature (M s ), isolated small regions of the martensitic product begin to appear in the parent phase. The transformation at any temperature appears to be instantaneous in practical time scales, and the amount of transformed material (x) does not depend on time, i.e., it increases at each step of lowering temperature. The transition is not completed until the temperature is lowered below M f (martensite finish temperature). The transformation temperatures are only determined by chemical (composition and degree of order) and microstructural factors. The external controlling parameter (T or applied stress) determines the free energy difference between the high and the low temperature phases, which provides the driving force for the transition. In the development of athermal martensite activation kinetics is secondary. Athermal martensite, as observed in the well known shape memory alloys Cu-Zn-Al, Cu-Al-Ni and Ni-Ti, cannot be attributed to a thermally activated mechanism for which kinetics are generally described by the Arrhenius rate equation. However, the latter has been applied by Lipe and Morris to results for the Martensitic Transformation of Cu-Al-Ni-B-Mn obtained by conventional Differential Scanning Calorimetry (DSC). It is the concern of the authors of this letter to point out the incongruences arising from the analysis of calorimetric results, corresponding to forward and reverse thermoelastic martensitic transformations, in terms of standard kinetic analysis based on the Arrhenius rate equation

  10. Keypoint-based 4-Points Congruent Sets - Automated marker-less registration of laser scans

    Science.gov (United States)

    Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad

    2014-10-01

    We propose a method to automatically register two point clouds acquired with a terrestrial laser scanner without placing any markers in the scene. What makes this task challenging are the strongly varying point densities caused by the line-of-sight measurement principle, and the huge amount of data. The first property leads to low point densities in potential overlap areas with scans taken from different viewpoints while the latter calls for highly efficient methods in terms of runtime and memory requirements. A crucial yet largely unsolved step is the initial coarse alignment of two scans without any simplifying assumptions, that is, point clouds are given in arbitrary local coordinates and no knowledge about their relative orientation is available. Once coarse alignment has been solved, scans can easily be fine-registered with standard methods like least-squares surface or Iterative Closest Point matching. In order to drastically thin out the original point clouds while retaining characteristic features, we resort to extracting 3D keypoints. Such clouds of keypoints, which can be viewed as a sparse but nevertheless discriminative representation of the original scans, are then used as input to a very efficient matching method originally developed in computer graphics, called 4-Points Congruent Sets (4PCS) algorithm. We adapt the 4PCS matching approach to better suit the characteristics of laser scans. The resulting Keypoint-based 4-Points Congruent Sets (K-4PCS) method is extensively evaluated on challenging indoor and outdoor scans. Beyond the evaluation on real terrestrial laser scans, we also perform experiments with simulated indoor scenes, paying particular attention to the sensitivity of the approach with respect to highly symmetric scenes.

  11. A spatial scan statistic for nonisotropic two-level risk cluster.

    Science.gov (United States)

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  13. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  14. Comparison of thallium-201 scan and Tc-99m sestamibi scan in the differential diagnosis of breast mass

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ihn Ho; Won, Kyu Jang; Lee, Hyung Woo; Lee, Soon Jung [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    1999-02-01

    We performed this study to compare Tl-201 and Tc-99m MIBI scans for the differentiation of malignant from benign breast mass. Thirty-eight female patients underwent Tl-201 breast scan and thirty-two of them also underwent Tc-99m MIBI scan of the breast. After intravenous injection of 74-111 MBq of Tl-201, early (10 minutes) and delayed (3 hours) images were obtained. Then, 555-740 MBq of Tc-99m MIBI was injected and images after 30 minutes were obtained. We compared Tl-201 and Tc-99m MIBI scans with pathologic results. Twenty-three patients were confirmed to have infiltrating duct carcinoma and fifteen patients to have benign breast mass by excisonal biopsy. The sensitivity of early and delayed Tl-201 scan and Tc-99m MIBI scan in the detection of malignant breast lesion were 100% (23/23), 82% (18/22), and 90% (18/20), respectively. The sensitivity of early Tl-201 scan was significantly higher than that of delayed Tl-201 scan, (p<0.05). The specificity of early and delayed Tl-201 scan and Tc-99m MIBI scan were 73% (11/15), 73% (11/15) and 83% (10/12), respectively (p: not significant). Three patients out of nine with fibroadenoma and one patient with atypical duct hyperplasia were false positive in both early and delayed Tl-201 scans. The size of fibroadenoma with false positive in early and delayed Tl-201 scan (4 cases) was larger than that of 11 fibroadenoma with true negative scan (p<0.01). Metastatic axillary lymph node involvement was present in fifteen patients. The sensitivity to detect metastatic nodes was 38% (5/13) for early Tl-201 images, 15% (2/13) for delayed Tl-201 images, 58% (7/12) for Tc-99m MIBI planar images and 67% (4/6) for Tc-99m MIBI SPECT. The sensitivity of Tc-99m MIBI planar or SPECT was significantly higher than that of delayed Tl-201 images (p<0.05). Early Tl-201 and Tc-99m MIBI scan are useful noninvasive methods to differentiate malignant from benign mass of breast. Tc-99m MIBI scan was sensitive in detecting axillary lymph node

  15. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    International Nuclear Information System (INIS)

    Goldenstein, Christopher S; Almodóvar, Christopher A; Jeffries, Jay B; Hanson, Ronald K; Brophy, Christopher M

    2014-01-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H 2 O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H 2 O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H 2 O by mole. Four H 2 O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H 2 O sensing to within 1.5–3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H 2 -fueled RDE indicate that the temperature and H 2 O oscillate at the detonation frequency (≈3.25 kHz) and that production of H 2 O is a weak function of global equivalence ratio. (paper)

  16. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    Science.gov (United States)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  17. {sup 11}C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, Tiziano; Ceci, Francesco; Polverari, Giulia; Lima, Giacomo Maria; Lodi, Filippo; Fanti, Stefano [S. Orsola-Malpighi Hospital, University of Bologna, Service of Nuclear Medicine, Bologna (Italy); Castellucci, Paolo [S. Orsola-Malpighi Hospital, University of Bologna, Service of Nuclear Medicine, Bologna (Italy); Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, UO Medicina Nucleare, Bologna (Italy); Morganti, Alessio Giuseppe [S. Orsola-Malpighi Hospital, University of Bologna, Department of Radiotherapy, Bologna (Italy); Ardizzoni, Andrea [S. Orsola-Malpighi Hospital, University of Bologna, Department of Oncology, Bologna (Italy); Schiavina, Riccardo [S. Orsola-Malpighi Hospital, University of Bologna, Department of Urology, Bologna (Italy)

    2016-10-15

    To evaluate {sup 11}C-choline PET/CT as a diagnostic tool for restaging prostate cancer (PCa), in a large, homogeneous and clinically relevant population of patients with biochemical recurrence (BCR) of PCa after primary therapy. The secondary aim was to assess the best timing for performing {sup 11}C-choline PET/CT during BCR. We retrospectively analysed 9,632 {sup 11}C-choline PET/CT scans performed in our institution for restaging PCa from January 2007 to June 2015. The inclusion criteria were: (1) proven PCa radically treated with radical prostatectomy (RP) or with primary external beam radiotherapy (EBRT); (2) PSA serum values available; (3) proven BCR (PSA >0.2 ng/mL after RP or PSA >2 ng/mL above the nadir after primary EBRT with rising PSA levels). Finally, 3,203 patients with recurrent PCa matching all the inclusion criteria were retrospectively enrolled and 4,426 scans were analysed. Overall, 52.8 % of the {sup 11}C-choline PET/CT scans (2,337/4,426) and 54.8 % of the patients (1,755/3,203) were positive. In 29.4 % of the scans, at least one distant finding was observed. The mean and median PSA values were, respectively, 4.9 and 2.1 ng/mL at the time of the scan (range 0.2 - 50 ng/mL). In our series, 995 scans were performed in patients with PSA levels between 1 and 2 ng/mL. In this subpopulation the positivity rate in the 995 scans was 44.7 %, with an incidence of distant findings of 19.2 % and an incidence of oligometastatic disease (one to three lesions) of 37.7 %. The absolute PSA value at the time of the scan and ongoing androgen deprivation therapy were associated with an increased probability of a positive {sup 11}C-choline PET/CT scan (p < 0.0001). In the ROC analysis, a PSA value of 1.16 ng/mL was the optimal cut-off value. In patients with a PSA value <1.16 ng/mL, 26.8 % of 1,426 {sup 11}C-choline PET/CT scans were positive, with oligometastatic disease in 84.7 % of positive scans. In a large cohort of patients, the feasibility of {sup 11}C

  18. Fast-scanning heterodyne receiver for measurement of the electron cyclotron emission from high-temperature plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.; Campbell, L.; Hosea, J.C.

    1979-03-01

    A fast-scanning heterodyne receiver was developed that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60 to 90 GHz every 10 milliseconds and is interfaced to a computer for completely automated calibrated temperature measurements

  19. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  20. Scanning probe lithography for nanoimprinting mould fabrication

    International Nuclear Information System (INIS)

    Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan

    2006-01-01

    We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds

  1. Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experiment

    International Nuclear Information System (INIS)

    Sahoo, Nihar Ranjan

    2014-01-01

    Event-by-event fluctuations of global observables in relativistic heavy-ion collisions are studied as probes for the QCD phase transition and as tools to search for critical phenomena near the phase boundary. Dynamical fluctuations in mean transverse momentum, identified particle ratios and conserved quantities (such as net-charge, net-baryon) are expected to provide signatures of a de-confined state of matter. Non-monotonic behavior in the higher-moments of conserved quantities as a function of beam energy and collision centrality are proposed as signatures of the QCD critical point. To study the QCD phase transition and locate the critical point, the STAR experiment at RHIC has collected a large amount of data for Au+Au collisions from √S_N_N = 7.7 - 200 GeV in the RHIC Beam Energy Scan (BES) program. We present the recent beam energy scan results on dynamical fluctuations of particle ratios and two-particle transverse momentum correlations at mid-rapidity. Higher-moments of the net-charge and net-proton multiplicity distributions as a function of beam energy will be presented. We give a summary of what has been learnt so far and future prospectives for the BES-II program.

  2. Scanning patterns of faces do not explain impaired emotion recognition in Huntington Disease: Evidence for a high level mechanism

    Directory of Open Access Journals (Sweden)

    Marieke evan Asselen

    2012-02-01

    Full Text Available Previous studies in patients with amygdala lesions suggested that deficits in emotion recognition might be mediated by impaired scanning patterns of faces. Here we investigated whether scanning patterns also contribute to the selective impairment in recognition of disgust in Huntington disease (HD. To achieve this goal, we recorded eye movements during a two-alternative forced choice emotion recognition task. HD patients in presymptomatic (n=16 and symptomatic (n=9 disease stages were tested and their performance was compared to a control group (n=22. In our emotion recognition task, participants had to indicate whether a face reflected one of six basic emotions. In addition, and in order to define whether emotion recognition was altered when the participants were forced to look at a specific component of the face, we used a second task where only limited facial information was provided (eyes/mouth in partially masked faces. Behavioural results showed no differences in the ability to recognize emotions between presymptomatic gene carriers and controls. However, an emotion recognition deficit was found for all 6 basic emotion categories in early stage HD. Analysis of eye movement patterns showed that patient and controls used similar scanning strategies. Patterns of deficits were similar regardless of whether parts of the faces were masked or not, thereby confirming that selective attention to particular face parts is not underlying the deficits. These results suggest that the emotion recognition deficits in symptomatic HD patients cannot be explained by impaired scanning patterns of faces. Furthermore, no selective deficit for recognition of disgust was found in presymptomatic HD patients.

  3. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor

    Directory of Open Access Journals (Sweden)

    Hongjie Lei

    2018-05-01

    Full Text Available This paper presents a flame retardant 4 (FR4-based electromagnetic scanning micromirror, which aims to overcome the limitations of conventional microelectromechanical systems (MEMS micromirrors for the large-aperture and low-frequency scanning applications. This micromirror is fabricated through a commercial printed circuit board (PCB technology at a low cost and with a short process cycle, before an aluminum-coated silicon mirror plate with a large aperture is bonded on the FR4 platform to provide a high surface quality. In particular, an electromagnetic angle sensor is integrated to monitor the motion of the micromirror in real time. A prototype has been assembled and tested. The results show that the micromirror can reach the optical scan angle of 11.2 ∘ with a low driving voltage of only 425 mV at resonance (361.8 Hz. At the same time, the signal of the integrated angle sensor also shows good signal-to-noise ratio, linearity and sensitivity. Finally, the reliability of the FR4 based micro-mirror has been tested. The prototype successfully passes both shock and vibration tests. Furthermore, the results of the long-term mechanical cycling test (50 million cycles suggest that the maximum variations of resonant frequency and scan angle are less than 0.3% and 6%, respectively. Therefore, this simple and robust micromirror has great potential in being useful in a number of optical microsystems, especially when large-aperture or low-frequency is required.

  4. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  5. Nuclear scanning in necrotizing progressive ''malignant'' external otitis

    International Nuclear Information System (INIS)

    Parisier, S.C.; Lucente, F.E.; Som, P.M.; Hirschman, S.Z.; Arnold, L.M.; Roffman, J.D.

    1982-01-01

    The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection

  6. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  7. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the Diabetes Research in Children Network (DirecNet) experience

    International Nuclear Information System (INIS)

    Barnea-Goraly, Naama; Marzelli, Matt J.; Mazaika, Paul K.; Weinzimer, Stuart A.; Ruedy, Katrina J.; Beck, Roy W.; Kollman, Craig; Cheng, Peiyao; Mauras, Nelly; Fox, Larry; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Reiss, Allan L.

    2014-01-01

    The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. (orig.)

  8. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner-the Diabetes Research in Children Network (DirecNet) experience

    Energy Technology Data Exchange (ETDEWEB)

    Barnea-Goraly, Naama; Marzelli, Matt J.; Mazaika, Paul K. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Weinzimer, Stuart A. [Yale University, Pediatric Endocrinology, New Haven, CT (United States); Ruedy, Katrina J.; Beck, Roy W.; Kollman, Craig; Cheng, Peiyao [Jaeb Center for Health Research, Tampa, FL (United States); Mauras, Nelly; Fox, Larry [Nemours Children' s Clinic, Pediatric Endocrinology, Jacksonville, FL (United States); Aye, Tandy [Stanford University, Department of Pediatrics, Stanford, CA (United States); White, Neil H. [Washington University in St. Louis, Department of Pediatrics, St. Louis, MO (United States); Tsalikian, Eva [University of Iowa, Pediatric Endocrinology, Iowa City, IA (United States); Reiss, Allan L. [Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford, CA (United States); Stanford University, Department of Pediatrics, Stanford, CA (United States); Stanford University, Department of Radiology, Diabetes Research in Children Network (DirecNet), Stanford, CA (United States); Collaboration: on behalf of the Diabetes Research in Children Network (DirecNet)

    2014-02-15

    The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. (orig.)

  9. Automated detection of analyzable metaphase chromosome cells depicted on scanned digital microscopic images

    Science.gov (United States)

    Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin

    2010-02-01

    Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of

  10. Using a laser scanning camera for reactor inspection

    International Nuclear Information System (INIS)

    Armour, I.A.; Adrain, R.S.; Klewe, R.C.

    1984-01-01

    Inspection of nuclear reactors is normally carried out using TV or film cameras. There are, however, several areas where these cameras show considerable shortcomings. To overcome these difficulties, laser scanning cameras have been developed. This type of camera can be used for general visual inspection as well as the provision of high resolution video images with high ratio on and off-axis zoom capability. In this paper, we outline the construction and operation of a laser scanning camera and give examples of how it has been used in various power stations, and indicate future potential developments. (author)

  11. Evaluative studies in nuclear medicine research. Interim progress report, July 1, 1975--June 30, 1976. [Diagnostic value of brain scans

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E.J.

    1976-01-01

    Data relating to the determination of the efficacy of radionuclide brain scanning have been analyzed. The data were gathered at a teaching hospital by use of a prospective questionnaire followed by a retrospective study of the result of the brain scan examination. Data analysis was accomplished using a method of pattern discovery which relates selected outcomes such as normal and abnormal brain scans to patient attributes (signs, symptoms, history, and previous test results). The objective of the analysis was the identification of patterns or clusters of patient attributes which have a high probability of acting as predictors of the outcome of the brain scan.

  12. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems

    Energy Technology Data Exchange (ETDEWEB)

    Farr, J. B.; Schoenenberg, D. [Westdeutsches Protonentherapiezentrum Essen, Universitaetsklinikum-Essen, Hufelandstrasse 55, 45147 Essen (Germany); Dessy, F.; De Wilde, O.; Bietzer, O. [Ion Beam Applications, Chemin du Cyclotron, 3, 1348 Louvain-la-Neuve (Belgium)

    2013-07-15

    Purpose: The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so.Methods: The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool.Results: The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not.Conclusions: The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton

  13. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nosal, A. (Harbor General Hospital, Torrance, CA); Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.

  14. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    International Nuclear Information System (INIS)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-01-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis

  15. Scan path entropy and Arrow plots: Capturing scanning behavior of multiple observers

    Directory of Open Access Journals (Sweden)

    Ignace T C Hooge

    2013-12-01

    Full Text Available Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures 1 scan path entropy to quantify gaze guidance and 2 the arrow plot to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50. The new measures were tested in an eye tracking study (48 observers, 39 advertisements. Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place.

  16. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  17. Efficient green lasers for high-resolution scanning micro-projector displays

    Science.gov (United States)

    Bhatia, Vikram; Bauco, Anthony S.; Oubei, Hassan M.; Loeber, David A. S.

    2010-02-01

    Laser-based projectors are gaining increased acceptance in mobile device market due to their low power consumption, superior image quality and small size. The basic configuration of such micro-projectors is a miniature mirror that creates an image by raster scanning the collinear red, blue and green laser beams that are individually modulated on a pixel-bypixel basis. The image resolution of these displays can be limited by the modulation bandwidth of the laser sources, and the modulation speed of the green laser has been one of the key limitations in the development of these displays. We will discuss how this limitation is fundamental to the architecture of many laser designs and then present a green laser configuration which overcomes these difficulties. In this green laser architecture infra-red light from a distributed Bragg-reflector (DBR) laser diode undergoes conversion to green light in a waveguided second harmonic generator (SHG) crystal. The direct doubling in a single pass through the SHG crystal allows the device to operate at the large modulation bandwidth of the DBR laser. We demonstrate that the resultant product has a small footprint (9% electrical-to-optical conversion) and large modulation bandwidth (>100 MHz).

  18. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  19. Contrast enhanced CT-scans are not comparable to non-enhanced scans in emphysema quantification

    International Nuclear Information System (INIS)

    Heussel, C.P.; Kappes, J.; Hantusch, R.; Hartlieb, S.; Weinheimer, O.; Kauczor, H.-U.; Eberhardt, R.

    2010-01-01

    Systemic, interventional and surgical treatments have gone new ways in treatment of emphysema. For longitudinal therapy monitoring and as end-points for clinical trials, quantification of the disease is necessary. Sensitive, easy to measure, as well as stable and reproducible parameters have to be characterized. One parameter that might affect emphysema quantification is IV contrast enhancement, which might also be indicated. Whether or not the contrast enhanced scan is also suited for emphysema quantification or an additional scan is necessary, a retrospective analysis of 12 adult patients undergoing clinically indicated both, a non-enhanced and enhanced thin section MSCT within a week (median 0 days, range 0-4 days) was done. The in-house YACTA software was used for automatic quantification of lung and emphysema volume, emphysema index, mean lung density, and 5th, 10th, 15th percentile. After IV contrast administration, the median CT derived lung volume decreased mild by 1.1%, while median emphysema volume decreased by relevant 11%. This results in a decrease of median emphysema index by 9%. The median lung density (15th percentile) increased after contrast application by 18 HU (9 HU). CT quantification delivers emphysema values that are clearly affected by IV contrast application. The detected changes after contrast application show the results of higher density in the lung parenchyma. Therefore the amount of quantified emphysema is reduced and the lung density increased after contrast enhancement. In longitudinal analyses, non-enhanced scans should be the reference, while enhanced scans cannot be used.

  20. Serial CT scannings in herpes simplex encephalitis

    International Nuclear Information System (INIS)

    Fukushima, Masashi; Sawada, Tohru; Kuriyama, Yoshihiro; Kinugawa, Hidekazu; Yamaguchi, Takenori

    1981-01-01

    Two patients with serologically confirmed herpes simplex encephalitis were studied by serial CT scannings. Case 1, a 60-year-old woman, was admitted to National Cardiovascular Center because of headache, fever, and attacks of Jacksonian seizure. Case 2, a 54-year-old man, was admitted because of fever, consciousness disturbance and right hemipare sis. Pleocytosis (mainly lymphocytes) and elevation of protein content in cerebrospinal fluid were observed in both cases. Both patients presented ''das apallische Syndrom'' one month after admission. The diagnosis of herpes simplex encephalitis was confirmed by typical clinical courses and by greater than fourfold rises in serum antibody titer for herpes simplex virus as well as that in cerebrospinal fluid in case 1. Characteristic CT findings observed in these two cases were summarized as follows: Within a week after the onset, no obvious abnormalities could be detected on CT scans (Case 1). Two weeks after the onset, a large low-density area appeared in the left temporal lobe and in the contralateral insular cortex with midline shift toward the right side (Case 2). One month later, an ill-defined linear and ring-like high-density area (Case 1), or a well-defined high-density area (Case 2), that was enhanced after contrast administration, was observed in the large low-density area in the temporal lobe. These findings were considered as characteristic for hemorrhagic encephalitis. These high-density areas disappeared two months later, however, widespread and intensified low-density areas still remained. In both cases, the basal ganglia and thalamus were completely spared on CT scans. From these observations, it can be concluded that serial CT scannings are quite useful for diagnosis of herpes simplex encephalitis. (author)

  1. Quality Assurance By Laser Scanning And Imaging Techniques

    Science.gov (United States)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  2. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    International Nuclear Information System (INIS)

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-01-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory

  3. CS-Studio Scan System Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Kasemir, Kay [ORNL; Pearson, Matthew R [ORNL

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  4. Whole-heart 3D late gadolinium-enhanced MR imaging. Investigation of optimal scan parameters and clinical usefulness

    International Nuclear Information System (INIS)

    Yorimitsu, Misako; Yokoyama, Kenichi; Nitatori, Toshiaki; Yoshino, Hideaki; Isono, Sachiko; Kuhara, Shigehide

    2012-01-01

    Whole-heart 3-dimensional (3D) late-gadolinium-enhanced magnetic resonance (MR) imaging (WH-LGE) uses respiratory gating combined with acquisition of 3D data for the entire heart in a single scan, which permits reconstruction of any plane with high resolution. We investigated the optimal scan parameters and compared WH-LGE with the conventional scanning method. We employed inversion recovery 3D fast field echo using a 1.5-tesla system and scan parameters: repetition time (TR), 6.6 ms; echo time (TE), 2.5 ms; number of segments, 2; parallel imaging factor, 1.8; matrix size, 128 x 256; field of view (FOV), 320 x 320 mm; and acquisition slice thickness, 3 mm (reconstruction slice thickness, 1.5 mm). Five healthy volunteers underwent scanning during free breathing with real-time motion correction, from which we determined optimal scan parameters. We then used those parameters to scan 25 patients with myocardial infarction to compare scan time and image quality between the WH-LGE and conventional 3D breath-holding methods (slice thickness, 10 mm; matrix size, 128 x 256). Results in volunteers showed optimal scan parameters of 12deg flip angle, fat suppression turned off in combination, and interleaved ordering. In clinical cases, scan times did not differ significantly. Sharpness of the margins of normal myocardium at the apex of the heart and contrast between enhanced and nonenhanced myocardium improved significantly with WH-LGE. WH-LGE yields high resolution images during free breathing and is considered useful for accurately estimating the area and transmural extent of myocardial infarction. (author)

  5. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  6. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  7. Performance of the SRRC scanning photoelectron microscope

    Science.gov (United States)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K.-L.

    2001-07-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  8. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  9. Radioisotope spleen scan in patients with splenic injury

    International Nuclear Information System (INIS)

    Mishalany, H.G.; Miller, J.H.; Woolley, M.M.

    1982-01-01

    The technetium /sup 99m/Tc sulfur colloid liver-spleen scan is a valuable aid in diagnosis and treatment of patients with splenic injury. After reviewing the charts of 47 patients who were ill as a result of splenic trauma, we came to the following conclusions: (1) the scan identified the injury, accurately mapped its extent, and indicated the presence or absence of associated liver injuries; (2) the scans were useful in following the extent and rate of healing of the splenic injury; (3) the scan is an indirect measurement of of return of splenic fuction; (4) the procedure can be performed in a reasonable time frame with no serious morbidity; and (5) the indications, contraindications, and timing of scans are now reasonably well established

  10. Radioisotope spleen scan in patients with splenic injury

    Energy Technology Data Exchange (ETDEWEB)

    Mishalany, H.G.; Miller, J.H.; Woolley, M.M.

    1982-09-01

    The technetium /sup 99m/Tc sulfur colloid liver-spleen scan is a valuable aid in diagnosis and treatment of patients with splenic injury. After reviewing the charts of 47 patients who were ill as a result of splenic trauma, we came to the following conclusions: (1) the scan identified the injury, accurately mapped its extent, and indicated the presence or absence of associated liver injuries; (2) the scans were useful in following the extent and rate of healing of the splenic injury; (3) the scan is an indirect measurement of of return of splenic fuction; (4) the procedure can be performed in a reasonable time frame with no serious morbidity; and (5) the indications, contraindications, and timing of scans are now reasonably well established.

  11. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  12. Scanning optical microscope with long working distance objective

    Science.gov (United States)

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  13. Tumor scanning with /sup 57/Co-bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S; Hasegawa, Y; Matsuda, Minoru; Ho, T; Doi, O [Osaka Prefectural Center for Adult Diseases (Japan)

    1975-06-01

    The clinical application of /sup 57/Co-bleomycin as a tumor scanning radiopharmaceutical was firstly reported by Nouel and Maeda respectively. The authors conducted studies on the diagnostic significance of this tumor scanning agent and presented the results obtained in 40 patients with malignant and non malignant lesions. Six hours and 24 hours after the injection of 500 ..mu..Ci of /sup 57/Co-bleomycin, scintigrams were taken with a 3-inch scintiscanner. Positive scans were found in 20 out of 36 patients with various malignant tumors. Of 20 patients with lung cancer, positive scans were obtained in 17 cases (85%) and of 6 with breast cancer, 3 cases showed positive scans. False negative scans were obtained in another 10 cases of malignant tumors (3 cases of thyroid carcinoma, 4 cases of hepatoma, and 1 case each of gastric carcinoma, peritoneal carcinomatosis, and reticulum cell sarcoma). Of 4 patients with non malignant disease, one case of pulmonary tuberculosis showed a positive scan. In 8 cases of lung cancer and 6 of breast cancer, the relationship between the size of the excised tumor and the scintigram findings was studied. The smallest tumors detected by scintigram were 2 cm in lung cancer and 3.2 cm in breast cancer.

  14. Bone graft viability evaluated by three phase bone scan

    International Nuclear Information System (INIS)

    Ljiljana Jaukovic Rajko Spaic; Marijan Novakovic; Srbislav Stosic

    2004-01-01

    Bone defects resulting war injury can be replaced by microvascular bone grafts from fibula. Aim: The aim of this study was to assess the value of three phase (3P) bone scintigraphy in the early detection of the bone graft complications. Method: 3P bone scans were performed in four patients (two after mandible reconstruction with micro vascular fibular bone grafts, one after fibular transplantation for ulnar and one with humeral reconstruction). First dynamic phase scan was performed immediately after iv injection of 740 MBq Tc- 99m DPD, acquiring 15 two seconds duration frames. Second, early static scan was performed during next 300 seconds, and third, delayed scan three hours later. All scans were obtained under the bone graft region. The scans were evaluated using ROI under graft region and the corresponding contra lateral area. Blood flow in graft region was determined using first phase scan, and tracer uptake in the same region was determined using second and third phase scans. Results: in all patients blood flow in graft region was particularly normal. Tracer uptake in one of two patients with mandible reconstruction was diffusely increased in graft, strongly suggesting infection; In the other patient delayed scan showed no tracer uptake in graft center .Both patients with ulnar and humeral reconstruction showed only slightly decreased tracer uptake in bone grafts. 3 phase bone scintigraphy may play a role in the evaluation of bone graft viability by predicting the infection and necrosis. (authors)

  15. Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.

    Science.gov (United States)

    Tornow, R P; Beuel, S; Zrenner, E

    1997-08-01

    The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.

  16. On the sensitivity of probe-corrected spherical near-field antenna measurements with high-order probes using double phi-step theta-scanning scheme against various measurement uncertainties

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2011-01-01

    In this paper, the relatively recently introduced double phi-step theta-scanning scheme and the probe correction technique associated with it is examined against the traditional phi-scanning scheme and the first-order probe correction. The important result of this paper is that the double phi......-step theta-scanning scheme is shown to be clearly less sensitive to the probe misalignment errors compared to the phi-scanning scheme. The two methods show similar sensitivity to noise and channel balance error....

  17. Technetium-99m DTPA aerosol and gallium scanning in acquired immune deficiency syndrome

    International Nuclear Information System (INIS)

    Picard, C.; Meignan, M.; Rosso, J.; Cinotti, L.; Mayaud, C.; Revuz, J.

    1987-01-01

    In 11 non-smoking AIDS patients suspected of pneumocystis carinii pneumonia (PCP), the results of Tc-99m DTPA aerosol clearances, gallium scans, and arterial blood gases were compared with those of bronchoalveolar lavage (BAL). Nine patients had PCP. All had increased clearances five times higher than the normal (5.6 +/- 2.3% X min-1 vs 1.1 +/- 0.34% X min-1, N = 10, P less than 0.001), suggesting an increased alveolar permeability. Gallium scans were abnormal in six patients but normal or slightly abnormal in the three others. Four of these nine patients had normal chest x-rays. In two of these the gallium scan was abnormal, but in the two others, only the increased Tc-99m DTPA clearances showed evidence of lung disease. Two patients had normal BAL, with normal clearances and gallium scans. Four out of the nine patients with PCP were studied after treatment. Three recovered and had normal clearance and gallium scans. One still had PCP with increased clearance but normal gallium scan. Gallium scanning and Tc-99m DTPA clearance are useful for detecting lung disease in AIDS patients with suspected PCP and for prompting BAL when chest x-rays and PaO 2 levels are normal. Due to its high sensitivity, a normal Tc-99m DTPA clearance could avoid BAL

  18. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  19. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    Science.gov (United States)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  20. SIMULATING VARIOUS TERRESTRIAL AND UAV LIDAR SCANNING CONFIGURATIONS FOR UNDERSTORY FOREST STRUCTURE MODELLING

    Directory of Open Access Journals (Sweden)

    M. Hämmerle

    2017-09-01

    Full Text Available Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations. However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS or laser scanning from unmanned aerial vehicle platforms (ULS. A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1 the height of individual understory trees and (2 understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %. Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %. The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  1. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  2. Assessment of dose measurement uncertainty using RisoScan

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Miller, Arne

    2006-01-01

    The dose measurement uncertainty of the dosimeter system RisoScan, office scanner and Riso B3 dosimeters has been assessed by comparison with spectrophotometer measurements of the same dosimeters. The reproducibility and the combined uncertainty were found to be approximately 2% and 4%, respectively, at one standard deviation. The subroutine in RisoScan for electron energy measurement is shown to give results that are equivalent to the measurements with a scanning spectrophotometer

  3. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Semi-Automatic Registration of Airborne and Terrestrial Laser Scanning Data Using Building Corner Matching with Boundaries as Reliability Check

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2013-11-01

    Full Text Available Data registration is a prerequisite for the integration of multi-platform laser scanning in various applications. A new approach is proposed for the semi-automatic registration of airborne and terrestrial laser scanning data with buildings without eaves. Firstly, an automatic calculation procedure for thresholds in density of projected points (DoPP method is introduced to extract boundary segments from terrestrial laser scanning data. A new algorithm, using a self-extending procedure, is developed to recover the extracted boundary segments, which then intersect to form the corners of buildings. The building corners extracted from airborne and terrestrial laser scanning are reliably matched through an automatic iterative process in which boundaries from two datasets are compared for the reliability check. The experimental results illustrate that the proposed approach provides both high reliability and high geometric accuracy (average error of 0.44 m/0.15 m in horizontal/vertical direction for corresponding building corners for the final registration of airborne laser scanning (ALS and tripod mounted terrestrial laser scanning (TLS data.

  5. Centre for Industrial Application of CT scanning (CIA-CT) – Four years of results 2009-2013

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Christensen, Lars Bager

    activities: Centre of Excellence, Dissemination, Collaboration, Research, and Initiation of new activities. The consortium has consisted of nine partners, including three research institutions, two consultancy partners, two large companies, and two small / medium enterprises. The consortium has acted......The innovation consortium project, carried out September 2009 – August 2013, has aimed to help the participating companies and Danish industry with the introduction of CT scanning as measuring technology, carrying out research at international level. The project has operated through five main...... as a centre of excellence for industrial CT scanning, both nationally and internationally. A network with approx. 40 participants has been established, and a total of 22 students have been educated. Dissemination activities have encompassed: a web page www.cia-ct.mek.dtu.dk , 8 newsletters, 4 topical...

  6. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  7. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode.

    Science.gov (United States)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. 07.79.Lh; 07.79.Sp; 68.37.Ps.

  8. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    Science.gov (United States)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  9. Software Application Profile: PHESANT: a tool for performing automated phenome scans in UK Biobank.

    Science.gov (United States)

    Millard, Louise A C; Davies, Neil M; Gaunt, Tom R; Davey Smith, George; Tilling, Kate

    2017-10-05

    Epidemiological cohorts typically contain a diverse set of phenotypes such that automation of phenome scans is non-trivial, because they require highly heterogeneous models. For this reason, phenome scans have to date tended to use a smaller homogeneous set of phenotypes that can be analysed in a consistent fashion. We present PHESANT (PHEnome Scan ANalysis Tool), a software package for performing comprehensive phenome scans in UK Biobank. PHESANT tests the association of a specified trait with all continuous, integer and categorical variables in UK Biobank, or a specified subset. PHESANT uses a novel rule-based algorithm to determine how to appropriately test each trait, then performs the analyses and produces plots and summary tables. The PHESANT phenome scan is implemented in R. PHESANT includes a novel Javascript D3.js visualization and accompanying Java code that converts the phenome scan results to the required JavaScript Object Notation (JSON) format. PHESANT is available on GitHub at [https://github.com/MRCIEU/PHESANT]. Git tag v0.5 corresponds to the version presented here. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  10. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  11. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals

    Science.gov (United States)

    Schuck, Renaud; Go, Mary Ann; Garasto, Stefania; Reynolds, Stephanie; Dragotti, Pier Luigi; Schultz, Simon R.

    2018-04-01

    Objective. Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as travelling salesman scanning (TSS) have been developed to maximize cellular sampling rate by scanning only select regions in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We thus aimed to develop a new scanning algorithm which produces minimal inertia trajectories, and compare its performance with existing scanning algorithms. Approach. We describe here the adaptive spiral scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Main Results. Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for in vitro hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to ‘park’ the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Cramér-Rao Bound on evoked calcium traces recorded

  12. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  13. The Diagnostic Value of Brain Scanning in the Diseases of the Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Won; Lee, Myung Chul; Koh, Chang Soon; Lee, Mun Ho; Chang, Kee Hyun; Han, Man Chung; Choi, Kil Su; Son, Hyo Chung; Cho, Byung Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-03-15

    The purpose of this study is to evaluate the diagnostic value of the brain scanning and compare the diagnostic accuracy between the scan and carotid angiography. 109 cases which are proved by specific method to each disease, are analyzed to evaluate the diagnostic value of the brain scanning. The 70 cases among the proven 109 case are performed both the scanning and the arteriography and analyzed to compare the accuracy between the scanning and the arteriography. The results are as follows; 1) The diagnostic accuracy of the brain scanning in the diseases of the central nervous system is 64.2%. 2) The diagnostic accuracy of the brain scanning in the brain tumor is 88%, especially brain abscess, glioma, glioblastoma multiforme, meningioma and metastic tumor show high positive rate. 3) The diagnostic accuracy in the disease of the brain vessels is 54%. The comparison of the diagnostic value between the scanning and the arteriography is as follows;1) The diagnostic value in all diseases of the central nervous system is nearly equal. 2) The diagnostic accuracy in the intracranial tumor is slightly higher in the brain scanning (90. 9%) than in the arteriography (81.8%). 3) The diagnostic accuracy in the disease of the brain vessel is higher in the arteriography (77.3%) than in the scanning (54.5%). 5) The diagnostic value when combining the scanning and the arteriography, is 83% in the all central nervous system-lesions, 97% in the cranial tumor and 81.8% in the disease of the central nervous system-vessel. The brain scanning is simple and safe procedure, and moreover has excellent diagnostic value in the diagnosis of the central nervous system lesion.

  14. The Diagnostic Value of Brain Scanning in the Diseases of the Central Nervous System

    International Nuclear Information System (INIS)

    Kim, Kwang Won; Lee, Myung Chul; Koh, Chang Soon; Lee, Mun Ho; Chang, Kee Hyun; Han, Man Chung; Choi, Kil Su; Son, Hyo Chung; Cho, Byung Kyu

    1974-01-01

    The purpose of this study is to evaluate the diagnostic value of the brain scanning and compare the diagnostic accuracy between the scan and carotid angiography. 109 cases which are proved by specific method to each disease, are analyzed to evaluate the diagnostic value of the brain scanning. The 70 cases among the proven 109 case are performed both the scanning and the arteriography and analyzed to compare the accuracy between the scanning and the arteriography. The results are as follows; 1) The diagnostic accuracy of the brain scanning in the diseases of the central nervous system is 64.2%. 2) The diagnostic accuracy of the brain scanning in the brain tumor is 88%, especially brain abscess, glioma, glioblastoma multiforme, meningioma and metastic tumor show high positive rate. 3) The diagnostic accuracy in the disease of the brain vessels is 54%. The comparison of the diagnostic value between the scanning and the arteriography is as follows;1) The diagnostic value in all diseases of the central nervous system is nearly equal. 2) The diagnostic accuracy in the intracranial tumor is slightly higher in the brain scanning (90. 9%) than in the arteriography (81.8%). 3) The diagnostic accuracy in the disease of the brain vessel is higher in the arteriography (77.3%) than in the scanning (54.5%). 5) The diagnostic value when combining the scanning and the arteriography, is 83% in the all central nervous system-lesions, 97% in the cranial tumor and 81.8% in the disease of the central nervous system-vessel. The brain scanning is simple and safe procedure, and moreover has excellent diagnostic value in the diagnosis of the central nervous system lesion.

  15. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    Full Text Available Scanning Electron Microscope (SEM as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D. In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  16. The Usefulness of Bone Scan in Electric Burns

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; So, Yong Seon; Kweon, Ki Hyeon; Han, Sang Woong; Kim, Seok Hwan; Kim, Jong Soon; Han, Seung Soo

    1996-01-01

    Bone scan is known to be an effective tool for observing the state of soft tissues and bones of electric burn patients. It is also used for observing the progress of patients after debridement or skin graft as well as determining to amputate specific body parts. To evaluate bone scan's role in electric burn, we analyzed bone scan 37 patients with electric burn. Among the 37 patients, 8 of 37 were injured in low voltage and 29 of them in high voltage. 27 patients received the electrical input through the hand, 6 through the scalp, 2 through the shoulder, 1 through the left chest wall and 1 through the left inguinal area. Among 29 patients received high voltage, 22 patients had the electrical output through the foot, 3 through the hand, 2 through the shoulder, 1 through the buttock and 1 through the left chest wall. Bone scans revealed cellulitis in 37 patients with 47 sites, osteomyelitis in 15 patients with 15 sites and bone defects in 4 patients with 4 sites. In 4 patients with skin graft or skin flap, follow up bone scan showed improvements of bony uptake in preoperatively bony defect area and all of them were healed without complication There were 2 cases in which uptake increased in the myocardium, 1 in the liver and 6 in the kidney, however, scrum calcium level, EKG, cardiac enzyme, liver and renal function tests were normal. In conclusion, bone scans are helpful in the assessment of injury sites after electrical insult and in differential diagnosis of cellulitis and osteomyelitis. It is also useful tool of assessment after skin graft or skin flap, however, it should be further evaluated about internal organ damage.

  17. The Usefulness of Bone Scan in Electric Burns

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyung; So, Yong Seon; Kweon, Ki Hyeon; Han, Sang Woong; Kim, Seok Hwan; Kim, Jong Soon; Han, Seung Soo [Hanil Hospital, Seoul (Korea, Republic of)

    1996-03-15

    Bone scan is known to be an effective tool for observing the state of soft tissues and bones of electric burn patients. It is also used for observing the progress of patients after debridement or skin graft as well as determining to amputate specific body parts. To evaluate bone scan's role in electric burn, we analyzed bone scan 37 patients with electric burn. Among the 37 patients, 8 of 37 were injured in low voltage and 29 of them in high voltage. 27 patients received the electrical input through the hand, 6 through the scalp, 2 through the shoulder, 1 through the left chest wall and 1 through the left inguinal area. Among 29 patients received high voltage, 22 patients had the electrical output through the foot, 3 through the hand, 2 through the shoulder, 1 through the buttock and 1 through the left chest wall. Bone scans revealed cellulitis in 37 patients with 47 sites, osteomyelitis in 15 patients with 15 sites and bone defects in 4 patients with 4 sites. In 4 patients with skin graft or skin flap, follow up bone scan showed improvements of bony uptake in preoperatively bony defect area and all of them were healed without complication There were 2 cases in which uptake increased in the myocardium, 1 in the liver and 6 in the kidney, however, scrum calcium level, EKG, cardiac enzyme, liver and renal function tests were normal. In conclusion, bone scans are helpful in the assessment of injury sites after electrical insult and in differential diagnosis of cellulitis and osteomyelitis. It is also useful tool of assessment after skin graft or skin flap, however, it should be further evaluated about internal organ damage.

  18. Environmental scan of anal cancer screening practices: worldwide survey results

    International Nuclear Information System (INIS)

    Patel, Jigisha; Salit, Irving E; Berry, Michael J; Pokomandy, Alexandra de; Nathan, Mayura; Fishman, Fred; Palefsky, Joel; Tinmouth, Jill

    2014-01-01

    Anal squamous cell carcinoma is rare in the general population but certain populations, such as persons with HIV, are at increased risk. High-risk populations can be screened for anal cancer using strategies similar to those used for cervical cancer. However, little is known about the use of such screening practices across jurisdictions. Data were collected using an online survey. Health care professionals currently providing anal cancer screening services were invited to complete the survey via email and/or fax. Information was collected on populations screened, services and treatments offered, and personnel. Over 300 invitations were sent; 82 providers from 80 clinics around the world completed the survey. Fourteen clinics have each examined more than 1000 patients. Over a third of clinics do not restrict access to screening; in the rest, eligibility is most commonly based on HIV status and abnormal anal cytology results. Fifty-three percent of clinics require abnormal anal cytology prior to performing high-resolution anoscopy (HRA) in asymptomatic patients. Almost all clinics offer both anal cytology and HRA. Internal high-grade anal intraepithelial neoplasia (AIN) is most often treated with infrared coagulation (61%), whereas external high-grade AIN is most commonly treated with imiquimod (49%). Most procedures are performed by physicians, followed by nurse practitioners. Our study is the first description of global anal cancer screening practices. Our findings may be used to inform practice and health policy in jurisdictions considering anal cancer screening

  19. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  20. The diagnostic value of CT scan and selective venous sampling in Cushing's syndrome

    International Nuclear Information System (INIS)

    Negoro, Makoto; Kuwayama, Akio; Yamamoto, Naoto; Nakane, Toshichi; Yokoe, Toshio; Kageyama, Naoki; Ichihara, Kaoru; Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    We studied 24 patients with Cushing's syndrome in order to find the best way to confirm the pituitary adenoma preoperatively. At first, the sellar content was studied by means of a high-resolution CT scan in each patient. Second, by selective catheterization in the bilateral internal jugular vein and the inferior petrosal sinus, venous samples (c) were obtained for ACTH assay. Simultaneously, peripheral blood sampling (P) was made at the anterior cubital vein for the same purpose, and the C/P ratio was carefully calculated in each patient. If the C/P ratio exceeded 2, it was highly suggestive of the presence of pituitary adenoma. Even by an advanced high-resolution CT scan with a thickness of 2 mm, pituitary adenomas were detected in only 32 % of the patients studied. The result of image diagnosis in Cushing disease was discouraging. As for the chemical diagnosis, the results were as follows. At the early stage of this study, the catheterization was terminated in the jugular veins of nine patients. Among these, in five patients the presence of pituitary adenoma was predicted correctly in the preoperative stage. Later, by means of inferior petrosal sinus samplings, pituitary microadenomas were detected in ten patients among the twelve. Selective venous sampling for ACTH in the inferior petrosal sinus or jugular vein proved to be useful for the differential diagnosis of Cushing's syndrome when other diagnostic measures such as CT scan were inconclusive. (author)

  1. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury

    International Nuclear Information System (INIS)

    Schall, G.L.; McDonald, H.D.; Carr, L.B.; Capozzi, A.

    1978-01-01

    The use of xenon Xe-133 ventilation-perfusion lung scans for the early diagnosis of inhalation injury was evaluated in 67 patients with acute thermal burns. Study results were interpreted as normal if there was complete pulmonary clearance of the radioactive gas by 150 seconds. Thirty-two scans were normal, 32 abnormal, and three technically inadequate. There were three true false-positive study results and one false-negative study result. Good correlation was found between the scan results and various historical, physical, and laboratory values currently used to evaluate inhalation injury. The scans appeared to be the most sensitive method for the detection of early involvement, often being abnormal several days before the chest roentgenogram. Xenon lung scanning is a safe, easy, accurate, and sensitive method for the early diagnosis of inhalation injury and has important therapeutic and prognostic implications as well

  2. [Microinjection Monitoring System Design Applied to MRI Scanning].

    Science.gov (United States)

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  3. Clinical Symptoms of Minor Head Trauma and Abnormal Computed Tomography Scan

    Directory of Open Access Journals (Sweden)

    Maghsoudi

    2015-11-01

    Full Text Available Background Minor head trauma accounts for 70% to 90% of all head traumas. Previous studies stated that minor head traumas were associated with 7% - 20% significant abnormal findings in brain computed tomography (CT-scans. Objectives The aim of this study was to reevaluate clinical criteria of taking brain CT scan in patients who suffered from minor head trauma. Patients and Methods We enrolled 680 patients presented to an academic trauma hospital with minor head trauma in a prospective manner. All participants underwent brain CT scan if they met the inclusion criteria and the results of scans were compared with clinical examination finding. Results Loss of consciousness (GCS drop or amnesia was markedly associated with abnormal brain CT scan (P < 0.05. Interestingly, we found 7 patients with normal clinical examination but significant abnormal brain CT scan. Conclusions According to the results of our study, we recommend that all patients with minor head trauma underwent brain CT scan in order not to miss any life-threatening head injuries.

  4. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  5. Bone scan in diagnosis of infectious osteoarthritis

    International Nuclear Information System (INIS)

    Marandian, M.H.; Mortazavi, H.; Behvad, A.; Haghigat, H.; Lessani, M.; Youssefian, B.

    1979-01-01

    Bone scan with Technetium 99m is harmless method of evaluation of skeletal lesions. It is safe in pediatrics age group and it can be used in early diagnosis of infectious osteoarthritis. Bone scan differentiate osteomyelitis from cellulitis, and also it may help in diagnosis of subclinical involvement of rheumatoid arthritis, benign and malignant bone tumors, stress fractures and periostitis. We report results of bone scan in 30 pediatrics patients as follow: osteomyelitis 9 cases, cellulitis 4 cases, infectious arthritis 7 cases, tuberculous osteoarthritis 2 cases, rheumatoid arthritis 2 cases, and other different diseases 9 cases [fr

  6. Serial CT scannings in herpes simplex encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, M.; Sawada, T.; Kuriyama, Y.; Kinugawa, H.; Yamaguchi, T. (National Cardivascular Center, Osaka (Japan))

    1981-10-01

    Two patients with serologically confirmed herpes simplex encephalitis were studied by serial CT scannings. Case 1, a 60-year-old woman, was admitted to National Cardiovascular Center because of headache, fever, and attacks of Jacksonian seizure. Case 2, a 54-year-old man, was admitted because of fever, consciousness disturbance and right hemiparesis. Pleocytosis (mainly lymphocytes) and elevation of protein content in cerebrospinal fluid were observed in both cases. Both patients presented ''das apallische Syndrom'' one month after admission. The diagnosis of herpes simplex encephalitis was confirmed by typical clinical courses and by greater than fourfold rises in serum antibody titer for herpes simplex virus as well as that in cerebrospinal fluid in case 1. Characteristic CT findings observed in these two cases were summarized as follows: Within a week after the onset, no obvious abnormalities could be detected on CT scans (Case 1). Two weeks after the onset, a large low-density area appeared in the left temporal lobe and in the contralateral insular cortex with midline shift toward the right side (Case 2). One month later, an ill-defined linear and ring-like high-density area (Case 1), or a well-defined high-density area (Case 2), that was enhanced after contrast administration, was observed in the large low-density area in the temporal lobe. These findings were considered as characteristic for hemorrhagic encephalitis. These high-density areas disappeared two months later, however, widespread and intensified low-density areas still remained. In both cases, the basal ganglia and thalamus were completely spared on CT scans. From these observations, it can be concluded that serial CT scannings are quite useful for diagnosis of herpes simplex encephalitis.

  7. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  8. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  9. A STUDY OF CORRELATION BETWEEN NASAL ENDOSCOPY AND CT SCAN IN CASES OF CHRONIC RHINOSINUSITIS

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2015-07-01

    Full Text Available BACKGROUND: The accurate diagnosis of Chronic Rhinosinusitis (CRS is still a challenge therefore, the American Academy of Otorhinolaryngology - Head and Neck Surgery (AAO - HNS 1 has met in a multidisciplinary encounter and formulated a consensus based on only clinical symptoms. The computed tomography (CT scan and the nasal endoscopy (NE were introduced to make an accurate diagnosis of CRS and verify the disease severity. AIM: The aim of this study is to make a correlation between nasal endoscopy and CT scan in cases of clinically diagnosed Chronic Rhinosinusitis patients. METHOD: A study was carried out on 90 patients at Jhalawar Medical College, Jhalawar (Raj. during Sept. 20 12 to Dec. 2014. Diagnostic Nasal Endoscopy and CT Scan PNS done in patients, suffering from Chronic Rhinosinusitis. As a classification instruments, Metson / Gliklich's classification was used to evaluate the tomographic diagnosis and the Stankiewicz / Chow' s classification to evaluate the endoscopic diagnosis of Chronic Rhinosinusitis. RESULTS: Our study showed high specificity of endoscopy in comparison to CT scan though CT scan results are more sensitive. CONCLUSION: Endoscopy can confirm a Chronic Rhinosi nusitis diagnosis, but cannot rule it out, and that CT should be performed in cases of suspected CRS even if mucopurulence is not noted on endoscopy. The CT scan and the nasal endoscopy making easier the treatment planning and the disease resolution.

  10. ComPoScan: Adaptive Scanning for Efficient Concurrent Communications and Positioning with 802.11

    DEFF Research Database (Denmark)

    King, Thomas; Kjærgaard, Mikkel Baun

    2008-01-01

    and by validation in several real-world deployments. Results from the emulation show that the system can realize different trade-offs by changing parameters. Furthermore, the emulation shows that the system works independently of the environment, the network card, the signal strength measurement technology......Using 802.11 concurrently for communications and positioning is problematic, especially if location-based services (e.g., indoor navigation) are concurrently executed with real-time applications (e.g., VoIP, video conferencing). Periodical scanning for measuring the signal strength interrupts......, and number and placement of access points. We also show that ComPoScan does not harm the positioning accuracy of a positioning system. By validation in several real-world deployments, we provided evidence for that the real system works as predicted by the emulation. In addition, we provide results for Com...

  11. Budget Cuts: Financial Aid Offices Face Budget Cuts and Increasing Workload. Quick Scan Survey Results

    Science.gov (United States)

    National Association of Student Financial Aid Administrators (NJ1), 2010

    2010-01-01

    The majority of college financial aid offices have seen cuts to their operating budgets this year compared to the 2007-08 academic year when the recession began, according to the National Association of Student Financial Aid Administrator's latest QuickScan Survey. Sixty-two percent of financial aid offices reported operating budget cuts this year…

  12. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  13. Clinical significant of three phase radionuclide bone scan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hee; Suh, Jin Suck; Park, Chang Yun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-04-15

    Three phase radionuclide bone scan, consisting of a radionuclide angiogram, an immediate postinjection blood pool image, and 4hr delayed images, was randomly performed in 182 patients, who had been suffered from either local pain or tenderness. Authors analysed 3 phase bone scan in 74 patients with correct diagnosis proven surgically or clinically, from July 1987 to August, 1988. The results were as follows: 1. Overall sensitivity of 3 phase bone scan was 85.4%: sensitivity in patients with an osseous lesion was 90.4% as opposed to 72.7% in patients with a nonosseous lesion. 2. There was no difference in the detection rate of the osseous lesions between the 3 phase bone scan and the delayed image bone scan. However, because the detection rate was higher on the 3 phase bone scan than it was on only the delayed image bone scan (55%) in instance of the nonosseous lesion, we would suggest that 3 phase bone scan might be obtained in cases suspected of the nonosseous lesions. 3. When the presumptive diagnosis was a bone tumor, sensitivity and specificity for malignancy were 67%, 100% respectively. 4. In differentiating osteomyelitis from cellulitis, sensitivity was 94%, specificity was 100%. 5. 3 phase bone scan was able to provide the precise information about either vasculaturity or localization of lesion in some cases of soft tissue mass and avascular necrosis of hips.

  14. Intensity and resolution of a general scan in reciprocal space

    International Nuclear Information System (INIS)

    Lebech, B.; Nielsen, M.

    1975-01-01

    Elastic neutron scattering on single crystals is traditionally carried out either by rotating the sample and keeping the detector fixed, or by coupling the detector rotation to the sample rotation in the the ratio 2:1. In recent years, a number of papers have discussed the feasibility of other types of scans. General scans at oblique angles to reciprocal lattice vectors are commonly used in inelastic neutron scattering. Such scans are also useful in elastic neutron scattering and may easily be made by means of computer or tape controlled diffractometers. Formulas are derived for the intensity and width of Bragg reflections measured by scanning at oblique angles to reciprocal lattice vectors. The results of the calculations are compared to experimental results on simple structures. The limitations of general scans in reciprocal space are also discussed

  15. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  16. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  17. Propofol drip infusion anesthesia for MRI scanning: two case reports.

    Science.gov (United States)

    Sasao-Takano, Mami; Misumi, Kan; Suzuki, Masayuki; Kamiya, Yoko; Noguchi, Izumi; Kawahara, Hiroshi

    2013-01-01

    The magnetic resonance imaging (MRI) room is a special environment. The required intense magnetic fields create unique problems with the use of standard anesthesia machines, syringe pumps, and physiologic monitors. We have recently experienced 2 oral maxillofacial surgery cases requiring MRI: a 15-year-old boy with developmental disability and a healthy 5-year-old boy. The patients required complete immobilization during the scanning for obtaining high-quality images for the best diagnosis. Anesthesia was started in the MRI scanning room. An endotracheal intubation was performed after induction with intravenous administration of muscle relaxant. Total intravenous anesthesia via propofol drip infusion (4-7 mg/kg/h) was used during the scanning. Standard physiologic monitors were used during scan pauses, but special monitors were used during scanning. In MRI scanning for oral maxillofacial surgery, general anesthesia, with the added advantage of having a secured airway, is recommended as a safe alternative to sedation especially in cases of patients with disability and precooperative chidren.

  18. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition.

    Science.gov (United States)

    Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato

    2016-07-22

    This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    International Nuclear Information System (INIS)

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-01-01

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  20. Scanning negatives and slides digitizing your photographic archive

    CERN Document Server

    Steinhoff, Sascha

    2009-01-01

    Many photographers have either moved into digital photography exclusively or use both analog and digital media in their work. In either case, there is sure to be an archive of slides and negatives that cannot be directly integrated into the new digital workflow, nor can it be archived in a digital format. Increasingly, photographers are trying to bridge this gap with the use of high-performance film scanners. In this 2nd edition, you will learn how to achieve the best possible digital image from a negative or a slide, and how to build a workflow to make this process efficient, repeatable, and reliable. The author uses Nikon's film scanners, but all steps can easily be accomplished while using a different scanner. The most common software tools for scanning (SilverFast, VueScan, NikonScan) are not only covered extensively in the book, but trial versions are also provided on a DVD, which also contains other useful tools for image editing, as well as numerous sample scans.